
Convolutional Deep Gaussian Processes

Vaibhav Singh

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science And Engineering

June 2018

Acknowledgements

I would like to thank my adviser, Dr. Srijith P K, for all the help, and providing me

the guidance needed to complete this thesis. He was very patient with me during my

early days where my learning pace was quite slow. We started with the very basics.

He trusted me with his ideas and gave me liberty to come up with new ones too.

Overall, he has inspired me both in academics and as a person too and, therefore, I

feel very privileged to have worked under his supervision.

I would also like to thank whole Computer Science and Engineering department, IIT

Hyderabad, for all the constructive feedbacks given during the intermediate evalua-

tions. I would like to thank Vinayak Kumar, Project Assistant, IIT Hyderabad, for

helpful discussions and Andreas Damianou, Amazon Research, Cambridge, for men-

toring.

I am grateful to Ministry of Human Resource Development(MHRD) for the fellowship

given to me during this period of time. I am grateful to all the funding bodies which

helped me with necessary equipments required for the experimentations.

Last but not least, I am very tankful to my family for constantly supporting me with

every decision in my life. Sending their continuous love for 2 years even after being

far away.

iv

Abstract

Deep Gaussian processes (DGPs) provide a Bayesian non-parametric alternative to

standard parametric deep learning models. A DGP is formed by stacking multiple

GPs resulting in a well-regularized composition of functions. The Bayesian framework

that equips the model with attractive properties, such as implicit capacity control and

predictive uncertainty, makes it at the same time challenging to combine with a con-

volutional structure. This has hindered the application of DGPs in computer vision

tasks, an area where deep parametric models (i.e. CNNs) have made breakthroughs.

Standard kernels used in DGPs such as radial basis functions (RBFs) are insufficient

for handling pixel variability in raw images. In this paper, we build on the recent

convolutional GP to develop Convolutional DGP (CDGP) models which effectively

capture image level features through the use of convolution kernels, therefore opening

up the way for applying DGPs to computer vision tasks. Our model learns local

spatial influence and outperforms strong GP based baselines on multi-class image

classification. We also consider various constructions of convolution kernel over the

image patches, analyze the computational trade-offs and provide an efficient frame-

work for convolutional DGP models. The experimental results on image data such as

MNIST, rectangles-image, CIFAR10, Convex-sets and Caltech101 demonstrate the

effectiveness of the proposed approaches. We also propose a method to reduce the

computational complexity of the model. We sub-sample the number of patches and

show the efficiency of the approach on caltech101 dataset.

v

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . v

1 Introduction 1

1.1 Bayesian Perspective of machine learning 1

1.2 Outline of the Thesis . 3

1.3 Associated Publication and Software 3

2 Gaussian Processes 5

2.1 Covariance Functions . 5

2.2 GP regression . 7

2.3 Sparse GP Approximation . 9

3 Convolution Gaussian Processes 12

3.1 Inducing Patch Space . 13

3.2 Variants of Convolutional Kernel . 14

3.2.1 Weighted Convolutional Kernel 14

3.2.2 Convolutional kernels for Colored images 14

4 Deep Gaussian Processes 15

5 Deep Convolutional Gaussian Processes 18

5.1 Introduction . 18

5.2 Model . 20

5.2.1 Reducing computational complexity through patch subsets . . 21

5.3 Experiments . 22

5.3.1 MNIST-10 . 23

5.3.2 Rectangles-Image . 23

vi

5.3.3 CIFAR-10 . 24

5.3.4 Convex sets . 26

5.3.5 Experiments with Random Sub-sampling of Patches on Caltech-

101 Dataset . 28

6 Conclusion 30

References 31

vii

Chapter 1

Introduction

The field of machine learning is growing very rapidly in current times. With all the

computation resources available its use has become even more feasible. It has been

used in many discipline of science where some sort of prediction is required. Some of

the discipline where it is very commonly used are robotics, statistics, securities and

computational science. With current advancements in machine learning literature

such as deep learning which works too well when huge amount of data is available,

development of autonomous security systems is boosted. It exploits the development

of Deep learning in computer vision applications. In statistics, machine learning

is being used from quite some time. Its being used in predicting the trends in data,

such as fitting a curve(regression), time series analysis and various other applications.

With the help of kernel methods and non parametric approaches machine learning

works good even when the labeled data is quite small such as in the field of medical

imagining.

1.1 Bayesian Perspective of machine learning

The work done in this thesis mainly focuses on bayesian perspective of machine learn-

ing. The main benefit of doing things in bayesian way is that along with the class

labels(in case of supervised learning) it gives the uncertainty estimate too. The main

rule around which whole bayesian machine learning lies is Bayes rule. Lets look into

the Bayes theorem of probability theory with machine learning perspective:

P(Y |X) =
P(X | Y)P(Y)

P(X)

1

where P(Y |X) is posterior probability of Y given X, P(X | Y) is likelihood term,

P(Y) is prior probability of Y, and the denominator P(X) represents the marginal

likelihood. In typical machine learning scenario Y is used for representing labels and

X is used for input vector. For the sake of uniformity we also keep the notation

same until/unless specified. So in typical machine learning cases we try to learn this

posterior so we can generalize it for unseen data(X∗) too.

In bayesian machine learning we start with a belief, that is prior over the parameters.

Then we observe the data that is likelihood, and then we use the likelihood to update

our prior belief. The updated belief is known as the posterior. In frequentists way

of doing thing we just try to maximize the likelihood with respect to model param-

eters (maximum likelihood approach) but in bayesian approach of doing things we

try to maximize the posterior(maximum a posteriori approach). This method is also

not the full bayesian approach. In full bayesian approach we marginalize out all the

parameters of the model and maximize the marginal likelihood with respect model

hyperparameters. Often the calculation of the posterior is not easy because of the

normalization term (marginal) in the denominator in which integration is involved.

We thus require various approximate approaches like sampling, variational inference

and expectation maximization.

So be it a regression problem or a classification one, supervised or unsupervised, the

most important task to do in machine learning is a learning an underlying function

that maps the input to output most accurately. As mentioned in [1] there are promi-

nently two main ways doing such kind of function learning. Firstly, we can either

the select some fixed set of functions like linear, quadratic or etc. This approach has

quite obvious problem the function, we need to have a quite strong domain knowledge

to make such assumptions. If we don’t have strong domain knowledge we might end

up learning a function which doesn’t represent the data well enough and hence the

predictions too won’t be good. And also we take too smooth a function then there is

chances of under-fitting and if we give too much flexibility to the underlying function

then there is chances of over-fitting. The other approach is consider all the functions

in the space and put a distribution over these functions. Here the function which

has higher chances of reproducing the underlying mapping will have higher proba-

bility. To follow this considering all the functions of certain types in space, gaussian

processes (GPs) is the way. A more detailed discussion on GPs will be there in the

upcoming chapters. The second approach discussed here is oftenly termed as bayesian

2

non parametric way of machine learning. The name comes from the fact that in this

approach we don’t consider any prefixed parametric form of the underlying function.

1.2 Outline of the Thesis

The main contribution of this thesis is to bring a new modeling approach for making

existing framework of GPs on image data work better. The model is developed on

top of DGPs [2] and convolutional gaussian processes(CGPs) [3]. The work present in

this thesis requires some mathematical background in Linear Algebra and Probability.

