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Abstract—In this paper, we present closed form expressions
that jointly optimizes the fusion rule (m) and the number of
secondary users (K) for the m-out-of-K rule by minimizing the
Bayes risk at the fusion center (FC) in the presence of erroneous
reporting channels and then show that various existing and new
results are special cases of the proposed solution. The results are
applicable to any detector used in cooperative spectrum sensing
(CSS). Numerical results are presented using energy detector
(ED) which shows that CSS obtained using joint optimized values
of m and K results in significant performance improvement.

Index Terms—Cognitive radio, Bayes risk function, erroneous
reporting channel, number of secondary users.

I. INTRODUCTION

In cognitive radio (CR) spectrum sensing [1]–[3] is a
fundamental component for the secondary user (SU) to detect
the primary user (PU) signal. However, spectrum sensing using
single SU results in poor detection performance due to multi-
path and shadowing. To mitigate this problem, cooperative
spectrum sensing (CSS) [4]–[9] has been proposed, where
the observations from multiple SUs are sent over reporting
channels to the fusion center (FC), where they are combined to
make a final decision on activity of the PU. However, there are
various combining schemes at FC such as soft combining [10]–
[12], quantized soft combining [13], weighted soft combining
[14], [15], multi selective CSS scheme [16] and m-out-of-K
fusion rule [17]. The m-out-of-K rule detects the PU signal, if
at least m out of K SUs detect the PU signal. The detection
performance of CSS in the presence of erroneous reporting
channels is studied in [18], under the assumption of identical
SUs and identical reporting channels.

Optimizing m of the m-out-of-K rule has been presented in
literature for various objective functions such as minimizing
the Bayes risk [17] over error free reporting channels, total
error rate (TER) [19] over error-free reporting channels,
minimizing the TER [20] over erroneous reporting channels,
minimizing the false decision probability (FDP) [21] over
erroneous reporting channels, minimizing the TER [22] in
the absence of reporting channels, maximizing the energy
efficiency [23], minimizing the TER of the the multi-hop CR
network [24], maximizing the secondary network throughput
while satisfying protection constraint to the PU [25] and max-
imizing the global detection probability subject to a constraint

on global false alarm probability [26]. Optimizing K has been
studied to minimize the TER of OR rule [27], [28], minimizing
the TER for the AND and MAJORITY rule [29], maximizing
the average channel throughput of the CR network [30] and
minimizing the Bayes risk [31]. In this paper, we formulate a
joint optimization problem (JOP) that jointly optimizes both
m and K values by minimizing the Bayes risk of the m-out-
of-K rule over erroneous reporting channels. However, to the
best of our knowledge joint optimization of m and K has not
been considered so far. The main contributions of this paper
are listed as follows.

• We present analytical expressions for joint optimized
values of m and K of the m-out-of-K rule in the presence
of erroneous reporting channels. The performance of CSS
obtained using joint optimized values of m and K results
in significant performance improvement.

• For a given K, the JOP specializes to find the optimum
value of m that minimizes the Bayes risk of the m-out-
of-K rule over erroneous reporting channels and then we
show that various existing problems [17], [19], [20] are
special cases of the proposed problem.

• Effect of erroneous reporting channels: For a given K, it
is shown that the optimality of a fusion rule is limited
by probability of error of a reporting channel. It is
shown that each rule is optimal for certain values of
probability of error of a reporting channel, above which,
they are never optimal. It is also observed that there is a
significant difference in robustness of these fusion rules to
the erroneous reporting channels due to un-equal effective
weights assigned to global probability of false alarm and
missed detection.

The outline of this paper is as follows. In Section II, we
describe the system model for the CSS. In Section III, we
presents the mathematical formulation of joint optimization
problem JOP and its special cases. The solutions for the
formulated problems are presented in Section IV. Section-V
presents the numerical results using ED followed by conclu-
sions in Section VI.

