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Dedication



Abstract

The work presented in this document is divided into two parts. The first part presents the hardness of games and
the second part presents Graph sampling. Non-deterministic constraint logic[1] is used to prove the hardness of
games. The games which are considered in this work is Reversi (2 player bounded game), Peg Solitaire (single
player bounded game), Badland (single player bounded game). It also contains a theoretical study of peg
solitaire on special graph classes. Reversi is proved to be PSPACE-Complete using Bounded 2CL, Peg Solitaire
is proved to be NP-Complete using Bounded NCL. Badland is proved to be NP-Complete by a reduction from
3-SAT. The objective of study of peg solitaire of special graph classes is to find the maximum number of marbles
we can remove from a fully filled board, if the player is given the privilege to remove a marble from any cell
initially, then following the rules after the initial move.

The second part of the work is dedicated to graph sampling. Given a graph G, we try to sample a represen-
tative subgraph G, which is similar to the original graph G. The properties that are being studied are Degree
Distribution, Clustering Coefficient, Average Shortest Path Length, Largest Connected Component Size. To
measure the similarity between the original graph and sample we use the metrics Kolmogorov - Smirnov test
and Kullback - Leibler divergence test. Tightly Induced Edge Sampling performs well on general graphs but
it’s performance decreases when the graph is a tree. Overall TIBFS and KARGER produces a sample which

closely matches the distribution of original graphs.
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Chapter 1

Introduction

People all over the world entertain themselves by playing games. Over the years researchers have found inter-
esting connections among games, puzzles and computations. As computer scientists, we find that games and
puzzles serve as powerful models of computation, quite different from the usual models of automata and circuits,

offering a new way of thinking about computation.

1.1 Preliminaries

1.1.1 Game

A game is an activity or sport usually involving skill, knowledge, or chance, in which you follow fixed rules and

try to win against an opponent or to solve a puzzle.
e Board Games

— chess
— checkers

- Go
o Card Games
— Poker
— Bridge
e One Player Games

— Rush Hour
— Peg Solitaire
— Sliding Puzzles

1.1.2 Bounded Games

The games in which the number of moves that can be made by a player is polynomially bounded are bounded
games. For example, in peg solitaire, in a single move a player removes a marble from the board. The game

ends when there is no move or there is only one marble left on the board.

1.1.3 Unbounded Games

The games is which there is no bound on the number of moves that can be played by a player, typically the

moves are reversible. Examples include Chess, Checkers and Go.



1.1.4 One Player Games

A one-player game is basically a puzzle where one player makes a series of moves to accomplish a goal.

1.1.5 Two Player Games

In a two-player game, players alternate making moves, each trying to achieve some particular objective.

1.1.6 Team Games

In team game, players from team make moves, each team trying to achieve some particular objective.

1.2 Constraint Logic Formalism

1.2.1 Constraint Graph

1.2.1.1 Definition

It is a weighted directed graph which consists of vertices and edges. Edges are of two types which are as follows:
e Red Colored Edge having weight of 1

e Blue Colored Edge having weight of 2

1.2.1.2 Constraint of the graph

Each vertex has a non-negative minimum inflow. A legal configuration of a constraint graph has an inflow of
at least the minimum inflow at each vertex. A legal move on a constraint graph is the reversal of a single edges

orientation, resulting in a legal configuration. In this report we consider the minimum inflow to be 2.

1.2.1.3 General Problem

Can a given edge be reversed which still satisfies the constraint?

1.3 Basic vertices for One player games

1.3.1 Bounded Games
1.3.1.1 OR

A vertex with incident edge weights of 2, 2, and 2 behaves as a
logical OR. A given edge may be directed outward if and only if
at least one of the other two edges is directed inward. We will

call such a vertex an OR vertex. Figure 1.1 beside represents OR,

vertex. A

1.3.1.2 AND Figure 1.1: OR vertex

The blue edge having weight of 2 may be directed outward if
and only if both red edges having weight of 1 each are directed
inward. Otherwise, the minimum inflow constraint of 2 would

not be met. We will call such a vertex an AND vertex. Figure

1.2 beside represents AND vertex. /,\

Figure 1.2: AND vertex



1.3.1.3 FANOUT

Both the red edges having weight of 1 each may be directed
outward if and only if the blue edge having weight of 2 is directed
inward. Otherwise, the minimum inflow constraint of 2 would not \,/
be met. We will call such a vertex an FANOUT vertex. It seems

as if the weight of 2 from blue edge is fanning out through two
red edges. Figure 1.3 beside represents FANOUT vertex.

1.3.1.4 CHOICE Figure 1.3: FANOUT vertex

A certain edge is pointed inward then only one of the 2 remain-

ing edges can point outward. Otherwise, the minimum inflow

constraint of 2 would not be met. It seems as if we came by an \
edge and choose one of the 2 remaining edges to move forward. \
Figure 1.4 beside represents CHOICE vertex.

1.3.1.5 GENERAL PROBLEM Figure 1.4: CHOICE vertex

[ Hardness: BOUNDED NCL IS NP-COMPLETE. 2]

1.4 Basic vertices for Two Player Games

1.4.1 Bounded Games
1.4.1.1 OR

A vertex with incident edge weights of 2, 2, and 2 behaves as a
logical OR. A given edge may be directed outward if and only
if at least one of the other two edges is directed inward.We will

call such a vertex an OR vertex. Figure 1.6 beside represents OR,

vertex. % )

Figure 1.6: OR vertex
1.4.1.2 AND

The blue edge having weight of 2 may be directed outward if
and only if both red edges having weight of 1 each are directed
inward. Otherwise, the minimum inflow constraint of 2 would

not be met. We will call such a vertex an AND vertex Figure 1.7

beside represents AND vertex. K

1.4.1.3 FANOUT
Figure 1.7: AND vertex

Both the red edges having weight of 1 each may be directed
outward if and only if the blue edge having weight of 2 is directed

inward. Otherwise, the minimum inflow constraint of 2 would not \&r %

be met. We will call such a vertex an FANOUT vertex. It seems J

Figure 1.8: FANOUT vertex



as if the weight of 2 from blue edge is fanning out through two
red edges. Figure 1.8 beside represents FANOUT vertex.

1.4.1.4 CHOICE

A certain edge is pointed inward then only one of the 2 re-
maining edges can point outward. Otherwise, the minimum
inflow constraint of 2 would not be met. It seems as if we
came by an edge and choose one of the 2 remaining edges
to move forward. Figure 1.9 beside represents CHOICE ver-

tex.

1.4.1.5 VARIABLE

In variable gadget there are two edges one colored white and the
other colored black. If The white player chooses this variable
first, then it reverses the white edge and now black player can’t
choose this variable and reverse this edge. Similarly, if black
player chooses first then only the black player can reverse the
black edge. Figure 1.10 beside represents VARIABLE vertex.

1.4.1.6 GENERAL PROBLEM

TWO-PLAYER CONSTRAINT LOGIC (2CL)

Figure 1.9: CHOICE vertex

Figure 1.10: VARIABLE vertex

Instance: Constraint graph &, partition of the edges of G into

sets B and W, and edges eg € B, ey € W.

Question: Does White have a forced win in the following game?
Players White and Black alternately make moves on G.
White (Black) may only reverse edges in W (B). White

(Black) wins if he ever reverses ew (eg).

Hardness: BOUNDED 2CL IS PSPACE-COMPLETE.[2]




Chapter 2

Studied Games

2.1 Reversi

2.1.1 Introduction

The hardness of generalized versions of games have been studied in past. The problem of determining whether
a particular player can win is found to be EXP-TIME complete for checkers, chess, etc. It is PSPACE-complete
for games like amazons, konane. Reversi has already been proved to be PSPACE-complete by Shigeki Iwata
and Takumi Kasai[3] by a reduction from Generalized geography played on a bipartite graph having maximum
degree of 3. In this section we will be proving Reversi is PSPACE-complete using Bounded 2CL which is much
simpler to comprehend.

