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Abstract 

 

Conventional electronic devices fabricated on rigid crystalline semiconductors 

wafers have evolved with the motivation to miniaturize thereby realizing faster, 

smaller and densely integrated devices. A parallel research that is rapidly evolving 

for future electronics is to integrate the property of flexibility and stretchablity to 

develop human friendly devices. There have been number of reports on fabricating 

sensors and electronic devices on stretchable, bendable and soft materials like 

polyimide, polyurethane sponge, natural rubber, cellulose paper, tissue paper etc. 

using various nanomaterials such as 2D materials, metal oxides, carbon 

nanomaterials and metal nanowires. These nanomaterials possess excellent 

electronic, thermal, mechanical and optical properties making them suitable for 

fabrication of broadband photodetectors, temperature, pressure and strain sensors 

which find applications in the field of optoelectronics, sensors, medical, security and 

surveillance.  

While most reports on photodetectors focus on improving the responsivity in one 

region of electromagnetic spectrum by fabricating materials hybrids, the main issue 

still remains unaddressed which is the inability to absorb wide range of 

electromagnetic spectrum. Most photodetectors comprise of p-n heterojunction, 

where one of the material is responsible for absorbance, having metal contacts on p 

and n type allows for effective separation of photogenerated carriers. But for a 

broadband photodetector, both the materials of the heterojunction should participate 

in the absorbance. In such a case, metal contacts on p and n type will trap either the 

photogenerated electrons or hole which leads to the failure of the device. The first 

part of the thesis focus on the development of flexible broadband photodetectors 

based on MoS2 hybrid.  

Next chapter of the thesis deals with the improvement of responsivity by fabrication 

of solution processed heterojunction and piezotronic diode on flexible paper 

substrate for enhanced broadband photodetector and active analog frequency 

modulator by application of external mechanical strain. The fabricated MoS2 based 
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heterojunctions was further utilized at circuit level for frequency modulation. The 

external applied strain not only modulates the transport properties at the junction 

which not only enhances the broadband photoresponse but also changes the 

depletion capacitance of junction under reverse bias thereby utilizing it for 

frequency modulation at circuit level. 

The next part of thesis deals with fabrication of new type of electronic, skin-like 

pressure and strain sensor on flexible, bio-degradable pencil eraser substrate that can 

detect pressure variations and both tensile and compressive strain and has been 

fabricated by a solvent-free, low-cost and energy efficient process. Eraser, serves as 

a substrate for strain sensing as well as acts as a dielectric for capacitive pressure 

sensing, thereby eliminating the steps of dielectric deposition which is crucial in 

capacitive based pressure sensors. Detailed mechanism studies in terms of tunneling 

effect is presented to understand the proposed phenomena. As a proof of concept, an 

array of 6 x 8 devices were fabricated and pressure mapping of alphabets “I”, “T” 

and “H” were plotted which were highly consistent with the shape and weight 

distribution of the object.  

. 
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Nomenclature 

DI – Deionized  

MoS2 – Molybdenum disulfide 

SWCNTs – Single Walled Carbon Nanotubes 

MWCNTs – Multi Walled Carbon Nanotubes 

IoT – Internet of Things 

a-Si – amorphous Silicon 

ZnS – Zinc sulfide 

V2O5 – Vanadium pentoxide 

CuO – Copper oxide 

NiO – Nickel oxide 

SnO – Tin oxide 

PEN - polyethylene naphthalene 

PDMS – polydimethylsiloxane 

PET - polyethylene terephthalate 

PMMA – polymethylmethacrylate 

PI - Polyimide 

UV – Ultraviolet 

NIR – Near Infrared 

FET – Field Effect Transistor 

PU – polyurethane 

XRD – X-ray diffraction 

XPS – X-ray photoelectron spectroscopy 
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PL - photoluminescence spectroscopy 

FESEM – Field Emission Scanning Electron Microscopy 

TEM – Transmission Electron Microscopy 

FTIR – Fourier Transform Infrared Spectroscopy 

IV – current-voltage 

CV – capacitance- voltage 

TMDs - Transition-Metal Dichalcogenide 

RF – Radio frequency 

ZIF – Zeolithic Imidazolate Framework 

PCBs – Printed Circuit Boards 

LO – Longitudinal optic  

TO – Transverse optic 

SO – surface optic 

CH4N2S – Sodium molybdate 

NH3 – Ammonia 

CO2 – Carbon dioxide 

H2S – Hydrogen sulfide 

EQE – External quantum efficiency 

CB – Conduction Band 

VB – Valence Band 

PLD – Pulse laser deposition 

CVD – Chemical Vapor Deposition 

PVD – Physical Vapor Deposition 
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Al – Aluminum  

DMF – Dimethylforamide 

PAN – Polyacrylonitrile 

CQD – Carbon Quantum Dot 

FWHM – Full Width Half Maximum 

LUMO – Lowest Unoccupied Molecular Orbital 

HOMO – Highest Occupied Molecular Orbital 

Rpm – rate per minute 

ZnO – Zinc oxide 

GaAs – Gallium Arsenide 

CdS – Cadmium sulfide 

Gr – Graphene 

CMOS – Complementary Metal Oxide Semiconductor 

PVC – Polyvinyl chloride 

LPCVD – Low Pressure Chemical Vapor Deposition 

HMTA – Hexamethylenetetramine 

LC – Inductor capacitor 

DSO – Digital Storage Oscilloscope 

GF – Gauge Factor 

E-skin – Electronic Skin 
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Chapter 1 
 

Introduction 

 

1.1 Introduction 

Sensors are devices that detect or measure physical and chemical quantities such as 

temperature, pressure, sound, and concentration and are converted into an electrical signal. 

The main requirements of a good sensor are high sensitivity, high selectivity, fast response, 

low cost, and high reliability that can be operated on site and in situ. The emergence of 

nanotechnology has led to a strategic shift in sensor technology towards more sensitive 

recognition layers, increasingly complex architectures, and reduced size and more so 

because of the known fact that silicon-based semiconducting metal oxide technologies will 

reach its limit in the near future. 

Rapid progress in the synthesis and fundamental understanding of surface phenomena of 

nanomaterials has enabled their incorporation into sensor architectures. Functional 

nanomaterials are strong candidates for sensors, because their reduced dimensions create an 

increase in environmental sensitivity.  The reduced dimensionality also creates structures 

with exceptionally high surface area to volume ratio, and some materials, such as 2D MoS2 

[1], graphene [2], reduced graphene oxide [3] and single wall carbon nanotubes (SWNTs) 

[4] and metal oxides [5] are composed almost entirely of surface atoms. These two 

consequences of reduced size result in a class of materials that has the potential for 

unsurpassed sensitivity towards changes in its physical and chemical properties. 

However, all established classes of high-performance electronics exploit single crystal 

inorganic materials, such as silicon or gallium arsenide, in forms that are fundamentally 

rigid and planar. The human body is, by contrast, soft and curvilinear. This mismatch in 

properties hinders the development of devices capable of intimate, conformal integration 

with humans, for applications ranging from human-machine interfaces, sensors, electronic 

skin and multifunctional sensors for Internet of Things (IoT). Hence there is heightened 

need for not only the flexible materials but also integrating them on flexible substrate which 

would be a step ahead in biointegrated devices. For developing flexible electronics devices 

there is need for material investigation which are flexible and stretchable. One envisioned 

solution involves the use of organic electronic materials, whose flexible properties have 
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generated interest in them for potential use in paper-like displays, solar cells, and other 

types of consumer electronic devices [6-7]. Such materials are not, however, stretchable or 

capable of wrapping curvilinear surfaces; they also offer only moderate performance, with 

uncertain reliability and capacity for integration into complex integrated circuits. Functional 

2D nanomaterials such as MoS2, graphene and 1D materials such as carbon nanotubes and 

metal oxides are promising candidate for the development of flexible electronic devices and 

sensors because of their high mobility, high thermal conductivity, high young’s modulus 

etc.  

1.2  Review of status in research and development in the subject 

 

1.1.1 Material Review 

For developing flexible electronic devices there is need for material investigation which are 

flexible and stretchable. There are reports on several materials such as a – Si [8], low 

temperature polycrystalline silicon [9], metal oxides [10], nanowires [11] and organic 

semiconductors [12] to be promising candidates for flexible electronics, but they have 

several problems associated with them. a – Si have poor mobility and less flexibity [13]. 

Low temperature polycrystalline have relativity good mobility but has uniformity and 

process ability problems associated with it [14]. Even the temperature has to be compatible 

with other process, as at high temperature the mobility of polycrystalline silicon decreases. 

Metal oxides are costly and have less environmental stability [15]. In search of functional 

materials for multisensory applications, 2D MoS2 has gained significant interest among 

other 2D materials due to its exciting electronic and chemical properties. The ability to tune 

bandgap of MoS2 by thickness modulation has opened up numerous opportunities for its use 

in electronic applications. Further, the compatibility of MoS2 with different flexible 

substrates makes it a versatile material suitable for flexible and wearable sensors. Carbon 

nano materials such as one dimensional carbon nanotube (CNT) and two dimensional 

graphene have gained much attention for flexible electronics because of their attractive and 

motivating properties. The carrier mobility of CNT has been reported to be as high as ~ 

80,000 cm2V-1 s-1, [16] and that of graphene on insulator substrate to be ~ 100,000 cm2V-1 

s-1. [17] Such high mobility values motivates the use of both CNT and graphene in high 

speed electronics. The current capacity of both CNTs and graphene have been reported to be 

109 cm-2 [18]. Thermal conductivity of SWCNTs and graphene at room temperature 

claimed to be is 3,500 Wm-1K-1 and 5,300 Wm-1K-1 [19] respectively with transmittance of 

nearly 97 %. Both CNTs and graphene have outstanding mechanical properties with 
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Young’s modulus of 1 TPa and tensile strength of 130 GPa [20]. For the above stated 

reasons and properties, MoS2, CNTs and graphene are considered to be most promising 

material for next-generation flexible electronics. To further expand the scope of applications 

that pristine nanomaterials offers, hybrids of MoS2, CNTs and graphene with different metal 

oxides and metal chalcogenides have been synthesized and utilized in energy storage, 

electrochemical sensors, photodetectors etc. Nanostructured transition metal chalcogenides 

have gained interest due to their importance in field of sensing and electronic 

applications.16 Among metal chalcogenides, ZnS is a n type semiconductor with bandgap 

of ~ 3.7 eV and has been utilized for a variety of applications in the field of energy 

harvesting, sensors, electronic and optoelectronic applications. Since ZnS is a sulfur based 

metal chalcogenide and has lattice parameters close of MoS2, the synergistic effect allows 

for the growth of MoS2/ZnS hybrids. Further, Transition metal oxides such as vanadium 

oxides family find wide applications in electronics due to their reversible phase transitions 

from metals to semiconductors. Particularly, Vanadium Pentaoxide (V2O5) from vanadium 

oxides family has gained a lot of attention because of its direct bandgap of 2.2 to 2.8eV 

which makes it potential candidate for optoelectronic and photoelectric applications. 

However synthesis of V2O5 is a challenging task because of its affinity to exist in different 

oxidation states. Combining 2D MoS2 with 1D V2O5 would be a step forward in the 

fabrication of novel flexible electronic devices having potential applications in broadband 

photodetectors. Also, coupling MoS2 with different semiconductors results in formation of 

heterojunction with efficient charge separation, high electron transfer rate and broadband 

absorption. There are reports on hybrids of MoS2 with various metal oxides such as ZnO, 

CuO, NiO, SnO for applications ranging from electronics to energy storage metal oxides. 

Out of all the metal oxides, p type copper oxide (CuO) forms hybrid p-n junction with n 

type MoS2 thereby expanding the scope of electronic applications of pristine MoS2. 

1.2.2. Substrate 

Flexible substrates provide ideal platforms for exploring some of the unique characteristics 

that arise in metamaterials via mechanical deformation. The use of flexible substrates to 

demonstrate metamaterials with novel functionalities is gaining increasing attention 

worldwide. The most commonly used flexible substrates for metamaterials are PDMS and 

polyimide, due to their widespread use in flexible electronics. Other flexible substrates 

utilized for metamaterial devices include metaflex [21], polyethylene naphthalene (PEN) 

[22], polyethylene terephthalate (PET) [23], polymethylmethacrylate (PMMA) [24], and 

polystyrene [25]. Polyimide is an ideal choice as substrate for flexible electronics due to its 

strong adhesion to metal coatings, which provides a high degree of strain delocalization. 
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Polyimide provides operating range of -269° to 400° C with very high glass transition 

makes it ideal for deposition techniques such as sputtering and E beam evaporation. Its 

adhesion to photoresist and resistant to corrosive acids used while etching is another feature 

which allows direct patterning of structures onto it [26]. Moreover, it is biocompatible [27] 

which is of foremost importance for wearable electronics. Also, most of the above mention 

polymer substrates are microfabrication compatible and the devices can be fabricated using 

sophisticated cleanroom techniques which offers tremendous applications in the fabrication 

of reliable flexible electronic devices.  Despite the advantages offered by plastic substrates, 

their inability to withstand high processing temperatures, poor recyclability, and non-

biodegradability makes them unsuitable for the development of eco-friendly flexible 

electronics for IoT applications. However, all flexible substrates are not microfabrication 

compatible and hence there is an urgent need to develop lithography free solution phase 

processes for the fabrication of devices on flexible substrates such as cellulose paper and 

eraser substrate. 

Sensing mechanism: 

There are number of complementary and competing sensor technologies relying on different 

physical and chemical principles. Different detection principles can be used in various 

sensors. Our interest not only governs solid state sensors but also extends to flexible devices 

and sensors which can be integrated onto humans and environmental flora and fauna.  

Conductance based sensors: 

Conductance-based sensors come under the category of sensors where the sensing 

mechanism is based on monitoring the change in resistance when exposed to a particular 

compound or light (UV and IR). In conductance-based sensors, an active material, which 

may be a functional nanomaterial or hybrid nanomaterial, is deposited between two metal 

contacts. Binding of a target agent or absorption of photons with the sensing platform causes 

a change in resistance between the metal contacts. This change in resistance is proportional 

to the concentration of the absorbed photons, and thus the sensor provides an indication of 

both presence and quantity of the target agent.  

Two different configurations (Chemiresistor and ChemFET) have been employed to 

develop nanosensors and nanodevices. In Chemiresistor configuration, the current passes 

through the sensing material bridging between the source and drain electrodes. The charge 

transfer or photogenerated electrons occurring at the surface sensing alters the current flow. 
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In FET configuration, the conductance on the nanostructure between source and drain is 

altered by a gate electrode capacitively coupled through a thin dielectric. 

 

1.3. Research Objective 

Based on the mentioned discussion regarding the materials and substrates utilized for 

flexible electronics, the overall aim of this thesis is to fabricate flexible and wearable 

electronic devices and its applications in broadband photodetector and artificial electronic 

skin with following specific objectives. 

To fabricate flexible broadband photodetector covering entire range of 

electromagnetic spectrum from Ultraviolet to Near Infrared region 

While most reports on photodetectors focus on improving the responsivity in one region of 

electromagnetic spectrum by fabricating materials hybrids, the main issue still remains 

unaddressed which is the inability to absorb wide range of electromagnetic spectrum. Most 

photodetectors comprise of p-n heterojunction, where one of the material is responsible for 

absorbance, having metal contacts on p and n type allows for effective separation of 

photogenerated carriers. But for a broadband photodetector, both the materials of the 

heterojunction should participate in the absorbance. In such a case, metal contacts on p and 

n type will trap either the photogenerated electrons or hole which leads to the failure of the 

device. Thus the goal is to grow combination of hybrid materials on flexible substrate by 

simple hydrothermal method such that both the materials are exposed to illumination and 

engineer the device fabrication to collect the photogenerated carriers in UV to NIR 

region of electromagnetic spectrum.  

To increase the responsivity of the broadband photodetectors by 

external strain modulation 

Semiconductor interfaces are vital components for fabricating electronic and optoelectronic 

devices. Properties of interfaces between two hetero-structured semiconductors play an 

important role in modulating the electronic structure and carrier behavior in modern 

nanoelectronics devices. Thus ability to precisely tailor the properties of the semiconductor 

interfaces provides lot of possibilities to enhance performance or add new functionalities 

altogether in devices. Semiconductor interface engineering is gaining interest in recent years 

to rationally design and fabricate novel nanoelectronics devices.   There are different ways 

to modulate the electronic structure and carrier behavior in semiconductors which include 
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structure design, surface treatment, chemical doping etc. Strain modulation is considered as 

an effective means of tuning the electronic structure and carrier behavior in semiconductors. 

Moreover, at nanoscale, materials possess higher toughness and hence strain modulation 

effect could be more significant. The objective of this work is to utilize external strain 

modulation in heterojunctions to enhance the responsivity of broadband photodetectors by 

modulating the schottky barrier of the fabricated heterojunctions. 

To fabricated pressure and strain sensors using solvent/lithography free 

method for electronic skin applications  

Conventional electronic devices fabricated on rigid crystalline semiconductors wafers have 

evolved with the motivation to miniaturize thereby realizing faster, smaller and densely 

integrated devices. A parallel research that is rapidly evolving for future electronics is to 

integrate the property of flexibility and stretchablity to develop user friendly devices. There 

have been number of reports on strain and pressure sensors on stretchable, bendable and soft 

materials like polyimide, polyurethane sponge, natural rubber, cellulose paper, tissue paper 

etc. using various nanomaterials such as metal oxides, carbon nanomaterials and metal 

nanowires. Even though these devices are low cost, environmental friendly and involve low 

energy fabrication processes, they lack the multi-functionality of both pressure and strain 

sensing, which is essential for artificial electronic skin applications. PU sponge is highly 

flexible but possess less stretchablity which limits its use as strain sensor. Moreover, making 

the sponge conductive for pressure sensing applications involves processes like spin 

coating, dip coating and freeze drying which use toxic solvents and subsequently degrade 

the performance of the device. Fabricating devices on cellulose paper has the advantage of 

being eco-friendly and low-cost, but low tear resistance and poor stretchablity of cellulose 

paper restricts its use in robust applications. Natural rubber is an ideal choice for fabricating 

pressure and strain sensors as it possesses high tear resistance, stretchablity and is also bio-

degradable. To achieve flexibility and stretchablity of the devices two common strategies 

have been used. First is to directly bond thin conductive materials having low young’s 

moduli to rubber/elastic substrate. Second method is to fabricate the device using 

intrinsically stretchable conductors that are assembled by mixing conductive material into 

elastomeric matrix. But above methods make use of toxic solvents and acids for achieving 

proper dispersion which not only makes the whole process eco-unfriendly but also degrades 

the performance of the device. Moreover, conductive filler is functionalized for proper 

adhesion of conductive materials onto rubber/elastic substrate which not only reduces the 
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conductivity of the materials but also induces defects. The objective of this work is to 

fabricate pressure and strain sensors on eraser substrate using solvent/lithography free 

method which can then be utilized for electronic skin applications.  

Study of the morphology and electrical characterization of these devices 

and then applying it for sensing applications 

Chemical characterization in terms of X-ray diffraction (XRD), Raman spectroscopy, X-ray 

photoelectron spectroscopy (XPS), UV-vis-NIR spectroscopy, photoluminescence 

spectroscopy (PL) and structural characterization using Scanning electron microscopy 

(FESEM) and Transmission electron microscopy were performed to confirm the formation 

of functional nanomaterials and their hybrids. Further electrical characterization in terms of 

IV, CV were performed to understand the electrical properties of the fabricated devices. 

Finally, the fabricated devices were tested for various sensing applications such as 

broadband photodetector, pressure and strain.  

1.4. Organization of Thesis 

Chapter 2 discusses the fabrication of MoS2/ZnS hybrid on paper substrate and its 

application in broadband photodetector 

Chapter 3 discusses the fabrication of discrete 1D V2O5 nanowires on 2D MoS2 and its 

application in flexible broadband photodetector 

Chapter 4 discusses the fabrication of 0D carbon dot on 2D MoS2 and its application in 

flexible broadband photodetector 

Chapter 5 discusses the strain modulation concept for increasing the responsivity of 

broadband photodetector fabricated using 2D ZnO/Graphene heterojunction  

Chapter 6 discusses the fabrication of MoS2/CuO piezotronic diode for increasing the 

responsivity of broadband photodetector and active frequency modulation 

Chapter 7 describes the solvent/lithography free fabrication of pressure and strain sensor on 

eraser substrate for artificial electronic skin application 

Chapter 8 gives the summary of the work done and the conclusion 

1.5. References 
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Chapter 2 
 

Large-area, flexible broadband 

photodetector based on ZnS-MoS2 

hybrid on paper substrate  

Abstract 

Flexible broadband photodetectors based on 2D MoS2 have gained significant attention due 

to their superior light absorption and increased light sensitivity. However, pristine MoS2 

have absorption only in visible and near IR spectrum. This paper reports a paper-based 

broadband photodetector having ZnS-MoS2 hybrids as active sensing material fabricated 

using a simple, cost effective two step hydrothermal method wherein trilayer MoS2 was 

grown on cellulose paper followed by the growth of ZnS on MoS2. Optimization in terms of 

process parameters were done to yield uniform trilayer MoS2 on cellulose paper. UV 

sensing property of ZnS and broadband absorption of MoS2 in visible and IR, broadens the 

range from UV to near IR. ZnS played the dual role for absorption in UV and in the 

generation of local electric fields thereby increasing the sensitivity of the sensor. The 

fabricated photodetector exhibited a higher responsivity towards the visible light when 

compared to UV and IR light.  Detailed studies in terms of energy band diagram is 

presented to understand the charge transport mechanism. This represents the first 

demonstration of a paper-based flexible broadband photodetector with excellent 

photoresponsivity and high bending capability that can be used for wearable electronics, 

flexible security and surveillance systems etc. 

 

2.1. Introduction 

High performance, flexible broadband photodetectors are essential components of 

optoelectronic systems and, find extensive applications in optical communication, 

environmental monitoring, image sensing, foldable displays and surveillance [1]. Recent 

studies on photodetectors have mainly focused on fabricating devices using various 

nanomaterials. But the major issue of these photodetectors is their inability to absorb wide 

ranges of the electromagnetic spectrum. There are several reports of photodetectors using 
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hybrid materials wherein the addition of transport material decreases the recombination rate 

thereby increasing the photocurrent [2, 3] but absorption in a wide range of electromagnetic 

spectrum still remains a challenge. To overcome this drawback, researchers have fabricated 

devices wherein the transport material itself acts as a photo absorber [4]. Synthesizing 

hybrid structures wherein the transport materials also acts as a photo absorber is an effective 

means to increase the range of electromagnetic spectrum.  