II. SYSTEM MODEL

We consider a centralized CR network as shown in [13,
Fig. 2] where K SUs cooperatively detect the PU signal



by reporting their local decisions to the FC over erroneous
reporting channels. Each SU k, k = 1, 2, ..,K, makes a local
decision dk based on binary hypothesis testing problem with
two hypotheses H0 and H1, where H0 and H1 corresponding
to absence and presence of the PU signal. Let dk = 0
and dk = 1 denote the local decisions drawn by the kth
SU under hypotheses H0 and H1, respectively. The local
probabilities of false alarm and missed detection of the kth SU
denoted as P

(k)
f , P (k)

m , respectively. The kth SU reports local
decision to the FC over a erroneous reporting channel, whose
probability of error is denoted as P

(k)
e . The corresponding

effective probabilities of false alarm and missed detection
as seen by the FC from kth SU are given, respectively,
by P

(k)
fe = P

(k)
f

(
1− P

(k)
e

)
+

(
1− P

(k)
f

)
P

(k)
e , P

(k)
me =

P
(k)
m

(
1− P

(k)
e

)
+

(
1− P

(k)
m

)
P

(k)
e . The FC combines the

local decisions of the K SUs and makes a final decision
dFC ∈ {0, 1} on the status of PU using m-out-of-K rule [17].
Note that dFC = {0, 1} denotes the absence and presence of
the PU, respectively. Following [13], [18], [19], [28], [32],
we assume that all SUs and reporting channels are identical,
which implies P (k)

f = Pf , P
(k)
m = Pm and P

(k)
e = Pe, ∀k. The

corresponding global probabilities of false alarm and missed
detection at the FC for the m-out-of-K rule can be evaluated,
respectively, by [13], [33]

PF (m,K) =P (dFC = 1|H0) = I (m,K,Pfe) , (1)
PM (m,K) =P (dFC = 0|H1) = 1− I (m,K, 1− Pme) ,

(2)

where

I (m,K,P ) =
K∑

k=m

(
K

k

)
(P )

k
(1− P )

K−k
, P ∈ [0, 1] .

(3)
The Bayes risk function or average cost of the m-out-of-K

rule that we wish to minimize can be expressed as [17, p. 74]

R (m,K) =
1∑

i=0

1∑
j=0

αijPjP (dFC = i|Hj)

= αFPF (m,K) + αMPM (m,K) + αC , (4)

where αF = P0 (α10 − α00), αM = P1 (α01 − α11) are
the effective weights of the global false alarm and missed
detection probabilities, respectively, αC = α00P0+α11P1 and
where αij is the cost of deciding the final decision dFC = i
by the FC when Hj is true and Pj denote the prior probability
of the hypothesis Hj , ∀i, j ∈ {0, 1}.

III. PROBLEM FORMULATION

The mathematical formulation of JOP is given by

JOP : min
m,K

R (m,K) , s.t C : 1 ≤ m ≤ K, (5)

where R (m,K) is given in (4).

A. Special Cases of JOP
• JOP-I: For a fixed value of K and substitution of

Pe = 0 in (5), the JOP specializes to find the optimal m
that minimizes the Bayes risk over error free reporting
channel [17].

• JOP-II: For a fixed value of K and substituting appropri-
ate values of parameters such as αij , Pj , ∀i, j ∈ {0, 1}
and Pe in (5), we get the optimal m of various objective
functions as mentioned in [19], [20] and [21].

• JOP-III: Choosing appropriate values of parameters in
(5), we get the joint optimized values of m and K that
minimizes FDP.

• JOP-IV: Substituting appropriate values of parameters in
(5), we get the joint optimized values of m and K that
minimizes TER.

Note that the special cases JOP-I and JOP-II have been
studied in the literature, while JOP-III and JOP-IV are new
optimization problems.

IV. SOLUTIONS OF THE FORMULATED PROBLEMS

In this section, we first present the solution of JOP followed
by solution of special cases.

Lemma 1. For a given K, the solution of JOP, i.e., the
optimal fusion rule m∗

R that minimizes the Bayes risk is given
by

m∗
R =

max (1,m∗) , αF < αM ,
min (K,m∗) , αF > αM ,

m∗, αF = αM ,
(6)

where

m∗ =

⌈
a+Kb

b+ c

⌉
, a = ln

αF

αM
, b = ln

1− Pfe

Pme
, c = ln

1− Pme

Pfe
(7)

and ⌈.⌉ denotes standard ceiling function.