Reversi is a two-player strategy board game played on a n x n board. Figure 2.1 shows the initial board
position. The board contains disks which are low on one side and dark on another side. Out of the two players,
one of the player is assigned the low(dark)side and the other player with dark(low) side. The game progresses
by players making moves alternately. The game continues till none of the player has a move to make. The
objective of the game is to have majority of the disks turned to display one’s color. A move corresponds to
flipping at least one disk of opponent’s color which are in a straight line (horizontally, vertically, diagonally)

between the already placed player’s disk and the disk going to be placed in this current move.

2.1.2 Basic Gadgets

The number of moves on a n x n board is polynomially bounded by n. Hence Reversi is a bounded two-player
game. we will reduce Erik’s bounded 2CL to reversi. The bounded 2CL consists of 5 gadgets which are as

follows:
1. OR
2. AND, SPLIT
3. VARIABLE
4. CHOICE

and few utility gadgets (wire, turns, shifter). In the following sections we will denote player A as white player
and player B as black player. White player will win if the number of white(low) side of disk outnumbers the
black(dark) side of the disk and vice versa. The cells marked with alphabets are empty and any of the player

can tap on it and make a move if it is valid.



Figure 2.1: Initial board position

2.1.2.1 UTILITY

Figure 2.2 shows the utility Gadget. It consists of basic wiring. The white player can tap on cell E then it will
tap on cell F to reverse the disks to white. To perform a shift, the white player can tap on A, then on cell B
and finally cell D. To take a turn it can tap on cell A then B and finally on cell C. The gadgets are helpful in
connecting the gadgets discussed below.

2.1.2.2 OR

Lemma 2.1.1. In an OR gadget white player can put a marble with white facing up on cell marked C if either
it can put a marble with white facing up on A or on cell C.

Proof. Figure 2.3 shows the OR Gadget. If white player can tap on A by making a move. Then it can tap on
B in his next move which will result in reversing the disk with black facing up between them to white. Now
in his next move white player can tap on C and reverse the disk with black facing up between them to white.
After these three moves the cell C contains disk with white facing up. Similarly, if the white player can tap on
B by making a move, it will end up having disk with white facing up on cell C. There is no way the black player
can resist in between the three moves the white player is going to make if we can connect gadgets wisely. For
instance, it is not wise to tap A from below and keep a vacant cell to the left of A. The black player can make

a move to left of A and the whole purpose of gadget will be lost. O

2.1.2.3 AND,SPLIT

It’s a multi-purpose gadget which serves as both AND and SPLIT gadget. The flow is from INPUT 1 to
OUTPUT 1 and INPUT 2 to OUTPUT 2. The flow corresponds to turning all the marbles white facing up
from B to D and A to C.

Lemma 2.1.2. In an AND gadget white player can put a marble with white facing up on cell marked C iff it

can put a marble with white facing up on A and on cell B.

Proof. Figure 2.4 shows the AND Gadget. To use it as an AND gadget we use INPUT 1, INPUT 2, OUTPUT
2. We feed the OUTPUT 1 to garbage or considered lost. We have to maintain the following flow order: INPUT



Figure 2.2: WIRE,TURNS,SHIFT gadget

1 to OUTPUT 1(to garbage) then INPUT 2 to OUTPUT 2. The reverse order will not serve the purpose of
this gadget. If the white player activates INPUT 2 first, then eventually it will tap on cell H. Then the black
player can tap on cell G and reverse the white facing on cell H. Hence the white player can’t make move now.
But if INPUT 1 activates first then above scenario is not possible. The sequence of moves are as follows: [B, I,
J, K, L, D], [A, F, H, C]. Hence the white player need to tap both on cell A and B to finally tap C. O

Lemma 2.1.3. In a SPLIT gadget white player can put a marble with white facing up on cell marked C or D

or both if it can put a white marble on cell B.

Proof. Figure 2.4 shows the SPLIT Gadget. To use it as a SPLIT gadget a free disk with white facing up is
provided on INPUT 2. So if the white player can tap on cell B then it will finally tap cell D. As at INPUT 2
a free disk with white facing up is available the white player can freely use it to tap cell C as explained in the
AND gadget above. O

2.1.2.4 VARIABLE

Lemma 2.1.4. In a VARIABLE gadget the player who choses first is able to reverse disks on its path while
the other player has no valid move to make in that gadget.

Proof. Figure 2.5 shows the VARIABLE Gadget. If white player chooses first to make a move on this gadget
then it taps on A, then B, then finally out of the gadget while the black player has no moves to make in this
gadget. Similarly, if black player chooses first then white player is left with no moves to make in this gadget.
In the context of constraint logic graph this is the vertex where we set variable to true or false. The variable is

set to true if white player chooses else false. O

2.1.2.5 CHOICE

Lemma 2.1.5. In a CHOICE gadget if white player initially taps on cell A then it finally taps either B or C
but not both.

Proof. Figure 2.6 shows the CHOICE Gadget. The white player taps on cell A. It finally taps on cell O after

putting two white stones, one at cell D and another at cell J. The two white stones help in preventing the white



Figure 2.3: OR gadget

Figure 2.4: AND,SPLIT gadget

player from tapping both cell B and cell C. If the white player taps on cell R then there is no valid move to
tap B. On the other hand, If the white player taps on cell Q then there is no valid move to tap C. So the white
player can either tap cell B or cell C but not both. O

2.1.2.6 VICTORY

We will have an AND gadget whose output may be activated only if the white target edge in the 2CL game can
be reversed, we need to arrange for White to win if he can activate this AND. We feed this output signal into
a victory gadget, shown in Figure 2.7. we will arrange the board in such a way that at the end if black player
gets X disks with black facing up. If white is able to tap on cell E he should get more than X disks with white

facing up and hence win the game else he will lose.

Theorem 1. Given a n x n Reversi Board it is PSPACE-complete to decide whether a player has forced win

from a certain board configuration.

Proof. Reduction from Bounded 2CL. Given a planar constraint graph made of AND, OR, SPLIT, CHOICE,
and VARIABLE vertices, we can construct a corresponding Reversi game, as described above. The reduction
may be done in polynomial time: if there are k variables and 1 clauses, then there need be no more than (kl)2

crossover gadgets to connect each variable to each clause it occurs in, all other aspects of the reduction are



Figure 2.5: VARIABLE gadget

equally obviously polynomial. Reversi is definitely PSPACE-hard as it will end after a polynomial number of
moves. So Reversi is PSPACE-hard and hence PSPACE-complete. O

2.2 Peg Solitaire

2.2.1 Introduction

The hardness of generalized versions of games have been studied in past. The problem of determining whether
a particular player can win is found to be EXP-TIME complete for checkers, chess, etc. It is PSPACE-complete
for games like amazons, konane. Peg Solitaire is already proved to be NP-complete by Ryuhei Uehara, Shigeki
Iwatal[4] by reducing from a variation of the Hamiltonian cycle problem. In this section we will be proving Peg
Solitaire is NP-complete by using Bounded NCL which is much simpler to understand.

Peg solitaire is a board game which generally begins with pegs in every location on the board except for one
location which is left empty (or a hole). Figure 2.8 represents the initial board. If in some row or column there
are two adjacent pegs next to a hole, then the peg can jump over peg adjacent to it and occupies the hole. In
this move the adjacent peg is removed from the board. Fig 2.9 represents a single move. The goal of the game

is to remove every peg but one.

2.2.2 Basic Gadgets

The number of moves on a n x n board is polynomially bounded by n. Hence Peg Solitaire is a bounded single
player game. we will reduce Erik’s bounded NCL to peg solitaire. The bounded NCL consists of 4 gadgets
which are as follows:

1. OR

2. AND

3. SPLIT
4. CHOICE

and few utility gadgets (wire, turns, shifter). In the following sections we will denote player A as white player
and player B as black player. White player can win if it can remove all the pegs on the board but one. The

cells marked with alphabets are empty and any of the player can tap on it and make a move if it is valid.