Since this model is developed on top of other models it has some prerequisites. All the

prerequisites required to understand the work done is described in thesis. Detailed

description of the following chapters is given below:

• Chapter 2 discuss about basics of GPs and how it used for regression and clas-

sification task. We further go on to discuss some common problem associated

with scaling of GPs. The work done in [4] was a breakthrough in GP literature,

as it helps in scaling it up for large datasets too. The text in these chapters is

highly inspired by [1] and [4].

• Chapter 3 talks about the recent development of convolutional kernel used as

covariance function of GPs. This chapter also talks about various variants of

convolutional kernel as discussed in [3].

• Chapter 4 discusses the details about how DGPs are formed and some properties

of GPs. This chapter involves the lower bound estimation of GPs. This also

talks in detail about the first proposed method of inference for DGPs as done

in [5] and the method used in this work as done in [2].

• In Chapter 5 convolutional deep gaussian processes is being discussed. Here

we discuss, how the convolutional kernel is incorporated in DGPs framework

and effect of using it in image datasets. Comparison are being drawn on the

performance with already existing state of art methods for GPs.

1.3 Associated Publication and Software

The work submitted in this thesis has been arxived with the title Deep Gaussian

Processes with convolutional kernel [6]. The work is also under review for work-

shop Uncertainty in Deep Learning, at Uncertainty in Artificial Intelligence(UAI),2018.

3

The code for developing the model and reproducing the results as mentioned in the

article are present in author’s Github page.

4

Chapter 2

Gaussian Processes

A GP is defined as a collection of random variables such that any finite subset of

which is Gaussian distributed [1]. It allows one to specify a prior distribution over

real valued functions f , represented as f(x) ∼ GP(m(x), k(x,x′)) where m(x) is the

mean function and k(x,x′) provides the covariance across the function values at two

data points x and x′. The mean function m(x) is essentially nothing but the average

value of all the sampled functions from given GP at particular given value of x. So

mean function sometimes gives the bias effect to the learned functions. Mostly people

typically uses a zero(which is a constant) mean function in GP literature. Rarely a

linear function mx+ b is used which helps in accounting for variability in data.

Covariance functions play a very important role in gaussian processes as it determines

the class of functions to be learned. As it holds such an importance in the literature

it is discussed separately in the following section.

2.1 Covariance Functions

By definition of general kernel function, any function that maps two vector or scalar

(inputs) x ∼ X and x
′

∼ X to a scalar R is kernel. Not all such functions can be

used as a covariance function for GPs. All the kernels functions in which the resulting

covariance matrix is positive semi definite (PSD) can be used as a covariance function.

The parameters of covariance function and mean function are termed as model hyper-

parameters. The kernel function determines various properties of the function such

as stationarity, smoothness etc. We will discuss certain types of covariance functions

commonly used in GPs.

• Stationary Covariance Function: These covariance functions are some func-

5

tion of x − x
′

. This form of kernel makes it invariant to transnational trans-

formations. One popular kernel in such category is square exponential kernel.

The functional form of which is given below:

k(x, x
′

) = σ2
f exp(−

1

2κ
||x− x′||2)

• Isotropic: These are more stricter version of stationary covariance function.

These are only function of x− x
′

. Squared exponential discussed above comes

to this category too.

• Dot Product Covariance function: In this class of covariance function,

resulting scalar is related to x and x
′

only through a product relation. Example

of this is:

k(x, x
′

) = σ2
◦ + x · x

′

One of the many important covariance function that is used in literature in ra-

dial basis function (RBF) (squared exponential kernel), as it can model any smooth

function. We will discuss a bit more about it in detail here as this kernel is used

many times in this work. The term σ2
f is the noise variance term in the kernel which

essentially acts as scaling factor in the kernel. Term κ determines the variations in

function values across the inputs.

One popular variant of RBF kernel is Automatic Relevance Determination enabled

RBF kernel. In this variant of RBF we take different lengthscales for each dimensions

of inputs. This enables the model to have flexibility of assigning different relevance

to different dimensions. The functional form this is given below:

k(x, x
′

) = σ2
ard exp

(
−

1

2

Q
∑

q=1

wq(xq − x
′

q)
2
)

In the above equation wq represents the inverse of lengthscale corresponding to

the qth dimension. The use of this kernel is a bit restricted as this increase the number

of hyperparameters in the model quite significantly. But when there is ample data

to train a model this can be used because of its helpfulness in increasing flexibility of

the model.

During optimization we learn model hyperparameters which plays a very impor-

tant role in differentiating the functions we learn for a particular kernel. Lets look

into the effect of hyperparameters on the learned functions. We will take an example

6

of lengthscale value in case of squared exponential kernel.

Figure 2.1: Effect of lengthscale on functions sampled [1].

As we can see from Fig. 2.1 as the lengthscale is increasing the learned function

becomes more and more less wiggly for RBF kernel. This is also quite evident from

the functional form of the kernel, as the lengthscale increase lesser amount of weight

is given (as it appears in denominator) to the factor of distance value of points.

2.2 GP regression

In GP regression we consider y to be having form y = f(x)+ǫ, where ǫ ∼ N (0, σ2
n) and f ∼

N (0, K)

Here K is the covariance matrix of gaussian process.

As depicted in Fig. 2.2 posterior p(f |x, y) ∝ p(y|f, x) ·p(f |x) will also be gaussian

since both prior and likelihood is gaussian.

p(f |x, y) ∼ N
(

K(K + σ2I)−1y, σ2K(K + σ2I)−1
)

7

Figure 2.2: Computation of predictive distribution.

Now for consider the predictive distribution to be f∗. Then both f and f∗ will be

jointly gaussian [

f

f∗

]

∼ N

(

0,

[

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])

marginalizing f from the conditional distribution of f∗,

p(f∗|X, y,X∗) =

∫

p(f∗|f) · p(f |X, y,X∗)df

We get the predictive distribution as follows,

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), where

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]

−1y

cov(f∗) = k(X∗, X∗)− k(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗)

Figure 2.3: Sampled functions from prior and posterior [1].

The visual interpretation of above eqautions are described in Fig. 2.3(b). We can

8

see that the variance near observed data point is nearly zero from equation too as at

these points X∗ will be equal to X. Puting this in equation fetches zero variance.

To learn hyperparameters we need to maximize marginal likelihood p(y) =
∫
p(y|F)

p(F)dF . The complexity of this model is O(n3) since we need to invert an N × N

matrix for the computation of covariance matrix of posterior and predictive distri-

bution. Such a high complexity restricts the scaling of the model. We will discuss

the sparse GP approach [4] in the next section which helps in tackling the scaling

problem of GPs.

2.3 Sparse GP Approximation

We are going to take an example of multiclass classification for discussing Sparse GP

as it will be helpful throughout this thesis because experiments done in thesis are on

classifications task too. It will also help in giving an insight how classification tasks

differs from regression in GP literature.