Proof: Please refer to Appendix

Theorem 1. The solution of JOP, i.e., the joint optimized
values of m and K which are denoted as m∗

R and K∗
R

respectively, and are given by{
m∗

R = 1,K∗
R =

⌈
c−a
b

⌉
; if αF < αM and m∗ < 1,

m∗
R = K,K∗

R =
⌊
a+b
c

⌋
; if αF > αM and m∗ > K,

(8)

and when 1 ≤ m∗ ≤ K, irrespective of αF , αM , there exist
a K∗

R for a given m and m∗
R for a given K, where m∗, a, b

and c are given by (7).

Proof: The joint optimized values m and K can be
obtained by solving optimal m and optimal K equations.
Given m, the optimal K that minimizes the Bayes risk in
(4), denoted as K∗

R and is given by [31, eq. 7]

K∗
R =

⌈
m (b+ c)− (a+ b)

b

⌉
, (9)

where a, b and c are given by (7). Therefore the joint optimized
values of m and K can be obtained by solving (9) and (6) and
the analaysis for three different cases is presented as follows.



Case I: From (6), if αF < αM and m∗ < 1, then m∗
R = 1.

The corresponding K∗
R can be obtained by substituting m∗

R =
1 in (9) and is given by K∗

R =
⌈
c−a
b

⌉
.

Case II: From (6), if αF > αM and m∗ > K, then
m∗

R = K. The corresponding K∗
R can be obtained by sub-

stituting m∗
R = K in (9), we have K∗

R =
⌈
K∗

R(b+c)−(a+b)
b

⌉
.

Simplifying using the definition of ceiling function, we get
K∗

R =
⌊
a+b
c

⌋
.

Case III: From (6) when 1 ≤ m∗ ≤ K, irrespective of αF ,
αM , then m∗

R = m∗ =
⌈
a+Kb
b+c

⌉
. Substituting m∗

R in (9), we
have

K∗
R =

⌈
b+ c

b

⌈
a+K∗

Rb

b+ c

⌉
− a+ b

b

⌉
.

Simplifying and re-arranging, we get

a+K∗
Rb

b+ c
<

⌈
a+K∗

Rb

b+ c

⌉
≤ a+K∗

Rb

b+ c
+

b

b+ c
. (10)

Substituting K∗
R into m∗

R, we have

m∗
R =

⌈
a

b+ c
+

b

b+ c

⌈
m∗

R (b+ c)− (a+ b)

b

⌉⌉
.

Simplifying and re-arranging, we get

m∗
R (b+ c)− a− b− c

b
<

⌈
m∗

R(b+ c)− (a+ b)

b

⌉
≤ m∗

R(b+ c)− a

b
. (11)

Note that any finite value of K∗
R satisfies (10). This means that

as K∗
R increases Bayes risk deceases. Similarly (11) is satisfied

for any finite value of m∗
R. This imply as m∗

R increases Bayes
risk decreases. This can also be observed from Fig. 5 and Fig.
6.

A. Solutions for Special Cases of JOP
• The solutions of JOP-I and JOP-II can be obtained

by substituting appropriate parameter values in (6) as
mentioned in JOP-I and JOP-II, respectively.

• The solution for JOP-III can be obtained by substituting
αF = P0 and αM = P1 in (8), we get the joint optimized
values of m and K that minimizes the FDP.

• The solution of JOP-IV can be obtained substituting
αF = 1 and αM = 1 in (8), we get 1 ≤

⌈
Kb
b+c

⌉
≤ K.

This means there exists an optimal m for a given K and
an optimal K for a given m.

Note that the expressions given in (8) and (6) are general as
they depends on Pf , Pm and Pe. Therefore, these results are
applicable to any detector used in the CR network.

V. NUMERICAL RESULTS USING ED

We consider the energy detector (ED) for analyzing the
results obtained in this paper. The Pf and Pm of a SU using
ED are given, respectively, by [34]

Pf =
Γ
(
u, β

2

)
Γ (u)