Figure 2.6: CHOICE gadget

2.2.2.1 UTILITY

Figure 2.10 shows the utility Gadget. These gadgets are used to connect to vertices(gadgets). A CHAIN is used
to make a linear movement from one gadget to the other. A COLUMN SHIFT is used to shift the movement
by one column to the right. A mirror image of the gadget can shift the movement by one column to the left. A
TURN is used to take turns whenever required. The TURN gadget in the figure turns the movement to left, a

mirror image of the same figure turns the movement to right.

2.2.2.2 OR

Lemma 2.2.1. In an OR gadget a player can put a marble on cell marked A or B then it can move to cell
marked C via D.

Proof. Figure 2.11 shows the OR Gadget. If a player can put a marble on cell marked A, then it can jump
over the peg and reach cell D. After this move, it can jump over the peg to reach C. Or if the player can put
a marble on cell marked B, then it can jump over the peg and reach cell D. After this move, it can jump over
the peg to reach C. O

2.2.2.3 AND

Lemma 2.2.2. In an AND gadget the player can reach C if and only if the player can reach both the cells
marked A and B.

Proof. Figure 2.12 shows the AND Gadget. If the player can reach A, then it can reach F via D. Then there is
no movement possible from D as there is no adjacent peg to F. An adjacent peg can be brought to cell E if the
player can reach B. Then the peg on cell E can jump over peg on cell F to reach cell G and then to C. Or if the
player reaches cell B then it can move to E by jumping over the adjacent peg. At this movement no adjacent
peg is available, so no move is possible. If the player can reach A then it jumps over cell D and then to F. Then
the peg on cell E can jump over peg in cell F to reach cell G and then to C. Note that the peg on cell F can

jump over E, but after making that move any further move is not possible. O

10



Figure 2.7: VICTORY gadget

2.2.2.4 SPLIT

Lemma 2.2.3. A player can reach B and D if it can reach cell A.

Proof. Figure 2.13 shows the AND Gadget. whenever the player is able to reach cell A, a free peg will be
instantly available on cell C. If the player can reach cell A then it can reach cell B by making a series of moves.
Then the player may use the free stone available to reach D by making a series of moves. So if the player can
reach A then it reaches both B and D. O

2.2.2.5 CHOICE

Lemma 2.2.4. A player can reach either cell B or C but not both, if it can reach cell A.

Proof. Figure 2.14 shows the CHOICE Gadget. If the player can reach cell A it can move to cell E. After that
move it can reach either B or C. It can’t reach both B and C because after making a move the pegs are removed
from the board. Backward movement is not possible and hence once the player has reached cell B, it is not
possible to backtrack to cell E and then move to cell C and vice versa. so once a player has reached cell A it

can leave the gadget via cell B or C but not both. O

2.2.2.6 VICTORY

The AND gadget corresponding to the target edge in the NCL graph will be connected to the VICTORY gadget
shown in Fig. 2.15. If the player can activate this AND gadget, then it can remove all the pegs but one from
the board and win the game. If the player is able to perform this action the corresponding target edge can be

reversed in the NCL graph.

Theorem 2. Given a n x n Peg Solitaire Board it is NP-complete to decide whether a player has forced win

from a certain board configuration.

11



Figure 2.8: Initial board position

Single Move

X b § z X Y r4 X X z

Figure 2.9: single move

Proof. Reduction from Bounded NCL. Given a planar constraint graph made of AND, OR, SPLIT, CHOICE
vertices, we can construct a corresponding peg solitaire board game, using the gadgets above. The utility
gadgets are used to connect the basic gadgets required to build the board. Initially, for every variable in the
Bounded NCL graph we provide a peg at every corresponding cell in the board. The player can start on some
gadget input corresponding to the location of the single loose edge and reach the VICTORY gadget just when
the target edge in the constraint graph may be reversed. Therefore, Peg Solitaire is Np-hard.

Peg Solitaire is clearly in NP: there are only a linear number of pegs that can be removed and therefore a

potential solution may be verified in polynomial time. OJ

2.3 Peg solitaire on special Graph Classes

Definition 2.3.1. State Its an ordered pair S = (V, E) which consists of set of vertices V and a set of edges E.
Each vertex is numbered, which either contains a peg or is empty. A vertex v can be represented as v, where
v vertex number

r = 1 vertex contains a peg

r = 0 vertex is empty

There exists an edge between every adjacent vertex. Edge E is undirected can be represented as (xp, yq)-
Example:

S=(V,E)

V = {14, 24, 30,..,120,.., 491}

E = {(14, 21), (11, 91), (11, 81), ,(120,131), ,(491,481)}

Figure 2.16 represents a state.

Definition 2.3.2. Starting State A starting state S(V, E) contains pegs in every vertex except one and set of
edges E.

S=(V,E)

V = {14, 21, 31,.,250.., 491 } E={ (11, 21), (11, 91), (11, 81), ,(491,481)}

Figure 2.17 represents a Starting state.

Definition 2.3.3. Terminal State A state T(V, E) where all the vertices are empty except one and set of edges
E.T=(V,E)V =1, 2, 30,.-,411.., 49

12



CHAIN

e NS

COLUMN SHIFT

Figure 2.10: utility gadget

Figure 2.11: OR gadget

E= (107 20)) (]-07 90)7 (]-07 80)7 3 (4117 420) )(4907480)

Figure 2.18 represents a Terminal state.

Definition 2.3.4. Fully Filled State A state F (G, H) having pegs at every vertex and a set of edges H.
Example:

F = (G, H)

G = {14, 21, 31,.,121,.., 49;}

H={ (11, 21), (11, 91), (11, 81), (121,131) ,(491,481)}

Figure 2.19 represents a Fully Filled state.

Definition 2.3.5. Move A move on a state S(P, Q) can be represented as M: a; — by — ¢y, if edge ey (a1, by)
€ Q and eq(by,¢c1) € Q

S:(V,E) V={ay,b1,co,.} E ={(a1,b1), (b1,co),..}

Move m: al — bl — c0

Si+1(V,E) V= {ay, by, c1,.} E = {(ag,bo), (bg,c1),-.}

13



Figure 2.12: AND gadget

Figure 2.13: SPLIT gadget

Definition 2.3.6. Association A terminal state T (X, Y) is associated with starting state S (V, E) if T can be

obtained from S by series of moves.

Definition 2.3.7. Freely Solvable A graph G (V, E) is freely solvable if for all starting states S of graph G (V,

E), there exists an associated terminal state T (X, Y) consisting of a single peg.

Definition 2.3.8. K Solvable A Fully filled state F' (G, H) is k-solvable if there exists a starting state S (P, Q)
of F (G, H) such that there exists an associated terminal state T (X, Y) consisting of k non-adjacent pegs.

Definition 2.3.9. Distance 2 Solvable A Fully filled state F (G, H) is Distance 2-solvable if there exists a
starting state S (P, Q) of filled state F (G, H) such that there exists an associated terminal state T (X, Y)

consisting of two pegs that are distance 2 apart.

2.3.1 Graphs Studied

e Star Ky ,,
e Path Pgn 7P2n+1

e Cycles Co,,Copy1
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Figure 2.14: CHOICE gadget

e Complete Graph K,,

e N-ary Tree
e Petersen Graph

Theorem 3. The star K, is (n — 1)-solvable.[5]

If n > 1, then Py, is not freely solvable.[5]

Pay,t1 is not solvable.[5]

P,, is solvable iff n=3 or n is even.[5]

P,, is solvable iff n=3 or n is even.[5]

P, is 2 distance solvable in all other cases.[5]

C,, is freely solvable if n is even or n=3.[5]

C,, is 2 distance solvable in all other cases (n is odd and n> 3).[5]

K,, is freely solvable[5]

2.3.1.1 The star K, , is (n —1)-solvable.

Basically there are only 2 choices for the initial hole. One is the pendant vertices other being the center vertex.
If the initial hole is at pendant vertex, then we can remove only one peg from the graph. If the hole is at center,

then there is no move. Figure 2.22 represents the choices.