Molybdenum disulfide (MoS2),  a widely used Transition-Metal Dichalcogenide (TMD), 

has unique properties such as variable bandgap (1.8 eV - 1.2 eV), reduced dimensionality, 

high carrier mobility, strong electron-hole confinement, light sensitivity and excellent light 

absorption extending from visible to NIR region [3, 5]. Coupling the tunable layer 

dependent behavior of MoS2 with above-mentioned properties makes it suitable for a wide 

range of optoelectronic applications, especially photodetectors. Moreover, combining MoS2 

with other semiconductors results in the efficient charge separation [6]. high electron 

transfer rate and increases the solar light absorption [7]. 

Amongst several wide band gap semiconductors, Zinc sulfide (ZnS) has been a well-

established material for UV photodetection [8] due to its wide band gap (3.77 eV), high 

exciton binding energy (40 meV) [9] and fast switching time on illumination with UV light 

[10]. To further enhance the properties and expand the range of applications and absorption 

range of electromagnetic spectrum, efforts have been made to synthesize hybrids of MoS2 

along with other metal oxides. Since wurtzite ZnS is also a sulfur based compound and has 

lattice parameters close to that of hexagonal MoS2 [11], there exists a synergistic effect that 

facilitates the growth of ZnS-MoS2 hybrids. ZnS-MoS2 hybrids have been prepared using 

various methods such as sulfurization of Mo on RF magnetron sputtered ZnS thin film, [6] 

surfactant assisted exfoliation for MoS2 followed by hydrothermal [11] and using MoS2 with 

metal-organic framework ZIF-8 [12]. Among the various methods available, hydrothermal 

synthesis is the most versatile method as it provides the ability to synthesize hybrid 

nanostructures at low cost with distinct morphologies and high phase purity [13]. 

There are reports on broadband photodetectors, which use hybrid nanostructures either for 

enhanced sensitivity or for increasing the absorption range of electromagnetic spectrum [14, 

15]. However, most of them do not cover the larger part of the electromagnetic spectrum 

and are fabricated on the rigid silicon substrate or flexible plastic substrates, which make 

use of sophisticated cleanroom processes that are expensive and energy inefficient [16]. As 

the basis of future sustainable technology, researchers of late are actively focusing on the 
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development of paper-based electronics due to its numerous advantageous such as low cost, 

light weight, mechanical flexibility and high performance compared to conventional 

electronic devices [17, 18]. Furthermore, paper-based electronic devices are known for their 

high biocompatibility, which allows for its easy integration with wearable electronic devices 

and biodegradability thereby addressing the problem of landfill. Till date, a wide array of 

paper-based electronic devices such as solar cells, supercapacitors, flexible displays, 

transistors, printed circuit boards (PCBs) has been reported [17]. 

Herein, we report the fabrication of a novel paper-based broadband photodetector using 

hybrids of ZnS-MoS2. The photodetector was fabricated using a simple two-step 

hydrothermal method. The photodetector exhibited broad absorption covering UV, visible 

and IR region of the electromagnetic spectrum. ZnS contributed to the UV light detection 

and MoS2 responded towards visible and IR. The fabricated photodetector shows increasing 

responsivity in the order of IR, UV and visible light, thereby indicating the high sensitivity 

of the device towards visible light. Discrete distribution of ZnS was observed on MoS2 

thereby not covering the entire MoS2, which facilitated the absorption in UV, visible and IR 

region. The straddling type band alignment between ZnS and MoS2, allows for efficient 

separation of photogenerated electron-hole pairs, thereby increasing the responsivity of the 

fabricated device. Moreover, the photodetector was fabricated on flexible cellulose paper, 

which makes the overall design of the sensor not only cost effective but also environmental 

friendly. To the best of our knowledge, this is the first report on paper based broadband 

photodetector with ZnS-MoS2 hybrids as active sensing materials. 

 

2.2. Results and Discussion 

The fabrication process is schematically shown in Figure 2.1. Detailed procedure of the 

fabrication process is explained in Experimental section. In brief, two step hydrothermal 

process was performed wherein MoS2 was grown on cellulose paper followed by the growth 

of ZnS on MoS2. Cellulose paper decomposes at 275°C [19] and hence was chosen for the 

growth of MoS2 and ZnS which require hydrothermal temperature in the range of 200°C-

220°C. Two-step hydrothermal method was performed over one pot synthesis of ZnS-MoS2 

hybrid as single step synthesis renders favorable for the growth of ZnS only rather than the 

formation of ZnS-MoS2 hybrids. This is because ZnS precipitates are formed readily in the 

presence of Zn2+ and S2- at room temperature [20] whereas formation of MoS2 requires 

heating at elevated temperatures [21]. It was observed that ZnS particles were formed 

during the preparation of nutrient solution thereby inhibiting the formation of MoS2 crystals. 
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Optimization in terms of different hydrothermal temperatures was performed for the growth 

of MoS2 and ZnS. At low temperatures of 180°C, crystallinity of MoS2 was poor which is 

consistent with the report [22]. At elevated temperatures, cellulose paper substrate degrades 

and becomes fragile, which then adversely affects the flexibility nature of the substrate. 

Hence 200°C was optimized for the MoS2 growth which had improved crystallinity over 

low temperatures and the substrate retained its flexibility properties. For ZnS growth, 

optimization was performed for hydrothermal temperature and time. As the hydrothermal 

time was increased for more than 1 hour, thick growth of ZnS was observed which did not 

adhere well to the substrate. Hence 200°C for 1 hour was optimized for discrete ZnS growth 

on MoS2/cellulose paper. Also thick growth of ZnS would have led to complete coverage of 

MoS2 by ZnS microspheres which would have hindered broadband absorption. Discrete 

growth is important in this case, as MoS2 can be exposed to visible and NIR illumination. 

The crystal structure of the as-grown MoS2 and ZnS-MoS2 were studied using XRD. Figure 

2.2 a shows the XRD pattern of pristine MoS2 and ZnS-MoS2. The diffraction peaks of 

MoS2 matches well with the JCPDS card no. 37-1492, which reveals the hexagonal phase of 

MoS2. For pristine MoS2, two broad peaks corresponding to (100) and (110) planes were 

observed. The peak broadening might be a consequence of the synthesis temperature 

(200°C) [22]. The (002) plane reflection cannot be noticed at 2θ~14°, which might be due to 

the presence of few-layer (<5) MoS2 or graphene-like MoS2 [23]. The occurrence of low 

angle diffraction peak can be attributed to the increased interlayer spacing [24] and the 

diffraction of X-rays resulting from closely spaced few layered MoS2 [25]. The interlayer 

spacing of as-grown MoS2 was calculated to be 0.90 nm, whereas, bulk MoS2 exhibits an 

interlayer spacing of 0.615 nm [23]. For ZnS-MoS2 hybrids, the prominent peaks of MoS2 

are retained and additional diffraction peaks for ZnS were observed. The diffraction pattern 

of ZnS matches with the wurtzite (hexagonal) ZnS. (JCPDS card no. 36-1450) [26].  Also, 

prominent peaks at 2θ ~ 16° and 22° were observed in both the pristine MoS2 and ZnS-

MoS2 hybrids which can be assigned to cellulose paper.[27] The presence of peaks for 

cellulose implies that the paper substrate was immune to degradation during the 

hydrothermal process. 

To further confirm the formation of the hybrid and to investigate the details of the number 

of MoS2 layers in the ZnS-MoS2 hybrid, Raman analysis was performed as shown in Figure 

2.2b which exhibits strong Longitudinal optic (LO), transverse optic (TO) and surface optic 

(SO) phonon modes. The peaks at ~282 cm-1, ~336 cm-1 and ~668 cm-1 corresponds to E2 

(TO), SO and 2LO modes of ZnS. The occurrence of SO mode in between the LO and TO 
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modes might be due to the activation of the symmetry breaking mechanism related to the 

surface of ZnS [28]. Peaks corresponding to LA (M) mode and A1g mode of MoS2 are 

observed at ~230 cm-1 and 401 cm-1, respectively [29]. The peak signifying the E12g mode 

of MoS2 might be suppressed due to the growth of ZnS on MoS2 layer. Raman spectra of 

pristine MoS2 is depicted in the inset of Figure 2.2b. Two characteristic peaks of MoS2 were 

noticed at 383 cm-1 and 405 cm-1, which are assigned to E12g and A1g phonon modes, 

respectively. E12g mode involves the in-plane vibrations of Mo atoms whereas A1g mode is 

due to the out of plane vibrations of the S atoms [30]. The peak position difference between 

the two modes was calculated to be ~22, corresponding to trilayer MoS2 [31]. 

Figure 2.3a shows the FESEM images of cellulose paper after the growth of MoS2 wherein 

the porous microfibers morphology of cellulose paper was clearly observed thereby 

indicating that growth of MoS2 does not affect the morphology of cellulose paper. From the 

low magnification FESEM images shown in Figure 2.3a, the growth of 3D MoS2 micro 

flowers on the entire surface of 3D hierarchically arranged cellulose fibers can be clearly 

observed. The average diameter of the 3D MoS2 micro flowers formed was calculated to be 

~1 µm, as shown in Figure 2.3b. High magnification FESEM images shown in Figure 2.3c 

of MoS2 confirms the formation of micro flowers by the self-assembly of several MoS2 

nanosheets, with an average sheet thickness of 2-3 nm. Figure 2.3d shows the FESEM 

image of ZnS growth on MoS2-cellulose paper wherein further growing of ZnS does not 

affect the microfibers morphology of cellulose paper. FESEM images shown in Figure 2.3e 

and 2.3f corresponds to ZnS-MoS2, depicting the growth of ZnS sub-microspheres with an 

average diameter range of 320-520 nm on the surfaces of MoS2 in a sporadic manner. From 

the FESEM images, it was clearly seen that ZnS microspheres have a high surface 

roughness and there seems to be a good interfacial contact between ZnS and MoS2.  

To further explore the possibility of utilizing the as fabricated ZnS-MoS2 hybrid device as a 

broadband photodetector, optical absorption spectra was obtained from UV-Visible-NIR 

spectroscopy. Figure 2.4 shows the absorption spectra of the ZnS-MoS2 hybrids, which 

revealed the growth of ZnS on MoS2 extends the optical absorption in UV light region while 

retaining the absorption peaks of MoS2. Two strong peaks around ~215 and 335 nm can be 

attributed to the absorption of light by ZnS microspheres. The absorption peaks in visible 

and NIR region are invisible due to the high-intensity absorption peaks of ZnS in UV light 

region, which are plotted separately by scaling down the intensity values as shown in the 

inset of Figure 4. This clearly suggests that the as-grown ZnS-MoS2 hybrid offers a broad 

range of optical absorption, which can be potentially used as a broadband sensing material. 
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Optical bandgap was calculated for individual MoS2 and ZnS which were found to be 1.53 

eV and 3.7 eV respectively. Tauc plot for both MoS2 and ZnS can be found in the Appendix 

A as Figure S1.  

The growth of MoS2 micro flowers was initiated by the formation of amorphous 

nanoparticles of MoS2 during hydrothermal reaction. The nanoparticles formation at this 

phase is facilitated by the presence of sulfurization reagent (CH4N2S) which performs the 

dual role of acting as a sulfur donor and reducing agent. Aggregation of these nanoparticles 

under optimal conditions of temperature and time period results in the formation of 

spherical MoS2 clusters which acts as the seed for the growth of MoS2 nanosheets [32, 33]. 

The van der Waals interaction that exists between individual sheets of MoS2 contributed to 

the evolution of MoS2 nanosheets into 3D micro flowers [34]. The growth of ZnS begins 

with the dissolution of Zinc chloride and hydrolysis of thiourea in the solution. This 

hydrolysis results in byproducts such as ammonia (NH3), carbon dioxide (CO2) bubbles, and 

hydrogen sulfide (H2S) in the reaction medium. Of those, H2S in the hydrothermal vessel 

reacts with the solvent (water) liberating S2- ions. The Zn2+ and S2- ions in the solution could 

enter the CO2 bubble due to the influx of ions resulting in the formation of ZnS 

nanoparticles [35]. But, ZnS nanoparticles are unstable owing to their high surface energy. 

Thus, to minimize the effect of surface energy, ZnS nanoparticles tend to aggregate 

resulting in the formation of microspheres [36].  

The as-fabricated devices with ZnS-MoS2 as channel and Ag paste as contacts were utilized 

for broadband photodetector covering UV, visible and IR range. UV lamp with 365 nm 

wavelength, IR lamp with wavelength 780 nm and visible light with wavelength 554 nm 

were used to conduct experiments. Prior to I-V measurements, the devices were kept in dark 

for 12 hours to stabilize them. The current-voltage (I-V) characteristics of the fabricated 

broadband photodetector under dark and illuminated conditions along with their temporal 

response under illumination are shown in Figure 2.5. From the linearity of the room 

temperature I-V curves, it is clear that the device exhibits ohmic behavior. Upon light 

illumination, increase in current was observed w.r.t the intensity of illuminated light, which 

can be attributed to the increased number of photogenerated electrons. As the illumination 

time was increased, an increase in the photocurrent was observed which is due to increase in 

the number of photogenerated electron-hole pairs. It should be noted that the photoelectron 

generation occurs only in ZnS during the illumination of UV light whereas for visible and 

IR illumination, generation of photoelectrons occurs in MoS2. The highest photocurrent was 

observed for visible light illumination (having an intensity of 5.31 mW/cm2). Figure 2.5 b, 
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d, and f shows the normalized resistance change (∆R/R) of the photodetector under UV, 

visible and IR illumination as a function of time, for three repeated cycles. On illumination 

with UV light (intensity-19.1 mW/cm2), a normalized resistance change of 21.6 % was 

observed as seen in Figure 2.5b. Whereas, a resistance change of 33.5 % and 19.68 % was 

noticed for illumination with visible light (5.31 mW/cm2) and IR light (82.9 mW/cm2) as 

shown in Figure 2.5d and Figure 2.5f respectively. Maximum change in resistance was 

observed for visible light compared to UV and IR indicating that the fabricated 

photodetector is more sensitive to visible than UV and IR. It should be noted that even 

though the intensities used were different for measurements, responsivity was calculated 

using same intensities, which was highest for visible light, which further, confirms that the 

sensor, was more sensitive to visible light compared to UV and IR. The rise time of the 

device was calculated from 10% to 90% of maximum value and was found to be 22, 11 and 

31 seconds for UV, visible and NIR light respectively. Low-rise time for visible light 

suggests that sensor exhibits quick response towards visible light compared to UV and IR 

illumination. Low response speed of the fabricated photodetector might be attributed to 

improper band alignment between the two semiconductors where the distribution of ZnS on 

MoS2 is not continuous, but is discrete, which leads to improper band alignment. But 

discrete distribution is important as MoS2 can be exposed to visible and NIR illumination. 

Covering entire MoS2 with ZnS would led to development of only UV photodetectors with 

very less or no response towards visible and NIR light. Moreover, the growth of MoS2 is on 

cellulose paper, which is a dielectric material and hence reduces the carrier mobility in 

MoS2 thereby reducing the response time. [37] Also, due to the trapped charges at sulfur 

vacancies reduction in carrier mobility of MoS2 is observed. Similar low response time has 

been reported for MoS2 on plastic substrates. [38] 

The important Figures of merit of a photodetector are responsivity and external quantum 

efficiency (EQE), a measure of photocurrent generated per unit power of incident light on 

sensing area. The equation (1) and (2) gives the formula of photoresponsivity (Rλ) and EQE 

respectively.  

          (1) 

EQE = hc x Rλ /eλ       (2) 

Where Iλ is the photocurrent, Pλ is the power and A is the active sensing area of 

photodetector [39]. EQE calculated was 0.4 x 10-2 % for visible light. As shown in Figure 
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2.6a, the responsivity increases with the excitation power density of the illuminated light. A 

responsivity of 17.85 µA/W was observed for visible light illumination and 9.4 µA/W was 

found to be the responsivity under UV illumination. The responsivity for IR light, with a 

value of 4.52 µA/W was the least among the measured values. Therefore, it can be inferred 

that the fabricated photodetector is highly sensitive to visible light when compared to UV 

and IR. This can be attributed to the larger area exposed to MoS2 as compared to ZnS, as 

evident from FESEM thereby resulting in an increased photogenerated electron-hole pairs in 

MoS2 when compared to ZnS, which leads to the higher photocurrent. Comparing to the 

existing reports on MoS2 based photodetectors on rigid silicon substrates which exhibits 

very high responsivity [40], the responsivity calculated for the as fabricated device is low. 

The reason for low EQE and low responsivity is the low crystallinity of the MoS2 and also 

due to the fact the carrier mobility of MoS2 is reduced by growing it on cellulose paper 

substrate. Even though the calculated EQE and responsivity is less it was found to be 

comparable to the reports available on broadband photodetector on other flexible plastic 

substrates [41, 42]. It should be noted that the area of MoS2 lying underneath ZnS 

microspheres (ZnS-MoS2 interface) was not exposed to visible light radiation. Despite, the 

lack of complete exposure of MoS2 to visible light, the photodetector shows high sensitivity 

towards the visible light which could be attributed due to the local electric fields that are 

generated at the ZnS-MoS2 interface. Even though ZnS blocks the visible and IR light to be 

exposed on MoS2, they play an important role in achieving higher sensitivity than pristine 

MoS2 as ZnS on MoS2 generates local electric fields, which help in the electron transport 

towards the metal contacts. In the case of pristine MoS2, electric fields are generated only at 

the metal-MoS2 interface and are absent in the areas far away from the metal-MoS2 

interface. Hence, due to the absence of electric field away from metal/MoS2 interface, the 

electron-hole pair does not separate efficiently and tend to recombine which decreases the 

electrons collected at the metal contacts and thereby decreases photocurrent. Therefore, in 

case of pristine MoS2, the contribution is only due to the photogenerated electrons at the 

metal-MoS2 interface, which decreases the sensitivity. I-V characteristics of pristine MoS2 

under visible and IR illumination can be found in Appendix A as Figure S2. In the case of 

ZnS on MoS2 due to the difference in the work function between ZnS and MoS2, local 

electric fields are created at the interface of ZnS-MoS2, which helps in the separation of 

electron-hole pair at the area, which are away from the metal-MoS2 interface thereby adding 

up more photogenerated electrons to be collected at the metal contacts. Hence, in case of 

ZnS-MoS2, the separation of photogenerated electron-hole not only happens at metal-MoS2 

interface but also at ZnS-MoS2 interface thereby covering larger portion.  
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To demonstrate the robustness of the flexible paper substrate based ZnS-MoS2 device and 

evaluate its performance after repeated bending cycles, the sensor was attached to double-

sided tape and bending (both compressive and tensile) was performed manually. After 

specific amount of bending cycles, measurements for UV, visible and IR photodetection 

were performed at intensity of 19.1 mW/cm2.   

Figure 2.6b shows the graph of responsivity with bending cycles wherein very negligible 

change was observed in the values of responsivity thereby suggesting that the performance 

of the as fabricated device performance does not deteriorate with bending.   

The optoelectronic behavior of the fabricated photodetector in dark and illuminated 

conditions can be better understood from the band diagrams of ZnS and MoS2 and the 

charge transfer schematics, as shown in Figure 2.7a and 2.7b. The electron affinity reported 

for ZnS and few-layer MoS2 are 3.9 [43] and 4.0 eV [44] respectively. At the ZnS and MoS2 

interface, the flow of electrons from ZnS to MoS2 results in the alignment of fermi levels 

thereby reaching equilibrium condition.[6] Under UV light illumination, photogeneration of 

electron-hole pairs occurs in ZnS microspheres when the energy of the illumination is 

greater than or equal to the bandgap energy of ZnS. For pristine ZnS, photogenerated 

electrons tend to recombine which decreases the carrier lifetime thereby decreasing the 

photocurrent. Hence, the need of MoS2 as transport material arises for not only effective 

capturing the photogenerated electrons but also helps in generating local electric fields, 

which prevents the photogenerated electrons from recombination, and ultimately increasing 

the carrier lifetime. In the case of ZnS-MoS2, since the conduction band (CB) of MoS2 is 

below the CB of ZnS, it favors the effective separation of photogenerated electron-hole 

pairs from recombination. The photogenerated electrons and holes in ZnS reach the CB of 

MoS2, from which the photoelectrons and holes gets transported to the metal contacts. It 

should be noted that both the contacts are on MoS2 and hence due to the external electric 

field applied, photogenerated electrons and holes move towards respective electrode, 

thereby generating current. Due to the work function difference, the local electric fields are 

generated at the ZnS-MoS2 interface (due to the formation of unipolar junction), favoring 

the electron-hole separation. Even though both MoS2 and ZnS are n type, ZnS exhibits more 

n type behavior than MoS2 (fermi level difference is large) and hence the interface is similar 

to the interface of n-n+ junction thereby forming a unipolar junction [45] which creates 

barrier at the interface of ZnS-MoS2 whose barrier potential would be the difference in the 

fermi levels of MoS2 and ZnS. Moreover, there are many such unipolar junctions which 

cumulatively add up and helps in separation of photogenerated electron-hole pairs. So the 
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contribution of photocurrent is due to the fact that both the contacts are on MoS2 and not on 

ZnS. If one of the contact was taken from ZnS, then the holes would have been trapped in 

MoS2 thereby leading to recombination of photogenerated electrons. For Visible and IR 

illumination, electrons-hole pairs are generated in MoS2 on light absorption. The presence 

of excess photoelectrons in the CB of MoS2 causes a shift in fermi levels, thereby increasing 

the barrier height between ZnS and MoS2, which results in the generation of the electric 

field that facilitates the charge separation. Under visible and IR illumination, the 

photogenerated electrons from MoS2 do not tend to recombine due to the local electric fields 

created between ZnS and MoS2 interface. The role of ZnS in visible and IR light sensing is 

the enhancement of charge separation by the electric field produced at the ZnS-MoS2 

interface. The reason for higher sensitivity towards the visible light as compared to UV and 

IR can be attributed to the larger area MoS2 compared to ZnS and due to the discrete 

distribution of ZnS on MoS2, which facilities easy charge separation by creating local 

electric fields. The lesser sensitivity towards IR is due to the lower absorption of MoS2 in 

near IR range (as shown in Figure 4) wherein the number of photogenerated electrons are 

less as compared to visible light. 