For multi-class classification problems, we associate a separate function fc with

each class c. An independent GP prior is placed over each of these functions,

fc(x) ∼ GP(mc(x), k(x,x
′)). Let fc = [fc(x1), fc(x2), · · · , fc(xN)] be a column vec-

tor indicating function values at the input data points for a class c. Further, let F

be the matrix formed by stacking all column vectors {fc}
C

c=1
, with Fn,c representing

the latent function value of nth sample belonging to class c and Fn representing the

vector of latent function values over classes for the nth sample. The GP prior over F

takes the following form : p(F) =
C∏

c=1

N (fc;mc(X), KXX), where KXX is the N ×N

covariance matrix formed by evaluating kernel over all pairs of training data points.

For a data point n, the likelihood of it belonging to class c, p(yn = c|Fn), is obtained

by considering a soft-max link function. The posterior distribution over F is obtained

by combining the prior and the likelihood using Bayes theorem:

p(F |y) =

N∏

n=1

p(yn|Fn)p(F)

p(y)
.

In GP multi-class classification, the posterior distribution cannot be computed

in closed form due to the non-conjugacy between likelihood and prior. Learning

in GPs involves learning the kernel hyper-parameters by maximizing the evidence

9

p(y) =
∫ N∏

n=1

p(yn|Fn)p(F)dF , which also cannot be computed in closed form. The

posterior distribution can be approximated as a Gaussian using approximate inference

techniques such as Laplace approximation [7] and variational inference [8, 9, 10].

The Gaussian approximated posterior is then used to make predictions on the test

data points. Variational inference has received a lot interest recently as it does not

suffer from convergence problems unlike Markov chain Monte Carlo techniques and it

provides a posterior approximation quickly by solving an optimization problem. It is

scalable to large data sets and amenable to distributed processing. It also provides a

lower bound on the marginal likelihood which can be used to perform model selection.

The variational inference approach learns an approximate posterior distribution q(F)

by minimizing the KL divergence between q(F) and p(F |y). Choosing a mean field

family of variational distributions, q(F) factorizes across dimensions(or columns),

i.e q(F) =
∏

q(fc). Each variational factor q(fc) is assumed to be a Gaussian with

variational parameters, mean vector µc and covariance Σc. In the variational inference

framework, minimizing the KL divergence with respect to the variational parameters

is equivalent to maximizing the so-called variational Evidence LowerBOund(ELBO)

which is given by

L({µc,Σc}
C
c=1) = Eq(F)[log

N∏

n=1

p(yn|Fn)]−
C∑

c=1

KL(q(fc) ‖ p(fc)). (2.1)

The variational parameters {µc,Σc}
C
c=1 and the kernel hyperparameters {σ2

f , l} are

learnt by jointly maximizing the variational lower bound in eq. (2.1) using any gra-

dient based approach.

The KL divergence term in eq. (2.1) involves inversion of the covariance matrix

KXX which scales as O(N3) computationally. Therefore, we opt for the variational

sparse Gaussian process approximation [4, 11] which reduces the computational com-

plexity to O(NM2) , where M ≪ N represents the number of inducing points.

Specifically, the variational sparse approximation expands the latent function space

withM inducing variables u ∈ RM which are latent function values at inducing points

Z = {zi}
M
i=1. Within the context of GP multi-class classification, we additionally have

the inducing variable outputs uc for each class c which are stacked together to form

the matrix U ∈ RM×C . The joint GP prior over {f, u} is then

[

fc

uc

]

∼ N (

[

fc

uc

]

;

[

mc(X)

mc(Z)

]

,

[

KXX KXZ

K⊤
XZ KZZ

]

), (2.2)

10

where KXZ is the N × M covariance matrix over training inputs X and inducing

inputs Z and KZZ is the M × M covariance matrix over inducing points Z. The

conditional distribution of fc given uc is given by

p(fc|uc, X, Z) = N (fc;mc(X) +KXZK
−1
ZZ(uc −mc(Z)), KXX −KXZK

−1
ZZK

⊤

XZ)

and the marginal distribution over uc is p(uc) = N (uc;mc(Z), KZZ). The variational

sparse approximation of [11] considers a joint variational posterior over {fc,uc} in

factorized form and is written as q(fc,uc) = p(fc|uc, X)q(uc). Assuming Gaussian

variational factors for inducing points q(uc) = N (uc;mc, Sc), the variational lower

bound (ELBO) can be derived as

L({mc, Sc}
C
c=1) = Eq(F)[log

N∏

i=1

p(yn|Fn)]−
C∑

c=1

KL(p(uc)||q(uc)). (2.3)

Following [9], the variational posterior q(F) =
∏C

c=1 q(fc) and q(fc) is obtained by

integrating out uc from p(fc|uc)q(uc) and is given by N (fc; m̃c, Ṽc) , where m̃c =

mc(X) +KXZK
−1
ZZ (mc −mc(Z)) and Ṽc = KXX − kXZK

−1
ZZ (KZZ − Sc)K

−1
ZZ KZX . The

Expected Log likelihood term above is intractable due to non-conjugate likelihood

(softmax in this case). One could apply a quadrature [9] or reparameterization-

based [12] monte carlo sampling scheme to approximate this.

11

Chapter 3

Convolution Gaussian Processes

In this chapter we will discuss about recently introduced convolutional Gaussian

processes (CGP) [3] where the function evaluation on an image is considered as sum

of functions over the patches of the input image. Assuming there are P patches in

x with each patch x[p] to be w × h dimensional, CGP considers f(x) =
P∑

p=1

g(x[p]).

Placing a zero mean GP prior over the function g(x[p]), g(x[p]) ∼ GP(0, kg(x
[p]
i ,x

[p]
j)),

induces a zero mean GP prior over the function f(x) with a convolutional kernel

(Conv kernel) kf ,

f(x) ∼ GP(0, kf (xi,xj)), kf (xi,xj) =
P∑

p=1

P∑

p′=1

kg(x
[p]
i ,x

[p′]
j). (3.1)

We refer to kg as the base kernel. Considering a convolutional kernel in computing the

similarities between the images is useful in capturing non-local similarities among the

images. The convolutional kernel compares one region in the image xi with another

region in the image xj, and could provide a high similarity even under transformations

in the image. The kernel computation over patches (x
[p]
i ,x

[p′]
j) considers similarity in

a spatial neighborhood, whereas with other kernels (such as RBF kernel) only global

similarity across images can be computed and fails to capture similarity in images

due to transformations.

Convolutional Neural Networks(CNNs) convolve image with multiple kernels (fil-

ters), apply a non-linear operation and then feature pooling (average, max) multiple

times to learn discriminative features useful for the object detection task. Similar

to CNN, the function f(x) could be seen to perform average pooling of the non-

linear feature maps produced by the patch response functions g(x[p]). This pooling

operation results in convolution operation in kernel space. The convolutional kernel

12

computation between two images xi and xj is expanded as

kf (xi,xj) =
P∑

p′=1

kg(x
[1]
i ,x

[p′]
j) + . . .+

P∑

p′=1

kg(x
[p]
i ,x

[p′]
j) + . . .+

P∑

p′=1

kg(x
[P]
i ,x

[p′]
j).

The convolution operation between pth patch of image xi (which now acts as a filter)

and the image xj results in a convolution signal, where signal value at any point

p′ is obtained by computing the dot product between the filter x
[p]
i and patch x

[p′]
j .

This dot product is performed by the base kernel which transforms these patches into

feature vectors in a high dimensional space and computes the dot product between

them in that space. Any pth summand is the sum of the convolution signal values

obtained at all the points.