2.3.1.2 Ifn > 1, then Py, is not freely solvable.

e In a path, any move will result in an edge having holes on both end points. Figure 2.23 depicts such a

move.
e To solve this path, we should be able to fill the holes of the empty bridge.

e If the initial hole is at vertex 0 then it is not possible to fill the bridge and hence P, is not freely solvable.

15



Figure 2.15: VICTORY gadget

2.3.1.3 Py, is not solvable.

e The initial hole divides the pegs into two groups. Both the groups have either even number of pegs or

odd. In a single move two pegs are removed from one group and one peg is added to another group.

e After the first move one of the group is even(2k) and the other is odd(2k+1). Every time two pegs are
removed from the odd side an empty bridge is formed and the size of vertices on odd side goes down by
2. After K such moves there will be an empty bridge having only one peg on its one side, which is not

solvable. Figure 2.24 represents the moves discussed above.

2.3.1.4 P, is solvable iff n=3 or n is even.

e P, where n is even

Place the hole at n-1

e Move n-3 over n-2 to n-1

e Move n over n-1 to n-2

The problem size has reduced to P, _s. Figure 2.25 follows the steps described above.

2.3.1.5 P, is 2 distance solvable in all other cases.
e P, is odd.
e Place the hole at n-1.
e Move n-3 over n-2 to n-1.

e Move n over n-1 to n-2.

16



Figure 2.17: Starting State

e The problem size has reduced to P,,_».

e As the number of vertices are odd, the last empty bridge cant be filled to solve the path. Figure 2.26
follows the steps described above.

2.3.1.6 C,, is freely solvable if n is even or n=3.

e Place the hole at n
e Move 2th peg to nth vertex
e Move 4th peg to 2th vertex

e The problem has reduced to Pn-2 which is solvable when the hole is placed at (n-1)th vertex. Figure 2.27
follows the steps described above.

2.3.1.7 C, is 2 distance solvable in all other cases (n is odd and n>3).

e Place the hole at n

e Move 2th peg to nth vertex

17



Figure 2.19: Fully Filled State

e Move 4th peg to 2th vertex

e The problem has reduced to P,_o which is solvable when the hole is placed at (n-1)th vertex. Here n-2
is odd. As we know P,, where (n-2) is odd is 2 distance solvable, then the cycle C,, where n is odd is 2

distance solvable Figure 2.28 follows the steps described above.

2.3.1.8 K, is freely solvable[5]

e Place the hole at n.
e Move 2th peg to nth vertex.

e The problem has reduced to Ky_;. Figure 2.28 follows the steps described above.

2.3.1.9 N-ary tree of size N is not freely solvable.

e A path is a tree. Po, is not freely solvable. So N-ary tree is not freely solvable.

2.3.1.10 Lower bound on N-ary tree of size N.

e Here we give a lower bound on number of pegs that can be removed.
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Figure 2.20: K Solvable
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Figure 2.21: Distance 2 Solvable

Let D be the diameter of the tree T.

The diameter D can be considered as a path of length Py if | D | is even or Pogyq if | D | is odd.

We know Py, is solvable. So we can remove at least (2k-1) peg form the tree.

e We know Pggyq is 2 distance solvable. So we can remove at least remove (2k+1)-2 pegs from the tree.

Figure 2.29 follows the steps described above.

2.3.1.11 Observation based on Hamiltonian Path.

e A graph G(V, E) is solvable if it contains a Hamiltonian path of size (2k). We know Pgy, is solvable and

a Hamiltonian path covers every vertex exactly once.

e A graph G(V, E) is Distance 2 solvable if it contains a Hamiltonian path of size (2k+1). We know Paj 11

is Distance 2 solvable and a Hamiltonian path covers every vertex exactly once.

2.3.1.12 Petersen Graph is solvable

e In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and
15 edges.

e Peterson Graph is solvable.

e It contains a Hamiltonian path of even size. Figure 2.30 represents the path.
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Figure 2.23: Even Path Length

2.3.1.13 Lowering the upper bound of number of holes required to solve a Tree T(V, E).

Problem Definition
Given a Tree T (V, E) find the minimum number of holes required to solve this tree.
Figure 2.31 represents the algorithm and Fig. 2.32 represents the flowchart.
Example
The Tree T (V, E) given in Fig.2.33 contains 37 pegs.
Find the minimum number of holes required to solve the tree.
Figure 2.34 represents the tree along with the diameter found after every recursive call. Table 2.1 represents

the diameters removed on following the algorithm given in Fig. 2.31.

H Diameter Size Pegs Removed Pegs Left H

1 15 13 2
2 ) 3 2
3 ) 3 2
4 ) 3 2
5) 4 3 1

Table 2.1: Diameters removed

e Holes Required = holes + pegs

e holes = Number of diameters

e pegs = pegs which cant be removed + pegs which are left from the diameter
e In this example,

e holes=5+ (9 +3)-1=16

e The upper bound of number of holes required is (37-1) = 36 and we have reduced it to 16. we have

reduced more than half of upper bound.
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2.4 Badland

2.4.1 Introduction

Badland is a single player mobile game which consists of several levels. It features a black minion which the
player has to guide to reach the end of the level. Each level is full of obstacles like lasers which can kill the
minion if it comes in contact with it, big stones which can fall on the minion and crush it down, wheel grinders
which can grind the minion if it comes in contact with it and so on. The level also consists of Power-Up like
speeding or slowing down the movement of the minion, expand or shrink the minion, clones the minion to
multiple minions so that the player is alive until and unless all the clones die and many more. If the player dies
while overcoming an obstacle, then the player respawns at the last checkpoint which it has crossed in that level.
There is no time bound to complete a level. Figure 2.35(a) shows the portal from which the minion spawns at
the start of the level. Figure 2.35(b) displays the lasers which can kill the minion. The lasers switch on and off
periodically to allow a gap for the minion to move over it. Figure 2.35(c) features the death balls which can
end the life of the minion if it comes in contact with it. Figure 2.35(d) shows the two grinders which rotates
in high speed and prove to be an obstacle for the minion. The yellow colored object in the Fig. 2.35(e) is a
power up which can expand the size of the minion. There are two different size of yellow colored objects in Fig.
2.35(f), the large one expands the size of the minion and the smaller one shrinks the size the minion. Apart
from this Power-Up the 3 black colored objects can clone the minion into multiple minions as a result increasing
the lifespan of the minion in that level. We will prove that Badland is NP-Complete which don’t appear in any
previous research work.
3-SAT

Given a Boolean expression consisting of clauses, where every clause is of size three and every literal in a clause
is ORed and every clause is ANDed. Is there any such assignment(TRUE/FALSE) of literals such that the

whole expression evaluates to TRUE.

2.4.2 Version of the Game

The version of game we are going to consider is played in a single screen and it has one level. The level consists
of objects like High speed fans, death ball, teleports and switches. The player can only move in a direction

towards the end of the level.
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Figure 2.26: 2 Distance Solvable Path

Figure 2.27: Cycle

2.4.3 Decision Problem

Given a complete level in a single screen can the player reach the end of this level facing the obstacles on the
path.

2.4.4 Theoretical Problem definition corresponding to a single level

Given a directed Graph with out-degree of every node € {1,2} and in-degree € {1, 2, 3,..}. Disjoint subsets S
= {s1, S2, S3,., Sk} of edges. Given a start vertex s and a target vertex t. Reach t from s and traverse at least

one edge from every subset of S.

Theorem 4. Given a complete level of Badland on a single screen it is NP-complete to decide whether the

player can reach the end of this level facing the obstacles on the path.