There are reports on flexible photodetectors using methods such as Pulsed Laser Deposition 

(PLD) [46], direct assembly [47], Chemical Vapor Deposition (CVD) [48], and drop casting 

of materials grown using PVD (Physical Vapor Deposition) [49] etc. on flexible substrates 

such as polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN). 

These techniques are often time-consuming and require the use of expensive sophisticated 

instruments. Despite the advantages offered by plastic substrates, their inability to withstand 

high processing temperatures, poor recyclability, and non-biodegradability makes them 

unsuitable for the development of eco-friendly flexible electronics [50]. MoS2 based 

composites such as MoS2-PbS [16] and Gr/MoS2 [48] for broadband photodetector have 

been reported but are based on the rigid silicon substrate and involve cleanroom processing 

respectively. Paper substrate is an excellent alternative for plastic substrates due to its 

recyclability, excellent biodegradability and low cost.  [51] reported a broadband 

photodetector on the paper substrate using inkjet and aerosol printing wherein expensive 

polymers were utilized as photoactive layer. In this work, utilization of inexpensive 

cellulose paper as the substrate, inexpensive precursors for the growth of both ZnS and 

MoS2 and hydrothermal procedure for the fabrication of large area flexible photodetectors 

cuts down the overall cost. Large area fabrication is possible by the use of wide autoclave 

making it a viable technique for mass production of flexible photodetectors.  The broad 
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range photodetection offered by the as-fabricated device ensues in the development of low-

cost flexible broadband photodetectors without the use of sophisticated equipment. 

2.3. Conclusion 

In summary, we demonstrate for the first time, fabrication of flexible broadband 

photodetector on paper using ZnS-MoS2 hybrid by a simple and cost effective hydrothermal 

method. The spectral selectivity of MoS2 has been extended to UV wavelength region, by 

combining MoS2 with ZnS having high sensitivity towards UV light. The fabricated 

photodetector displays high sensitivity towards visible spectrum when compared to UV and 

IR. The photodetector exhibits a responsivity of 4.5 µA/W for IR, 9.4 µA/W for UV light 

and 17.85 µA/W for visible light. ZnS-MoS2 exhibits increased responsivity due to the 

reduced electron-hole recombination, which is a result of the straddling type band alignment 

observed at the interface of ZnS-MoS2. ZnS played the dual role for absorption in UV range 

as well as in formation of local electric fields, which are responsible for electron-hole 

separation in visible region. The present work provides a promising route for the 

development of large scale paper based broadband photodetectors using TMD hybrids at 

low cost; having diverse applications in the field of wearable electronics, environmental 

monitoring, and surveillance. 

2.4.       Experimental Section 

Fabrication of paper-based ZnS-MoS2 photodetector was carried out using two-step 

hydrothermal process. MoS2 was grown on cellulose paper substrate followed by the growth 

of ZnS on MoS2 grown paper.  

Synthesis of MoS2 on paper: 

Cellulose paper as the substrate was utilized for the hydrothermal growth of MoS2. The seed 

solution was prepared by blending 10mM of sodium molybdate (Na2MoO4.2H2O) and 20 

mM of thiourea (CH4N2S) in deionized (DI) water. The paper substrate was dipped in as-

prepared seed solution for 1 hour followed by drying at 80°C. The nutrient solution 

comprising of 50 mM sodium molybdate and 100 mM thiourea was stirred in DI water for 

30 mins. Thereafter, the seed coated cellulose paper and the nutrient solution was 

transferred to the hydrothermal reactor and was maintained at 200° for 20 hours. The reactor 

was allowed to cool down naturally and the resultant black colored paper was dried at 80°.  
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Growth of ZnS on MoS2 paper: 

In a similar manner, hydrothermal synthesis was performed for the growth of ZnS on MoS2 

paper. Zinc chloride (ZnCl2) and CH4N2S were used as the sources of Zn and S, 

respectively. The MoS2 paper was immersed in a seed solution consisting of equimolar 

concentrations of ZnCl2 and CH4N2S in DI water for 60 mins. The seed coated MoS2 paper 

was dried in hot air oven at 80°. Subsequently, the MoS2 paper and the nutrient solution 

consisting of the precursors was transferred to a Teflon-lined autoclave and was maintained 

at 200°C for 60 min. The resultant ZnS-MoS2 obtained was washed with DI water to 

remove the excess ZnS and dried at 80°C.   

Fabrication of photodetector: 

The as grown ZnS-MoS2 paper was cut into 2 cm × 0.5 cm dimension and electrical contacts 

were established using silver (Ag) paste. The complete schematic for two-step hydrothermal 

process for ZnS-MoS2 on paper is as shown in Figure 1. 

Materials and characterization 

Sodium molybdate, Zinc chloride and Thiourea were purchased from Sigma Aldrich and 

were used as received for the growth of ZnS-MoS2 hybrids. The structural characteristics of 

the prepared hybrids were investigated using X’pert PRO X-Ray Diffraction (XRD) with Cu 

Ká radiation. Raman spectra were obtained from Raman spectrometer (Senterra inVia opus, 

Bruker) having an excitation wavelength of 532 nm. Field Emission Scanning Electron 

Microscopy (FESEM) analysis was performed by ZEISS Ultra-55 SEM to study 

morphology. UV-visible-NIR spectra was obtained using LAMBDA UV/Vis/NIR 

spectrophotometers (PerkinElmer). The electrical measurements were carried out with 

Keithley 4200 SCS instrument. The as-fabricated devices were tested for broadband 

photodetector application on illuminating UV, Visible and IR radiations. The lamp sources 

utilized for UV, Vis and IR illumination had a wavelength (ë) of 365 nm, 554 nm, and 780 

nm respectively.  
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Figure 2.1. Schematic of the two-step hydrothermal process followed for the fabrication of 

ZnS-MoS2 broadband photodetector. 
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Figure 2.2. a) XRD graph of ZnS-MoS2 hybrids b) Raman spectra of ZnS-MoS2 hybrids 

(inset is the Raman spectra of pristine MoS2). 
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Figure 2.3. FESEM images of a) MoS2 grown on cellulose paper b) MoS2 grown on 

cellulose paper exhibiting micro flower like structure c) higher magnification MoS2 on 

cellulose paper d) ZnS on MoS2-cellulose paper e) ZnS on MoS2-cellulose paper exhibiting 

microspheres like morphology f) higher magnification ZnS on MoS2-cellulose paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. UV-visible-NIR spectra of ZnS/MoS2 showing strong absorption in UV range 

and weak absorption in visible and near NIR range. Inset is the plot showing absorbance in 

visible and NIR by scaling down the intensity values clearly demonstrating absorbance in 

visible and NIR range. 
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Figure 2.5. a, c and d) I-V characteristics of ZnS-MoS2 for UV, visible and IR respectively 

showing increasing in photocurrent with increase in intensity b, d and f) temporal response 
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of ZnS-MoS2 towards UV, visible and IR respectively inferring the sensor is more sensitive 

towards visible light when compared to UV and IR illumination. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Responsivity graph of the fabricated photodetector for UV, Visible and IR 

illumination suggesting highest responsivity for visible light b) Graph of responsivity v/s 

bending cycles wherein no notable change was observed in responsivity with bending 

cycles. Responsivity was measured for 19.1 mW/cm2 intensity. 

 

 

 

 

 

 

 

 

 

Figure 2.7. a) Energy band diagram of ZnS-MoS2 interface and b) Schematics of charge 

transfer mechanism occurring in ZnS-MoS2 under photo illumination. 
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Chapter 3 
 

   Discretely distributed 1D V2O5 

nanowires over 2D MoS2 nanoflakes 

for enhanced broadband 

photodetector covering Ultraviolet to 

Near Infrared region 

 

Abstract 

While most reports on photodetectors focus on improving the responsivity in one region of 

electromagnetic spectrum by fabricating 2D materials hybrids, the main issue still remains 

unaddressed which is the inability to absorb wide range of electromagnetic spectrum. Most 

photodetectors comprise of p-n heterojunction, where one of the material is responsible for 

absorbance, having metal contacts on p and n type allows for effective separation of 

photogenerated carriers. But for a broadband photodetector, both the materials of the 

heterojunction should participate in the absorbance. In such a case, metal contacts on p and 

n type will trap either the photogenerated electrons or hole which leads to the failure of the 

device. In this work, discrete distribution of 1D V2O5 nanowires over 2D MoS2 and metal 

contacts on MoS2 combinedly enables the device to absorb from ultraviolet to near Infrared 

region (365 nm to 780nm) wherein V2O5 is responsible for UV-visible absorbance and 

MoS2 absorbs in visible-NIR. Further, taking advantage of local heterojunctions of MoS2-

V2O5 for effective separation of photogenerated carriers enables for efficient charge transfer, 

faster electron transfer rate and highly responsive photodetection. Responsivity of the 

fabricated device was calculated to be 41.5 mA/W, 65.1 mA/W and 29.4 mA/W for UV, 

visible and NIR illumination suggesting the device to be more responsive in visible region 
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and was found to be comparable with the photodetectors fabricated using sophisticated 

cleanroom techniques.. The method provides a new strategy for improving the absorbance 

range of photodetector by discrete distribution of 1D materials over 2D materials which 

finds tremendous potential applications in the field of optoelectronics, sensors and 

photodetectors. 

 

3.1. Introduction 

Flexible photodetectors with a broad spectral range starting from the Ultra violet(UV) to the 

Near Infrared (NIR) find widespread applications in areas such as optoelectronics, sensors, 

communication and surveillance [1-2]. However majority of them aim at improving the 

responsivity in a particular region or wavelength which is achieved by fabricating 

heterojunctions with different kinds of low dimensional materials (such as 0D, 1D and 2D) 

[3-5]. The major issue of a photodetector which is the inability to absorb wider region of 

electromagnetic spectrum still remains a challenge mainly due to the lack of synthesizing 

suitable hybrids which can absorb from UV to NIR. The other issue is improper device 

fabrication where the placement of metal electrodes play an important role in collecting the 

photogenerated carriers. Most photodetectors comprise of p-n heterojunction, where one of 

the material is responsible for absorbance, having metal contacts on p and n type allows for 

effective separation of photogenerated carriers. The built in electric field at the potential 

barrier of the heterojunction is responsible for effective separation of photogenerated 

carriers. But for a broadband photodetector, both the materials of the heterojunctions should 

participate in the absorbance. In such a case, metal contacts on p and n type will trap the 

either photogenerated electrons or hole which leads to the failure of the device. Hence there 

is an urgent need to synthesize hybrid materials and suitable device fabrication technique 

which demonstrates both high responsivity and broadband absorbance. 

Two-dimensional (2D) layered materials have attracted interest in the area of 

nanoelectronics due to their remarkable electronic and material properties. [6] Among 

various Transition metal dichalcogenides (TMDs), Molybdenum disulfide (MoS2) two has a 

bandgap of 1.3 to 1.8 eV for bulk and monolayer MoS2 with a possibility of achieving 

intermediate bandgap by tuning the layers of MoS2 thereby possessing better electronic 

properties when compared to other 2D materials such as graphene. [7] The optical bandgap 

energy tuned by the thickness modulation of 2D materials have shown excellent photo 

catalysis applications in the area of broadband photodetector [8]. Various methods of the 

synthesis of MoS2 nanostructures have been reported which include Chemical Vapor 
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Deposition (CVD), [9] exfoliation [10] and hydrothermal method [3]. Among them, 

hydrothermal method is suitable for large scale deposition of few layered MoS2 on any 

arbitrary substrate of choice which can withstand 200°C. Fabricating heterojunctions of 

MoS2 with different low dimensional semiconductors results in heterojunction with efficient 

charge separation, broadband absorption and high electron transfer rate. There are reports on 

hybrids of MoS2 with other 2D [3], 1D [4] and 0D [11] materials for photodetector 

applications. Among all the hybrids, 2D-1D hybrid is suitable for broadband photodetector 

because of the formation of large area heterojunction when compared to 2D and 0D 

materials. Large area heterojunction creates potential barriers in majority portion of the 

photodetector thereby increasing the effective separation of photogenerated carriers.  

Transition metal oxides such as vanadium oxides family find wide applications in 

electronics due to their reversible phase transitions from metals to semiconductors. [12] 

Particularly, Vanadium Pentaoxide (V2O5) from vanadium oxides family has gained a lot of 

attention because of its direct bandgap of 2.2 to 2.8eV which makes it potential candidate 

for optoelectronic and photoelectric applications [13] However synthesis of V2O5 is a 

challenging task because of its affinity to exist in different oxidation states. There are 

several methods available for synthesis of 1D V2O5 nanostructures such as CVD, [14] 

electrochemical deposition [15] and electrospinning. [16] Among these methods, 

electrospinning is a simple and low cost method for synthesizing 1D V2O5 nanowires on a 

wide variety of substrates on a large scale with easy controllability and precise positioning. 

Combining 2D MoS2 with 1D V2O5 would be a step forward in the fabrication of novel 

broadband photodetectors which not only widen the range of absorbance in the 

electromagnetic spectrum but also increases the responsivity of the photodetector. 

Here, we demonstrate for the first time, the fabrication of flexible broadband photodetector 

(UV-NIR) by using novel 2D MoS2-1D V2O5 heterostructure wherein MoS2 was grown 

directly on Al foil using hydrothermal method followed by spin coating of electrospun V2O5 

nanowires to form heterojunction of 2D MoS2-1D V2O5. Due to absorbance of both V2O5 

nanowires and 2D MoS2 in visible regions, the fabricated photodetector displayed higher 

responsivity in visible region when compared to UV and NIR. Discrete distribution of 1D-

V2O5 nanowires over 2D-MoS2 nanoflakes allows for broadband absorbance wherein V2O5 

is responsible for UV-visible absorbance and MoS2 absorbs in visible-NIR. Further, 

fabricating contacts on 2D MoS2 allows for effective collection of photogenerated carriers 

thereby avoiding recombinations and traps. To the best of our knowledge, this report is a 
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first demonstration of flexible 2D-1D hybrid structure for broadband photodetector covering 

UV to NIR region with high responsivity. 

 

3.2. Results and Discussions 

2D MoS2 has been known for its broadband absorption from visible to NIR region. [3] 

Combining UV absorbing material with MoS2 would lead to hybrid material which can 

increase the absorbance from UV to NIR wherein the UV absorbing materials should be 

discretely placed such that both MoS2 and the hybrid material are exposed to the light 

illumination.  1D V2O5 is an ideal choice as it is known to have broadband absorbance from 

UV to visible. Moreover 2D-1D structures have inherent advantage compared to 2D-2D and 

2D-0D structure in formation of large area potential barriers which increases the 

responsivity of the photodetector. The key essence of such a hybrid is that both the materials 

are exposed to illumination such that both participate in the generation of photogenerated 

carriers. If a hybrid material is deposited uniformly over the base material then the 

absorbance of the base material would be affected leading to failure of the device working 

as broadband photodetector. In this work, 2D MoS2 was grown directly on Al foil using 

hydrothermal method and 1D V2O5 nanowires,  synthesized using electrospinning were 

spin coated on MoS2-Al foil wherein the parameters were tuned to obtain discrete 

distribution of V2O5 nanowires over 2D MoS2. Details regarding the synthesis and 

fabrication of the photodetector can be found in supplementary information (SI). Schematics 

demonstrating the synthesis and fabrication procedure is as shown in figure 3.1. 

To study the crystal structure of the synthesized MoS2 and V2O5, XRD analysis was 

performed. Figure 3.2a shows the XRD spectrum of MoS2-V2O5 wherein different 

diffraction peaks corresponding to both MoS2 and V2O5 were observed. Predominant peak 

of V2O5 was observed at 26.3° which corresponds to (110) plane. [17] Furthermore, other 

reflection peaks were observed at 15.3°, 20.2°, 21.7°, 31.1°, 32.3°, 34.3°, 41.3° and 44.4° 

corresponds to (200), (001), (101), (301), (011), (310), (002) and (501) respectively 

corresponds to the orthorhombic phase of V2O5 nanowire (JCPDS card No. 00-041-1426). 

[18] The peaks reveal highly crystalline nature of V2O5 nanowires which can be attributed to 

the calcination temperature of 400°C. Apart from that, diffraction peak at 11.3° was 

observed which corresponds to (002) plane of MoS2. [3] The other wide peak of MoS2 occur 

at 31°-34° but due to the presence of prominent peaks of V2O5, the peaks of MoS2 are 

suppressed and hence not visible. The diffraction peaks of MoS2 matches with JCPDS Card 

No. 37-1492. Peaks at 45.7°, 52.3° and 62.4° corresponds to reflection peaks of Al 
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corresponding to (111), (116) and (210) planes. [19] The presence of diffraction peaks of Al 

foil suggest that the Al foil substrate did not degrade during hydrothermal process. 

To further confirm the formation of 2D MoS2 and 1D V2O5, Raman spectroscopy was 

performed wherein distinct peaks for MoS2 and V2O5 were observed. Figure 3.2b shows the 

Raman spectra of pristine V2O5 and V2O5 deposited on MoS2.The vibrations at 145 and 

195cm-1 are due to the VO5 - VO5 modes [20]. Peak at 994 cm-1 corresponds to the doubly 

coordinated oxygen bonds (V=O) and 694 cm-1 peak can be attributed to triply coordinated 

oxygen bonds due to the stretching modes at atomic level. The Raman peak at 490 cm-1 

corresponds to the stretching mode of V-O3-V and the bending vibration of the V=O bonds 

are observed at 284 and 407 cm-1 modes [21] thereby confirming the formation of V2O5 

nanowires. The Raman spectra of MoS2-V2O5 has two additional peaks at 383 and 405 cm-1 

which corresponds to E12g and A1g mode respectively wherein E12gmode arises due to the 

in-plane vibrations of sulfur atoms with respect of molybdenum atoms and  A1g mode 

arises due to the out-of-plane vibrations of sulfur atoms in opposite direction. Further, the 

frequency separation between the E12g and A1g mode provides information regarding the 

number of layers of MoS2. In this case, the frequency separation between the peaks was 22 

cm-1 which suggest that the as grown MoS2 comprised of few layer MoS2 (less than 4 

layers) [3]. The extra peaks at 111 cm-1 and 244 cm-1 can be attributed to the â phase of 

V2O5 which might be induced due to the vigorous stirring of V2O5 in DMF [22]. Figure 3.2c 

shows the Raman spectra of pristine MoS2 wherein the E12g and A1g are clearly observed 

with the frequency separation of 22 cm-1. The defects in MoS2 can be quantified by the 

Raman spectroscopy wherein the broadening of the E12g and A1g peaks with the respective 

shifts is an indication of the defects in MoS2 [23]. In this case, E12g and A1g peak 

broadening was observed suggesting that the as grown MoS2 on Al foil possess defects.  

To study the morphology of the as grown MoS2 and the electrospun V2O5 nanowires 

FESEM analysis were performed. Figure 3.3a shows the low magnification FESEM image 

of MoS2 grown on Al foil wherein microsphere like morphology was observed. The growth 

of MoS2 on Al foil was uniform over large area of 3cm x 3cm. Figure 3.3b,c shows the high 

magnification FESEM of MoS2 wherein individual MoS2 nanoflakes were observed which 

aggregate to form MoS2 microspheres. Figure 3.3d shows low magnification FESEM image 

of 1D V2O5 nanowires discretely distributed over 2D MoS2 nanoflakes wherein both MoS2 

and V2O5 are visible. This is necessary for broadband absorbance as both the functional 

material would be exposed to the illumination. Figure 3.3e,f shows the high magnification 

FESEM image of 1D V2O5 distribution over MoS2 where 1D V2O5 covers majority area of 
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2D MoS2 which suggests the creation of large area potential barriers which are important for 

effective separation of photogenerated carriers.  

To further utilize the 2D MoS2-1D V2O5 hybrid for broadband photodetector, absorbance 

spectra for individual materials was obtained using UV-Visible-NIR spectroscopy wherein 

the UV-vis-NIR spectrum of 1D V2O5 nanowires where its exhibits strong absorbance in 

UV range (220-360 nm) where as weak absorption at visible region. Strong peak at around 

300 nm can be attributed to the charge transfer associated with V5+ and O2- which 

corresponds to the UV absorbance of the V2O5 [24]. There is an absorbance observed at the 

start of the visible spectrum at ~420 to 500nm which suggest that synthesized V2O5 

nanowires can be utilized as broadband photodetector covering UV and visible range. 

Optical bandgap of synthesized V2O5 was calculated to be 2.4 eV using Tauc’s plot which is 

consistent with previously reported literature [24]. Further, the absorbance spectra of 2D 

MoS2 was measured wherein two absorptions bands were observed in the range of 400 to 

500 nm and weak absorption in NIR range which further suggest that MoS2 can be utilized 

as broadband photodetector from visible to NIR region. Optical bandgap of synthesized 

MoS2 was calculated to be 1.53 eV. If both the materials are exposed to illumination and 

engineered to collect the photogenerated carriers then 2D MoS2-1D V2O5 hybrid can be 

utilized as a broadband photodetector covering wide range from UV to NIR. Graphs 

showing the UV-vis-NIR spectra of V2O5 and MoS2 and their corresponding Tauc plots can 

be found in Appendix A as figure S3. 

To study the electronic properties of the fabricated MoS2-V2O5 device, I-V characteristics 

were obtained in the range of -1V to 1V wherein results revealed ohmic contact. It should be 

noted that even though V2O5 nanowires are distributed over MoS2, contacts were taken from 

MoS2. This is important to collect the photogenerated charge carriers from both MoS2 and 

V2O5. If the contacts were taken from V2O5, photogenerated holes from V2O5 would be 

trapped in V2O5 leading to the degradation of the device performance. Photographic images 

of MoS2 grown on Al foil and the masked device for defining metal contact area can be 

found in Appendix A as figure S4. Prior to the photodetection experiments, devices were 

kept in dark for 12 hours so as to stabilize them. UV lamp (365 nm), visible (554 nm) and 

NIR (780 nm) were used for illumination. Figure 3.4a shows the I-V characteristic of MoS2-

V2O5 device wherein increment in the current with increasing intensity of UV light was 

observed. This can be attributed to the increase in the number of photogenerated charge 

carriers in V2O5 with increase in the intensity. In this case, V2O5 is UV responsive and MoS2 

is responsive to visible and NIR. Similar measurements were performed for visible and NIR 
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region and similar results were obtained wherein increasing the intensity of illumination 

increases the photocurrent as shown in figure 4c and figure 4e. Figure 3.4b shows the 

temporal response of fabricated device under different intensities of UV illuminations for 3 

cycles wherein the illumination was switched “ON” and “OFF” at repeated intervals.61 % 

increment in the normalized resistance was observed for the highest intensity (1.1 mW/cm2). 