3.1 Inducing Patch Space

The motivation behind introducing inducing patch space in [3] is computational cost.

Apart from usual N3 cost of kf (since N2 is needed to be inverted), there is compu-

tational cost of for each element of kf which is P 2 evaluations, where P is the patch

size. Now if the sparse GP approximation is brought into the image space, cost will

be reduced from N3 to M2N but P 2 evaluations required to compute each element

of kf will be still there.

In [3] a novel method to bring inducing variable to patch space is being proposed.

The motivation of this work is being drawn from inter-domain GPs. Now having

inducing variable being in a patch space means each z is a patch not an image. The

formulation of both kuu and Kfu is changed. The expression to compute elements of

each is given below:

kuu(z, z
′

) = Eg[g(z)g(z
′

] = kg(z, z
′

) (3.2)

kfu(x, z) = Eg[f(x)g(z)] = Eg

[∑

p

g(x[p])g(z)
]

=
∑

p

kg(x
[p], z) (3.3)

In above equations x[p] represents the pth patch of image x and z is a patch not

image.

13

3.2 Variants of Convolutional Kernel

In [3] some variants of convolutional kernel is being presented which result in better

performance of the model. We here will discuss some of those variants which is being

used in the work presented in this thesis.

3.2.1 Weighted Convolutional Kernel

In this variant of convolutional kernel we assign weight corresponding to each patch

of the image. This gives different importance to different parts of the image. This

increases the number of hyperparameters in kernel by the factor of p where p is the

number of patches in the image. The corresponding value of kf and kfu is defined as

follows:

kf (x, x
′

) =
∑

p

∑

p
′

wpwp′kg(x
[p], x

′[p
′

]) (3.4)

kfu(x, z) =
∑

p

wpkg(x
[p], z) (3.5)

3.2.2 Convolutional kernels for Colored images

Colored images have a much more lager dimensionality as compared to the one in gray

scale. The challenge here is the increased dimensionality and how various channels

interacts with each other. One obvious way of doing things for colored images is

considering all the patches from all the channels. This will increase the number of

patches by a factor of C where C is the number of channels. One other way around is

to consider all the channels for a particular patch i.e. making the patch size to beW×

H ×C where W, H and C are width, height and channels respectively. The problem

with the above two approaches is that it does not consider different non-linearity for

different channel. This kind of assumption restricts the model representability. As

proposed in [3] as multi-channel convolutional kernel, capture different non-linearity

for different channels.

14

Chapter 4

Deep Gaussian Processes

Deep Gaussian processes (DGPs) [5, 13, 2] learn complex functions by stacking GPs

one over the other resulting in a deep architecture of GPs. The function mapping

one hidden layer to the next in DGPs is more expressive and data dependent com-

pared to the pre-fixed sigmoid non-linear function used in standard parametric deep

learning approaches. In addition, it is devoid of large number of parameters but only

a few kernel hyper-parameters and few variational parameters (few due to sparse GP

approach). Deep GPs do not typically overfit on small data due to Bayesian model

averaging, and the stochasticity inherent in GPs naturally allows them to handle

uncertainty in the data. Furthermore, by using a specific kernel which enables au-

tomatic relevance determination, one can automatically learn the dimensionality of

hidden layers (number of neurons) [13]. This overcomes the model selection problem

in deep learning to a great extent.

DGPs consider the function mapping input to output to be represented as a com-

position of functions, f(x) = fL ◦ (fL−1 . . . ◦ (f 1(x))), assuming there are L layers.

The lth layer consists of Dl functions f l = {f l
j}

Dl

j=1 mapping representations in layer

l−1 to obtainDl representation for layer l. Independent GP priors are placed over the

function f l
j producing jth representation in layer l, f l

j(·) ∼ GP(m l
j (·), k

l(·, ·)). The jth

function in layer l, f 1
j , acts on the input data point xi to produce the representation

F 1
i,j = f 1

j (xi). In general, the jth function in layer l, f l
j(·) acts on the representation

of the data point xi at layer l−1, F l−1
i to produce the representation F l

i,j = f l
j(F

l−1
i).

Let f lj denote the jth representation at layer l computed over all inputs. The final

layer L will have C functions corresponding to the classes and these functions values

are squashed through a soft-max function to produce the class probabilities.

We follow the DGP variant presented in [2] where the noise between layers is

absorbed into the kernel. The kernel function associated with a GP in layer l is

15

defined as kl(F l
i , F

l
j) = σl

f

2
exp(−1

2κl ||F
l
i − F l

j ||
2) + σl

n

2
δij. Following the variational

sparse Gaussian process approximation as explained in the section ??, each layer l is

associated with inducing variables {U l} which are function values over M inducing

points Z l associated with layer l, Z l = {zli}
M
i=1. Let u

l
j represent the inducing variables

associated with the jth representation at layer l. The number of inducing points are

kept fixed for all layers (only for convenience) as M and a joint GP prior is considered

over latent function values and inducing points. The joint distribution p(y, F, U) is

given by
N∏

n=1

P (yn|F
L
n)

︸ ︷︷ ︸

Likelihood

L∏

l=1

Dl
∏

j=1

p(f lj|u
l
j, F

l−1, Z l)p(ul
j|Z

l)

︸ ︷︷ ︸

Deep GP Prior

, (4.1)

where a deep GP prior is put recursively over the entire latent space with F 0 = X

and a soft-max likelihood is used for classification. The conditional above is:

p(f lj|u
l
j, F

l−1, Z l) = N (f lj;mean(f lj), cov(f
l
j)) where (4.2)

mean(f lj) = ml
j(F

l−1) +K l
F l−1Zl(K

l
ZlZl)

−1(ul
j −ml

j(Z
l))

cov(f lj) = K l
F l−1F l−1 −K l

F l−1Zl(K
l
ZlZl)

−1(K l
F l−1Zl)

⊤

The posterior distribution p(F, U |y) and marginal likelihood p(y) cannot be com-

puted in closed form due to the intractability in obtaining the marginal prior over

{F l}Ll=2. This involves integrating out the previous layer, which is present in a non

linear manner inside the covariance matrices (K l
F l−1F l−1) appearing in (4.2). Along

with non-conjugate likelihood, this brings in additional difficulty to the DGP model.