, Pm = 1−Qu

(√
2γ,

√
β
)
, (12)

where u is the time-bandwidth product of the ED, β is the
sensing threshold of the ED, γ is the signal-to-noise ratio
(SNR) received by a SU over a sensing channel, Γ (., .) denotes
the upper incomplete gamma function given by Γ (s, t) =∫∞
t

xs−1e−xdx, Γ (.) is the ordinary gamma function given by
Γ (s) =

∫∞
0

xs−1e−xdx and Qu (., .) is the generalized Mar-

cum Q-function Qu (s, t) =
1

su−1

∫∞
t

xue−
x2+s2

2 Iu−1 (sx) dx
with Iu−1 (.) is the modified Bessel function of the first kind
of order u− 1. Note that in (12), Pf is a decreasing function
and Pm is a increasing function with respect to β. This means
there exists a β value β0 at which Pf = Pm. This in turn
implies that when β < β0, ⇒ Pf > Pm and when β > β0,
⇒ Pf < Pm. Also note that the plots are examined with
respect to β because the β value gives the interpretation of
both Pf and Pm.
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Fig. 1. When αF > αM : Optimal m versus β for α00 = 0.1, α11 = 0.2,
α10 = 1.5, α01 = 2, P0 = 0.8 P1 = 0.2, u = 10, SNR = 10 dB and
K = 20, using ED.
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Fig. 2. When αF < αM : Optimal m versus β for α00 = 0.1, α11 = 0.2,
α10 = 1.5, α01 = 2, P0 = 0.2, P1 = 0.8, u = 10, SNR = 10 dB and
K = 20, using ED.
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Fig. 3. When αF < αM and m∗ < 1: Various objective functions with
respect to β for α00 = 0.1, α11 = 0.2, α10 = 1.5, α01 = 2, P0 = 0.4,
P1 = 0.6, Pe = 0.05, u = 10, SNR = 10 dB and K = 20, using ED.
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Fig. 4. When αF > αM and m∗ > K: Various objective functions with
respect to β for α00 = 0.1, α11 = 0.2, α10 = 2.5, α01 = 1.5, P0 = 0.6
P1 = 0.4, Pe = 0.005, u = 10, SNR = 10 dB and K = 20, using ED.

The solution of optimal m for two cases such as αF > αM

and αF < αM shown in Fig. 1, Fig. 2, respectively. Note that
the cost values of Bayes risk are chosen arbitrarily. From Fig.
1, we observe that, when Pe = 0, the OR rule (m = 1) is
optimal for large values of β at which Pf << Pm, while the
AND rule (m = K) is optimal for very low values of β at
which Pf >> Pm. When Pe ̸= 0, the AND rule is optimal
at Pf >> Pm and Pf << Pm. Also note that there exists
a limiting value of Pe after which OR rule is never optimal.
It also observed that AND rule is robust against the reporting
channel errors as compared to the OR rule. This is due to
lesser effective weight of the PM as compared to effective
weight of the PF . Fig. 2 plots the optimal m versus β for
five values of Pe using ED. Observe that, when Pe = 0 OR
rule is optimal for large values of β at which Pf << Pm,
while the AND rule is optimal for very low values of β at

0 5 10 15 20 25 30
Number of SUs (K)

10-3

10-2

10-1

100

Bayes Risk
FDP
TER

Fig. 5. When 1 ≤ m∗ ≤ K: Various objective functions with respect to
number of SUs (K) for α00 = 0.1, α11 = 0.2, α10 = 1.5, α01 = 2,
P1 = 0.4, P0 = 0.6, Pe = 0.05, u = 10 and SNR = 10 dB, Optimal m is
applied.
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Fig. 6. When 1 ≤ m∗ ≤ K: Various objective functions with respect to
m for α00 = 0.1, α11 = 0.2, α10 = 1.5, α01 = 2, P1 = 0.4, P0 = 0.6,
Pe = 0.05, u = 10 and SNR = 10 dB, Optimal K is applied.

which Pf >> Pm. When Pe ̸= 0, the AND rule is optimal
at Pf >> Pm and Pf << Pm. It also observed that OR rule
is robust against the reporting channel errors as compared to
AND rule. This is due to effective weight assigned to the PF

is less than the effective weight of the PM . The observations
made with respect to Fig. 1 and Fig. 2 are summarized in
Table I.