Similar temporal studies were performed for visible and NIR illumination for different 

intensities as shown in figure 3.4d and figure 4f. 118 % increment was observed for visible 

illumination (3.1 mW/cm2) and 31 % increment was observed for NIR illumination (4.4 

mW/cm2) thereby suggesting that the fabricated device was more sensitive to visible 

illumination as compared to UV and NIR illumination. This can be attributed to the fact that 

both MoS2 and V2O5 have absorption in visible region thereby generating more 

photogenerated carriers under visible illumination. It should be noted that the response of 

the device is slow which can be attributed to the defects introduced in MoS2 during 

hydrothermal growth as quantified by Raman spectroscopy. 

Responsivity and external quantum efficiency are the important parameters of a 

photodetector in terms of performance and figure of merit. Responsivity is the measure of 

the photocurrent generated per unit power of incident light per area and External Quantum 

efficiency (EQE) which is the number of electrons produced per incident photon and are 

given by the following equations [26]. 

 

 

EQE = hc X Rλ /eλ 

 

Figure 3.5a shows the responsivity of the fabricated device under UV, visible and NIR 

illumination at different intensities wherein highest responsivity was observed for visible 

light further suggesting the fabricated device was more responsive towards visible light 

when compared to UV and NIR illumination. Figure 3.5b shows the EQE values of the 

fabricated device with different intensities. Figure showing the spectral response can be 

found in Appendix as figure S5. The reason for the higher responsivity towards visible 

illumination may be attributed to the fact that both MoS2 and V2O5 have absorption in 

visible region as evident from absorbance spectra. Hence in visible region, both MoS2 and 

V2O5 participate in the generation of carriers, while in UV region only V2O5 and in NIR 
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region only MoS2 is responsible for generation of electron-hole pairs. It should be noted 

here that the major contribution of the photogenerated carriers is from V2O5 and not from 

MoS2 as most of the area of MoS2 is covered by 1D V2O5 nanowires. It is well known fact 

that MoS2 absorbs in visible region but in this case, due to the less coverage of MoS2 

towards visible light illumination as evident from FESEM image the contribution of MoS2 

towards visible light was less when compared to V2O5. This was further verified by 

measuring the response of pristine V2O5 under UV and visible light illumination wherein 

responsivity of 29.4mA/W and 32.6 mA/W was observed respectively. Graph showing the 

response and responsivity of pristine V2O5 under both UV and visible illumination can be 

found in Appendix A as figure S6. Also, V2O5, being n type material forms local unipolar 

heterojunction with n type MoS2. Hence V2O5 plays dual role of absorbing in UV and 

visible range but also helps in the formation of local electric field due to the potential barrier 

at the MoS2-V2O5 which helps in effective separation of photogenerated carriers thereby 

increasing the responsivity of the fabricated photodetector. To compare the performance of 

MoS2-V2O5 with their pristine counterparts, photodetector measurements were performed in 

their respective absorbance region and the results revealed that the MoS2-V2O5 

photodetector was more responsive than their individual counterparts. This can be attributed 

to the absence of local electric field in the pristine MoS2 or V2O5 wherein the electric field 

are only present at the 2D MoS2-metal and 1D V2O5-metal contact and absent in the areas 

far away from the contact areas. Due to the absence of local electric field at the areas far 

away from the metal contacts, photogenerated carriers tend to recombine thereby decreasing 

the responsivity. Figure showing the response of pristine MoS2 can be found in Appendix A 

as figure S5. To test the durability of the flexible photodetector under bending conditions, 

photodetector performance was measured under repeated bending conditions. The device 

was bent for specific number of cycles and device was tested for its photodetector 

performance in terms of its responsivity. Figure 3.5c shows the graph of MoS2-V2O5 device 

under 500 bending cycles showing negligible difference in the responsivity values 

suggesting that the fabricated device is highly durable and stable under bending conditions.  

The transport mechanism of 2D MoS2-1D V2O5 broadband photodetector can be best 

explained by energy band diagram of MoS2-V2O5 as shown in figure 3.5d. Electron affinity 

of MoS2 is 4eV and that of V2O5 is 4.3 eV. Optical bandgap calculated from the absorbance 

spectra for MoS2 and V2O5 is 1.53 eV and 2.4 eV respectively. When V2O5 nanowires are 

drop casted on MoS2, electrons from V2O5 flow towards MoS2 which results in the 

alignment of fermi level thereby reaching equilibrium. In case of pristine V2O5, under UV 
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and visible illumination, photogenerated carriers tend to recombine which would hinder the 

performance of the photodetector. Hence, the need of MoS2 as a transport layer arises whose 

energy levels are adjusted such that the recombination in pristine V2O5 is avoided and the 

photogenerated carriers can be easily collected at the metal contacts. Under UV 

illumination, when the energy of the incident illumination is more than the bandgap of 

V2O5, photogenerated electron-hole pairs are generated and due to the presence of MoS2 as 

transport layer whose conduction band lies lower than the conduction band of V2O5, the 

photogenerated electrons transport to MoS2. Since both the contacts are on MoS2, 

photogenerated electrons and holes are captured by metal contacts. Also, V2O5 being n type 

material and MoS2 being n type, local electric fields are generated at the MoS2-V2O5 

unipolar junction and since there are many such small potential barrier created which 

cumulatively add up which assist in the effective separation of photogenerated electron hole 

pairs thereby increasing the photocurrent. Under visible light illumination, electron-hole 

pairs are generated both in MoS2 and V2O5 as both the materials have absorbance in visible 

range. Since most of the area of MoS2 is covered by V2O5 nanowires, most of the 

absorbance process happens in V2O5 and hence V2O5 is dominant in photogeneration of 

carriers in visible region. The photogenerated electron hole pairs generated in V2O5 follow 

the same transport mechanism as discussed for UV light illumination. But in case of visible 

light illumination, photogenerated electron hole pairs are also generated in MoS2 which 

might recombine with the electron hole pairs generated in V2O5 and eventually gets 

transported to MoS2. Even though there might be some recombination of charge carrier in 

MoS2, due to the applied external field and local electric fields generated due to the 

difference in fermi levels of MoS2 and V2O5, most of the photogenerated electrons and holes 

gets transported to the metal contact thereby increasing the photocurrent drastically. Hence 

the responsivity is more in visible light illumination when compared to UV and NIR 

illumination for the fabricated device. Under NIR illumination, photogenerated electron-

hole pairs are generated in MoS2 which gets transported to the metal contacts as discussed 

for UV and visible illumination. The responsivity observed for NIR illumination was very 

less which can be attributed to the fact that the major portion of the MoS2 is covered by 

V2O5 nanowires and hence absorbance process occurs in the limited exposed portion of 

MoS2.  

There are various reports on flexible photodetectors fabricated using various pristine 2D, 1D 

and 0D functional materials and their hybrids. Um et al., fabricated 2D MoS2-1D CuO 

heterojunction based on a wet transfer printing of MoS2 for enhanced photodetection [27]. 
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Han et al., reported low temperature synthesis of 1D ZnO on 2D graphene for 

photocatalytic applications [28]. There are reports on various devices based on 2D ZnO over 

2D Graphene [4], 2D Graphene-2D MoS2 [29], ZnS nanospheres over 2D MoS2 [3] for 

enhanced optoelectronic performance. Liet al., reported CVD grown 1D Bi2S3 nanowire and 

2D MoS2 heterostucture and utilized it for transistor and photodetector applications [30]. 

Kim et al., fabricated V2O5-ZnO hybrid for visible light photodetector. [31] Most of the 

reports on 2D material hybrids fabricate heterojunctions which can improve the responsivity 

in particular region of electromagnetic spectrum (UV, visible or NIR), but there are fewer 

reports which studies the detection over a wide range of electromagnetic spectrum. Further, 

synthesis of MoS2 is mostly performed using CVD which involves post transfer process 

thereby leading to device to device variation. Also, direct growth of MoS2 on flexible 

substrates still remains a challenge. Table 1 lists down the comparative performance of 

flexible broadband photodetector based on 2D material hybrids. Herein, we utilize a simple 

strategy to synthesize suitable hybrids (1D V2O5 over 2D MoS2) where both the material are 

exposed to illumination which can absorb over a wide range of electromagnetic spectrum 

and engineer metal contacts to collect the photogenerated carriers. The use of simple 

solution processed hydrothermal method for direct large area uniform growth of few layer 

MoS2 on Al foil and electrospinning for synthesizing 1D V2O5 avoids the use of transfer 

process involved in CVD process and reduces the overall complexity and cost. The method 

presented is scalable and can be extended to numerous functional materials of choice. The 

work presented here is a novel approach for designing and fabricating heterostructure for 

enhanced broadband photodetectors. 

3.3. Conclusion 

In summary, we demonstrate for the first time, electrospun 1D V2O5 nanowires on 2D MoS2 

nanosheet grown directly on Al foil by simple solution processed hydrothermal method. 

Discrete distribution of 1D V2O5 nanowires on 2D MoS2 and metal contacts on 2D MoS2 

enables for broadband absorption from UV to NIR. Since both V2O5 and MoS2 possess 

absorbance in visible region, the fabricated photodetector was more responsive to visible 

illumination when compared to UV and NIR. Responsivity in UV, visible and NIR was 

calculated to 41.5 mA/W, 65.1 mA/W and 29.4 mA/W respectively. This work provides a 

new approach towards broadband photodetector wherein fabrication of conventional 

photodiode is replaced by discrete distribution of 1D material over 2D where both the 

materials participate in absorbance and also forms local heterojunction (p-n junction) 
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thereby allowing not only broadband photosensing but also increased responsivity of the 

fabricated photodetector. The presented strategy is a major step ahead in the fabrication of 

broadband photodetectors which finds potential applications in the field of optoelectronics 

devices, security and medical healthcare applications. 

3.4. Experimental Section 

Synthesis of MoS2 on Al foil: Aluminum foil as the substrate was utilized for the 

hydrothermal growth of MoS2. The seed solution was prepared by mixture of 10mM of 

sodium molybdate (Na2MoO4.2H2O) and 20mM of thiourea (CH4N2S) in deionized (DI) 

water. The Al foil substrate was dipped in as-prepared seed solution for 1 h followed by 

drying at 80 °C. A nutrient solution comprising of 50mM sodium molybdate and 100 mM 

thiourea was stirred in DI water for 30 min. Thereafter, the seed-coated Al foil paper and the 

nutrient solution were transferred to the hydrothermal reactor and was maintained at 200 °C 

for 20 h. The reactor was allowed to cool down naturally and the resultant black colored 

aluminum foil was dried at 80 °C. 

Electrospinning of V2O5 nano fibers: 0.4g of polyacrylonitrile (PAN) polymer was 

dispersed in 5ml of N,N–dimethylformamide (DMF) solution (8 wt. %), followed by the 

addition of 0.5g of Ammonium metavandate to form a uniform viscous solution ready for 

electrospinning. The solution was loaded into syringe and electrospinning was performed 

with direct current voltage of 12KV between the needle tip and the Al foil collector 

separated by a distance of 10cm. The flow rate of the polymer solution was fixed at 

8µL/min. The collected V2O5 nanowires over the Al foil were calcined at 400ºC for 2hrs.  

Fabrication of Photodetector: The as grown MoS2 on Al flexible substrate was cut into 7 

mm x 7mm dimension. MoS2-Al foil was then masked with polyimide tape at the end which 

would serve as the contact area on MoS2. V2O5 nanowires dispersed in DMF solution was 

then spin coated on MoS2-Al foil. It should be noted here that the spin coating parameters 

are tuned to obtain discrete distribution of 1D V2O5 nanowires on 2D MoS2. The mask was 

then removed followed by defining the contacts with silver (Ag) paste.  

Materials and Characterization: Sodium molybdate, Thiourea, Polyacrylonitrile and 

Ammonium metavandate were purchased from Sigma-Aldrich and were used as received 

for the growth of MoS2-V2O5 hybrids. The structural characteristics of the prepared 

hybrids were investigated using X’pert PRO XRD with Cu Kα radiation. Raman spectra 

were obtained from Raman spectrometer (SenterrainVia opus, Bruker) having an excitation 
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wavelength of 532 nm. FESEM analysis was performed by ZEISS Ultra-55 SEM to study 

morphology. UV–visible–NIR spectra were obtained using LAMBDA UV/Vis/NIR 

spectrophotometers (PerkinElmer). The electrical measurements were carried out with 

Keithley 4200 SCS instrument. The as-fabricated devices were tested for broadband 

photodetector application on illuminating UV, visible, and IR radiations. The lamp sources 

utilized for UV, vis, and IR illumination had a wavelength (λ) of 365, 554, and 780 nm, 

respectively. 
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Figure 3.1: Schematic of the fabrication procedure for discretely distributed 1D V2O5 

nanowires over 2D MoS2 as a broadband photodetector. 
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Figure 3.2: a) XRD diffractogram of 1D V2O5 nanowires over 2D MoS2 nanosheets b) 

Raman spectra of 1D V2O5 nanowires over 2D MoS2 nanosheets c) Raman spectra of MoS2 

showing the frequency separation of 22 cm-1.   
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Figure 3.3: a) Low magnification FESEM image of MoS2 grown on Al foil b,c) high 

magnification FESEM image of MoS2 on Al foil demonstrating microsphere like 

morphology and individual MoS2 nanoflakes d) Low magnification FESEM image of 1D 

V2O5 over 2D MoS2 wherein discrete distribution of V2O5 nanowires over MoS2 is clearly 

observed e,f) high magnification FESEM image of V2O5 over MoS2 showing large area 

coverage of V2O5 
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Figure 3.4: a) IV characteristic of MoS2/V2O5 under different intensity of UV illumination 

b) temporal response of MoS2/V2O5 under different intensities of UV illumination c) IV 

characteristic of MoS2/V2O5 under different intensity of visible illumination d) temporal 

response of MoS2/V2O5 under different intensities of visible illumination e) IV characteristic 

of MoS2/V2O5 under different intensity of NIR illumination f) temporal response of 

MoS2/V2O5 under different intensities of NIR illumination 
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Figure 3.5: a) Responsivities v/s different intensities of UV, visible and NIR for MoS2/V2O5 

showing highest responsivities for visible illumination b) EQE v/s different intensities of 

UV, visible and NIR for MoS2/V2O5 showing highest responsivities for visible illumination 

c) Responsivities v/s bending cycles under UV, vis and NIR showing negligible change d) 

Energy band diagram showing the charge transport mechanism of MoS2/V2O5 under 

illumination. 
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Table 3.1: Comparative table for performance of different flexible broadband photodetectors 

based on 2D materials and their hybrids 
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Chapter 4 
 

   2D MoS2-carbon quantum dot hybrid 

based large area, flexible UV-vis-NIR 

photodetector on paper substrate  

 

Abstract 

While all reports on 2D-0D hybrid photodetectors are on silicon substrate and based on 

heavy metals quantum dots exhibiting limited range detection, this paper is the first 

demonstration of 2D MoS2-carbon quantum dot (CQD) based flexible broadband 

photodetector (PD) wherein MoS2 was grown on cellulose paper using hydrothermal 

method and CQD was synthesized using a low cost, one step pyrolytic process of chia seeds. 

The absorbance of CQD in UV region combined with the broadband absorption of MoS2 in 

visible and NIR region broadens the absorbance range. Structural characterization revealed 

few layered MoS2 and CQD to be in the range of 2 - 6nm. Responsivity for the fabricated 

sensor was found to be 8.4, 2.62 and 18.12 mA/W in UV, NIR and visible region 

respectively which are comparable and even better compared to photodetector fabricated 

using sophisticated cleanroom techniques. The PD showed negligible variation in 

photoresponse under repeated (up to 500 cycles) bending conditions. Discrete distribution of 

CQD over MoS2 creates unipolar junctions which helps in generation of small local electric 

fields thereby increasing the sensitivity of the sensor. The work presented here is a major 

step ahead in fabrication of low-cost flexible broadband photodetectors which finds 

potential applications in the field of flexible and wearable electronics, security and 

surveillance systems etc. 

 

4.1. Introduction 

Flexible broadband photodetectors are highly desirable for various potential 

applications such as imaging, optical communications and flexible sensors for 

wearable electronics. Recently, much research on photodetectors has been to 
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increase the responsivity in a particular region of the electromagnetic spectrum (UV, 

visible or IR). In view of above, synthesizing hybrid with high carrier mobility 

material has been the keen focus. But the other issue is the inability of the 

photodetector to absorb wide range of electromagnetic spectrum. There are reports 

wherein hybrids have been synthesized to increase the absorbance from UV to 

visible or from visible to NIR, but there are less reports which discuss the 

absorbance in the entire range of electromagnetic spectrum. Hence there is need to 

fabricate photodetectors using hybrid materials which would absorb and sense light 

in the entire electromagnetic spectrum. 

Recently 2D materials are intensely studied due to their remarkable properties which 

finds potential applications in the field of flexible and wearable electronics [1]. 

Among them, transition metal dichalcogenides (TMD) has proven to be noteworthy 

because of their strong excitonic effects, optical transparency, mechanical flexibility, 

layer dependent bandgap, tuneable optical properties and high breakdown voltages 

[2-4]. Molybdenum Disulphide (MoS2) has been the most explored among the TMD 

family because of its direct bandgap, high electron mobility (up to 480 cm2 V-1S-1) 

and superior on/off ratio [5] thus making it a better candidate over existing materials 

such as silicon, organic semiconductors and oxide semiconductors which possess 

low carrier mobilities in the field of flexible electronics [6]. 

Carbon dots are zero-dimensional quasi-spherical nanocarbons containing 

amorphous to a crystalline core with graphitic or turbostratic carbon (sp2) fused by 

diamond-like sp3 carbon insertions [7]. The synthesis of carbon dots can be 

primarily classified into top down and bottom up approaches. While the top down 

approach involves the exfoliation of large carbon structures into nanocarbon 

followed by post treatment, the bottom up approach makes use of carbon-rich 

molecular precursors which would be subjected to thermal decomposition [8]. Ever 

since its discovery, the research on carbon dots has been upbeat because of its 

remarkable properties like excellent solubility, ease of functionalization, chemical 

inertness, photoluminescence, low cytotoxicity and resistance to photobleaching 

compared to its 1D counterparts [9-10]. These properties of carbon dots facilitate its 

usage in numerous applications like optoelectronics, bioimaging, drug delivery, 
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photovoltaics, biosensing and solar cells [11-14]. To further enhance the scope of 

applications of pristine CQD, hybrids of CQD have been synthesized with various 

2D materials such as MoS2, metal oxides etc. for applications such as solar cell, 

supercapacitor, sensors etc. Although, carbon dots possess high photogenerated 

carrier mobility, tuneable bandgap, a bifunctional electron donor and acceptor 

capability and high molar extinction coefficient [15, 16], the reports on 

photodetectors using carbon dots are relatively few [17 - 19]. 

There are various reports on broadband photodetectors based on different hybrid 

structures which are fabricated on rigid silicon substrate or flexible plastic 

substrates, which make use of sophisticated cleanroom techniques that are not only 

expensive and time consuming but also energy inefficient.[20-21]  Moreover, all 

flexible substrates are not microfabrication compatible. Hence there is a need to 

develop solution process wherein different substrates properties could be utilized for 

the development of fabrication of flexible devices. Recently, there have been active 

research on paper based electronics due to its excellent properties such as highly 

flexible, low cost and biodegradability which allows them for its use in flexible and 

wearable electronics [22]. There have been reports which utilizes paper as a 

substrate for numerous applications such as photodetectors, solar cell, 

supercapacitor, batteries transistors etc [23-26]. Despite the advantages offered by 

cellulose paper substrates, direct growth of 2D materials and functionalizing them 

with CQD on cellulose paper still remains unexplored.  

In this work, we report the fabrication of flexible broadband photodetector based on 

2D MoS2-CQD hybrids on cellulose paper. 2D MoS2 have been grown directly on 

cellulose paper using simple cost effective solution processed hydrothermal method. 

Carbon dots has been synthesized by a green, single step, pyrolytic approach to 

circumvent disadvantages of conventional synthesis procedures such as expensive 

precursors, complicated post-treatment [27] approaches and low yield, by utilizing 

an environmentally benign route. The device was fabricated by masking MoS2-

cellulose paper on two ends followed by drop casting of CQD solution. CQD was 

responsible for absorbance in UV region and 2D MoS2 was responsible for 

absorbance in visible and NIR region. Discrete distribution of CQD on MoS2 helped 
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in realization of broadband photodetector wherein both CQD and MoS2 could be 

exposed to incident light. Further, distribution of CQD on MoS2 forms unipolar 

junctions which creates small electric field thereby assisting photogenerated 

electron-hole separation. To best of our knowledge, this is a first demonstration of 

2D MoS2-CQD based flexible broadband photodetector. 

4.2. Results and Discussions  

2D MoS2 has been known for its broadband absorption in visible and NIR region. To extend 

the absorption region in UV, there have been attempts to synthesize hybrids of UV 

absorbing materials with MoS2. CQD absorbs in UV range and the functional groups of 

CQD assist in forming hybrid with MoS2, thus facilitating broadband absorption. The reason 

for less reports on absorption in broad range of electromagnetic spectrum is lack of 

synthesizing suitable hybrids wherein both the materials should be exposed to the 

illumination and the device fabrication where the placement of metal contacts plays an 

important role in capturing the photogenerated electron-hole pairs. In this work, discrete 

distribution of CQD on MoS2 and the fabrication of metal contacts on MoS2 allowed for the 

broadband absorption. Hydrothermal method was employed for the growth of MoS2 on 

cellulose paper and one step pyrolytic process was utilized for the synthesizing CQD using 

chia seeds. The growth of MoS2 on cellulose paper and the synthesis of CQDs can be found 

in a recent report from our lab [28-29]. Detailed fabrication procedure of 2D MoS2-CQD 

hybrid photodetector can be found in experimental section and schematic of the fabrication 

procedure is shown in figure 4.1. 