Multiple approaches have been suggested in the literature for achieving tractability

in DGPs, such as variational inference [5, 14, 2], amortized inference [15], expecta-

tion propagation [16] and random Fourier features [17]. Here we follow the varia-

tional inference approach, and we assume the variational posterior to be having form

q(F, U) =
L∏

l=1

Dl
∏

j=1

p(f lj|u
l
j, F

l−1, Z l)q(ul
j), where q(ul

j) = N (ul
j;m

l
j, S

l
j) [11, 5, 4]. Let

ml be a vector formed by concatenating the vectors ml
j and Sl be the block diagonal

covariance matrix formed from Sl
j. We can formulate the ELBO by extending the

methodology described in Section ?? to multiple layers [5, 2] as follows:

L({ml, Sl}Ll=1) =
N∑

n=1

Eq(FL
n)[log p(yn|F

L
n)]−

L∑

l=1

KL[q(U l)||p(U l)] (4.3)

where, the marginal distribution of the functions values for layer L over all the data

16

points is obtained as

q(FL|{Z l,ml, Sl}Ll=1) =

∫

F 1,F 2,···FL−1

L∏

l=1

q(F l|F l−1, Z l,ml, Sl)dF 1 . . . dFL−1 (4.4)

and the conditional distribution in (4.4) is computed as

q(F l|F l−1, Z l,ml, Sl) =
Dl
∏

j=1

∫

ul
j

p(f lj|u
l
j, F

l−1, Z l)q(ul
j)du

l
j =

Dl
∏

j=1

N (f lj; m̃
l
j, Ṽ

l
j)(4.5)

where m̃l
j = ml

j(F
l−1) +K l

F l−1ZL(K
l
ZlZl)

−l(ml
j −ml

j(Z
l)) and (4.6)

Ṽ l
j = K l

F l−1F l−1 −K l
F l−1Zl(K

l
ZlZl)

−l(K l
ZlZl − Sl

j)(K
l
ZlZl)

−l(K l
F l−1Zl)

⊤. (4.7)

The marginal distribution in (4.4) is intractable, due to presence of stochastic term

{F l−1}Ll=2 inside the conditional distributions {q(F l|F l−1, Z l,ml, Sl)}L−1
l=2 in a non-

linear manner. This intractability results in the expected log likelihood in (4.3) to

be intractable even for Gaussian likelihood. We approximate it via Monte Carlo

sampling as done in [2].

As has been shown in [2], the marginal variational posterior over function values in

the final layer for nth data point, i.e q(FL
n) depends only on the nth marginals of all the

previous layers. Each F l
n is sampled from q(F l

n|F
l−1
n , Z l,ml, Sl) = N (F l

n; m̃
l[n], Ṽ l[n]),

where m̃l[n] (Dl dimensional vector) and Ṽ l[n] (Dl×Dl diagonal matrix) are respec-

tively the mean and covariance of the nth data point over representations in layer l

and depends on F l−1
n . Applying the “reparametarization trick” the sampling can be

written as:

F l
n = m̃l[n] + ǫ

l ⊙ Ṽ l[n]
1

2 ; ǫ
l ∼ N (ǫl; 0, IDl).

The lower bound can be written as sum over data points and the parameters can

be updated based gradients computed on a mini-batch of data. This enables one to

use stochastic gradient techniques for maximizing the variational lower bound. This

stochasticity in gradient computation combined with the stochasticity introduced by

the Monte Carlo sampling in variational lower bound computation results in the

doubly stochastic variational inference method for deep GPs.

17

Chapter 5

Deep Convolutional Gaussian

Processes

5.1 Introduction

Deep learning models have made tremendous progress in computer vision problems

through their ability to learn complex functions and representations [18]. They learn

complex functions mapping some input x to output y through composition of linear

and non-linear functions. However, popular deep learning models based on convo-

lutional and recurrent neural networks have significant limitations. The parametric

form of the functions lead them to have millions of parameters to estimate which is

less suitable for problems where the data are scarce. Deep learning models though

probabilistic in nature, do not provide any uncertainty estimates on its predictions.

Knowledge of uncertainty helps in better decision making and is crucial in high risk

applications such as disease diagnosis and autonomous driving [19]. Another major

limitation with the existing deep learning networks is model selection. Developing an

appropriate deep learning model to solve a problem is time consuming and computa-

tionally expensive. Deep Gaussian processes (DGPs) [5] constitute a deep Bayesian

non-parametric approach based on Gaussian processes (GPs) and have the potential

to overcome the aforementioned limitations.

The original DGP model was introduced by [5, 13] inspired by the hierarchical

GP-LVM structure [20] and variations have emerged in recent years, mainly differ-

ing in the employed inference procedure. While [5] employs a mean field variational

posterior over the latent layers, [15] extends this formulation with amortized infer-

ence, [14] considers a nested variational inference approach, [16] uses an approximate

18

Expectation Propagation procedure. Further, [17] achieves scalability through ran-

dom Fourier features while the approach of [2] considers the variational posterior to

be conditioned over the previous layer, preserving correlations across the layers, and

uses a doubly stochastic variational inference approach.

All the DGP models use kernels such as radial basis function (RBF) which is

inadequate for problems in computer vision, such as object detection. They fail to

capture wide variability of objects in images due to pose, illumination and complex

backgrounds. RBF captures similarity between images on a global scale and is not

invariant to unwanted variations in the image. On the other hand, convolutional neu-

ral networks (CNN) [18] learn image representations from raw pixel data which are

invariant to such perturbations in the image. They learn features important for the

object detection task by successively convolving the representations by filters, apply-

ing non-linearity and performing feature pooling. We propose to use convolutional

kernels [21] in DGPs to learn salient features from the images which are invariant to

transformations. This is different from recent works which combine CNNs and GPs

in hybrid mode, such as [22, 23, 24]. In particular, [23] replaces the fully connected

layers of a CNN with GPs, aiming at obtaining well-calibrated probabilities. While,

in deep kernel learning [22], the kernel in GPs are computed using deep neural net-

works. In contrast, our approach brings the convolutional structure inside the deep

GP model, through kernels, and remains fully non-parametric.

Convolutional kernels could effectively learn rich representations of the data. The

similarity between structured objects such as images are computed by considering

the similarity of the sub-structures in the object which makes them invariant to

transformations in the image. They have been used to compute similarities between

structured objects such as graphs and trees [25, 26]. Recently, they were used as a

covariance function in GPs and were found to be very effective for object recognition

tasks [3]. Here, the kernel computations between images are done by summing the

base kernel acting over different patches of the images.

We introduce convolutional kernels in the DGP framework in order to extract

discriminative features from images for object classification. Our work builds on the

convolutional GP [3] and extends it for the deep learning case, allowing the resulting

model to additionally perform hierarchical feature learning. We consider various DGP

architectures obtained by stacking together convolutional and RBF kernels in vari-

ous combinations. Further, we consider variants of the convolutional kernel such as

weighted convolutional kernels which provide more discriminative features, and com-

bination of RBF kernels as the base kernel. Convolutional kernels are computationally

19

expensive as they require performing summation over all patches of the image. We

propose an approach to improve the computational efficiency by random sub-sampling

of the patches. We demonstrate the effectiveness of the proposed approaches for image

classification on benchmark data sets such as MNIST, Rectangles-image, CIFAR10,

Convex sets and Caltech101. The experiments show that DGP models typically

achieve better generalization performance by using convolutional kernels compared

to state-of-the-art shallow GP models.

