
Vectorization, Obfuscation and P4 LLVM

Tool-chain

Dangeti Tharun Kumar

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

July 2018

Acknowledgements

I would first like to thank my thesis advisor Dr. Ramakrishna Upadrasta, for his

continues encouragement and support throughout my stay at IITH. I know no words

to express my gratitude towards him. I would like to thank my co-authors Utpal,

Santanu, Anirudh, and Venkata. Their collaboration has lead to many of the ideas

and results presented here.

Also, I want to extend my thanks to the Compilers group at IITH. I would also

like to acknowledge G. Srikanth Kumar, my friend at WSU as the second reader of

this thesis. I am gratefully indebted to him for his very valuable comments on this

thesis. I must express my very profound gratitude to my parents for providing me

with unfailing support throughout my years of education.

iv

Abstract

This thesis broadly focuses on three different areas: Loop Vectorization, Code Ob-

fuscation, and P4LLVM compiler. The work in Loop vectorization starts with a

comparison of Auto-vectorization of GCC, ICC and LLVM compilers and show their

strengths and weakness. As an attempt to improve LLVM’s Auto-vectorization, we

propose to improve Loop Distribution using exact dependences from Polly. Our work

on Loop Distribution shows promising results. We developed an LLVM based Code

Obfuscation engine with various obfuscation techniques as transformation passes, our

techniques are novel and are different from existing works [1]. In hardware circuit

obfuscation several methods were proposed at the hardware level to secure the IP.

Our approach is to obfuscate the circuits at the software level, using code obfuscation

techniques.

v

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . v

Nomenclature vii

1 Study of Auto-Vectorization in Compilers 1

1.1 Introduction . 1

1.2 Study of Vectorization . 2

1.3 Conclusion . 3

2 Loop Distribution for Vectorization in LLVM 4

2.1 Introduction . 4

2.2 Construction of RDG from Polly’s Dependences 5

2.3 Classic Loop Distribution Algorithm 6

2.4 Few details of Implementation in LLVM 6

2.5 Results . 7

2.6 Conclusion . 8

3 Code Obfuscation 9

3.1 Introduction . 9

3.2 Related work . 9

3.3 Function Argument Folding . 9

3.3.1 Cases where arguments are not folded 10

3.4 Loop Index Indirection . 10

3.4.1 Loop selection criteria . 11

3.5 Loop Reversal . 11

3.5.1 Preconditions for Loop Reversal 11

vi

3.6 Conclusion . 12

4 Hardware Circuit Obfuscation 13

4.1 Introduction . 13

4.2 Architecture . 13

4.3 Conclusion . 14

5 P4 LLVM Toolchain 15

5.1 Introduction . 15

5.2 Front-end . 16

5.3 Back-end . 16

5.4 Results . 18

References 19

vii

Chapter 1

Study of Auto-Vectorization in

Compilers

1.1 Introduction

Automatic vectorization is an important phase of compiler optimization. It involves

automatically detecting sections of the input program by the compiler, that can be

translated to vector instructions. In this work, we make a study of the current

vectorization features which has been implemented in the present day compilers. We

present a detailed analysis and comparison of three compilers: LLVM (Low Level

Virtual Machine) Compiler Infrastructure, GCC (GNU Compiler) and ICC (Intel

Compiler), highlighting their strengths and their weaknesses. We have used TSVC

[2] benchmark exclusively designed for testing vectorization capabilities of compilers.

In the era of High Performance Computing [3], various methodologies have been

explored to run programs in the most efficient way in the emerging architectures.

Execution of programs in a parallel fashion has almost become a necessity and hence

is an important research area now-a-days. To enable parallelism, the modern pro-

cessors come with various varieties of hardware features: multi/many-cores, GPUs,

special registers, and even specialized hardware elements are being added to current

generation machines. Various compilers have been targeting each of these new hard-

ware features, and SIMD(Single Instruction Multiple Data) class of parallelization is a

good example where ISA is extended to support vector arithmetic. Single Instruction

Multiple Data (SIMD) deals with processing of multiple data elements using single

instruction and modern processors have support for up to 512 bit vector operations.