To study the crystal structure of as fabricated MoS2 and CQD, XRD analysis was performed 

where the diffractogram of carbon dots is showcased in figure 4.2a. The presence of peaks 

at 25.5°, 43.72° signifies the presence of (002) & (101) facets of the graphitic carbon.[30] 

The corresponding d spacing value for the peak centered at 25.5° was found to be 0.348 Å 

which was a little higher than the value of bulk graphite. The increased interplanar spacing 

observed in carbon dots could have been due to the presence of functional groups at the 

edges or turbostratic stacking of carbon structures [31]. In the XRD of MoS2-CQD as shown 

in figure 2b, the presence of MoS2 in the nanohybrids can be confirmed by the presence of 

four signature peaks in XRD spectra at 2θ = 12.5 (002), 33 (100), 38 (103), 57(110) 

respectively [32]. The broadening of peaks was due to the utilization of lower temperature 

(200°C) for the growth of MoS2 on paper which has led to a reduction in crystallinity [33]. 

The synthesis temperature for the growth of MoS2 was optimized so as to maintain the 
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flexibility of the substrate. Moreover, there was a consequent reduction and increase in the 

intensity of (002) and (100) planes of MoS2 denoting that the synthesized products were 

few-layered MoS2 consisting of a large number of edge planes [34, 35]. 

To further confirm the formation of hybrid, Raman analysis was performed. The Raman 

spectra of MoS2 has two peaks centered at 383 and 405 cm-1 corresponding to the E12g and 

A1g mode respectively as shown in figure 4.2c. The in-plane E12g mode arises due to the 

oscillation of sulphur atoms with respect to the molybdenum atoms in-between them, 

whereas A2g denotes the out-of-plane vibration of sulphur atoms along in opposite 

directions [36]. Moreover, the prominence of these peaks indicates that the crystal structure 

of synthesized MoS2 was not damaged by the presence of sulphur vacancies [37]. Moreover, 

it is possible to quantify the number of layers of prepared MoS2 by calculating the frequency 

difference between the two modes observed in Raman spectra. From the calculated 

difference (∆=22), it can be inferred that the synthesized MoS2 were comprised of few (<4) 

layers [38]. Whereas, the Raman spectra of carbon dots exhibits two discernible peaks at 

1331 cm-1 and 1584 cm-1 respectively as shown in figure 2d. The presence of D band is due 

to the vibrations of carbon atoms with dangling bonds along the termination plane of 

disordered graphite, whereas, G band is associated with the vibration of sp2 hybridized 

carbon atoms along the two-dimensional hexagonal lattice [39]. Also, the existence of both 

sp2 and sp3 hybrids in the prepared material suggests the amorphous nature of the material 

[40]. The ID/IG ratio was calculated to be 1.27 for the prepared sample. In addition, ID/IG 

ratio can be used to quantify the defect density of prepared carbon material. The increase in 

ratio observed was the consequence of surface oxidation of the synthesized products, which 

can be further corroborated by the presence of oxygenated functional groups in the 

presented FTIR spectra [41]. 

The morphology of synthesized MoS2/CQD hybrid was studied using FE-SEM and TEM. 

As evident from figure 4.3a, the growth of few layered MoS2 nanosheets was conformal on 

the top of closely packed fibers of cellulose without modifying its inherent morphology. 

Figure 4.3b shows the high magnification image of MoS2-cellulose paper wherein the 

presence of ripples in nanosheets suggests the ultrathin nature of MoS2. Also, the geometry 

of sheet edges can be correlated with the crystallinity of MoS2 and thus the presence of 

sharp edges, suggests the improved crystallinity of the products [42, 43]. The prepared 

carbon dots were imaged using TEM to study about its particle size and shape. Figure 3c 

denotes the uniform distribution of spherical carbon dots with sizes ranging from 2 – 6 nm. 

These nanosized carbon dots were well-dispersed and distributed evenly without showing 
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any signs of aggregation as shown in figure 4.3d.The elemental mapping of MoS2-CQD 

hybrids was performed to understand the spatial distribution of CQD on the surface of MoS2 

as shown in figure 4.3e. As expected, carbon dots were discretely spread along the surface 

of MoS2. The discrete distribution of CQD on MoS2 is important for broadband absorption 

as MoS2 can be exposed to illumination. If the entire MoS2 would have been covered with 

CQD would led to the development of UV photodetector with very less response towards 

visible and NIR illumination. 

For photodetector application, it is important to study the absorption spectra of individual 

materials. The UV-Vis spectra consist of two absorption peaks which are typically observed 

for carbon dots as shown in figure 4.4a. The absorption at 280 nm can be attributed to the π- 

π* transition of the conjugated C=C structure. Whereas, the broad shoulder peak at 345 nm 

was due to n- π* transition of the surface functional groups [44]. The Full width half 

maximum (FWHM) was calculated to be 126 nm. The high value of FWHM could 

attributed to the presence of multiple emissive sites arising from the emission induced by 

graphitic core and its surface functionalities [45]. The UV spectra of MoS2 comprise of two 

absorption bands wherein the optical transitions between the higher densities of state 

regions gives rise to the peaks from 400 to 450 nm as shown in figure 4.4b. There was also a 

weak absorption at 600 – 700 nm which was due to the interband excitonic transitions at K 

point of the 2D Brillouin zone of MoS2. [46] 

The surface potential of synthesized carbon dots was analysed using Zeta potential analyzer 

at neutral pH and room temperature. The zeta potential of the prepared carbon dots was 

found to be -26.6 mV. The net surface charge is negative due to the presence of abundant 

oxygenated functional groups on the surface of prepared carbon dots which is also reflected 

in the FTIR spectra [47]. 

The growth of layered MoS2 was initiated by the aggregation of MoS2 nanoparticles formed 

during the seeding process of hydrothermal. At elevated temperatures, these agglomerated 

nanoparticles transform into petals. These petals form flower-like architectures due to van 

der Waals attraction between individual sheets [48, 49]. However, irrespective of the 

synthesis strategy for MoS2, sulfur vacancy is the predominant type of point defect found in 

MoS2 [25]. Such point defects can be utilized for synthesizing composites with CQD having 

surface functional groups which can be linked to the sulfur vacancy sites.[50] Figure 4.4c 

shows the FTIR spectra of pristine CQD wherein the peaks at 1680, 1368, 3250, 1640, 1529 

and 1236 cm-1 corresponds to C=O, COOH, O-H, H-O-H, C=C, C-O-C molecular 
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vibrations.[51-56] These results suggests that the surface of carbon dots consists of various 

functional groups. These functional groups gets linked to the sulfur vacancy thereby 

forming MoS2-CQD hybrid. 

To study the behavior of fabricated MoS2-CQD device under different light illumination, I-

V studies were performed using Ag paste as contacts. It should be noted that the masking 

process allows the contacts to be on MoS2 and not on CQD thereby creating ohmic contacts. 

Prior to the illumination studies, the devices were kept in dark for 12 hours to stabilize the 

device. Illumination wavelength of 365nm, 554nm and 780 nm were used to study the 

photodetection performance. Figure 4.5a shows the I-V characteristic of MoS2-CQD hybrid 

with different intensities of UV light wherein increase in the current was observed with 

increasing intensity. This could be attributed to the more number of photogenerated 

electron-hole pair upon increasing of intensity. The same was repeated for visible and NIR 

illumination and similar increase in the current was observed upon increase of intensity as 

shown in figure 4.5c and figure 4.5e respectively. 

To check the repeatability of the photodetector, temporal response was measured under 

repeated UV, visible and NIR illuminations. Figure 5b shows the temporal response of the 

MoS2-CQD device under UV illumination for 3 cycles wherein the illumination were turned 

“on” and “off” at repeated intervals. Further, the photodetector was subjected to different 

intensities where increase in the current levels were observed.  The results indicate excellent 

repeatability of the sensor where the photodetector regained its initial resistance value upon 

turning “off” the illumination. Experiments were performed for visible and NIR 

illumination wherein similar results were observed as shown in figure 4.5d and figure 5f. 28, 

61 and 52 % increase in normalized resistance was observed for UV, visible and NIR 

region, further suggesting that the photodetector is more sensitive towards visible light 

compared to UV and NIR illumination. It should be noted that even though different 

intensities were used for measurements, responsivity was calculated for similar intensities, 

highest responsivity was calculated for visible, thereby confirming the sensor to be more 

responsive towards visible light.   

The important parameters for evaluating the photodetector performance are Responsivity 

which is the measure of the photocurrent generated per unit power of incident light per area 

and External Quantum efficiency (EQE) which is the number of electrons produced per 

incident photon. The responsivity and EQE are given by following equations 
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EQE = hc X Rλ /eλ 

 

Figure 6a shows the graph of responsivity with different illumination intensity wherein 

increase in the value of responsivity was observed with increasing intensity. Responsivity 

values observed were respectively inferring that photodetector was more responsive to 

visible light followed by UV and NIR illumination. Figure 4.6b shows the graph of EQE 

with different intensities. The responsivity and EQE values calculated are comparable and 

even better to some of the reports on flexible photodetectors fabricated using sophisticated 

cleanroom techniques. It should be noted that even though CQD are deposited on MoS2, 

responsivity and EQE values are found to be larger for visible light illumination due to the 

discrete distribution of the CQD on MoS2. This allows for more exposed area of MoS2 

towards illumination. This is in agreement with UV-vis-NIR spectroscopy data wherein 

more absorbance was observed in visible region compared to NIR region. The discrete 

distribution of CQD not only allows MoS2 to be exposed to illumination but also helps in 

creating local unipolar junctions with MoS2 which generated local electric fields, thereby 

assisting for effective separation of photogenerated charge carriers. In case of pristine MoS2, 

electric fields are generated only at the metal-MoS2 contacts and there is no electric field 

generated in the areas far away from the metal contacts. When light is illumination on 

pristine MoS2, the photogenerated electrons near the metal-MoS2 interface will be collected 

by the metal contact and the photogenerated electrons away from the metal-MoS2 are likely 

to be recombined due to the low mobility of MoS2 caused by the cellulose paper substrate. 

Therefore, in case of pristine MoS2, the response is due to the photogenerated electrons near 

the metal-MoS2 interface which exhibits low responsivity and sensitivity when compared to 

MoS2-CQD hybrid photoresponse.  Figure showing the response of pristine MoS2 on 

illumination of visible and NIR illumination can be found in Appendix A as figure S8.  

The performance of broadband photodetector was evaluated in terms of response time 

wherein the step input of the visible light was illuminated and the time taken to reach from 

10% to 90% of the maximum value was calculated. The as fabricated photodetector was 

found to have a response time of 0.57 sec as shown in figure 4.6c. The measured value of 

response time is comparable and even better to some of the photodetectors fabricated on 

different flexible substrates. It should be noted that the response time values are less 
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compared to the reports.[57] The reason for low response time can be attributed to the paper 

substrate which being a dielectric material decreases the mobility of the charge carriers. 

Further, discrete distribution of CQD on MoS2 leads to improper band alignment which 

further increases the scattering thereby decreasing the mobility of the photogenerated charge 

carriers. It should be noted that the discrete distribution is necessary for broadband detection 

as it’s required for MoS2 to be exposed to visible light which would have not been possible 

if CQD are uniformly distributed. Uniform distribution of CQD on MoS2 would hinder the 

absorbance of MoS2 in visible and NIR region. Further the performance of the device was 

evaluated under several bending cycles. The fabricated device was attached to another paper 

substrate and bending was performed manually. After specific bending cycles, the device 

performance was measured for UV, visible and NIR illumination. Figure 4.6d shows the 

graph of responsivity with bending cycles wherein negligible performance in the MoS2-

CQD broadband photodetector was observed demonstrating the robust nature of the 

fabricated flexible photodetector. 

The transport mechanism of MoS2-CQD in UV-vis and NIR region can be well understood 

by energy band diagram and the charge transport schematic as shown in figure 4.7. The 

electron affinity of CQD and MoS2 is respectively. When CQD was drop casted and dried 

on MoS2 thereby reaching equilibrium conditions, electrons from CQD flow towards MoS2 

which results in alignment of fermi level. Under UV light illumination, absorption of 

photons by localized π electrons results in electron-hole pairs. Radiative recombination of 

these photogenerated electrons results in the blue emission. In case of pristine CQD in 

solution, under UV illumination, shows blue emission inferring that radiative recombination 

occurs as shown in figure. Hence in case of pristine CQD, the photogenerated electron-hole 

pair would tend to radiatively recombine which would hinder the performance for 

photodetector performance. Hence there is a need for MoS2 as transport material whose 

energy levels are well adjusted such that the radiative recombination is avoided and the 

photogenerated electron-hole pair can be easily captured. In this case, due to the presence of 

MoS2, whose conduction band lies lower than the LUMO of CQD and VB lies above the 

HUMO, the photogenerated electron-hole pair transports to MoS2. Since both the contacts 

are on MoS2, due to external applied electric field and the electric field generated due to the 

unipolar junction created between MoS2 and CQD, electron-hole pairs get separated. Even 

though CQD are found to be electron donor by zeta potential measurements, the fermi level 

difference between MoS2 and CQD favours the formation of unipolar junctions whose 

barrier potential would be the difference between the fermi levels of MoS2 and CQD. 
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Moreover, there are many such unipolar junctions which cumulatively add up and helps in 

creating effective electric field thereby assisting for electron-hole separation and increasing 

the photocurrent. It should be noted that if one of the contacts would have been taken from 

CQD, then photogenerated holes would have been trapped in MoS2 which might have led to 

recombination of photogenerated electrons. For visible and NIR illumination, electron-hole 

pair are generated in MoS2 wherein the presence of extra electrons causes a change in fermi 

level which further increases the barrier height of MoS2-CQD. The increase in barrier height 

helps in avoiding the recombination of photogenerated electron-hole pair. Because the CB 

of MoS2 is less than LUMO of CQD and also VB of MoS2 is higher than HUMO of CQD, 

the photogenerated electrons remains in MoS2 and gets transported to metal contacts due to 

the applied external electric field and local electric field generated due to the barrier 

potential created between MoS2 and CQD. Even though CQD is discretely distributed on 

MoS2, there is larger portion of MoS2 exposed to illumination which leads to higher 

responsivity values under visible illumination. So the role of CQD is two-fold: to absorb in 

UV range and creation of local electric fields which helps in efficient charge separation 

under visible and NIR illumination.  

There has been recent reports on the fabrication of 2D-0D photodetectors featuring hybrids 

of MoS2-PbS, MoS2-HgTe, MoS2-CdSe, WSe2-PbS, and graphene-PbS [58- 62]. But, the 

quantum dots used for sensitization in all these cases are heavy-metal based limiting their 

usage in many applications because of their inherent toxicity even at low concentrations [7]. 

Furthermore, all the above report’s usage of inorganic rigid substrates such as SiO2 makes it 

difficult for its integration into flexible and wearable electronic applications. Table 1 

displays a comparative reports on 2D-0D hybrid broadband photodetectors based on 

toxicity, substrate and the range of detection of electromagnetic spectrum wherein it is 

observed that most of the reported literature has limited range detection. Although MoS2 

with tailored size and thickness could be realized using CVD, the processing conditions like 

high temperature and limited choice of substrates imposes challenges for its large-scale 

production and practical applications [63]. Moreover, CVD growth is followed by transfer 

process and defining the metal contacts using electron beam lithography which not only 

leads to device to device variation in performance but also is expensive and time 

consuming. Herein, we utilize low cost cellulose paper as a substrate for device fabrication 

and simple solution processed hydrothermal method for direct growth of MoS2 on cellulose 

paper. Further, hybrid of MoS2-CQD was fabricated by drop casting CQD solution 

synthesized by natural chia seeds. The growth process can be extended to large area as well 
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as other functional materials of choice. Thus the work presented here is a major step ahead 

in fabrication of low cost flexible 2D-0D broadband photodetectors. 

4.3.       Conclusion 

In summary, we demonstrate for the first time fabrication of 2D MoS2-CQD based flexible 

broadband photodetector wherein MoS2 was grown on cellulose paper using simple and cost 

effective solution processed hydrothermal method and CQD were synthesized using one 

step pyrolytic process of natural chia seeds. Response under UV illumination was due to 

CQD and under visible and NIR illumination was due to MoS2. Due to the discrete 

distribution of CQD and metal contacts on MoS2 led to increase in the spectral selectivity of 

the fabricated MoS2-CQD photodetector. Also, due to the difference in the fermi levels of 

CQD and MoS2 led to the formation of unipolar junctions thereby creating local electric 

fields which assisted in effective charge separation under visible and NIR illumination. 

Responsivity calculated was for UV, visible and NIR respectively suggesting that the as 

fabricated photodetector was more responsive towards visible light when compared to UV 

and NIR illumination. The work presented is a major step ahead in fabrication of low cost 

cellulose paper based 2D-0D flexible broadband photodetector covering entire range of 

electromagnetic spectrum which finds numerous applications in the field of flexible and 

wearable electronics, security and optoelectronics. 

4.4.      Experimental Section 

Growth of MoS2 on cellulose paper: 

The growth of few-layered MoS2 nanosheets was performed by a one-step hydrothermal 

method recently reported from our lab [22]. Briefly, a seed solution containing sodium 

molybdate (Na2MoO4.2H2O) and thiourea (CH4N2S) in 1:2 ratio was prepared and the paper 

substrate was immersed in it. After 30 minutes, the paper substrate was dried in a 

convection oven at 80°C for an hour. The seed layer coated substrate was then subjected to 

hydrothermal treatment in a nutrient solution comprising of sodium molybdate and thiourea 

in a similar proportion as discussed earlier. The nutrient solution with the substrate was a 

loaded into a Teflon-lined autoclave followed by which the temperature was maintained at 

200°C for 20 hours. The autoclave was then let to cool down naturally to room temperature 

after which the MoS2 grown substrate was dried and stored for further usage.  

Synthesis of carbon quantum dots:  
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The synthesis of carbon dots was performed by a one-step pyrolytic treatment of chia seeds. 

Edible, food-grade chia seeds were procured and used without further purification. Briefly, 

500 mg of chia seeds was loaded in a ceramic crucible and carbonized at 350°C for 6 hours. 

The heating rate was maintained at 30°C/min. The end product was broken down into 

fragments by grinding and it was suspended in dichloromethane. This dispersion was 

centrifuged at 12,000 rpm for 20 minutes to remove the unreacted organic moieties and 

larger carbon agglomerates. The supernatant was separated and diluted for further usage. 

Schematic of the complete fabrication procedure is as shown in figure 1. 

Fabrication of MoS2-CQD flexible photodetector 

MoS2-cellulose paper was masked on two ends using Al foil and polyimide tape for defining 

the active and metal contact area. CQD solution was drop casted on MoS2-cellulose paper 

followed by drying at 70°C for 30 minutes. The masking was removed to fabricate contacts 

using Ag paste. 

Materials and characterization 

Sodium molybdate and Thiourea were purchased from Sigma Aldrich and were used as 

received for the growth MoS2on cellulose paper. Chia seeds were purchased from local 

supermarket. The structural characteristics of the prepared hybrids were investigated using 

X’pert PRO X-Ray Diffraction (XRD) with Cu Ká radiation. Raman spectra were obtained 

from Raman spectrometer (Senterra inVia opus, Bruker) having an excitation wavelength of 

532 nm. Field Emission Scanning Electron Microscopy (FESEM) analysis was performed 

by ZEISS Ultra-55 SEM to study morphology. UV-visible-NIR spectra was obtained using 

LAMBDA UV/Vis/NIR spectrophotometers (PerkinElmer). The electrical measurements 

were carried out with Keithley 4200 SCS instrument. The as-fabricated devices were tested 

for broadband photodetector application on illuminating UV, Visible and IR radiations. The 

lamp sources utilized for UV, Vis and IR illumination had a wavelength (ë) of 365 nm, 554 

nm, and 780 nm respectively. 
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Figure 4.1. Schematic of the fabrication step of flexible MoS2/CQD broadband 

photodetector 
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Figure 4.2. XRD of a) pristine CQD b) MoS2/CQD hybrid c) Raman spectra for MoS2/CQD 

demonstrating the peaks for MoS2 d) showing the peaks of CQD  
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Figure 4.3. FESEM of a) MoS2 on cellulose paper wherein microfiber morphology of 

cellulose paper is clearly visible b) High magnification image of MoS2 on cellulose paper 

showing nanosheets morphology of MoS2 c) TEM image of CQD showing the spherical 

morphology. Inset shows the distribution of diameter d) High magnification TEM image of 

CQD e) Elemental mapping of MoS2/CQD wherein discrete distribution of CQD on MoS2 
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Figure 4.4. UV-vis-NIR spectra of a) pristine CQD b) pristine MoS2 c) FTIR spectra of 

MoS2/CQD. 
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Figure 4.5. a) IV characteristic of MoS2/CQD under different intensity of UV illumination 

b) temporal response of MoS2/CQD under different intensities of UV illumination c) IV 

characteristic of MoS2/CQD under different intensity of visible illumination d) temporal 

response of MoS2/CQD under different intensities of visible illumination e) IV characteristic 
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of MoS2/CQD under different intensity of NIR illumination f) temporal response of 

MoS2/CQD under different intensities of NIR illumination 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6. a) Responsivities v/s different intensities of UV, visible and NIR showing 

highest responsivities for visible illumination b) EQE v/s different intensities of UV, visible 

and NIR showing highest responsivities for visible illumination c) Graph showing the 

calculation for response time for visible light illumination d) Responsivities v/s bending 

cycles under UV, vis and NIR showing negligible change 
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Figure 4.7. Schematic showing the energy band diagram of MoS2/CQD and charge transport 

under UV, visible and NIR illumination 

 

 

Table 4.1: Comparative table for different 2D-0D hybrids for broadband photodetectors 

 

 

 

Material 

composition 

(2D/0D) 

Substrate Toxic/Non-Toxic Range of detection Ref 

MoS2-PbS Silicon Toxic Visible-NIR [50] 

MoS2-HgTe Silicon Toxic Short and mid-range 

IR 

[51] 

MoS2-CdSe Silicon Toxic Visible [52] 

WSe2-PbS Silicon Toxic Visible-NIR [53] 

Graphene-PbS Silicon Toxic Visible [54] 

MoS2-CQD Cellulose paper Non-toxic UV-visible-NIR This 

work 
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Chapter 5 
 

   Flexible substrate based 2D ZnO (n)/ 

Graphene (p) rectifying junction as 

enhanced broadband photodetector 

using strain modulation  

 

Abstract 

Strain modulation is considered to be an effective way to modulate the electronic 

structure and carrier behavior in flexible semiconductors heterojunctions. In this 

work, 2D Graphene (Gr)/ZnO junction was successfully fabricated on flexible eraser 

substrate using simple, low-cost solution processed hydrothermal method and has 

been utilized for broadband photodetection in the UV to visible range at room 

temperature. Optimization in terms of process parameters were done to obtain 2D 

ZnO over 2D graphene which shows decrease in bandgap and broad absorption 

range from UV to visible. Under compressive strain piezopotential induced by the 

atoms displacements in 2D ZnO, 87% enhanced photosensing for UV light was 

observed under 30% strain. This excellent performance improvement can be 

attributed to piezopotential induced under compressive strain in 2D ZnO which 

results in lowering of conduction band energy and raising the schottky barrier height 
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thereby facilitating electron-hole pair separation in 2D Gr/ZnO junction.  Detailed 

mechanism studies in terms of density of surface states and energy band diagram is 

presented to understand the proposed phenomena. Results provide an excellent 

approach for improving the optoelectronic performance of 2D Gr/ZnO interface 

which can also be applied to similar semiconductor heterojunctions.  