5.2 Model

Convolutional DGP considers multiple functions from a GP prior with convolutional

kernels to form a representation of the image in the first layer. The function corre-

sponding to oth representation for layer 1 is obtained as

f 1
o (x) =

P∑

p=1

g1o(x
[p]) ; g1o(x

[p]) ∼ GP(m1
o(x

[p]), k1
g(x

[p]
i ,x

[p]
j)) (5.1)

f 1
o (x) ∼ GP(m1

o(x), k
1
f (xi,xj)) ; k1

f (xi,xj) =
P∑

p=1

P∑

p′=1

k1
g(x

[p]
i ,x

[p′]
j). (5.2)

Each output in layer 1 captures different features of the image. The feature rep-

resentations of the image obtained in the first layer are then mapped using a GP

with convolutional or RBF kernel to obtain further representations. In general, the

function corresponding to oth representation for layer l is considered as

f l
o(F

l−1) ∼ GP(ml
o(F

l−1), kl
f (F

l−1
i , F l−1

j))

kl
f (F

l−1
i , F l−1

j) =
P∑

p=1

P∑

p′=1

kl
g(F

l−1
i

[p]
, F l−1

j

[p′]
). (5.3)

The kernel matrices involved in the computation of the conditional distribution in

eq. (4.5) such as K l
F l−1F l−1 , K

l
F l−1Zl and K l

ZlZl use the convolutional kernel defined

in (5.3). As before, Z l represents the inducing points associated with layer l and

has the same dimension as F l−1. The variational lower bound expression and “repa-

rameterization trick” remains the same as has been derived for deep GPs in Section

??.

We also consider variants of the convolutional kernel such as weighted convolu-

tional kernels (Wconv kernels) [3]. It associates a weight with each patch which allows

20

the kernel to provide differential weightage to the patches which is useful for object

detection. The function f(x) in general for any layer is considered as

f(x) =
P∑

p=1

wpg(x
[p]) ; kf (xi,xj) =

P∑

p=1

P∑

p′=1

wpwp′kg(x
[p]
i ,x

[p′]
j). (5.4)

5.2.1 Reducing computational complexity through patch sub-

sets

Convolutional kernels provide an effective way to capture the similarity across images,

but are computationally expensive. Computing the similarity between two images

involves O(P 2) computational cost, where P is the number of patches in the input

image or the feature representation. For the input image of size W × H, it is of

the order of O(WH) when stride length and patch sizes are small. This is costly

even for image data sets such as MNIST and rectangles which contain images of size

(28× 28). This makes the computations impractical on higher dimensional data such

as Caltech101 (250 × 250). This can be addressed to some extent using the idea of

treating the inducing points in the patch space [3], where Z l
j ∈ Rw×h rather than in

the input space RW×H . In this case, computation of the entries in the matrix K l
F l−1Zl

can be performed in O(P) time, and that of K l
ZlZl can be performed in constant time.

K l
F l−1Zl [i, j] = kl

f (F
l−1
i , Z l

j) =
P∑

p=1

kl
g(F

l−1
i

[p]
, Z l

j) (5.5)

K l
ZlZl [i, j] = kl

g(Z
l
i , Z

l
j) (5.6)

However, computation of the entries in the matrix K l
F l−1F l−1 matrix which appears

in the conditional distribution in (4.5) still requires O(P 2) computations for the first

layer making it a costly operation especially. This makes the approach practically

inapplicable to high dimensional data sets such as Caltech101 even with a reduced im-

age size. Moreover in these images, a lot of information will be shared by overlapping

patches and will be redundant for the computation of the similarity across images. We

propose to use random sub-sampling of the patches in computing the convolutional

kernel for the entries in the matrix K l
F l−1F l−1 and K l

F l−1Zl . Let S, S ′ ⊂ {1, 2, . . . , P}

represent the random subsets. For the oth representation of layer 1 (F 0 = X), we

consider the covariance functions to be as follows

21

f 1
o (x) =

∑

p∈S

g1o(x
[p]) (5.7)

k1
f (xi,xj) =

∑

p∈S

∑

p′∈S′

k1
g(x

[p]
i ,x

[p′]
j) and (5.8)

k1
f (xi, Z

1
j) = Eg[f

1
o (xi)g

1
o(Z

1
j)] = Eg[

∑

p∈S

g1o(x
[p])g1o(Z

1
j)] (5.9)

=
∑

p∈S

k1
g(x

[p], Z1
j) (5.10)

This reduces the cost of computing the matrix K l
F l−1F l−1 for layer 1 to O(|S||S ′|)

where the size of the subsets |S|, |S ′| ≪ P . Computational speedup achieved through

random sub-sampling of patches is testified in our experiments on Caltech101.

5.3 Experiments

We evaluate the generalization performance of the proposed model, convolutional

deep Gaussian processes (CDGP), on various image classification data sets, namely

MNIST, Rectangle-Images, CIFAR10, Convex sets and Caltech101. We consider

different kernel architectures of the proposed CDGP model and compare it with

sparse GPs (SGP)1, deep GP (DGP) models with RBF kernel and with convolutional

GPs (CGP) red with different convolutional kernels. The convolutional deep GP uses

the same inference procedure as in deep GP (“re-parameterization trick”) and uses an

a priori fixed inducing input points by considering centroids of the clustered images

[2]. The inducing points and the linear mean function for each of the inner layers

is obtained using the singular value decomposition approach red mentioned in [2].

The number of inducing points is taken to be 100. We follow the same approach for

convolutional GPs also to maintain a fair playground. The kernel parameters are kept

the same across various outputs in a layer while it is different across the layers. The

number of outputs in the latent layers is taken to be 30 for MNIST and 50 for other

datasets (except for the final layer which will be equal to the number of classes). For

the models considering convolutional kernels, the patch size is taken to be 3× 3 with

a stride length of 1 for the rectangles data while a patch size of 5 × 5 is considered

1Results as reported in [2].

22

for the rest of the data sets. We consider the RBF kernel as the base kernel kg for all

our experiments. The approaches are compared in terms of their accuracy in making

predictions on the test data and the negative log predictive probability (NLPP) on

test data which considers uncertainty in predictions. The code has been developed

on top of GPflow [27] framework with ADAM [28] optimizer to learn the kernel and

variational parameters by maximizing the variational lower bound. The variational

mean parameters are initialized to 0, variance parameters to 1e−5 and length-scales

are initialized to 2 for MNIST and 10 for other datasets.

5.3.1 MNIST-10

We performed experiments with MNIST dataset with 10 classes corresponding to the

digits 0 − 9. We consider the standard train/test split with 60K training and 10K

test images. We considered CDGP and DGP models with various architectures as

described in Table 5.1. Parameters of the model are learned by running the ADAM

optimizer for 400 epochs with 0.01 step size and a mini-batch of 1000. Experimen-

tal comparison indicates that the proposed CDGP models with 2 layers, first layer

with a weighted convolutional kernel and the second layer with an RBF kernel gave

the best performance, an accuracy of 98.66 and an NLPP score of 0.0463. Second

best performance was given again by a CDGP model with 4 layers, 2 weighted con-

volutional kernels followed by 2 RBF layers. We could observe that all the CDGP

models performed better than the DGP and CGP models in the MNIST data. We

also conducted experiments with the combinations of two RBF kernels with length

scales initialized to 2 different values 0.01 and 10, as the base kernel in a convolu-

tional kernel. The approach gave an accuracy of 98.46. We found that the learned

length scales are also quite far apart which shows that one RBF kernel is trying to

capture long distance correlations while the other one captures short distant corre-

lations. This did not result in better results as MNIST is quite simple dataset for

which capturing such information might not be necessary.

5.3.2 Rectangles-Image

We consider the rectangles-image data set used in [2], where a rectangle of varying

height and width is placed inside images. The patches in the border and inside of

the rectangle and the background patches are sampled to make the rectangle hard to

23

Table 5.1: Comparison of SGP, DGP, CGP and CDGP approaches with different
architectures on the MNIST data set along with the kernels used by GP in each
layer.