Our work focuses on a type of SIMD vectorization [4] the problem of automatic vec-

1

torization of programs within the compiler framework which makes use of supporting

hardware architectures like Streaming SIMD Extensions (SSE).

1.2 Study of Vectorization

In our experiments with the TSVC benchmark suite, out of 151 loops, the number

of loops vectorized by LLVM, GCC, and ICC are 70, 82, and 112 respectively. In

Fig. 1.1 we computed the relative performance of the three compilers with respect to

the TSVC benchmark suite. There are 31 loops which are not vectorized by any of

Figure 1.1: TSVC results

the compilers. But, 59 loops are vectorized by all of them. The Intel compiler (ICC)

is able to transform significantly more number of loops exposing vectorization and

perform partial vectorization for some of these loops. We find that ICC alone is able

to vectorize 30 loops on which the other two compilers fail. Also, LLVM performs

quite poorly in this test, as it is unable to vectorize many loops which are successfully

vectorized by other two compilers. The reason may be that LLVM is a relatively

new compiler and all the features are not integrated yet. The superior performance

of ICC may be due to the fact that the same organization that writes the compilers

also makes the hardware on which it was tested. So, it is possible that their compiler

and hardware are more in sync with each other to achieve maximum performance.

The performance of GCC relatively average as it fails to detect many optimization

opportunities as compared to ICC. We also recorded the runtime of each loop in

TSVC by running each of them ten times and calculating their mean values.

The 31 loops which were not vectorized by any of the compilers have loops con-

taining complex control flow with if-else ladder (switch statements are also not consid-

ered), complicated access patterns of array locations (non-uniform accesses, indirect

2

Figure 1.2: A comparison of run times of only those loops vectorized by all three
compilers with LLVM as base line. X-axis is the loopId as given in TSVC and Y-axis
is percentage improvement/degradation over LLVM.

accesses), loops with stride length more than one, failure to do scalar expansion, state-

ments with recurrence relations and loops containing goto instructions. A reason for

compilers not able to vectorize the above said loops is the absence of sophisticated

hardware to load/store data from non-contiguous locations effectively. In addition,

greater strides between data in memory renders vectorization inefficient. For this

case, the cost model of the compiler derives that vectorization will not improve per-

formance. Loops with multiple exits are rendered non-vectorizable as trip count

cannot be determined. Switch statements can be represented as an if-else ladder but

cannot be flattened. They are not supported for vectorization in any of the three

compilers, which is a good area for future research.

We also present a comparison of the runtime of the loops successfully vectorized by

all the compilers in the Fig. 1.2. we show the relative runtimes of GCC and ICC with

respect to LLVM. The base line is LLVM and the blue bar is GCC and red curve is

ICC. We find that for some cases, the vectorized run times are significantly different

among the three compilers.

1.3 Conclusion

Our work compares the three major compilers for Auto-Vectorization capabilities.

We tried to present various possible reasons for Loops not getting vectorized, thereby

exposing the areas that needs improvement. To the best of our knowledge, this is the

first work in comparing vectorization in compilers.

3

Chapter 2

Loop Distribution for Vectorization

in LLVM

2.1 Introduction

We propose to improve Loop Distribution in LLVM targeting improvement of inner-

loop vectorization with the use of precise Polyhedral Dependence analysis from Polly

(Polyhedral engine in LLVM). Our approach is to construct an LLVM IR level de-

pendence graph from Polly’s dependences and use them for Loop Distribution. We

use classic Maximal Loop Distribution algorithm. Our loop distribution pass shows

promising results on the TSVC [2] benchmark; it is able to distribute 11 loops, while

the earlier distribution pass in LLVM is unable to distribute at all. We also have per-

formance numbers from SPEC CPU 2017 C and C++ benchmarks with LLVMs de-

pendence analysis Loop Access Info and with the new instruction level DA .We believe

that our work is the first step towards scalable and pre-defined loop-transformations

in LLVM using exact dependences from Polly.