5.1. Introduction 

Semiconductor interfaces are vital components for fabricating electronic and optoelectronic 

devices. Properties of interfaces between two hetero-structured semiconductors play an 

important role in modulating the electronic structure and carrier behavior in modern 

nanoelectronics devices [1]. Thus ability to precisely tailor the properties of the 

semiconductor interfaces provides lot of possibilities to enhance performance or add new 

functionalities altogether in devices. Semiconductor interface engineering is gaining interest 

in recent years to rationally design and fabricate novel nanoelectronics devices.   There are 

different ways to modulate the electronic structure and carrier behavior in semiconductors 

which include structure design [2], surface treatment [3], chemical doping [4] etc. Strain 

modulation is considered as an effective means of tuning the electronic structure and carrier 

behavior in semiconductors. Moreover, at nanoscale, materials possess higher toughness and 

hence strain modulation effect could be more significant [5]. There are reports on properties 

enhancement in nanostructures via strain modulation which include bandgap opening in 

graphene and ZnO [6], light emission properties in ZnO and Si nanowires [7], GaAs [8] and 

CdS microwires [9] etc. However, all the literature are on rigid silicon substrates wherein 

the strain is induced due to the process which makes it difficult to understand the physical 

mechanism. To overcome this drawback, mechanical tensile strain like wafer bending 

method was employed. But due to the rigid nature of silicon, high strain cannot be applied. 

Hence there is a need to develop flexible p-n junctions where the interface properties could 

be modulated by applying external mechanical strain. 

Unique properties of graphene such as high conductivity, mechanical flexibility, high carrier 

mobility, optical transparency and linear energy band dispersion have established it as a 

superior material for electronic and optoelectronic applications [10]. ZnO has been one of 

the metal oxide semiconductors that continues to gain researchers attention over decades 

due to its excellent properties like wide bandgap (3.37 eV), high exciton binding energy 

(60meV), and transparent conductivity. Such novel electrical and optical properties of 

nanostructured ZnO has led to its use in electronics, optoelectronics and photonics [11]. 
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Various morphologies of ZnO nanostructures [11] have been synthesized using methods 

such as sol-gel, Chemical Vapor Deposition (CVD), electrodeposition, aqueous solution 

precipitation, micro-emulsions and hydrothermal method [12]. Of all, hydrothermal method 

is found to be effective because of its enhanced reactivity of reactants, low energy 

consumption and versatility in synthesis of different morphologies by controlling the 

hydrothermal parameters such as temperature, growth time, pH, and concentration. Also 

hydrothermal method provides the ability to control the interface reactions occurring in the 

solution, by which one can tune the size and crystallinity of the materials being synthesized 

[13]. Recently, 2D ZnO nanostructures have instilled great interest due to their exceptional 

properties such as high anisotropy, large surface area, high surface charge density, smaller 

charge transfer resistance and better electron-hole separation [14-15]. 

Gr/ZnO hybrids are found to be better than their individual counterparts due to the 

combination of properties like the large surface area of Gr and ZnO nanostructures, high 

charge carrier mobility of Gr and superior wavelength selectivity of nanostructured ZnO 

[16-17]. Although there are numerous reports on the synthesis of 1D ZnO, its low internal 

surface area and complexity in establishing electrical contacts restricts its widespread use in 

CMOS devices unlike 2D ZnO [14]. Moreover, due to the coupled piezoelectronic and 

semiconducting properties, when a 2D ZnO crystal is subjected to strain, piezopotential is 

generated due to the polarization of ions [18]. By taking advantage of this phenomena, the 

charge carrier transport behavior can be effectively tuned across a p-n junction. 

In this work, we have fabricated 2D ZnO/Gr heterojunction on polyvinyl chloride (PVC) 

eraser substrate for broadband photodetection in the UV to visible range at room 

temperature. Most of the commercially available eraser contains PVC which makes the 

eraser non-biodegradable. Recently, new class of PVC free eraser are commercially 

available which are not only bio-degradable but also softer than PVC free containing 

erasers. Softer erasers are easily bendable which helps in ease of inducing strain as 

compared to PVC containing erasers. Gr was deposited on PVC free eraser substrate using 

rolling pin method wherein Teflon cylinder was rolled over Gr on eraser. Low-temperature 

hydrothermal synthesis was performed for the growth of 2D ZnO over Gr. Strain induced 

piezo-polarization charges in 2D ZnO were utilized to effectively modulate the 

optoelectronic process such as charge separation in 2D Gr/ZnO p-n junction. As per our 

knowledge this is first report on fabrication of p-n junction using 2D ZnO (n)/ graphene (p) 

on flexible eraser substrate. The results of the electrical characterizations suggest that as 
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fabricated device holds promise for future flexible electronic device applications such as 

photodetectors, energy harvesters and rectifiers. 

5.2.   Results and Discussions  

Compared to the electronic devices that are fabricated on conventional rigid substrates, 

flexible and wearable electronic devices are gaining interest because of potential 

applications such as photodetectors energy harvesters, energy storage and rectifiers. 

 To fabricate electronic devices such as junctions and schottky barriers, complicated 

clean room processes such as lithography and evaporation are employed on both rigid and 

flexible substrates. These processes are not only expensive but also energy inefficient. 

Moreover, not all flexible substrate are microfabrication compatible thereby limiting their 

scope in the choice of materials for fabrication. Eraser despite providing high external 

mechanical stress is not microfabrication compatible. Hence there is a need to develop 

fabrication processes for substrates that are not microfabrication compatible to fabricate 

electronic devices. Recently, a novel rolling pin method for deposition of MWCNTs on 

polyimide and eraser substrate was demonstrated by our group [19-20]. Details regarding 

the fabrication procedure and the parameters of rolling pin on eraser substrate can be found 

in a recent report by our group [20]. In brief, rolling pin was performed manually and to 

reduce the variation caused due to the manual operation pre-compaction press was 

performed with pressure of 5Kg/cm2. Increasing the rolling pin cycles deforms the eraser 

and increasing the pre-compaction pressure stiffens the eraser which then loses the 

flexibility property. Using similar method, we deposited Gr on PVC free eraser which acted 

as a substrate for growing 2D ZnO. Variations in thickness and resistance with rolling pin 

cycles was observed and it was found that as rolling pin cycles increases there is increase in 

resistance and decrease in thickness of Gr film. To study the effect of rolling pin on Gr film, 

raman spectroscopy was performed. Typical raman peaks were observed for both pristine 

and rolled pin Gr with later introducing more defects. For pristine Gr ID/IG ratio was found 

to be 0.201 while ID/IG ratio for rolled pin Gr film was found to be 0.405. Rolling pin is a 

manual process where pressure variations are difficult to control. To reduce the variations 

caused in rolling pin press, Gr/eraser substrate was compressed using pre-compaction 

mechanical press with pressure of 5Kg/cm2. Details regarding rolling pin and pre-

compaction press can be found in [20]. Graphs illustrating variation in thickness and 

variations of Gr film with rolling pin cycles and details of raman spectra of pristine and 

rolled pin Gr film can be found in supplementary information (SI) as fig S1 and fig S2 
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respectively. It is important to note that the Gr used in this work is not monolayer but few 

layer Gr. The current response would definitely depend on the number of Gr layers and it 

would be rather good for monolayer Gr due to its high mobility and ballistic transport. Also 

pre-compaction press would not induce defect on monolayer Gr. But growing large area 

monolayer Gr using CVD is still a challenge and it involves complicated transfer process 

which leads to device to device variation. 

Gr deposited eraser was utilized for growing 2D ZnO nanostructures. 2D ZnO can be 

synthesized in alkaline medium with OH- ions suppressing the growth in polar plane (0001) 

[21]. The morphology of as-prepared Gr/ZnO films were analyzed using FESEM. Fig 5.2 

depicts the different types of ZnO nanostructures obtained on varying the concentration of 

precursors, pH and temperature of synthesis. An insight into the crystal structure of ZnO 

would enable a better understanding of the growth mechanism. ZnO consists of three basal 

planes namely (0001), (20) and (010). The (0001) plane is polar whereas the other two basal 

planes are non-polar. Although there exist three planes for the growth of ZnO, the growth 

along the polar plane i.e. (0001) is more viable thermodynamically because of their higher 

surface energy than the other non-polar planes [22]. The (0001) plane is terminated by Zn2+ 

ions and O2- ions and because of their difference in ionic nature, the effective charge would 

vary along the two ends of these planes [23]. The Zn2+ terminated (0001) plane has higher 

surface charge and thus growth propagates along the c-axis [24]. Moreover, in this study, 

nanorods of ZnO were synthesized by using equimolar concentration of precursors without 

addition of buffers. This suggests that the growth along c-axis might have been due to the 

lower  concentration of OH- ions in precursor solution which has facilitated the preferential 

growth along (0001) plane rather than (20) plane. These factors make nanorods as the 

intrinsic growth habit of ZnO along (0001) plane [21]. Fig 5.2a) displays the growth of such 

nanorods lying perpendicular to the substrate. By increasing the precursor concentration it 

was observed that nucleation rate of ZnO increases thereby attaining supersaturation. Under 

these conditions, ZnO nuclei aggregates and nanorods would continue to grow along c-axis 

which leads to the formation of flower-like structures [24] as shown in fig 5.2b and fig 5.2c. 

Meanwhile, when the pH of the precursor solution was increased to 8, the concentration of 

OH- ions increases. OH- ions, in this case, serves the dual role of acting as a capping agent 

and providing hydroxyl ions for the formation of ZnO nanobelts as shown in fig 5.2d,e . 

Increasing the pH to 10 generated excess of OH- ions which were attracted to the positively 

charged (0001) plane thereby limiting the growth of crystal along c-axis. [23]. Hence, on 

increasing the concentration of OH- ions in solution, the growth direction was controlled to 
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an extent to be along the a-axis (<2 0> direction) [21] which leads to the formation of 2D 

ZnO as shown in fig 5.2 f,g,h. Fig 2f) shows uniform growth of 2D ZnO over the entire 

surface of Gr and figs 2g,h) show higher magnification images wherein 2D ZnO nanoflakes 

are clearly visible.  

UV-visible spectrum of 2D ZnO (pH = 10) is as shown in fig 5.3 wherein strong absorbance 

is observed in UV range (300-370 nm) whereas weak and constant absorption is observed in 

visible region. The absorbance in visible region is attributed to the quantum confinement 

effect of 2D ZnO. It is well reported theoretically that bandgap in 2D ZnO decreases as 

compared to its bulk counterparts [25]. The inset of fig 5.3 shows tauc’s plot wherein the 

optical bandgap of 2D ZnO was calculated to be 2.8 eV. The decrease in the bandgap is an 

indication that there is a blue shift in the absorbance spectra and hence 2D ZnO can be 

utilized as a broadband photodetector which absorbs in both UV and visible region. 

I-V characteristic of Gr/ZnO under dark is as shown in fig 5.4a) which clearly demonstrates 

well defined rectifying junction formation with turn on voltage of 0.6V. To test the 

rectifying behavior was not due to Ag/Gr or Ag/ZnO, experiment were performed on 

individual Ag/Gr and Ag/ZnO and I-V characteristics were plotted which demonstrated 

ohmic behavior. To further analyze the transport mechanism of Gr/ZnO p-n junction, 

thermionic emission theory was employed and can be expressed as 

                                                     (1) 

                              (2) 

                                                                                                        (3)                             

where K is Boltzmann constant, q is electronic charge, R is series resistance, η is ideality 

factor, which is the measure of how much the diode deviates from ideal diode, T is absolute 

temperature, A is junction area, A* is Richardson constant which is theoretically estimated 

to be 32 for ZnO considering m* = 0.27 mo. Φ is the barrier height at zero bias, Io is reverse 

saturation current and h is Planck’s constant 

The ideality factor η and schottky barrier height Φ were found to be 1.65 and 0.335 eV 

respectively by linear fit of natural log plot of voltage versus current. The ideality factor 

deviates from ideal value of 1 which can be attributed to the defects introduced in 2D ZnO 
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during hydrothermal process, disordered structure, barrier inhomogeneity and presence of 

surface states which provides multiple current pathways in the interface [26]. The calculated 

Φ value of 0.335 eV was higher than difference between the work function of graphene (4.5 

eV) and electron affinity of ZnO (4.3 eV). This could be possibly due to the oxidation of 

graphene under atmospheric conditions making it p-type and as a result raises the schottky 

barrier height. In order to investigate the Gr/ZnO interface quality, voltage dependence of η 

was studied and utilized to calculate the density of interface states. Density of interface state 

can be estimated by following equation assuming the surface states to be in equilibrium: 

                                       (4) 

where εi and ti are relative dielectric constant and thickness of interfacial layer respectively. 

Since the 2D Gr/ZnO interface is exposed to air, the value of εi was assumed to be 

permittivity of free space and thickness to be 5A° [27]. εsc and W are the relative dielectric 

constant and depletion width respectively. The value of εsc is considered to be 114 εo [28] 

and width of the depletion region to be 160 nm [29]. Using equation 5 and the bias voltage 

dependence of Nss, Nss (V) can be obtained by following equation  

                                                            (5) 

Fig 5.4b) shows the plot of Nss (V) as a function of Ec-E wherein a peak at 0.14 indicates 

that deep level traps are located at 0.14eV below the conduction band energy. High surface 

states are attributed to disordered junction which is linked to high dislocation density which 

is commonly observed in ZnO composites [30]. The interface play an important role in 

charge transfer to or from conduction band and are responsible for η value greater than 

unity. It acts as an interfacial layer through which carrier can be easily transport through 

metal or inter transition band and are responsible for photogenerated carriers in visible 

range. 

Fig 5.4c) represents the performance of 2D graphene/ZnO photodetector under 365 nm UV 

illumination at a reverse bias of -1V for various intensities wherein it was observed that as 

intensity increases there is an increase in the photogenerated current. The same was repeated 

for visible light which demonstrated similar response as shown in fig 5.4d). It should be 

noted that intensities used for visible photodetector are 10 fold more than UV light 

intensities due to the fact that at lower intensities of visible light, weak response was 

observed. Even though the intensities of visible light are high compared to UV light, it is in 
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range for defense/security related applications. The response time for the UV and visible 

photodetector was found to be 0.6 sec and 0.84 sec respectively and was calculated by time 

difference taken by the sensor to reach from 10% to 90 % of the maximum value. The 

exceptional performance of as fabricated device can be attributed to broad absorption 

spectra of 2D ZnO from UV to visible light, deep level travels below the conduction ban, 

effective electron-hole pair separation by built-in electric field due to reverse biasing and 

lastly fast carrier transport in graphene as evident from the reported literature in other 

graphene based heterojunctions photodetectors.  

 

To further study the performance of the 2D Gr/ZnO PD under strain, different strains were 

applied on the fabricated device and was systematically analyzed as shown in fig 5.5. It was 

observed that length of the eraser had significant impact on the amount of maximum strain 

that it can induce due to bending. Derivation of relationship between strain and the bend 

angle can be found in SI. The IV characteristics of 2D Gr/ZnO junction under various 

strains were investigated wherein strain was applied by bending the eraser substrate by the 

clip holder. As seen in fig 5.5a), on application of strain, current value decreases and turn on 

voltage of 2D Gr/ZnO junction increases which was due to the variation in the schottky 

barrier height at the 2D Gr/ZnO interface. Under compressive strain, negative polarization 

charges are developed in 2D Gr/ZnO due to relative displacement of Zn and O atoms in 

ZnO which generates piezoelectric field and can lower the conduction band thereby 

increasing the schottky barrier height. It should be noted that change in current, under strain, 

is not due to contact area change of Gr and 2D ZnO. This is because as fabricated device 

shows non symmetrical change between forward and reverse current which should be 

symmetrical if it was from contact area change. Variations in the schottky barrier height can 

be calculated from IV characteristics using above mentioned thermionic emission theory. 

Assuming the Richardson coefficient, junction area and the ideality factor are constant 

under different strain, ∆Φ can be expressed as    

    (6) 

Where Iε and Io are the currents measured at fixed bias with and without strain. As seen 

from the fig 5.5b), ∆Φ shows linear increase with increase in strain confirming the interface 

properties of 2D Gr/ZnO can be modulated by application of external strain. 
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Temporal response of the strained 2D Gr/ZnO device under fixed illumination (both UV and 

visible) was studied and is as shown in fig 5.5c and fig 5.5d respectively. As shown in 

figure different strains ranging from 5% to 30 % were applied to the 2D Gr/ZnO PD and 

significant enhancement in the current was observed. Current enhancement was observed 

more for UV light compared to visible light which can be attributed to the fact that 

absorption is more in UV range rather than visible range. 87% current enhancement was 

observed for UV light under 30 % strain. As can be seen from UV-Vis spectra of 2D ZnO 

(fig 5.3), absorbance is more in UV range compared to visible. Higher the absorbance 

greater is the photo-current enhancement. The experiment was repeated for 3 devices and 

similar response was observed. Graph demonstrating the variation in the current levels with 

varying strain for 3 devices can be found in SI as fig S3.  Responsivity of the photodetector 

was calculated as a function of strain for both UV and visible light and is as shown in fig 

5.5f. Responsivity can be defined as photocurrent generated per unit power of the incident 

light on the photodetector and is given by  

                                                       R = Iλ /( Pλ S)    (7) 

Where Iλ is the photocurrent and is given by (Iillumination - Idark), Pλ is the incident light 

intensity and S is the effective illuminated area. As can be seen from fig 5.5f), responsivity 

increases on application of strain which can be attributed to the effective separation of 

photogenerated charge carriers. High responsivity for UV light as compared to visible light 

was observed which is due to the fact that absorbance of 2D Gr/ZnO PD is more in UV 

range than visible range.  

The mechanism of excellent broadband photosensing property of the 2D Gr/ZnO PD and 

enhancement in the performance due to strain modulation can be understood and explained 

by a schematic diagram of electronic band structure at the interface of 2D Gr/ZnO. As 

shown in fig 5.6 when contact is formed between Gr and ZnO, electrons from ZnO diffuses 

to Gr until fermi level is aligned thereby forming a depletion region and built-in electric 

field. Under UV illumination and reverse bias, photogenerated electrons are separated by 

built-in electric field, resulting in photocurrent generation. Out of the two materials, Gr and 

ZnO, absorption happens in ZnO and hence most of the optoelectronic process mostly 

happens in ZnO necessary for piezopotential modulation. Under compressive strain, ZnO 

generates negative piezopotential wherein the charges starts accumulating near the 

conduction band, thereby lowering the conduction band energy. Lowering of the conduction 

band energy causes the schottky barrier to raise which increases the width of depletion 
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region favorable for separation of photo-generated electron-hole pairs and thus improve the 

sensitivity of the Gr/ZnO PD. Moreover, negative piezopotential mainly distributes on the 

surface of 2D ZnO which is favorable for effective charge separation at the Gr/ZnO 

interface [31].    

Various methods have been reported for the synthesis of ZnO/Gr hybrids. [32] reported the 

growth of ZnO nanostructures on Gr using thermal CVD process. [33] demonstrated the 

growth of  ZnO by thermal oxidation of Zn followed by CVD growth of Gr. Electrospinning 

method was used for the in-situ synthesis of Gr/ZnO nanofibers [34]. ZnO was grown 

hydrothermally on Gr, obtained by Low-Pressure CVD (LPCVD) [35]. Most of the 

procedures reported for the synthesis of Gr/ZnO hybrids involve the use of sophisticated 

equipments, transfer of Gr to arbitrary substrates which is not only tedious but lacks 

controllability in terms of variation in device performance. Of all the reported methods, 

hydrothermal method is found to be effective because of its enhanced reactivity of reactants, 

low energy consumption and possibility to obtain different morphologies by controlling 

process parameters such as temperature, growth time, pH, and concentration. Furthermore, 

hydrothermal method provides the ability to control the interface reactions occurring in the 

solution, by which one can tune the size and crystallinity of the materials being synthesized 

[36-37].  In this work, we demonstrated a simple, low-cost solution processed fabrication of 

2D Gr/ZnO rectifying junction for enhanced broadband photodetection under strain 

modulation. The results give an insight into the functionality of 2D Gr/ZnO for broadband 

photodetection ranging from UV to visible region. Such a versatile, reproducible technique 

for fabrication of flexible 2D Gr/ZnO on unconventional substrates is a major step ahead in 

research related to Gr/ZnO interfaces and their applications in analog, optoelectronics 

devices and sensors. 

5.3. Conclusion 

In summary, 2D Gr/ZnO rectifying junction is fabricated on PVC free pencil eraser 

using simple, low-cost solution processed hydrothermal method and has been 

utilized for broadband photodetection. Ideality factor and schottky barrier height of 

the as fabricated Gr/ZnO junction was calculated to be 1.65 and 0.335 eV. Barrier 

inhomogeneities at the Gr/ZnO interface are the cause for high η and Nss. Decrease 

in the bandgap (2.8 eV) was observed for 2D ZnO which was responsible for 

broadband photodetection in UV and visible region. 87% enhanced photosensing for 

UV light was observed under 30% strain. The performance improvement is due to 
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piezopotential induced under compressive strain in 2D ZnO which results in 

lowering of conduction band energy and raising the schottky barrier height thereby 

facilitating electron-hole pairs separation in 2D Gr/ZnO junction. The work 

demonstrated here paves way for developing highly scalable flexible semiconductor 

heterojunctions on unconventional substrates for use in optoelectronics, analog 

electronics and sensors. 