Model Layer 1 Layer 2 Layer 3 Layer 4 Accuracy% NLPP
SGP RBF – – – 97.48 –
DGP1 RBF RBF – – 97.94 0.073
DGP2 RBF RBF RBF – 97.99 0.070
CGP1 Conv – – – 95.59 0.170
CGP2 Wconv – – – 97.54 0.103
CDGP1 Wconv RBF – – 98.66 0.046
CDGP2 Conv RBF – – 98.53 0.536
CDGP3 Conv RBF RBF – 98.40 0.055
CDGP4 Conv RBF RBF RBF 98.41 0.051
CDGP5 Wconv Wconv RBF – 98.44 0.048
CDGP6 Wconv Wconv RBF RBF 98.60 0.046

detect 2. The task is to classify if a rectangle in an image has a larger height or width.

The data set consists of 12K training images and 50K test images, and is known to

require deep architectures for correct classification. We consider two different archi-

tectures of CDGP, and compare it against sparse GPs, deep GPs with 2 and 3 layers

and convolutional GPs. Parameters of the models are learnt by running the ADAM

optimizer for 200 epochs with 0.01 step size and a mini-batch of 1000. Experimental

comparison across different approaches is provided in Table 5.2. We could observe

that the proposed CDGP model with 2 layers, first layer using a weighted convo-

lutional kernel and the second layer using an RBF, provided the best performance

beating DGP, CGP and SGP models by a large margin. To the best of our knowl-

edge, this is the highest accuracy reported by a GP model on the rectangles-image

data. This indicates the usefulness of the representation learning capability of CDGP

model for complex image classification.

5.3.3 CIFAR-10

The CIFAR-10 dataset [29] consists of total 60K images out of which 50K are used

as training images while the rest 10K images are being used for testing. The dataset

contains colored images of objects like airplane, automobile, etc. There are 10 classes

2Rectangles-image data is different from the simpler rectangles data used in [3], where a random
size rectangle is placed in black background with the pixels corresponding to the border of the
rectangle in white, while that of inside in black.

24

Table 5.2: Comparison of SGP, DGP, CGP and CDGP approaches with different
architectures on the Rectangles-Image data set along with the kernels used in by GP
in each layer.

Model Layer 1 Layer 2 Layer 3 Accuracy% NLPP
SGP RBF – – 76.1 0.493
DGP1 RBF RBF – 76.93 0.478
DGP2 RBF RBF RBF 76.98 0.476
CGP Wconv – – 71.06 0.602
CDGP1 Wconv RBF – 79.74 0.422
CDGP2 Wconv RBF RBF 77.95 0.449

in total having 6K images per class. The dimensionality of each image is 32× 32× 3

(3 is for channels). We compare the performance of CDGP, DGP and CGP models

in Table 5.3. Parameters of the models are learned by running the ADAM optimizer

for 200 epochs with a mini-batch size of 403.

We observe that DGP models gave a relatively low performance on the CIFAR10

datasets. Equipping DGP models with convolutional kernels have boosted the per-

formance by 10% showing the effectiveness of convolutional kernels for image clas-

sification. However, CDGP models were not able to obtain a performance close to

CGP. This could be an indication that, for this particular dataset, the properties of a

single-layer CDGP i.e, CGP is enough to learn a good classifier. In fact, the previous

experiments have shown that 2-layer CDGPs typically result in the best accuracy

(in comparison with deeper models), implying that a CGP has already very large

capacity for classification and therefore the addition of one layer is usually enough to

improve on the results.

Table 5.3: Comparison of DGP, CGP and CDGP approaches with different architec-
tures on the CIFAR10 data set along with the kernels used by GP in each layer.

Model Layer 1 Layer 2 Layer 3 Accuracy% NLPP
DGP1 RBF RBF – 42.20 3.2579
DGP2 RBF RBF RBF 40.13 3.5785
CGP Wconv – – 55 –
CDGP1 Wconv RBF – 51.74 2.4893
CDGP2 Wconv RBF RBF 51.59 2.4607

3Learning took around 11 hours on Nvidia GTX 1080 Ti GPU, while the best results reported
in [3] is obtained after running the optimization for 40 hours.

25

5.3.4 Convex sets

Figure 5.1: Plot representing the training accuracy of after every 5 epochs of training.

Convex sets is a dataset for binary classification of images. The images are

greyscaled with value of pixel being 0 at the dark part and having maximum pixel

value of 255 at its bright region. The task here is to identify whether the bright

region in the image is a convex one or non-convex. The image size of this dataset is

28× 28. The difficult part about this dataset is smaller training set. It has only 8000

images in training set and have 50000 images in the test set. We considered CDGP

and DGP models with various architectures as described in Table 5.4. Parameters of

the model are learned by running the ADAM optimizer for 200 epochs with 0.01 step

size and a mini-batch of 1000. This dataset too is a artificial dataset like rectangle-

image which performs better if the network architecture is deep. It clear from the

results mentioned in Table. 5.4 as we go deeper the test nlpp is keep on decreasing

implying that deeper models have better representation capabilities. The accuracy

and nlpp both are better if the 1st layer of the model have a convolutional kernel

instead of a RBF (for corresponding depth of the network). The training accuracy

for all the 200 epochs (sampled at every 5 epochs) has been plotted in Fig. 5.1. It

26

Figure 5.2: Plot representing the training nlpp(essentially the loss function value) of
after every 5 epochs of training.

is clear from the Fig. 5.1 that finally cdgp3 outperforms the cdgp4 with cdgp4 being

very close throughout. Figure. 5.2 shows the value of loss function sampled after

every 5 epochs. It is clearly visible from the Fig.. 5.2 that the cdgp2 fits the data

more adequately and hence which results in better accuracy too.

27

Table 5.4: Comparison of DGP, CGP and CDGP approaches with different archi-
tectures on the Convex sets data set along with the kernels used in by GP in each
layer.

Model Layer 1 Layer 2 Layer 3 Layer 4 Accuracy% NLPP
DGP1 RBF RBF – – 73.57 0.5472
DGP2 RBF RBF RBF – 74.27 0.5297
DGP3 RBF RBF RBF RBF 74.34 0.5274
CGP Wconv – – – 70.08 0.6028
CDGP1 Wconv RBF – – 73.87 0.5411
CDGP2 Wconv RBF RBF – 75.19 0.5233
CDGP3 Wconv RBF RBF RBF 74.64 0.5233

5.3.5 Experiments with Random Sub-sampling of Patches on

Caltech-101 Dataset

Table 5.5: Comparison of Training time required for different CDGP architectures
with different number of patches on the Caltech-101 dataset.

Model Layer
1

Layer
2

Layer
3

Training
time

Accuracy%NLPP

CDGP1(All
patches)

Wconv RBF – 11 hrs 18
min

20.39 6.5811

CDGP2(All
patches)

Wconv RBF RBF 12 hrs
2min

19.51 6.787

CDGP1(Random
patches)

Wconv RBF – 1 hr 15 min 20 6.7009

CDGP2(Random
patches)

Wconv RBF RBF 1hr 19 min 18.82 7.0473

Computation of convolutional kernels becomes prohibitive on data sets such as

Caltech101 [30] with very high dimensionality. It consists of 101 classes with 20 images

per class for training and 10 images per class for testing. The size varies slightly for

each image in the actual dataset but is roughly around 300 × 200 pixels per channel.