Fig. 3 shows the performance of various objective functions
plotted using optimized values of m and K for the case
when m∗ < 1 and αF < αM . Note that the β values
on the x - axis are chosen such that m∗ < 1. It is ob-
served that the performance of various objective functions
obtained using joint optimized values of m and K results
in significant improvement. Fig. 4 shows the performance of
various objective functions plotted using optimized values of



m and K for the case when m∗ > K and αF > αM . It is
observed that the performance of various objective functions
obtained using joint optimized values of m and K results
in significant improvement. Fig. 5 and Fig. 6 shows the
performance of various objective functions with respect to
K and m, respectively when 1 ≤ m∗ ≤ K. From Fig. 5,
observe that each of three objective function, namely Bayes
risk, FDP and TER decreases with K, for the optimal value of
m. Similarly, in Fig. 6 each objective function decreases with
m, for the optimal value of K. Therefore, when 1 ≤ m∗ ≤ K,
there exist an optimal value of K for a given m and an optimal
value of m for a given K.

TABLE I
THE RELATION BETWEEN Pf AND Pm WHERE THE OR AND AND RULES
ARE OPTIMAL AND COMPARISON WITH THE EXITING RESULTS [19], [20].

NOTE THAT x DENOTES Pf << Pm AND y DENOTES Pf >> Pm .

Special cases of m-
out-of-K rule

Bayes Risk∗ TER
(αF = 1, αM = 1)

Pf Vs Pm αF Vs αM

OR rule (Pe = 0) x all values x [19]

OR rule (Pe ̸= 0)
x αF > αM x [20]

x and y αF < αM

AND rule (Pe = 0) y all values y [19]

AND rule (Pe ̸= 0)
y αF < αM y [20]

x and y αF > αM
∗- The observations made with respect to Bayes risk are also applicable to

FDP when αF = P0, αM = P1 and were not observed in [21].

VI. CONCLUSIONS

In this paper, a joint optimization problem is formulated,
where the expressions for joint optimized values of m and
K of the m-out-of-K rule is obtained by minimizing the
Bayes risk in the presence of reporting channel errors. We have
shown that many existing results are the special cases of the
proposed solution. The limitations of optimal fusion rules are
studied in the presence of erroneous reporting channels errors.
The choice of parameters of Bayes risk results in difference in
robustness of optimal fusion rules to the erroneous reporting
channels.

APPENDIX: PROOF OF LEMMA 1
Given K, the solution of JOP in (5) without constraint C can

be obtained by solving the following two difference equations
[17].

R (m,K)−R (m− 1,K) < 0, (13)
R (m+ 1,K)−R (m,K) ≥ 0. (14)

Simplifying (13) using (4), (1) and (2), we have

⇒ αF [I (m,K,Pfe)− I (m− 1,K, Pfe)]

+ αM [I (m,K, 1− Pme)− I (m− 1,K, 1− Pme)] < 0.

Simplifying above equation using (3), we have

− αF

[
(Pfe)

m−1
(1− Pfe)

K−m+1
]

+ αM

[
(1− Pme)

m−1
(Pme)

K−m+1
]
< 0.

Simplifying and re-arranging, we get

m <
a+Kb

b+ c
+ 1. (15)

where a, b and c are given by (7). Similarly solving (14) using
(4), (1) and (2), we obtain

m ≥ a+Kb

b+ c
. (16)

Combining (15), (16) and evaluating at m = m∗, we get

m∗ =

⌈
a+Kb

b+ c

⌉
. (17)

To satisfy the constraint C in (5), the value of m∗ must satisfies
the following in-equality.

0 <
a+Kb

b+ c
≤ K. (18)

Usually, a detector has Pf + Pm ≤ 1 and the probability of
error of a reporting channel Pe < 0.5, this implies Pfe +
Pme ≤ 1. This in turn implies b ≥ 0 and c ≥ 0. Under these
conditions, to satisfy the left hand side in-equality of (18),
we choose the optimal m as m∗

R = max (1, ⌈m∗⌉) when
a < 0 (αF < αM ). Similarly, to satisfy the right hand side
in-equality of (18), we choose m∗

R = min (K, ⌈m∗⌉) when
a > 0 (αF > αM ). When a = 0 (αF = αM ), the m∗ always
satisfies (18) and the m∗

R = m∗. In summary, for a given K,
the solution of JOP can expressed as

m∗
R =

max (1,m∗) , αF < αM ,
min (K,m∗) , αF > αM ,

m∗, αF = αM ,

where m∗ is given by (17).
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