In this work, our goal is to improve loop vectorization in LLVM using Polly, the

polyhedral optimizer in LLVM. Though the analysis and transformations of Polly

are based on a strong mathematical framework, they come with additional compile-

time. It is well understood that the major component of compile time of Polly is

the scheduling algorithm of Polly that relies on solving a large LP/ILP problem that

uses underlying Integer Set Library(ISL) library in Polly. In our current work, we

attempt to alleviate this problem by using the exact dependences of Polly for well-

defined individual transformations without the compile time cost that comes with it.

4

for(int i = 4; i < 1000; i++) {

a[i] = a[i - 1] * 2;

b[i] = c[i - 4] * c[i];

}

Figure 2.1: code snippet with 2 RAW dependences

RAW dependences:

{

Stmt_for_body[i0] -> Stmt_for_body[4 + i0] : 0 <= i0 <= 991;

Stmt_for_body[i0] -> Stmt_for_body[1 + i0] : 0 <= i0 <= 994;

}

Figure 2.2: Dependences represented as ISL sets

Examples of such well-defined transformations are loop-distribution, statement/in-

struction reordering, modulo-scheduling, etc. We obtain the dependence information

from Polly using our interface and integrate with the intra-iteration and data-flow

dependences from the LLVM infrastructure to construct the dependence graph. We

use this dependence graph to do the transformation.

2.2 Construction of RDG from Polly’s Dependences

We use PolyhedralInfo [5] an analysis pass in Polly which exposes interfaces for

checking parallel and vectorizability of loops. Polly represents dependences in the

form of Integer Set Library(ISL) sets which cannot be used directly for analysis in

LLVM. For example Figure 2.1 is a code snippet with 2 RAW dependences, Figure 2.2

depicts the ISL set representation of dependences. We have extended PolyhedralInfo

to expose dependence information as a Reduced Dependence Graph (RDG) G(V,E)

[6], whose vertices v ∈ V represents a statement Si in the high level language and

each edge e ∈ E represents a dependence from Si to Sj. The edge between nodes is

annotated with the following information

• Dependence Distance: The iteration gap between dependent instructions in a

loop.

• Dependence Level: At what depth of the loop the dependence exists.

• Type: RAW, WAR and WAW

5

2.3 Classic Loop Distribution Algorithm

Loop distribution is the technique of dividing a single loop into multiple loops, each

of which iterates over a distinct subset of statements in the original loop body. This

transformation improves parallelism, both SIMD and ILP, as well as improving cache

locality. The below is the generalized loop distribution algorithm using reduced de-

pendence graph (RDG) proposed by Allen and Kennedy [6].:

1. Compute the Strongly Connected Components (SCC) over the RDG.

2. Perform a topological ordering of the SCCs.

3. Relocate all the statements in every SCC to a new loop.

Hence, all the statements Si involved in a dependence cycle are part of a single

distributed loop, and all other statements are part of their own individual loops,

thereby exposing parallelism.

2.4 Few details of Implementation in LLVM

A statement is Si is defined as a map containing of I i → {set of Ik}, where I i

is generally a store instruction and Ik is an instruction with data flow dependence

to the store instruction I i. Statements without a store instruction (orphans) needs

special handling.

The vertex of the graph is chosen to be a statement rather an LLVM IR instruction,

because of the following reasons:

1. Polly considers a basic block to be a single statement as of now, the dependences

inside a basic block are not recognised.

2. The dependence information from Polly does not contain data dependences i.e,

use-defs. We tried to pack them together in a statement.

3. Statement representation helps in movement of the code to a new loop while

transformation.

We make the loop instructions into statements and then obtain the dependences

from PolyhedralInfo and construct the graph. Then we add the intra iteration de-

pendences for which we depend on LLVM’s LAI(Loop Access Info). Now that the

dependence graph is constructed, we find the SCCs and transform the code.

6

2.5 Results

We evaluated our implementation on TSVC [2] and SPEC-CPU 2017 benchmarks.

The improved loop distribution pass could successfully distribute 11 new kernels in

TSVC, while the existing pass (-enable-loop-distribute) does not distribute any.

Figure 2.3 and 2.4 shows the performance improvement of Loop Distribution

with Polly’s and LLVM’s dependence analysis on TSVC benchmark.