The images are colored so each image has 3 channels. The experiments are conducted

on images resized to 50 × 50 × 3. Instead of taking all the patches of the image for

computing the convolutional kernel, we randomly picked up one-tenth of the total

number of image patches for computing the kernel. This resulted in a very significant

speed-up in learning time without much loss in accuracy, as can be seen from table

28

5.5 4. The test accuracy obtained with CDGP1 is 20.39% and time taken for training

is 11 hrs 18min. On the other hand, for the same model considering random subset of

image patches, training time drops to only 1 hr 15 min with an accuracy drop of only

0.39% making it around 10 times faster. Similar phenomenon has been observed in

case of CDGP2 considering random subset of patches, where training time improved

from 12 hrs 2 min to 1 hrs 19 min with an accuracy drop of just 0.69%, providing

a speedup of around 10 hours. The classification accuracies of the models presented

in Table 5.5 are low due to resizing of the original image to size 50× 50, resulting in

loss of information. As a future work, we will conduct experiments by keeping the

original image size, and study the effectiveness of random sub-sampling of patches

and generalization performance of the proposed approach.CDGP2,3 doesn’t run with

stride 1 using 150x150 images but with random patches it runs, but giving a low

accuracy.

4We ran the experiments on Nvidia GTX 1080 Ti GPU.

29

Chapter 6

Conclusion

Deep GP models provide a lot of advantages in terms of capacity control and predic-

tive uncertainty, but they are less effective in computer vision tasks. Commonly used

RBF kernels in the DGP models fail to capture variations in image data and are not

invariant to translations. In this paper we proposed a DGP model which captures con-

volutional structure in image data using convolutional kernels. Our model extends

the convolutional GPs with the ability to learn hierarchical latent representations

making it a useful model for image classification. We incorporated different types of

convolutional kernels [3] in the DGP models and demonstrated their usefulness for

image classification in benchmark data sets such as MNIST, Rectangles-Image and

CIFAR10. In the future, we plan to develop methods to further reduce the cost of

convolutional kernel computation and memory requirements of the CDGP model for

high dimensional datasets. This will allow us to consider a higher mini-batch size,

leading to reduced stochastic gradient variance and faster convergence of the opti-

mization routine. We found that increasing the number of layers in CDGP did not

bring much improvements in performance contrary to what we expected. We provide

automatic patch selection flexibility to the model which is not there in traditional

CNNs. We tried optimizing variational parameters with natural gradients and other

hyperparameters with ADAM optimizer. For our experimental setup it didn’t result

in faster convergence of the variational parameters.

We hope that our future research on faster and more effective variational inference

techniques will address these limitations with convolutional DGPs. DGPs posses a

huge representational power theoretically. Each GP regression is theoretically equiv-

alent to a infinite dimensional multi-layer peceptron. The less effectiveness of the

model on large scale computer vision datasets can be a result of high computational

requirement for GPs and less polished approach of modeling and optimizations.

30

Bibliography

[1] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[2] H. Salimbeni and M. Deisenroth. Doubly Stochastic Variational Inference for

Deep Gaussian Processes. In Advances in Neural Information Processing Systems

30, 4588–4599. 2017.

[3] M. van der Wilk, C. E. Rasmussen, and J. Hensman. Convolutional Gaussian

Processes. In Advances in Neural Information Processing Systems 30. 2017 2849–

2858.

[4] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian Processes for Big Data

2013.

[5] A. Damianou and N. Lawrence. Deep Gaussian Processes. In International

Conference on Artificial Intelligence and Statistics. 2013 207–215.

[6] V. Kumar, V. Singh, P. K. Srijith, and A. Damianou. Deep Gaussian Processes

with Convolutional Kernels. ArXiv e-prints .

[7] C. Williams and D. Barber. Bayesian Classification with Gaussian Processes.

In IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998 1342–

1351.

[8] K. Chai. Variational Multinomial Logit Gaussian Process. In Journal of Machine

Learning Research. 2012 .

[9] J. Hensman, A. G. d. G. Matthews, and Z. Ghahramani. Scalable Variational

Gaussian Process Classification. In International Conference on Artificial Intel-

ligence and Statistics. 2015 .

31

[10] P. K. Srijith, P. Balamurugan, and S. Shevade. Gaussian Process Pseudo-

Likelihood Models for Sequence Labeling. In European Conference on Machine

Learning and Knowledge Discovery in Databases. 2016 215–231.

[11] M. Titsias. Variational learning of inducing variables in sparse Gaussian pro-

cesses. In International Conference on Artificial Intelligence and Statistics. 2009

567–574.

[12] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. CoRR

abs/1312.6114.

[13] A. Damianou. Deep Gaussian Processes and Variational Propagation of Uncer-

tainty. PhD Thesis, University of Sheffield .

[14] J. Hensman and N. D. Lawrence. Nested variational compression in deep Gaus-

sian processes. arXiv preprint arXiv:1412.1370 .

[15] Z. Dai, A. Damianou, J. González, and N. Lawrence. Variational Auto-encoded

Deep Gaussian Processes. International Conference on Learning Representations

(ICLR) .

[16] T. Bui, D. Hernández-Lobato, J. Hernandez-Lobato, Y. Li, and R. Turner. Deep

Gaussian processes for regression using approximate expectation propagation. In

International Conference on Machine Learning. 2016 1472–1481.

[17] K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random Feature

Expansions for Deep Gaussian Processes. In International Conference on Machine

Learning, volume 70. 2017 884–893.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. In MIT Press. 2016

.

[19] Y. Gal. Uncertainty in Deep Learning. In University of Cambridge. 2016 .

[20] N. D. Lawrence and A. J. Moore. Hierarchical Gaussian process latent variable

models. In Proceedings of the 24th international conference on Machine learning.

ACM, 2007 481–488.

[21] D. Haussler. Convolution Kernels on Discrete Structures. Technical Report 1999.

32

[22] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep Kernel Learning.

In International Conference on Artificial Intelligence and Statistics, volume 51.

2016 370–378.

[23] G.-L. Tran, E. V. Bonilla, J. P. Cunningham, P. Michiardi, and M. Filippone.

Calibrating Deep Convolutional Gaussian Processes 2018.

[24] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani. Adversarial Examples,

Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep

Networks. arXiv preprint arXiv:1707.02476 .

[25] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt.

Graph kernels. . Journal of Machine Learning Research 11, (2010) 12011242.

[26] M. Collins and N. Duffy. Convolution kernels for natural language. In Advances

in Neural Information Processing Systems. 2001 25–632.

[27] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas,

P. León-Villagrá, Z. Ghahramani, and J. Hensman. GPflow: A Gaussian process

library using TensorFlow. Journal of Machine Learning Research 18, (2017) 1–6.

[28] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. CoRR

abs/1412.6980.

[29] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical

Report 2009.

[30] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from

Few Training Examples: An Incremental Bayesian Approach Tested on 101 Ob-

ject Categories. In 2004 Conference on Computer Vision and Pattern Recognition

Workshop. 2004 178–178.

33

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