Proof. Reduction from 3-SAT problem. Given a 3-sat instance we will construct a badland level corresponding
to this instance. If a player can win the game, the assignments of true/false for a variable can then be read
from the switches, which will satisfy the given instance. so it is NP-hard.
Badland is clearly in NP: The player can guess a path and verify it by playing the level in polynomial time.
Badland is NP-hard and is in NP class, Hence Badland is NP-complete.
O

3-SAT Instance
FXy2z)=xVyVz)"x'Vy'Vz)" xVyVz"
We will reduce this instance to a level of badland.
Badland Level

A single level basically consists of two types of gadgets:

1. Variable Gadget
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N=6

Figure 2.28: Cycle

Figure 2.29: Lower Bound on Tree

2. Clause Gadget

1. Variable Gadget
Each variable gadget consists of 3 portals. The player spawns from the portal at the top and move out of

this gadget by one of the portals at the bottom. Figure 2.36 represents the variable gadget.

Correspondence with 3-SAT
If this variable gadget corresponds to variable X and the player leaves this gadget by the left portal that

means X is set to TRUE and vice versa

2. Clause Gadget
Each clause gadget consists of 6 portals, 3 switches, 1 high speed fan, few death balls.

The player spawns form one of the portal at the top and tap the corresponding switch which switches off
the high speed fan and move out of this gadget by the portal at the bottom. Figure 2.37 represents the

clause gadget.

Correspondence with 3-SAT

If this gadget is visited once then this clause which is a part of the function evaluates to true.

Single pass of the Level

Figure 2.38 represents a single level of Badland.

e The game starts from the portal marked as 1. The objective is to reach the green colored portal at the

bottom right corner.

e The players movement inside a gadget is already explained in the gadgets section. If the player enters a

portal marked p the player will be teleported to portal marked (p+1).

e After the player has played through all the variable gadgets and clause gadgets the player has to pass
through a tunnel which has death balls and high speed fans. If any one of the high speed fans is switched
ON, then the fan will force the player to death balls and the game will get over. If all the fans are switched
OFF then the player can pass through the tunnel and reach the green portal and win the level.

Construction of the Level

This level is created using the variable and clause gadgets discussed above. For every variable in the function
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Figure 2.30: Peterson Graph

F (x, y, z) there is a variable gadget and for every clause in the 3-Sat instance there is a clause gadget. The
portals are connected in such a way that a variable gadget can be visited only once. When a variable gadget
is visited then it is so connected that it will visit all the clauses having this variable. A tunnel is created with
high speed fans and death balls which corresponds to clauses in the F (x, y, z). For every clause a high speed

fan is there. The level ends at the end of this tunnel.
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The following algorithm lowers the upper bound of the number of holes.

Algorithm
solve(Tree T){
Diameter D=findDiameter(T); //findDiameter(tree T) finds a diameter of the given
Tree T
if(D==null) //if the tree do not contain a diameter then end the function
end
elsef
if(D.size is even)
pegs-=(D.size-1) //p2k is solvable
else
pegs-=(D.size-2)//p2k+1 is Distance 2 solvable
holes++; /fevery diameter requires a hole
FeD
Tree subT=findSubTree(child({v&D)); //findsubTree(Node n) returns a
subtree rooted at n
iffsubT.size>=2){ //subtree size of 1 can’t be a candidate

solve(subT); /frecur for the subtree found

Figure 2.31: Algorithm
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solve(Tree T)

Diameter D=findDiameter(T)

[Disize s even

pegs-=(D.size-2)

holes++

YvED
Tree subT=findSubTree(child(v& D))

subTisize>=2

solve(subT)

Figure 2.32: Flowchart

Figure 2.33: Tree
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Figure 2.34: Tree with diameter

(d) Grinders (e) Size Power-Up (f) Clone Power-Up

Figure 2.35: Screenshots of Badland
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Figure 2.37: Clause Gadget




Figure 2.38: Level
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Chapter 3
Graph Sampling

3.1 Introduction

A graph can represent many real-world complex systems like biological networks, communication networks and
information networks. The networks are quite large and graph mining algorithms such as graph Partitioning,
graph clustering, etc. are computationally expensive and generally do not scale well to very large graphs. To
overcome this very challenge graph sampling provides a feasible and affordable solution for the analysis of large
graph. A sampled subgraph is capable of experimentation and realistic simulations even before deploying new
systems and protocols. In order to make accurate analysis on such large graphs, there is a need of sampling
methods which can sample a representative subgraph that represents the same properties (e.g., degree distri-
bution, clustering coefficient, average shortest path length, largest connected component size) as the original
graph. It is not feasible to analyze the characteristics of a large graph. It can be estimated via a sample which
closely represent the original graph.

Analyzing a subgraph of a large graph is convenient and relatively easy. But creating a subgraph is a
challenge. Several sampling algorithms were proposed in literature which includes Random Node Sampling]6],
Random Edge Sampling[6], Random Walk Sampling[6], Tightly Induced Edge sampling(TTES)[7]. All of them
except TIES have certain drawbacks and provides inconsistent results. TIES seems to work well on graphs
but it’s performance decreases on trees. Our work shows that Tightly Induced BFS and KARGER sampling

algorithm works well on trees.

3.2 Problem definition

Let G (V,E) represent the graph, where V is set of nodes and E is set of edges in the graph. Edge e € E can be
described as a pair of vertices (v;, v;) where v;, v; € V. Given a sampling fraction J, the objective is to produce
a sample graph G (Vg,Eg) such that | Vs | /| V |= ¢ that retains the properties of original graph G. Note that
here we assume the sampling algorithms have access to all the nodes and edges of the graph G. The properties
like degree distribution, clustering coefficient, average shortest path length, largest connected component size

are considered in this work.

3.3 Sampling Methods

The sampling methods that is used to sample a representative subgraph are as follows:
1. Random Node Sampling

2. Random Edge Sampling
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3. Tightly Induced Edge Sampling
4. Forest Fire Sampling

5. Karger Sampling

6. Breadth First Search Sampling

7. Tightly Induced Breadth First Search Sampling

3.3.1 Random Node Sampling (RN)

The Random Node Sampling produces a sample by randomly selecting a subset of vertices and taking the

induced subgraph.

Algorithm 1: Random Node Sampling
Result: G4(V;, E;)

1 sampleNodeCount = G.numberOfNodes * §

2 listNodes = G.nodes()

/* sampling nodes */

3 for i < 1 to smpleNodeCount by 1 do

4 index=random.randint(1,size(listNodes))
5 sampleNodes.append(listNodes[index])

6 del listNodes|index]

7 end
/* induction step */
8 Gs=Graph()/* creates an empty undirected unweighted graph */

9 foreach node in sampleNodes do

10 Gs.addNode(node)

11 foreach neighbour in G[node].neighbours do
12 if neighbour in sampleNodes then

13 ‘ Gs.addEdge(node,neighbour)

14 end

15 end

16 end

3.3.2 Random Edge Sampling (RE)

The Random Edge Sampling produces a sample by randomly selecting a subset of edges from the original graph.