 

5.4. Experimental Section 

Substrate preparation 

PVC free pencil eraser (10mm x 5mm x 3mm) was used as the substrate for the growth of 

ZnO on Gr. The substrate was cleaned using ultrasonication with Deionized (DI) water 

followed by propanol. The substrate was then dried in ambient atmosphere. The as-cleaned 

PVC free pencil eraser substrate was used for further process of device fabrication. 

Deposition of Gr on pencil eraser 

Deposition of Gr on eraser substrate was carried out by a novel solvent free rolling pin 

method recently reported from our lab [19-20]. In brief, different weights of Gr were 

deposited using rolling pin to form Gr film on eraser. Optimization in terms of Gr weight, 

thickness (t) and resistance (R) of the Gr film was done to ensure uniform deposition with 

desired thickness. 200 cycles of rolling pin were found to be optimal for producing the 

desired resistance and thickness of the Gr film. To remove the unattached Gr from the eraser 

substrate, it was gently washed with DI water and was dried at 70°C for 30 minutes. As 

prepared Gr deposited PVC free eraser was then utilized for 2D ZnO growth. 

The Growth of 2D ZnO on Gr-pencil eraser. 

Hydrothermal synthesis route was followed for the selective growth of 2D ZnO on Gr-

pencil eraser substrate. In brief, a portion of Gr-pencil eraser was masked using aluminum 

foil and polyimide (PI) tape. Gr-pencil eraser was soaked in seed solution consisting of 

1mM zinc acetate dihydrate [Zn(CCH3O2)2.(H2O)2] and 10 mL of propanol for 30 minutes. 

The Gr-pencil eraser substrate was then dried at 70°C for 2 hours. Hydrothermal process 

was optimized in terms of concentrations, pH and temperature for growth of 2D ZnO on 2D 

Gr wherein masked Gr-pencil eraser was placed in a nutrient solution made of different 
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concentrations (1:1, 1:2 and 1:3) of [Zn(CCH3O2)2.(H2O)2] and hexamethylenetetramine 

(HMTA)  in 20mL of DI water with different pH (8 & 10),  for 5 hours at different 

temperatures (70-90°C).  The obtained samples were washed with DI water and dried at 

70°C, thus resulting in the growth of ZnO on Gr-pencil eraser. Schematic of the complete 

fabrication procedure is as shown in fig 1. 
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Figure 5.1: Schematic of the fabrication process of 2D ZnO/Gr p-n junction on PVC free 

eraser substrate 
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Figure 5.2: FESEM images of ZnO showing different morphologies a) ZnO nanorods 

(equimolar concentrations) b,c) flowerlike ZnO (1:3 concentrations) d,e) ZnO nanobelts (pH 

= 8) and f,g,h) 2D ZnO (pH = 10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: UV-vis spectra of 2D ZnO (pH = 10) showing strong absorption in UV range 

whereas weak and constant absorption in visible range. Inset is the tauc’s plot of 2D ZnO 

wherein optical bandgap of 2D ZnO was calculated to be 2.8 eV. 
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Figure 5.4: a) I-V characteristic of 2D Gr/ZnO p-n junction demonstrating rectifying 

behavior b) Plot of Nss vs Ec-E c) temporal response of 2D gr/ZnO PD for different 

intensities of UV light and d) temporal response of 2D Gr/ZnO PD for different intensities 

of visible light. 
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Figure 5.5: a) I-V characteristic of 2D Gr/ZnO under compressive strain b) graph of SBH 

change vs strain c) temporal response of 2D Gr/ZnO at fixed illumination of 66mW/cm2 

UV light under various strains d) temporal response of 2D Gr/ZnO at fixed illumination of 

66mW/cm2 visible light under various strains e) temporal response showing change in 

current levels at various strains at fixed intensity of 66 mW/cm2 f) graph of responsivity vs 

strain for fixed illumination of 66 mW/cm2 UV and visible light. 
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Figure 5.6: Energy band diagram of 2D Gr/ZnO p-n junction 
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Chapter 6 
 

   Fabrication of solution processed, 

highly flexible few layer MoS2 (n)-

CuO (p) piezotronic diode on paper 

substrate for active analog frequency 

modulator and enhanced broadband 

photodetector  

 

Abstract 

In this work, we demonstrate for the first time, solution processed MoS2 (n)-CuO (p) 

piezotronic diode on flexible paper substrate for enhanced broadband photodetector and 

active analog frequency modulator by application of external mechanical strain. There are 

no reports on solution processed large area fabrication of MoS2 based heterojunctions 

wherein the external mechanical strain modulates the transport properties at the device level 

which can be further utilized at circuit level for frequency modulation. When external strain 

is applied, because of the non-centrosymmetric structure of MoS2, the piezopotential 

induced adjusts the band structure at the junction and broadens the depletion region which 

decreases the depletion capacitance of the diode. The widening of the depletion region 

improves the separation of photo-generated carriers and enhances the performance of diode 

under both visible and NIR illumination. The fabricated piezotronic diode exhibited higher 

responsivity towards visible light illumination when compared to NIR illumination. The 
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Responsivity of the fabricated piezotronic diode increased by 69.7% under 2% strain. Such 

a versatile technique for fabrication of diode and its utilization at both device and circuit 

levels is a major step ahead in flexible and wearable electronics with applications ranging 

from digital, analog and optoelectronics.  

6.1. Introduction 

Interactive intelligent electronic devices wherein the transport properties can be modulated 

by external stimuli have been of great interest due to their applications in smart wearable, 

personal health monitoring and sensor networks [1-2]. Modulation of the transport 

properties and analog signal of the electronic devices by the use of external stimuli plays a 

vital role in development of human machine interfaces and flexible electronics. There have 

been reports to tune the electronic properties of the junction for enhancement of 

photoresponse by means of external strain wherein one of the materials is a piezoelectric 

material [3-4]. But the use of such junctions for enhancement of both transport properties at 

device level and active analog signal at circuit level has not been studied yet. 

Transistion metal dichalcogenides (TMDs) are promising 2D semiconductors materials for 

future electronic and optoelectronic devices. Among them, MoS2 has a bandgap of 1.8eV to 

1.3 eV for monolayer and bulk MoS2 respectively with a possibility of achieving 

intermediate bandgap by tuning the layers of MoS2 thereby possessing better stability and 

electronic properties when compared to other 2D materials such as graphene [5-6]. Such 

tunable layer dependent behavior of MoS2 makes it suitable for optoelectronic applications 

such as photodetectors [7]. Coupling MoS2 with different semiconductors results in 

formation of heterojunction with efficient charge separation, high electron transfer rate and 

broadband absorption. There are reports on hybrids of MoS2 with various metal oxides such 

as ZnO, CuO, NiO, SnO for applications ranging from electronics to energy storage [8-9]. 

Out of all the metal oxides, p type copper oxide (CuO) forms hybrid p-n junction with n 

type MoS2 thereby expanding the scope of electronic applications of pristine MoS2.  

Recently, odd layers of MoS2 have shown piezoelectric effect which would be utilized for 

modulation of transport properties of MoS2 based heterojunctions under external strain [10]. 

External application of strain not only changes the transport properties at the interface of 

junction but also modulates the depletion capacitance offered by the junction in reverse bias 

which could be utilized for frequency modulation at circuit level. Hence piezoelectric effect 

in MoS2 could be utilized for modulating the performance of electronic device and also 

utilizing the device at circuit level for various analog applications. Although there are 



100 

reports on piezotronic effects in ZnO and GaN based devices [11-12], reports on modulation 

of electronic properties of 2D materials based heterojunctions are limited. 

There are various methods to synthesize MoS2 such as chemical vapor deposition, 

mechanical exfoliation etc [13-14]. Most of the reports of synthesis of MoS2 are performed 

in vacuum or by thermolysis [15]. There are no reports on solution phase synthesis of large 

area MoS2 directly on flexible substrates. Hydrothermal solution phase synthesis is a 

versatile technique as it provides the ability to synthesize 2D materials at very low cost with 

distinct morphologies and high phase purity [16]. Despite the advantages offered by 

hydrothermal method, direct deposition of MoS2 on flexible substrates using hydrothermal 

method remains unexplored. 

In this work, we demonstrate the solution processed fabrication of MoS2/CuO piezotronic 

diode for enhanced photodetection and active analog frequency modulator using external 

mechanical strain. The external applied strain not only modulates the transport properties at 

the junction which not only enhances the broadband photoresponse but also changes the 

depletion capacitance of junction under reverse bias thereby utilizing it for frequency 

modulation at circuit level. Under illumination, 48.4% and 23.7% increase in normalized 

resistance was observed for visible and IR illumination respectively suggesting that the 

fabricated device is more sensitive towards visible light. Under 2% strain, 69.7% 

enhancement in responsivity was observed for visible light illumination. On application of 

strain, the capacitance of the junction decreased from 15pF to 6pF. The work paves way for 

future flexible piezotronic devices wherein the external stimuli can modulate the properties 

of the device which have tremendous applications in the field of communications, signal 

processing, human machine interface etc. 

6.2.   Results and Discussions  

Flexible electronics have gained significant momentum because of the wide range of 

applications it offers in the field of electronics, energy harvesters, sensors etc [17-18]. 

However, fabrication of the flexible devices utilize sophisticated cleanroom techniques 

which are not only expensive but also time consuming and energy inefficient.  Moreover, all 

flexible substrates are not microfabrication compatible and hence there is an urgent need to 

develop lithography free solution phase processes for the fabrication of devices on flexible 

substrates. Also, recently much focus is on growing monolayer MoS2 by CVD process 

involving tedious transfer process which is followed by complicated electron beam 
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lithography process thereby leading to device to device variation in performance. There are 

reports wherein there is no change in the performance of the monolayer MoS2 device under 

strain/bend which is excellent for applications wherein the external bend or integrating the 

device on curved surface does not affect the performance of the device [19-20]. But there 

are reports wherein the external stimuli enhances the performance of the device and opens 

up new avenues of applications [3]. Hence there is a need to develop process for growing 

few layered MoS2 on flexible substrates whose behavior can be modulated on application of 

external strain. Hydrothermal method was employed for the growth of MoS2 on cellulose 

paper followed by spin coating of hydrothermally grown CuO nanoparticles on masked 

MoS2-cellulose paper thereby forming MoS2/CuO junction. The temperature was optimized 

for the hydrothermal method based on the substrate. Experiments were performed for 

hydrothermal growth of MoS2 on cellulose paper for temperature less than 200°C which 

results in no formation of MoS2. Increasing the temperature above 220°C makes the 

substrate fragile while then cannot be utilized for flexible electronic applications. Schematic 

of the complete fabrication process is as shown in Figure 6.1. Detailed procedure for 

synthesis and fabrication process is explained in experimental section. 

XRD analysis of CuO deposited MoS2-paper was performed to study the crystal structure of 

the prepared CuO-MoS2 hybrids on cellulose paper as shown in Figure 6.2a. The 

characteristic peaks of cellulose paper are noticed at 2θ ~ 14° (110) and 22° (200) [21]. The 

diffraction peaks of CuO marked with an * symbol, matches well with the JCPDS card 

number. 05-0661 and reveals the formation of monoclinic CuO [22]. The prominent peaks 

found between 35°-38° (002) and (200) arises from the phase pure crystallites of CuO. The 

presence of MoS2 can be confirmed by four signature peaks in XRD spectra at 2θ = 12.5° 

(002), 33° (100), 57° (110) respectively. The diffraction peaks of MoS2 are marked with * 

symbol corresponds to that of hexagonal MoS2 (JCPDS card number. 37-1492) [23]. It can 

be observed from the XRD pattern that the presence of CuO on MoS2 suppresses the 

diffraction peaks of MoS2 thereby reducing the peak intensities. 

To further confirm the formation of the MoS2 on cellulose paper and to investigate the 

details of the number of MoS2, Raman analysis was performed for pristine MoS2 on 

cellulose paper as shown in Figure 6.2b which exhibits strong Longitudinal optic (LO), 

transverse optic (TO) and surface optic (SO) phonon modes [24].Two characteristic peaks 

of MoS2 were noticed at 383 cm-1 and 405 cm-1, which are assigned to E12g and A1g 

phonon modes, respectively. E12g mode involves the in-plane vibrations of Mo atoms 

whereas A1g mode is due to the out of plane vibrations of the S atoms [25]. The peak 
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position difference between the two modes was calculated to be ~22, corresponding to 

trilayer MoS2 [26]. 

To study the morphology of as grown MoS2 on cellulose paper and CuO nanoparticles 

FESEM studies were performed. Figure 6.2c shows low magnification FESEM image of 

MoS2 hydrothermally grown on cellulose paper. MoS2 growth was clearly observed with 

microfiber porous morphology of cellulose paper retained which suggest that cellulose 

paper did not degrade with the growth of MoS2. Figure 6.2d shows the high magnification 

image wherein several nanoflakes of MoS2 have self-assembled to form microsphere like 

morphology. Each nanoflakes was found to be of 2nm which further confirms the formation 

of trilayer MoS2 as shown in figure 6.2e. Figure 6.2f shows the low magnification image 

wherein the uniform deposition of CuO on MoS2-cellulose paper was clearly evident 

thereby demonstrating the formation of well-defined heterojunction. This is important to 

study the interface quality of MoS2 and CuO which is crucial for the p-n junction 

performance. Figure 6.2i shows the FESEM of CuO nanoparticles spin coated over MoS2 

wherein uniform deposition of CuO is observed thereby forming an ordered junction. Figure 

6.2g,h shows the high magnification image of CuO nanoparticles wherein hollow irregular 

shaped hollow nanorods like structure are observed.  

To further explore the behavior of MoS2/CuO junction as broadband photodetector, optical 

absorption spectra was measured using (ultraviolet) UV-visible-(Near Infrared) NIR 

spectroscopy. Figure 6.2i shows the absorption spectra of MoS2 wherein strong absorption 

peaks were observed in visible region and absorption decreases in NIR region suggesting 

that MoS2 would be more sensitive towards visible light compared to NIR light. This clearly 

suggests that as fabricated MoS2 offers broad range of absorption in both visible and NIR 

region which can potentially be utilized as broadband photodetector. The peak intensity 

observed was less which might be due to the low concentration of MoS2. It should be noted 

that the UV-visible-NIR spectroscopy was measured following the same synthesis condition 

with MoS2 in solution form and hence there is no response of cellulose paper in the 

absorbance plot. The optical bandgap calculate from Tauc’s plot was 1.53 eV which is 

consistent with the reports for trilayer MoS2 [27]. Similarly, UV-visible-NIR spectroscopy 

was performed for hollow CuO nanorods as shown in figure 6.2j wherein the bandgap 

calculated was 2.9 eV which is consistent with the reports of CuO nanorods [28]. The 

corresponding Tauc plot for calculating the optical bandgap for both MoS2 and CuO can be 

found in Appendix A as figure S9. 
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The as fabricated MoS2 (n)/CuO (p) junction with Ag contacts was utilized for broadband 

photodetector covering visible and near infrared (NIR) regions and active analog frequency 

modulator in reverser bias configuration. Visible light with 554nm wavelength and IR lamp 

of 780 nm wavelength were used to perform photodetector measurements. Prior to 

photodetector experiments, the devices were kept in dark for more than 12 hours to stabilize 

them. Figure 6.3a shows the IV characteristic of MoS2/CuO device which displays excellent 

rectifying characteristics. The ideality factor and the schottky barrier height for the device 

was calculated to be 1.89 and 0.243 eV respectively. Deviation from the ideal value of 

ideality factor might be attributed to defects introduced during the hydrothermal synthesis of 

MoS2 and CuO, barrier inhomogeneity and presence of surface states which are responsible 

for providing multiple pathways at the interface for current conduction [29]. In order to 

further investigate the MoS2/CuO interface quality, voltage dependent of η was studied and 

was used to calculate the density of interface states which can be estimated by following 

expression 

                                                    

Where εi and ti are relative dielectric constant and thickness of the interface respectively. 

Since the junction of MoS2/CuO is exposed to air the value of εi was assumed to be 

equivalent to the permittivity of free space and thickness to be 5A°. εsc and W are the 

relative dielectric constant of the semiconductor and depletion region width respectively 

whose values were considered to be 4ε0 [30] and 160 nm respectively [31]. Using equation 

and the bias voltage dependence Nss (V) can be obtained by following equation 

                                                              

Figure 6.3b shows the plot of Nss as a function of Ec-E wherein the peak is observed at 

which indicates that deep level traps are located at 0.11 eV below the conduction band. Such 

high surface states can be attributed to the high dislocation density and disordered junction. 

Also, these surface states play an important role in charge transfer to and from the 

conduction band wherein it acts as an interfacial layer through metal and interband 

transition thereby leading to high value of η.  

Figure 6.3c shows the IV characteristic of MoS2/CuO junction under various illumination 

intensities of visible light under reverse bias of -1V wherein increment in the current was 
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observed as illumination intensity increases which can be attributed to the increased number 

of photogenerated carriers and the effective separation of the same under reverse bias 

condition. The same was repeated for IR illumination and similar response was observed as 

shown in figure 6.3d. It should be noted that the intensities used for IR illumination were 

greater when compared to visible light intensity as less response was observed for lower 

intensities value for IR illumination. Even though the intensities for IR are higher they are in 

the range for defense and security applications. Figure 6.3e shows the temporal response for 

different visible light illumination intensities wherein increment in the normalized resistance 

was observed with increasing visible light intensity. Temporal response was measured for 6 

cycles by regularly switching the illumination suggesting that sensor exhibited excellent 

repeatability towards visible light illumination as shown in figure 6.3e. Similar experiments 

were repeated for IR illumination of intensity wherein similar response was observed as 

shown in figure 6.3f. Temporal response was measured for 6 cycles by regularly switching 

the IR illumination suggesting that sensor exhibited repeatability with variation in the 

response. The irregularity in the temporal response can be attributed to the defects in the 

heterojunctions which might trap the photogenerated carriers thereby leading to minor 

variations in the performance. The same experiment for performed for 3 different devices 

and similar response was observed. Figure 6.3g shows the temporal response of the 

MoS2/CuO junction under same intensity repeated for 3 cycles wherein 48.4 and 23.7 % 

increment in the normalized resistance was observed for visible and IR illumination 

respectively suggesting the sensor to be more responsive towards visible light illumination 

when compared to IR light illumination. The observed response is in agreement with the 

UV-vis-NIR spectroscopy wherein more absorbance was observed in visible region when 

compared to NIR region. The exceptional behavior of the MoS2/CuO can be attributed to 

broad absorption spectra for MoS2 from visible to NIR region, deep level traps below the 

conduction band and effective separation of photogenerated carrier due to the built in 

electric field and reverse bias. 

The important figures of merit for photodetector performance are Responsivity (Rλ) which is 

the measure of photocurrent generated per unit power of incident light per unit area and 

External Quantum Efficiency (EQE) which is number of electrons produced per incident 

photon. The responsivity and EQE are given by the following equations [32]. 
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Where Iλ is the photocurrent, Pλ is the power and A is the active sensing area of 

photodetector. Figure 6.3h shows the graph of responsivity of the as fabricated device under 

different illuminations of visible and IR light. Higher responsivity was observed for visible 

light illumination when compared to IR light illumination further confirming that sensor is 

more responsive towards visible light. EQE calculated was 5.8 %and 0.95% for visible and 

IR light respectively which is comparable and even better to some of the flexible substrate 

based photodetector fabricated using sophisticated fabrication techniques [33-34]. It should 

also be noted that the responsivity and EQE is low compared to some of the reports on 

single layer MoS2 photodetectors which is due to the low crystallinity of MoS2 and also due 

to the fact that carrier mobility of MoS2 decreases due to the cellulose paper substrate. 

To further study the effect of strain on the performance of MoS2/CuO junction, different 

strains were applied on MoS2/CuO device and was systematically analyzed as shown in 

Figure 6.4. It was observed that length of the device had significant impact on the amount of 

strain induced in MoS2/CuO under bend. Explanation and derivation for the relationship 

between the strain produced and the length of the device can be found in recently report 

from our lab [3]. Under strain, piezopotential induced in MoS2 was responsible for the 

variation in the schottky barrier height. To verify this, pristine large area MoS2 (3 cm x 3 

cm) was investigated for voltage generation under strain. Figure 6.4a shows the voltage 

generation for pristine MoS2 wherein 2V p-p was observed under bend. Copper tape was 

used as contact covering the entire area of pristine MoS2-cellulose paper and was used for 

further voltage generation measurements. Odd number of MoS2 layers have been reported 

for piezoelectricity [10]. MoS2 exhibits covalent bond in the sequence of atomic planes of 

molybdenum (Mo) between two atomic planes of Sulphur (S) with adjacent Mo-S-Mo 

bonded by weak Van der Waals forces. Because of the opposite orientation of alternating 

layer of MoS2, odd layers of MoS2 forms non-centrosymmetric structure which is not seen 

in even layers of MoS2 [35]. Hence due to the non-centrosymmetric structure of the as 

grown MoS2 (trilayer) on cellulose paper the strain induced charges can easily bring 

variation of carrier transport of 2D MoS2. Here, due to the formation of p-n junction, 

transport behavior is due to piezotronic effect wherein the strain induced charge modulates 

the schottky barrier height. The potential generated due to the bending of MoS2 was 

responsible for the change in the effective potential at the MoS2/CuO interface which 
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increases the schottky barrier height and depletion region width and experiences more 

reverse bias voltage at the interface thereby assisting in effective separation of 

photogenerated carriers.  Figure 6.4b shows the temporal response of MoS2/CuO under 

visible light illumination at 2% strain. 69.7% increment in the current was observed when 

compared to the response without strain. Same was repeated for IR illumination and similar 

response of increment in current was observed as shown in figure 6.4c. Figure 6.4d shows 

the graph of responsivity of the sensor as a function of applied strain wherein it was 

observed that as applied strain increases, responsivity of the sensor increases for both visible 

and IR light illumination. Under external mechanical strain to the flexible MoS2/CuO 

device, MoS2 generates piezopotential charges at the interface which enhances conduction 

and valence band energy bending at the interface which raises the schottky barrier height 

and depletion width. The raising of schottky barrier height and widening of the depletion 

region provides extra reverse bias potential which assist in effective separation of 

photogenerated electron-hole pairs thereby reducing the recombination rate. Similar 

experiments were performed on pristine MoS2 to compare the photodetector performance of 

pristine MoS2 with and without strain. The results demonstrated less responsivity when 

compared to responsivity of MoS2-CuO diode. The reason for the same can be attributed to 

the absence of electric field in pristine MoS2 device. The electric field for the pristine MoS2 

device is distributed only at the MoS2-Ag contacts and is absent in the areas far away from 

the metal contacts. Hence the photogenerated electrons generated away from the metal 

contacts tends to recombine and does not participate in the photocurrent thereby leading to 

low responsivity in case of pristine MoS2. Pristine MoS2 device was further tested for 

photodetector at different strains. The results displayed increment in the photocurrent as the 

applied strain increases which can be attributed to the local electric fields created due to the 

stretching of the individual nanoflakes. Since each MoS2 can be considered as a metal plate 

and the separation between them is air it forms a potential barrier. Under strain, individual 

MoS2 nanoflakes separate from each other thereby increasing the potential barrier which 

helps in effective separation of charge carriers. But since these are local heterojunctions, the 

responsivity in case of pristine MoS2 was found to be very less when compared to MoS2-

CuO. Graphs showing the I-V characteristics under strain and responsivity of strained 

pristine MoS2 under UV illumination can be found in Appendix A as figure S10. 