Figure 2.5 and 2.6 shows the performance improvement of Loop Distribution

with Polly’s and LLVM’s dependence analysis on SPEC SPEED 2017.

Figure 2.3: Loop Distribution with Polly’s DA + O3 vs. Just O3 on TSVC

Figure 2.4: Loop Distribution with LLVM LAI DA + O3 vs. Just O3 on TSVC

7

Figure 2.5: Loop Distribution with Polly’s DA + O3 vs. Just O3 on SPEC INT
SPEED

Figure 2.6: Loop Distribution with LLVM LAI DA + O3 vs. Just O3 on SPEC INT
SPEED

2.6 Conclusion

Our current distribution heuristic is simplistic and aggressive (we distribute whenever

it is legal) and this results in degradation of performance in loops from both TSVC and

SPEC. A cost-model is essential for the algorithm to perform distribution only when

it is beneficial. Future work involves designing a cost model and incorporating control

dependences so that loops with these kind of dependences can also be distributed.

8

Chapter 3

Code Obfuscation

3.1 Introduction

Security is of vital importance in commercial and defense software development. Many

commercial products are prone to adversarial attacks in the form of logic sniffing,

license break etc. Reverse engineering is a process of reproducing another manufac-

turer’s product by a detailed examination of its construction. Code obfuscation is

the technique of transforming the code in a way that hardens the job of a reverse

engineer. The purpose of obfuscation is to increase the time for understanding the

code behavior without sacrificing much performance. In this chapter we discuss about

various techniques we have implemented in LLVM.

3.2 Related work

OLLVM is a similar work from Junod et al. [1], they have implemented techniques like

instruction substitution, Bogus control flow, Control flow flattening etc. Only a part

of their work is open-source. The Tigress is another tool that performs obfuscation

on C language unlike a more generic work like OLLVM.

3.3 Function Argument Folding

The goal of this pass is to modify the parameters of user defined functions into char*

argv[] format. We modify the function signature and the call/invoke instructions to

these functions.

9

1

i n t fun (i n t a , i n t b , char c) {
3 // do something
}

(a) Original code

1

i n t fun (char ∗ arg []) {
3 i n t a = arg [0] ;

i n t b = arg [1] ;
5 char c = (char) arg [2] ;

// do something
7 }

(b) Obfuscated code

Figure 3.1: Function Argument Folding

3.3.1 Cases where arguments are not folded

In the following cases function arguments are not folded:

• Function is the main function in IR.

• Function has only declaration, no definition in the module.

• Function with variable number of arguments.

• Function has at least 1 argument.

• A function pointer points to the function.

3.4 Loop Index Indirection

In this technique we substitue integer induction variable of a loop with array and

index combination. This leads to an indirect access to the induction variable. The

code snippet in Figure 3.2 indirect access.

10

1

f o r (i n t i =1; i <100; i+=3)
3 {

cout<< i <<endl ;
5 }

(a) Original code

1

f o r (i n t j =0; j <33; j++)
3 {

cout << ar r [j] <<endl ;
5 }

(b) Obfuscated code

Figure 3.2: Loop Index Indirection

3.4.1 Loop selection criteria

The following conditions should be satisfied for a loop to be considered for index

indirection:

• Should be an innermost loop.

• Has statically computable trip count by Scalar Evolution. This is required for

allocating array for indirect access.

• There should be at least 1 integer induction variable in the range i[1-64]. In-

crease in induction variables leads to creation of more arrays which is a memory

overhead.

3.5 Loop Reversal

The goal of this pass is to reverse the order of iterations in every loop in a given

function that satisfies certain conditions. An example is shown in the Figure 3.3

with a loop and its transformation.

3.5.1 Preconditions for Loop Reversal

The following conditions needs to be satisfied for the loop reversal:

• The loop has a single induction variable.

• The induction variable is not modified inside the loop body.

• The induction variable is of integer type.

• The update statement consists of either only adds of a constant parameter or

subtractions of a constant parameter.