Algorithm 2: Random Edge Sampling
Result: G4(Vy, Es)
1 sampleNodeCount = G.numberOfNodes * §
2 listEdges = G.edges()
/* sampling Edges */

w

Gs=Graph()/* creates an empty undirected unweighted graph */
while Gs.numberOfNodes < sampleNodeCount do

EES

index=random.randint(1,size(listEdges))
Gs.addEdge(listEdges|index])
7 del listEdges[index]

8 end

(=]
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3.3.3 Tightly Induced Edge Sampling (TIES)

The Tightly Induced Edge Sampling produces a sample by randomly selecting a subset of edges from the original
graph and taking the induced subgraph.
Algorithm 3: Tightly Induced Edge Sampling
Result: G4(V;, E;)
1 sampleNodeCount = G.numberOfNodes * §
2 listEdges = G.edges()
/* sampling Edges */

3 Gy,=Graph()/* creates an empty undirected unweighted graph */
4 while G;.numberOfNodes < sampleNodeCount do
5 index=random.randint(1,size(listEdges))
6 Gs.addEdge(listEdges|index])
7 del listEdges[index]
8 end
/* induction step */
9 sampleNodes=G;.nodes()

10 foreach node in sampleNodes do

11 Gs.addNode(node)

12 foreach neighbour in G[node].neighbours do
13 if neighbour in sampleNodes then

14 ‘ Gs.addEdge(node,neighbour)

15 end

16 end

17 end

3.3.4 Forest Fire Sampling (FFS)

The Forest Fire sampling starts by choosing a node uniformly at random and adding it to the sample. It then
burns a fraction of edges attached to it. The fraction is a random number drawn from a geometric distribution
with mean ps/(1 — py). py is the burning probability. In this work py = 0.7, which means on an average each
selected node burns 2.33 nodes from its neighbors. This above process is recursively applied for each burnt

neighbor until our budget (i.e. sample size) is reached.
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Algorithm 4: Forest Fire Sampling
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Result: G4(V, Ey)

sampleNodeCount = G.numberOfNodes * §

Gs=G.copy()/* creates a copy of original graph
seedNode=random.choice(G;.nodes()) Queue=() /* creates a empty queue
Queue.put(seedNode)

visited=set() /* creates empty set

visited.add(seedNode)

while Gs.numberOfNodes > sampleNodeCount do

if Queue is empty then
seedNode=random.choice(Gg.nodes())
Queue.put(seedNode)
end
currNode=Queue.get()
if currNode is already burnt then
‘ continue
end
candidate=list()
foreach node in Gs[node].neighbours(currNode) do
if node not in visited then
‘ candidate.append(node)
end
end
nodesToBeBurnt=random.geometric(0.7,1)
selected=candidate if nodesToBeBurnt < len(candidate) then
‘ selected=random.sample(candidate,nodesToBeBurnt)
end
foreach node in selected do
Queue.put(node)
visited.add(node)
end

Gs.remove_node(currNode)

end

*/
*/

*/

3.3.5 Karger Sampling (KS)

Karger Algorithm is used to find min cut of a graph. It is modified to suit our purpose. This is a contraction

based algorithm where an edge is contracted to produce a new vertex labeled with the vertices of the edge, all

the edges from the two vertices are added to this newly formed vertex. Please note if the edge e is (a, b) and

there is an edge (a, ¢) and (b, ¢) both the edges will be added to the newly formed vertex. So this contraction

of edges continues until a vertex meets the budget or no edge is left to contract. In the former case we take the

induced subgraph formed by the vertex, in the latter case we take a portion of nodes from every vertex to meet

our budget. This algorithm has not appeared in any previous research work.
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Algorithm 5: Karger Sampling
Result: G4(V, Ey)
1 sampleNodeCount = G.numberOfNodes * §

2 groups=dictionary()

3 dGraph=G.copy()/* creates a copy of original graph */
4 groupld=-1
5 while true do

/* pick random edge x/
6 edgeList=dGraph.edges() if edgeList is empty then
7 break
8 end
9 redge=random.choice(edgeList)

/* contract edge */
10 u=redge[0]
11 v=redge[l]

12 neighbours=dGraph.neighbours(v)

13 dGraph.remove_node(v)

14 groups[u].add(v)

15 if size(groupsfu/)> sampleNodeCount then

16 groupld=u

17 break

18 end

19 foreach node in neighbours do
20 if u==node then

21 ‘ continue

22 end

23 dGraph.add_edge(u,node)
24 end

25 end

26 sampleNodes=list ()
27 if groupld==-1 then

/* taking a vertex x/
28 sampleNodes=groups[groupld] sampleNodes.append(groupld)
29 else
/* taking a subset of vertices from every vertex x/
30 foreach key, value in groups do
31 sampleNodes.append (key)
32 nodesTobeTaken=4 * size(value)
33 temp=random.sample(value,nodesTobeTaken)
34 sampleNodes.append(temp)
35 end
36 end

3.3.6 Breadth First Search Sampling

This is the same traditional BF'S algorithm where a seed node is chosen at random and then nodes are discovered

one by one and we keep adding the nodes to sample until a budget is reached.
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/* deleting vertices from sampleNodes if it exceeds sampleNodeCount

if size(sampleNodes) > sampleNodeCount then
for i + sampleNodeCount + 1 to sampleNodeCount by 1 do
if G, is a tree then
‘ delete a leaf
else
| delete sampleNodes[sampleNodeCount+1]
end
end

end
/* induction step
Gs=Graph()/* creates a empty graph
foreach node in sampleNodes do
Gs.addNode(node)
foreach neighbour in G[node].neighbours do
if neighbour in sampleNodes then
‘ Gs.addEdge(node,neighbour)
end
end

end

*/

*/
*/

Algorithm 6: Breadth First Search Sampling
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Result: G4(Vy, E;)
sampleNodeCount = G.numberOfNodes * §
Gs=Graph()/* creates an empty undirected unweighted graph
visited=set() /* creates a empty set
Queue=[] /* creates a empty Queue
seedNode=random.choice(Gg.nodes())
Queue.append(seedNode)
visited.add(seed)
while Queue is not empty do
if Queue is empty then
curr=|
foreach node in G.nodes() do

if node not in visited then

‘ curr.append(node)

end

end

Queue.append (random.choice(curr))
end

u=Queue.pop()

Gs.addnode(u)

foreach v in G.neighbours(u) do

if v not in visited then
Queue.append(v)
Gs.add_edge(u,v)

visited.add(v)
if Gs.numberOfNodes > sampleNodeCount then
‘ break
end
end
end 35
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*/
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3.3.7 Tightly Induced Breadth First Search Sampling

Here BFS is followed by an Induction step. while doing BFS nodes are sampled until a budget is reached. Then

in the Induction step all the edges present in graph G is added between every sampled node. BFS has been

used by researchers in the past but BFS along with the tightly induction step is not studied before.

Algorithm 7: Tightly Induced Breadth First Search Sampling
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(38)

Result: G4(V;, E;)
sampleNodeCount = G.numberOfNodes * §

Gs=Graph()/* creates an empty undirected unweighted graph */
visited=set() /* creates a empty set */
Queue=[] /* creates a empty Queue */

seedNode=random.choice(Gg.nodes())
Queue.append(seedNode)
visited.add(seed)
while Queue is not empty do
if Queue is empty then
curr=[
foreach node in G.nodes() do
if node not in visited then
‘ curr.append(node)
end

end

Queue.append (random.choice(curr))
end

u=Queue.pop()

Gs.addnode(u)
foreach v in G.neighbours(u) do
if v not in visited then
Queue.append(v)
Gs.add_edge(u,v)
visited.add(v)
if Gs.numberOfNodes > sampleNodeCount then
‘ break
end
end
end
end
/* induction step */

sampleNodes=G;.nodes()
foreach node in sampleNodes do
foreach neighbour in G[node].neighbours do
if neighbour in sampleNodes then
G,.addEdge(node,neighbour)
end

end

end

36



3.4 Experimental Evaluation

3.4.1 Datasets

In this work we have considered 6 large graphs namely hepPh, condMat, emailEnron, tree, tree2, tree3. hepPh
is directed graph, which is a representation of paper citation network of Arxiv High Energy physics category.
condMat is a directed graph which represents the collaboration network of Arxiv Codensed Matter category.
emailEnron is a directed graph which represents the Enron email network. treel, tree2, tree3 are trees which
are created using pythons networkx module. This module can be used to produce random trees of specific size.

Table 3.1 specifies the size of graph in details.