11

f o r (i = a ; i <= b ; i += c)
2 {

// statements ;
4 }

(a) Original code

f o r (i = b−((b−a) mod c) ; i >= a ; i −= c)
2 {

// modi f i ed statements ;
4 }

(b) Obfuscated code

Figure 3.3: Loop Reversal

• The value being added or subtracted must remain constant inside the loop.

• Update statements of the form i = i + a; i = i + a + b; i = i - a - b; are allowed.

• Update statements of the form i = i + a - b; i = f(a); i = i * a; i = f(a,i); etc.

are not allowed.

• The control never leaves the loop from inside the loop body - there should be

no break; or return; statements.

• The condition checked in the loop is a single condition on the induction variable

with one of the operators <, <=, >, >=.

• Both the lower and upper bounds of the loop must be constant parameters, i.e.,

their values must not change inside the loop.

• The loop must be in a rotated form - the prerequisite passes -mem2reg, -loop-

simplify, -loop-rotate must be run.

3.6 Conclusion

Along with the above mentioned techniques we have implemented Function Argument

Folding, Loop Splitting, and Constant Encoding. All these passes have been tested

for their correctness on LLVM test suite and we ensured that they are bug free.

The strength of the obfuscation is an unsolved problem, in this work, we did not try

to give theoretical guaranties, we developed novel techniques and implemented them

in LLVM.

12

Chapter 4

Hardware Circuit Obfuscation

4.1 Introduction

Security of IP in hardware circuits is primary concern for Semiconductor industry.

Circuits are reverse engineered to reproduce their functionality. Obfuscation of cir-

cuits is the way to protect them from counterfeiting. Various techniques were pro-

posed at hardware level like Design Obfuscation, IP Watermarking, IP Fingerprinting,

IC Camouflaging, etc. To the best of our knowledge, none of these techniques are fully

secure. We propose to obfuscate the circuit at the software level, using code obfus-

cation techniques. The LLVM code obfuscation engine we have developed (discussed

in the previous chapter) is used to obfuscate the Verilog circuits. In this chapter, we

elucidate our approach to this problem and the required components.

4.2 Architecture

The architecture has two flows, first is the circuits that are written in ‘C’ which are

fed to Clang(LLVM Front-end for C/C++) which emits LLVM IR, from there the

LLVM Obfucation engine can act on the circuit. We need a Verilog code generator

to convert from LLVM IR to Verilog. The other flow is, if the circuit is written in

Verilog itself, then a Verilog to C++ translator converts it to C++ which is then fed

to Clang and rest of the flow is similar. Figure 4.1 depicts the overall flow.

13

Figure 4.1: Architecture of Hardware obfuscation

4.3 Conclusion

We have procured a Verilog code generator [7] and upgraded it to the version 7.0

which is the latest LLVM version. The Verilog2C++ [8] converter is an opensource

tool which is very old and not been maintained. We have developed the required

patches for the Verilog2C++ to make it usable with the prevalent software. The

future work includes development of specific metrics to measures the effectiveness of

our approach.

14

Chapter 5

P4 LLVM Toolchain

5.1 Introduction

Recent research on Software Defined Networking has resulted in the development

of programmable data planes. This advancement has made data plane devices re-

programmable to suit the requirements of the customers and users after deployment.

This flexibility is achieved in-field by configuring these ‘re-programmable’ switches

with program configurations. P4 is a high-level imperative programming language

for configuring the data plane of the network devices [9]. A compiler translates a P4

program to a switch configuration after performing the necessary optimizations. The

front-end of P4LLVM converts the P4-16 code to LLVM-IR. The input P4 code should

be checked for lexical, syntactic and semantic correctness before being translated to

LLVM-IR. We reuse the open-source P4C front-end module (scanners and parsers)

for this purpose. P4 specific passes like removing action parameters, simplifying the

key, simplifying the select list, etc. which are the part of mid-end of P4C are also

applied after the front-end. The resulting P4 IR is translated to LLVM IR. It is worth

noting that all the P4C’s passes which have been reused can also be implemented in

LLVM. (This is similar to the C/C++ front-ends Clang/Clang++ having their own

front-end passes independent of the LLVM passes.) Once the P4 code is converted to

LLVM IR, any of the target-independent optimizations of LLVM can be applied by

a sequence of transformation passes of LLVM.

The code generation to target BMV2 switch involves converting the LLVM IR to

JSON. Unlike LLVM IR where every construct is an object, JSON is an open standard

file format. So, it is sufficient to generate a JSON format and dump it into a file which

could serve as an input to BMV2 switch. This conversion can be conveniently done

by an analysis pass of LLVM. The overall flow is summarized in the Fig. 5.1.

15

Figure 5.1: P4LLVM Architecture

5.2 Front-end

The front-end of the P4LLVM compiler is responsible for converting P4-IR to LLVM

IR, the various P4 constructs and their corresponding LLVM IR constructs are sum-

marized in Table 5.1. Note that there may be more than one way of translation of

a construct to its equivalent in another language. So is the case with converting P4

into LLVM IR.

5.3 Back-end

Compilers can generate code for several different architectures. Unlike the general

compilers that target CPUs, the P4 compilers target Switch architectures. As of now,

Switch architectures have no open standard (like x86, ARM, etc.) for configuring

them. With the advent of P4, switch manufacturers are exposing programmability.

By using an established compiler framework like LLVM, the already available back-

ends can be reused, and the strain of writing back-ends can be avoided. LLVM

has code generation support for almost all general purpose CPUs and GPUs like

16

P4 Construct Equivalent LLVM IR Construct
Data Types: Headers, Structs Struct types
Data Types: Header Union Array of structs
Primitives: int and bit Int and vector of 1 bit ints
Declarations Alloca instructions
Assignments Store instructions
Extern call: extract, verify,
setValid/Invalid/isValid and apply

Function prototype and corresponding
calls

Tables Similar to apply
Parser, Control, Action, and Deparser Functions
Direction in Passed by value
Direction inout, out Passed by reference

Table 5.1: Mapping of P4 constructs

NVIDIA and AMD and even has support for accelerators like Hexagon DSP. It is

worth mentioning that p4c-ebpf compiler translates P4 code to ’C’ and then uses

clang(LLVM’s C front-end) for EBPF code generation.

To demonstrate the effectiveness of LLVM optimizations, we have developed a

JSON back-end so as to compare with the open-source p4c-bmv2 compiler. The

“behavioral model(bmv2)” is a software P4 switch, it can be programmed by a JSON

file which could be generated from a P4 compiler. To the best of our knowledge,

there are two switch models portable switch architecture(PSA) and v1model. As of

now, bmv2 has only support for v1model. The back-end of P4LLVM translates LLVM

IR to JSON format with minimal additional information provided from front-end as

metadata. Currently, this back-end can generate code for v1model, and it can be

extended to have support for other Switch architectures. In LLVM every optimization

is a pass over its IR. Because JSON is a simple data representation format, we opted to

have JSON emission as an LLVM IR pass. P4LLVM uses the same order of p4c-bmv2

passes(native P4C optimization passes) to have a comparable JSON code.

Though not extensive, we have tested the correctness of P4LLVM’s back-end with

the unit test cases provided in the p4c repository [10] as well as with the test cases

generated from Whippersnapper [11]. In the current implementation, translation from

P4 IR to LLVM IR will not preserve the names of the variables. However, variable

names can be recovered if they are attached as metadata in LLVM.

17

5.4 Results

Whippersnapper is a P4 benchmark suite designed to study the impact of performance

caused by compilers. The depth of the Parser tree, Action complexity, Addition/Re-

moval of headers, Table depth in Control blocks are the areas tested by this suite.

Dang et al. [11] compare the performance achieved with the existing P4 compilers like

P4C [10], P4FPGA [12], PISCES [13] and Xilinx SDNet [14]. We have adopted this

work to study the performance impact caused by P4LLVM. Also, we have modified

the Whippersnapper tool to generate P4-16 code with complex expressions, condition-

als, etc. This modification is essential as P4LLVM, in its current state can support

only P4-16 programs. This modified version of the tool, Whippersnapper2.0 [15] is

available in GitHub. LLVM has optimization levels O1, O2 and O3 that are more

tuned for performance (execution-time), while Os and Oz find a balance between the

performance and size of the executable. The size of the P4 program has an impact

on packet processing time. Hence, we choose to optimize code at Oz level.