Dataset Nodes edges
hepPh 34546 421578
condMat 23133 186936
emailEnron 36692 367662
treel 10000 9999
tree2 20000 19999
tree3 30000 29999

Table 3.1: Datasets

3.4.2 Properties

The properties that are being considered in this work as follows:
1. Degree Distribution
2. Clustering Coefficient
3. Largest Connected Component Size

4. Average Shortest Path Length

3.4.2.1 Degree Distribution

The degree of a node in a graph is the number of adjacent nodes to which it is connected. The probability
distribution of these degrees over the whole graph is Degree Distribution. The degree distribution P(k) of a
network is then defined to be the fraction of nodes in the network with degree k. Thus if there are n nodes in

total in a network and nj of them have degree k, we have P(k) = n;/n. Refer to Fig 3.1.

Degree Distribution
Degree Number of nodes proportion
il 1 1/6 = 0.1667
2 2 2/6=10.3333
3 3 3/6 = 0.5000

LDistribulion(dF number of nodes having degree d / total number of nodesJ

Figure 3.1: Degree Distribution
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3.4.2.2 Clustering Coeffcient

The clustering coefficient of a vertex is a measure of how close its neighbors are to being a clique. A graph G
= (V, E) where V is the set of vertices and E is the set of edges. And edge ¢;; is a connection between vertex
v; and v;. The neighbor N; for a vertex v; represents the immediate neighbor of vertex v;.

N, ={vs:eqs € EVej; € E }

The clustering coefficient v; is C;.

o {ejr:v;, v €Ny e EE}]

where k; is the number of neighbors of vertex v;.

Figure 3.2 represents the Clustering Coefficient of nodes and Fig. 3.3 represents the Clustering Coefficient

Distribution.
Node Label Clustering coefficient
A 1/3=0.3333
B 1/3=0.3333
C 1/1 = 1.0000
D 0/3 = 0.0000
B 0/1 = 0.0000
E 1/1 =1.0000

Figure 3.2: Clustering Coeffcient of nodes

3.4.2.3 Largest Connected Component Size

A connected component is a subgraph in which every vertex is connected to every other vertex and which is
not connected to any other vertex in the supergraph. The component size is the number of vertices in the
component. In our work we have considered the component having largest size out of all the components in the
given graph. It can be used to assess the reachability of one node from another node. Lets assume two nodes
A and B which are connected in the original graph. If the LCC of sample graph is very less compared to the
expected size, then it is hardly possible that A is reachable from B or vice versa. On the other hand, if the LCC
is same as the expected LCC of the sample then it is highly probable that both the nodes are connected. If we
give more priority to reachability of nodes, then we should consider an algorithm which creates a sample whose
LCC is same as the expected LCC of the sample. Refer to Fig 3.5. weakly connected component distribution
has been studied in the past but none of the researchers have considered the largest connected component for

comparing sampling algorithms.

3.4.2.4 Average Shortest Path Length

The average shortest path length is one of the measure of networks structure. Examples include, the average
number of hops to transport data packets from source to destination, the average number of clicks which will
lead you from one website to another. ASPL is in use since a long time to compare sampling algorithms. The
ASPL along with LCC can be used to compare samples. If the LCC of two samples are almost same then the
algorithm which exhibits lower ASPL is better than the other algorithm. It can be defined as follows. Consider
an unweighted graph directed graph G = (V, E), where V is the set of vertices and E is the set of edges. Let
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Distribution
Range MNumebr of nodes Proportion
0.00-0.10 2 2/6 = 0.3333
0.10-0.20 0 0/6 = 0.0000
0.20-0.30 0 0/6 = 0.0000
0.30-0.40 2 2/6 = 0.3333
0.40-0.50 0 0/6 = 0.0000
0.50-0.60 0 0/6 = 0.0000
Mode Label Clustering coefficient
B 1/3=0.3333 8-70-0.60 - 0/6 = 0.0000
0.80-0.90 0 =
c 1/1=1.0000 0/6 = 0.0000
D 0/3 = 0.0000 0.90-0.10 2 2/6 = 0.3333
= 0/1=0.0000
F 1/1=1.0000

Figure 3.3: Clustering Coefficient Distribution

distance ( v; , v;) where v; , v; € V denotes the shortest distance between the vertex v, and v;. Assuming
distance ( v; , v; ) = 0 if there is no path from v; to v;. Then the average path length lg is

lg = ﬁ > iz distance(vy, vj) Refer to Fig 3.4.

3.5 Evaluation Measures

In this work the properties we are considering are clustering coefficient, degree distribution, average shortest
path length and largest connected component. To measure the efficiency of sampling algorithms implemented we
compare the Probability Density Function(PDF) as well as Cumulative Density Function(CDF) of each of these
four properties. Apart from visually comparing the difference in properties, we also compare it quantitatively

by two statistics namely Kolmogorov-Smirnov (KS) and Kullback-Leibler (KL).

3.5.1 Kolmogorov-Smirnov (KS)

KS difference is the maximum vertical distance between two given distributions. Let D1 and D5 represent two
CDF's and i represents the range of random variable.
KS(Dy, D3) = max; | D1(i) — D2(i) | Figure 3.6 represents 2 distributions Distribution 1 and Distribution 2.

KS difference between these two distributions is 0.2, as it is the maximum difference.

3.5.2 Kullback-Leibler (KL)

KL measures the average number of extra bits required to represent samples from the original distribution

when using the sampled distribution. Let P and Q are two distributions where P represents the distribution of
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Figure 3.4: Connected Component

original graph and Q represents the distribution of sample graph.
KL (P || Q) = £, Plas) log, 52
KL (P || Q) is not defined for distributions that have some values with 0 probabilty. To resolve this issue, we

use Skew-Divergence which smooths the PDFS before computing the KL divergence.
SD(Pl ,PQ 5 a) = KL[O{ *P1 + (1—04) *P2 || (0% *PQ + (1—04) *Pl]
Figure 3.7 represents the smoothening step. After smoothening the two distribution we can use the KL formula

to evaluate the KL divergence. Please note @ = 0.99 is used throughout this work.

3.6 Results

We obtain a sample between 5% to 50%(a = 0.05 to 0.50) of the original graph. This sampling range can clearly
emphasize the similarity in properties between the sample and original graph as we increase the sampling factor.
For every sampling factor we create 10 samples.

Firstly, we will compare the implemented algorithms visually from their cumulative distribution(CDF) for
degree distribution and clustering coefficient distribution. Then the average SD distance and KS distance is
computed for all the 10 different samples of every factor and we do this for every dataset.

Degree Distribution Figure 3.8 a, 3.8 b and 3.8 ¢ represents the cumulative distribution function(CDF) for
graphs. From the figure it is clear that Node Sampling(NS) and Forest Fire Sampling(FFS) misjudge the degree
of nodes which results in the sample having large number of zero degree nodes in all the samples. FFS is slightly
better than NS. Across the 3 figures TIES, KARGER, TIBFS estimates the degree close to the actual graph.
It is expected that TIES, KARGER, TIBFS will sample the high degree nodes. In these three algorithms we
randomly sample an edge, the probability of choosing a high degree node is high. The probability of a node
being picked is directly proportional to the number of edges it is having, which is the degree of the node. This
very fact helps in preserving the degree distribution more accurately.

Figure 3.9 a, 3.9 b and 3.9 c represents the cumulative distribution function(CDF) for trees. In trees, the
difference in performance of TIES and ES is very less compared to the difference we encountered in graphs.
TIES couldn’t get much advantage in the induction step because it can only add few edges between already
sampled nodes. On the other hand, KARGER, BFS, TIBFS gives a more accurate sample of the original graph.
These three algorithms are traversal based and do not divide the tree into different components which results
in more accurate estimation of degree distribution.