Figure 5.2: Percentage Increase in average latency vs. Number of Operations in the
Action block

P4 code is generated using WhipperSnapper2.0 and compiled with P4C, P4LLVM

with and without optimization to get the corresponding JSON configurations. This

18

Figure 5.3: Percentage Increase in Average Latency vs. Number of tables

is fed to a BMV2 switch and performance is studied. The experiments are performed

on a server with 72 cores (dual socket) and Intel Xeon E5-2697 @2.30GHz CPUs,

128GB RAM running Ubuntu 18.04. The latencies in the plots are the average of

packet processing time for 10,000 packets.

In Fig. 5.2, we show the increase in average latency versus the number of operations

in the Action block. For 100 operations, p4c-bmv2 compiler registers around 250%

increase in latency when compared to 1 operation. Whereas, P4LLVM unoptimized

performs similar as p4c-bmv2 and registers around 245% and the P4LLVM with Oz

optimizations registers only 60% increase.

In Fig. 5.3, we show the increase in average latency versus the number of tables; the

trend lines show that the performance of P4LLVM-Oz is better than the other two.

In both the plots, we notice that performance of P4LLVM (without optimization)

is relatively better than P4C, this is because of the minor optimizations done at

front-end and back-end code generation. These experiments clearly demonstrate the

superiority of P4LLVMs optimization abilities. We believe that with a dedicated

optimization sequence designed for P4, the performance would improve further.

19

Bibliography

[1] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-LLVM – Software

Protection for the Masses. In B. Wyseur, ed., Proceedings of the IEEE/ACM 1st

International Workshop on Software Protection, SPRO’15, Firenze, Italy, May

19th, 2015. IEEE, 2015 3–9.

[2] D. Callahan, J. Dongarra, and D. Levine. Vectorizing Compilers: A Test Suite

and Results. Supercomputing ’88. IEEE, Los Alamitos, CA, USA, 1988 98–105.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transformations for

High-performance Computing. ACM Comput. Surv. 26, (1994) 345–420.

[4] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of Interleaved Data for

SIMD. In Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’06. ACM, New York, NY, USA,

2006 132–143.

[5] GSoC. PolyhedralInfo - Polly as an analysis pass in LLVM. http://utpalbora.

com/gsoc/2016.html 2016. [Online; accessed 08-Sep-2017].

[6] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization.

1st edition. Birkhauser Boston, 2000.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,

S. Brown, and T. Czajkowski. LegUp: High-level Synthesis for FPGA-based

Processor/Accelerator Systems. In Proceedings of the 19th ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays, FPGA ’11. ACM,

New York, NY, USA, 2011 33–36.

[8] Verilog2C++. http://verilog2cpp.sourceforge.net/.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Pro-

20

gramming Protocol-independent Packet Processors. SIGCOMM Comput. Com-

mun. Rev. 44, (2014) 87–95.

[10] M. Budiu, C. Dodd et al. P4C compiler. ”https://github.com/p4lang/p4c”.

[11] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford, R. Soulé,

and H. Weatherspoon. Whippersnapper: A P4 Language Benchmark Suite. In

Proceedings of the Symposium on SDN Research, SOSR ’17. ACM, New York,

NY, USA, 2017 95–101.

[12] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and

H. Weatherspoon. P4FPGA: A Rapid Prototyping Framework for P4. In Pro-

ceedings of the Symposium on SDN Research, SOSR ’17. ACM, New York, NY,

USA, 2017 122–135.

[13] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rex-

ford. PISCES: A Programmable, Protocol-Independent Software Switch. In

Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16. ACM,

New York, NY, USA, 2016 525–538.

[14] SDNet. http://www.xilinx.com/products/design-tools/software-

zone/sdnet.html.

[15] Whippersnapper2.0. https://github.com/IITH-Compilers/Whippersnapper-2.0.

21