Clustering Coefficient Distribution Figure 3.10 a, 3.10 b and 3.10 ¢ represents the cumulative distribution
function(CDF) for graphs. BFS and ES underestimates the distribution. In ES an edge is sampled uniform
at random, it doesn’t depend on the neighbors of already sampled nodes. In BFS we add the seed node and

then its neighbors. we only add the edge between node and its parent. Remaining edges between nodes are
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from A from B from C

TO shortest Path Length TO shortest Path Length TO shortest Path Length
B 1 A 1 A 1
C 1 C 1 B 1
D 1 D 2 D 2
E 2 1= 1 [ 2
B 2 F 3 E %
from D from E from F

TO shortest Path Length TO shortest Path Length TO shortest Path Length
A 1 A 2 A 2
B 2 B 1 B %
c 2 Cc 2 (¥ 3
E 1 D 1 D 1
E: 1 E 2 = 2

Average Shortest path length=(7+8+9+7+8+11)/(6*(6-1))=1.6667

Figure 3.5: Average Shortest Path Length

lost and hence we lose the clustering score of sampled nodes. The induction step helps in getting back the
clustering score of a sample node as it increases the number of edges between neighbors. Again TIES, TIBFS
and KARGER are performing better than other algorithms.

Figure 3.11 a, 3.11 b and 3.11 ¢ represents the cumulative distribution function(CDF) for trees. The
clustering coefficient of every node in a tree is 0. There are no edges between neighbors in a tree because a
single edge between two nodes will form a cycle. So the curve is same for all the algorithms. As it is a CDF and
the proportion of nodes having 0.00 clustering coefficient is 1 so the whole proportion cumulatively evaluates
to 1 after that.

Largest Connected Component Size Figure 3.12 a, 3.12 b and 3.12 ¢ represents the largest connected com-
ponent(LCC) size of graphs. The red colored horizontal bar is the expected size of the LCC. BFS, KARGER,
TIBFS overestimates the size of LCC size. In all these three algorithms the component size will be dictated
more or less by the seed node. If the seed node belongs to the largest component, then it will sample all the
nodes from this component. The probability of choosing a seed node from the LCC is high as compared to
nodes in other components. TIES performs better than other algorithms for this property. The number of
edges is expected to be high in the LCC, so more than often it will end of choosing a node from the LCC and
it samples from the other components also. So TIES is able to remove this over counting from the LCC alone.

Figure 3.13 a, 3.13 b and 3.13 c¢ represents the largest connected component(LCC) size of trees. Here
obviously KARGER, TIBFS and even BFS will work well because there is only component. So each one of it
sample all the nodes from this component and hence completely preserve the LCC size. TIES don’t work well
because in trees TIES loose the advantage of induction step and TIES is not a traversal based algorithm, so it
divides the component to many other components.

Average Shortest Path Length Figure 3.14 a, 3.14 b and 3.14 ¢ represents the average shortest path length(ASPL)
of graphs. The average shortest path length of a tree will be higher compared to a general graph. The ES al-
gorithm shows a high ASPL than other algorithms. This algorithm can be thought of forming a tree like
structure. The ASPL of hepPh is less as it is denser than the condMat and emailEnron. So it is possible that
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KS Test
Distribution 1 Distribution 2 Difference
0.2 03 0.1
0.3 01 0.2
0.1 0z 04
0.1 02 0.1
0.3 02 01

Figure 3.6: KS

KL Test KL Test
Distribution 1 Distribution 2 Distribution 1 Distribution 2
02 03 0201 0.299
03 01 After Smoothening 0.298 0.102
01 e : 0101 0.199
0.0 02 0.002 0.198
03 02 0.289 0:201

Figure 3.7: KL

ES overcomes its tree like structure in a dense environment. KARGER, TIBFS, TIES has almost same LCC
so they are comparable based on ASPL. For condMat and emailEnron TIES has largest ASPL but for hepPh
sample it goes down as hepPh is denser than the other two graphs. Denser a graph lesser will be the ASPL.
TIES performs better in case of denser graphs and KARGER, TIBFS performs better in case of sparse graph.

Figure 3.15 a, 3.15 b and 3.15 ¢ represents the average shortest path length(ASPL) of trees. ES, TIES,
NS, BFS divides the tree into several small sized components as it is also evident from the Fig.3.13 a, b, c. A
smaller component will have lesser ASPL. BFS, KARGER, TIBFS do not divide the tree and hence end up
with having higher ASPL. The LCC of trees sampled by BFS, TIBFS, KARGER are same but KARGER has
largest ASPL, so BFS and TIBF'S is preferable over KARGER in case of trees.

Summary Overall TIBFS and KARGER is performing better than other algorithms. In case of general
graphs TIES works well and TIBFS and KARGER is slightly away from the actual curve. For trees TIBFS
and KARGER outperforms if we consider all the properties. TIES is an edge based selection algorithm which

dataset: condMat dataset: emailEnron dataset: hepPh
property: degreeDistribution property: degreeDistribution property: degreeDistribution
factor: 0.21 factor: factor: 0.20
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Figure 3.8: Degree Distribution for Graphs
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Figure 3.9: Degree Distribution for Trees
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Figure 3.12: Largest Connected Component Size of Graphs
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Figure 3.13: Largest Connected Component Size of Trees
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Figure 3.14: Average Shortest Path Length of Graphs
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Figure 3.16: KS statistic for condMat

samples high degree nodes and in the induction step it includes all the edges between sampled nodes but it is
unable to take the advantage of induction step in case of trees. Hence its performance decreases in case of trees.
The traversal based algorithm (TIBFS, BFS) overestimates the size of LCC as it samples all the nodes from
the LCC of the original graph. But TIES escapes from this bias by adding edges from smaller components.
KARGER and TIBFS works well for ASPL as well. It keeps the ASPL lesser which is better than having a
high ASPL. For trees KARGER and TIBFS didn’t work well because it doesn’t divide the tree into components
unlike other algorithms.

KS-statistic For every factor we have already created 10 samples. we find the average KS distance for this
10 samples and we do the same for all datasets. Figure 3.16, 3.18, 3.20, 3.22, 3.24, 3.26 represents the average
KS distance for every sampling fraction. we have considered degree distribution and clustering coefficient
distribution for evaluation. In graphs TIES, KARGER, TIBFS is performing well than other algorithms.
Overall, the sampling algorithms which include induction step as a part of its algorithm works well for both
the properties. Coming to trees TIES lose its advantage of induction step and do not perform well. The
performance of TIBFS is better than KARGER. The traversal based algorithm performs well in case of trees
for degree distribution. Even BFS performs well in case of trees. The performance of most algorithms increase
as we increase the sampling size.

Skew Divergence KS statistic evaluates the maximum distance between two given distribution but the
skew divergence presented in Fig. 3.17, 3.19, 3.21, 3.23, 3.27 captures the divergence between two distributions
across all factors. We can observe that for graphs TIES, KARGER, TIBFS exhibits lesser skew than any other
algorithm. In case of trees, again traversal based algorithm like TIBFS, BFS, KARGER has lesser skew than

other algorithms.

3.7 Conclusion

In this work we have presented the performance of several sampling algorithms on graphs and trees. we have
found that TIES, KARGER, TIBFS works well on graphs and TIES loses its advantage of induction step in
case of trees and its performance decreases. Please note that KARGER algorithm is computationally expensive
than other algorithms. If a graph is dense then TIBFS is preferable over KARGER. Previous works reflects
that TTES produces a sample which closely follow the distribution of the original graph. We showed that TIES
is not following the distribution of original graph in case of trees. we present three traversal based algorithms
i.e. TIBFS, KARGER, BFS which performs better than other algorithms.
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Figure 3.17: Skew Divergence for condMat
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Figure 3.18: K8 statistic for emailEnron
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Figure 3.20: KS statistic for hepPh
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Figure 3.21: Skew Divergence for hepPh
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Figure 3.24: KS statistic for tree2
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Figure 3.25: Skew Divergence for tree2
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Figure 3.26: KS statistic for tree3
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Figure 3.27: Skew Divergence for tree3




In future more analysis of the algorithms can be done on special graphs like a complete graph, cycle graph,

bipartite graph and so on. Computational time can be considered as a parameter for evaluation purpose.
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