To further study the behavior of the as-fabricated piezotronic diode in developing circuits it 

was utilized for analog signal modulation. The schematic of the frequency modulator using 
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piezotronic diode is as shown in Figure 6.5a which consists of feedback LC resonant circuit 

and an amplifier circuit wherein the frequency of oscillation was given by the expression 

The piezotronic diode under reverse bias would behave like a capacitor whose capacitance 

can be varied upon strain thereby modulating the frequency of oscillation. Figure 6.5b 

shows the graph of capacitance measured with respect to strain wherein decrease in the 

capacitance was observed with increase in strain. As discussed, upon strain, piezopotential 

induced in MoS2 alters the band bending at the MoS2/CuO interface which raises the 

schottky barrier height and widens the depletion region width. Widening of the depletion 

region width alters the depletion capacitance associated with the diode under reverse bias. 

The change in the depletion capacitance of the piezotronic diode under strain was further 

utilized in oscillator circuit to modulate the frequency of oscillation. Figure 6.5b shows the 

change in frequency of the signal generated upon external strain. Figure 6.5c shows the 

sinusoidal signal generated from the oscillator and its corresponding change in frequency 

upon external strain. It was observed that as applied strain increases frequency of oscillation 

increases. This could be attributed to the fact that the depletion capacitance associated with 

the diode decreases upon external strain which increases the frequency of oscillation. To 

further demonstrate the stability of the as fabricated MoS2-CuO piezotronic diode, bending 

cycles test was performed wherein the devices were bend for 500 cycles and was tested for 

photodetector performance. The device was bend for specific number of cycles and then 

photodetector measurements were performed. Minimum variation in the responsivity values 

were observed after 500 cycles demonstrating excellent stability of the fabricated diode. 

Such small variations can be attributed to the defects and the change in the deep level traps 

due to bending. It should be noted that even though there are small variations in the 

responsivity values, repeated bending did not affect the working of the diode. Graph 

showing the responsivity values after 500 cycles can be found in Appendix A as figure S11. 

The enhancement in the photocurrent and change in the depletion capacitance of the 

piezotronic diode can be well understood by energy band diagram of MoS2/CuO as shown 

in Figure 6.6. The electron affinity of the CuO is 4.07[36] and the bandgap for CuO is 2.9 

eV while for MoS2, the electron affinity of 4 eV [37] and the bandgap of 1.53 eV. The 

reason for the calculated value of schottky barrier height to be higher than the difference 

between the electron affinity of MoS2 and CuO could be due to possible oxidation of MoS2 

making it less n type and as a result raises the schottky barrier height. Another reason might 

be disordered junction which in turn raises the schottky barrier height. The offset in the 

conduction and valence band creates heterostructure interface. Upon illumination, electron-



108 

hole pairs are generated in MoS2 and due to the local electric field at the interface effective 

separation of carriers occurs which results in the enhancement of photocurrent. Upon 

external strain, due to the piezopotential induced in the MoS2 there is a rise in schottky 

barrier height and widening of the depletion region which can be confirmed by the fact that 

upon strain the current decreases. The widening of the depletion region increases the 

effective reverse bias potential at the junction which helps in the effective separation of 

photogenerated carriers. Also, upon strain, due to the widening of the depletion region, 

depletion capacitance of the diode under reverse bias decreases.  

There are few reports on fabricating flexible broadband photodetectors based on MoS2 [38-

39] but the utilization of the MoS2 junction at the circuit level has not yet been 

demonstrated. Zhang et al., fabricated flexible MoS2/CuO heterojunction photodetector and 

reported its enhancement using strain modulation [40]. But the fabrication procedure 

involved the use of CVD for MoS2 growth and sputtering for CuO deposition which are not 

only expensive but also energy inefficient and time consuming techniques. Also, the process 

required transfer of CVD grown MoS2 which further leads to device to device variation in 

performance. Moreover, monolayer MoS2 was utilized for strain modulated photodetector 

whose behavior remains unaffected by strain [19]. Liu et al., reported transfer free printable 

Graphene/ZnO for high performance photodetector with responsivity of 5000A/W [41]. 

Zhang et al., demonstrated lead free organic-inorganic hybrid materials for photovoltaic 

applications [42]. Zheng et al., reported MoS2/ TiO2 hybrid enhanced photo electrochemical 

performance which uses simple anodization and hydrothermal method [43].  Zhou et al., 

reported the tribotronic tuning of silicon based diode for active analog signal modulation 

[44]. However, the above photodetectors being fabricated on rigid silicon substrate which 

restricts their usage in flexible electronics applications. There are reports on photodetectors 

fabricated on various flexible substrates based on different functional materials and the 

comparison of the same in terms of photodetection parameters and the range of detection 

with the current work can be found in Table 6.1. In this work, we demonstrate the 

fabrication of piezotronic p-n junction by the growth of few layer MoS2 on flexible cellulose 

paper followed by deposition of hollow CuO nanorods. The fabricated piezotronic diode 

was utilized for enhanced broadband photodetector and used at circuit level for design of 

variable frequency oscillator upon application of external mechanical strain. Furthermore, 

the method can be extended to different flexible substrates of choice which can withstand 

200°C. The entire fabrication procedure is scalable and can easily be extended for large area 

fabrication. 
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6.3. Conclusion 

In summary, we demonstrate the solution processed MoS2-CuO flexible piezotronic diode 

using simple yet cost effective hydrothermal method which was utilized for active analog 

frequency modulator and enhanced broadband photodetector upon external strain. The 

ideality factor and schottky barrier height were calculated to be 1.89 and 0.243 eV 

respectively. The fabricated piezotronic diode high sensitivity towards visible light when 

compared to IR light illumination. Under 2% strain, 69.7% increment in normalized 

resistance was observed for visible illumination. Further, the as fabricated piezotronic diode 

was utilized at circuit level for designing an oscillator wherein the frequency of oscillator 

was controlled by applied external strain. The work demonstrated here is the step ahead in 

utilizing the fabricated flexible devices at circuit level designing which holds tremendous 

potential in the field of flexible and wearable sensors, analog and digital electronics 

applications. 

 

6.4. Experimental Section 

Synthesis of MoS2 on cellulose paper 

Hydrothermal process was used for the growth of large area MoS2 on cellulose paper which 

involves two steps namely seed coating process followed by hydrothermal. The seed 

solution was prepared by mixture of sodium molybdate (10mM) and Thiourea (20mM) in 

deionized (DI) water. The paper substrate was dipped in seed solution for 1 hour followed 

by drying at 80°C for 30 minutes. The nutrient solution was prepared by mixing sodium 

molybdate (50mM) and Thiourea (100mM) in DI water. The seed coated cellulose paper 

and nutrient solution were then transferred to Teflon line autoclave and was maintained at 

200°C for 20 hours. The autoclave was allowed to naturally cool down and the MoS2 

deposited cellulose paper was dried at 70°C for 15 minutes.  

Synthesis of Copper oxide nanoparticles 

Copper oxide nanoparticles were synthesized using hydrothermal method wherein nutrient 

solution consisting of 20 mM copper acetate and 0.2 M of Hexamethylenetetramine 

(HMTA) was mixed with 20 ml of water. The as prepared nutrient solution was transferred 

to Teflon lined autoclave and hydrothermal was performed at 80°C for 5 hours. The 
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resultant solution was washed, centrifuged and dried to obtain hollow CuO irregular 

nanorods. 

Fabrication of MoS2/CuO diode 

The as synthesized MoS2 on cellulose paper was masked using Al foil and polyimide (PI) 

tape. Thereafter CuO nanoparticles solution was spin coated on the remaining exposed area. 

Spin coating was performed several times to ensure uniform coating of CuO nanoparticles 

over MoS2. The device was then kept for drying at 70°C for 15 minutes. The mask was then 

removed which was followed by defining contact on MoS2 (n) and CuO (p) type using silver 

paste. The silver paste contacts were fabricated using custom built stencil mask wherein the 

sensing area of the photodetector remained same for different fabricated device. The active 

area for photodetector was 5mm x 5mm.  

Materials and characterization 

Analytical grade chemicals (Sodium molybdate, Thiourea and copper acetate) were 

purchased from Sigma Aldrich and used without further purification for the fabrication of 

MoS2-CuO piezotronic diode. The structural characteristics of the prepared materials were 

investigated using X’pert PRO X-Ray Diffraction (XRD) with Cu Ká radiation. Raman 

spectra were obtained from Raman spectrometer (SenterrainVia opus, Bruker) having an 

excitation wavelength of 532 nm. Field Emission Scanning Electron Microscopy (FESEM) 

analysis was performed by ZEISS Ultra-55 SEM to study morphology. The electrical 

measurements were carried out with Keithley 4200 SCS instrument. Agilent digital storage 

oscilloscope (DSO 3062A) was utilized for the measurement of frequency of oscillation of 

oscillator circuit. The as-fabricated devices were tested for broadband photodetector 

application on illuminating visible and IR radiations. The lamp sources used for Vis and IR 

source had a wavelength (ë) of 554 nm and 780 nm respectively. 
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Figure 6.1: Schematic of the synthesis of MoS2 on cellulose paper, hollow CuO nanorods 

and fabrication of MoS2-CuO piezotronic diode 
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Figure 6.2: a) XRD graph of pristine MoS2/CuO b) Raman spectra of pristine MoS2 

suggesting trilayer MoS2 c) FESEM image of MoS2 grown on cellulose paper wherein the 

morphology of cellulose paper is retained d) High magnification FESEM image of  MoS2 on 

cellulose paper showing microflower like morphology e) High magnification image of 

MoS2 showing single MoS2 nanoflake diameter of 2nm further suggesting trilayer MoS2 f,i) 

Low magnification image of CuO solution after spin coating over MoS2-cellulose paper 

indicating uniform deposition of CuO on MoS2 thereby forming uniform heterojunction  

g,h) High magnification image of CuO showing hollow irregular nanorod like morphology 

j, k) UV-visible-NIR spectra of CuO and pristine MoS2 respectively wherein broadband 

absorbance is observed for pristine MoS2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



119 

 
 

 

Figure 6.3: a) IV characteristics of MoS2-CuO piezotronic diode showing excellent 

rectifying characteristics b) Plot of Nss v/s Ec-E c) IV characteristic of MoS2-CuO diode for 

different intensities of visible light illumination d) IV characteristic of MoS2-CuO diode for 

different intensities of IR light illumination e) Temporal response of the MoS2-CuO diode 

for different intensities of visible light illumination f) Temporal response of the MoS2-CuO 

diode for different intensities of IR light illumination g) Temporal response of MoS2-CuO 

for fixed intensity of both visible and IR illumination showing higher response for visible 

light h) Responsivity v/s intensity graph for both visible and IR illumination (N=3). 
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Figure 6.4: a) Voltage output for pristine MoS2-cellulose paper showing a peak to peak 

voltage of 2V b) Temporal response of MoS2-CuO diode for fixed visible illumination under 

varying strains c) Temporal response of MoS2-CuO diode for fixed IR illumination under 

varying strains d) Responsivity of the as fabricated device for fixed visible and IR light 

illumination under varying strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5: a) Circuit diagram for the oscillator with LC resonant feedback circuit b) Graph 

of frequency of oscillation and capacitance variation with strain c) Graph showing different 

frequency of oscillation under varying external mechanical strain. As applied strain 

increases frequency of oscillation increases. 
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Figure 6.6: a) Energy band diagram of MoS2-CuO piezotronic diode under illumination b) 

Energy band diagram of MoS2-CuO piezotronic diode under external mechanical strain 

showing increase in the depletion region width and schottky barrier height. 
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Material/ Hybrid Substrate Range of detection Responsivity Ref 

MoS2/ZnS Cellulose paper UV to NIR 17.85 µA/W 39 

MoS2/ZnO Polyimide UV 0.89 mA/W 33 

SnS2 Polypropylene UV to NIR 9.36 nA/W 34 

MoS2 Polyimide UV 2.46 µA/W 45 

Graphene/ZnO Eraser UV to Visible 16.5 µA/W 3 

Graphene/MoS2 Cellulose paper on 

PDMS 

UV to Visible 3.3 mA/W 46 

MoS2/CuO Cellulose paper Visible to NIR 42 mA/W This work 

 
Table 6.1: Comparison of the Range of detection and responsivity for various flexible 

photodetectors 
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Chapter 7 

   Carbon nanotube on eraser based 

eco-friendly fabrication of skin-like 

large area matrix of flexible strain 

and pressure sensor  

 

Abstract 

This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor 

on flexible, bio-degradable pencil eraser substrate and has been fabricated by a solvent-free, 

low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNTs) film as 

strain sensing element was patterned on pencil eraser by rolling pin and pre-compaction 

mechanical press which induces high interfacial bonding between the MWCNTs and eraser 

substrate which enables the sensor to achieve recoverability under ambient conditions. 

Eraser, serves as a substrate for strain sensing as well as acts as a dielectric for capacitive 

pressure sensing, thereby eliminating the steps of dielectric deposition which is crucial in 

capacitive based pressure sensors. Strain sensing transduction mechanism is attributed to the 

tunneling effect caused due to the elastic behavior of MWCNTs and strong mechanical 

interlock between MWCNTs and eraser substrate which restricts slippage of MWCNTs on 

eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to 

be 2.4 which is comparable to and even better than most of the strain and pressure sensors 

fabricated with subtle design and architecture. The sensitivity of the capacitive pressure 
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sensor was found to be 0.135MPa-1.To demonstrate the applicability of the sensor as 

artificial electronic skin the sensor was assembled on various parts of human body and their 

corresponding movement and the touch sensation were monitored. The entire fabrication 

process is scalable and can be integrated to large area for mapping spatial pressure 

distribution. This low cost, easily scalable MWCNT rolled pin eraser based pressure and 

strain sensor has huge potential applications as artificial e-skin in flexible electronics and 

medical diagnostics especially in surgeries as it provides high spatial resolution without 

complex nanostructure architecture.  

7.1. Introduction 

Conventional electronic devices fabricated on rigid crystalline semiconductors wafers have 

evolved with the motivation to miniaturize thereby realizing faster, smaller and densely 

integrated devices [1]. A parallel research that is rapidly evolving for future electronics is to 

integrate the property of flexibility and stretchablity to develop user friendly devices. There 

have been number of reports on strain and pressure sensors on stretchable, bendable and soft 

materials like polyimide, polyurethane sponge, natural rubber, cellulose paper, tissue paper 

etc. using various nanomaterials such as metal oxides, carbon nanomaterials and metal 

nanowires [2-11]. Even though these devices are low cost, environmental friendly and 

involve low energy fabrication processes, they lack the multi-functionality of both pressure 

and strain sensing, which is essential for artificial electronic skin applications. PU sponge is 

highly flexible but possess less stretchablity which limits its use as strain sensor. Moreover, 

making the sponge conductive for pressure sensing applications involves processes like spin 

coating, dip coating and freeze drying which use toxic solvents and subsequently degrade 

the performance of the device. Fabricating devices on cellulose paper has the advantage of 

being eco-friendly and low-cost, but low tear resistance and poor stretchablity of cellulose 

paper restricts its use in robust applications. Natural rubber is an ideal choice for fabricating 

pressure and strain sensors as it possesses high tear resistance, stretchablity and is also bio-

degradable. Most of the commercially available erasers contain polyvinyl chloride (PVC) 

which are not biodegradable. PVC free eraser was chosen due to two main reason, first 

being, it is softer compared to other commercial PVC containing erasers and second, it is 

biodegradable. Softer eraser helps in easily bendable and induces more strain. Various 

stretchable devices have been fabricated on rubber using different materials and their 

composites [12-15]. There has been a recent trend of synthesizing composites of natural 

rubber with conductive CNTs filler to obtain electrically conductive and reinforced rubber 

materials [16-17]. But to obtain a proper dispersion of CNTs in rubber matrix it is 
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functionalized with carboxylic group (COOH), hydroxyl group (OH) for which CNTs are 

treated with acids thereby degrading the properties of CNTs. Also, most of the reports either 

deal with pressure or strain sensing using natural rubber which does not fit the scope of 

artificial skin applications. For e-skin applications, devices should be able to monitor human 

motion as well as sense touch with functionalities of both pressure and strain sensing. [18] 

demonstrated skin like transparent pressure and strain sensor using PDMS, CNT and ecoflex 

for resistive strain sensing and capacitive pressure sensing. Even though the results are very 

encouraging the fabrication process includes photolithography and metal evaporation which 

makes it costly and energy inefficient.   

The transduction mechanism for most of the reported strain sensors is based on geometrical 

changes of the sensing material which does not allow the sensor to recover its original state 

which induces high hysteresis thereby not only degrading the performance but also reducing 

the lifetime of the sensor. Therefore, in addition to stretchable and bendability of the device 

introducing properties to these soft electronic devices that can repeatedly recover electrical 

and mechanical performance under stretchable and bendable conditions, is of high 

importance to avoid the degradation of device performance under deformation. There are 

reports on self-healing flexible strain sensors by use of various nanoparticles in elastomer 

matrix but the performance of these sensors is moderate and the process is non-ecofriendly 

[19-21]. Hence, it of interest to fabricate strain sensors by combining the advantage of 

solvent free process for applications in artificial skin, robotics and medical monitoring. 

In this work, we introduce a new type of piezoresistive polyvinyl chloride (PVC) free pencil 

eraser based pressure and strain sensing sensor which could be utilized as an artificial e-skin 

using MWCNTs as sensing element. PVC free eraser not only act as a highly stretchable 

material for strain sensing but also act as a dielectric for capacitive pressure sensing 

eliminating the use of time consuming and energy inefficient dielectric deposition 

techniques such as RF sputtering, evaporation and atomic layer deposition (ALD).The 

fabrication process outlined in this work is solvent free where the deposition of MWCNTs 

on both sides of PVC free eraser was performed using simple rolling pin and pre-

compaction mechanical press which ensures excellent interfacial bonding between 

MWCNTs and eraser substrate. This excellent interfacial bonding between MWCNTs and 

eraser substrate is the key for recoverability of the sensor under deformation. Deposited 

MWCNTs not only act as strain sensing element but also act as metal electrodes for 

capacitive pressure sensing with eraser as dielectric which again eliminates the need for 

depositing metals using sophisticated sputtering and evaporation techniques. The results 
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indicate that the as fabricated sensor can be utilized for development of artificial skin which 

has numerous applications in the field of healthcare for acid and burn victims, robotics etc. 

Moreover, this being fully a solvent free technique enables the device to be used in 

developing disposable sensor applications where cost is a limitation. To the best of our 

knowledge this is first report of MWCNTs deposited using solvent free technique on 

biodegradable eraser as both flexible substrate as well as dielectric for capacitive pressure 

sensor and its application in artificial electronic skin. 

7.2. Results and Discussions  

To achieve flexibility and stretchablity of the devices two common strategies have been 

used. First is to directly bond thin conductive materials having low young’s moduli to 

rubber/elastic substrate [22-23]. Second method is to fabricate the device using intrinsically 

stretchable conductors that are assembled by mixing conductive material into elastomeric 

matrix [24]. But above methods make use of toxic solvents and acids for achieving proper 

dispersion which not only makes the whole process eco-unfriendly but also degrades the 

performance of the device. Moreover, conductive filler is functionalized for proper adhesion 

of conductive materials onto rubber/elastic substrate which not only reduces the 

conductivity of the materials but also induces defects [25].In a recent report from our lab we 

demonstrated a novel solvent free fabrication process using simple rolling pin and pre-

compaction mechanical press for fabrication of ultrasensitive pressure sensor and its use in 

artificial electronic skin [26].  But the use of polyimide as substrate restricted its use in 

pressure sensor as polyimide is not stretchable. For artificial electronic skin applications 

device should not only be flexible but also stretchable and allow to monitor both movement 

and touch. In this work, to fabricate a large area eraser based strain and pressure sensor, we 

adopted solvent free method as recently reported by our lab [26] to deposit MWCNTs as 

conductive coating on commercial PVC free eraser. MWCNTs being 1-D material we 

fabricate large area, flexible, solvent free strain sensor on eraser substrate as it conforms 

well to 1-D nanofibers like porous nature of eraser thereby developing strong mechanical 

interlock between MWCNTs and eraser substrate. 200 rolling pin cycles followed by pre-

compaction press of 5Kg/cm2 was optimized to form a uniform MWCNTs film.  

Variation in thickness and resistance with rolling pin cycles were observed and it was found 

that as rolling pin cycles increase there is decrease in thickness and increase in the resistance 

of film of MWCNTs. Figure 7.2a shows the variation of thickness of MWCNTs with rolling 

pin cycles. As rolling pin cycles increases from 50 to 300, 24.3 % decrease in the thickness 
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was observed. This is due to the fact that as rolling pin cycles increases, MWCNTs film 

tend to stretch which decreases the thickness of the film. As the rolling pin pressure is 

increased there is increase in length to thickness ratio of MWCNTs film. Decrease in 

thickness decreases the overall area of the MWCNTs film which further increases the 

pressure applied by rolling pin thereby further reducing the thickness. Increasing the rolling 

pin cycles above 300 deforms the eraser substrate. Figure 7.2a shows the variation of 

resistance with rolling pin cycles and 83 % increase in the resistance was observed. For 

resistance measurements silver paste was used as contacts. Due to decrease in thickness of 

the film, MWCNTs penetrate more in eraser substrate thereby increasing the insulating 

nature of the film and hence resistance of the film increases. The increase in resistance may 

also be attributed to the defects induced during rolling pin and pre-compaction mechanical 

press. To study the effect of rolling pin and pre-compaction press on MWCNTs film Raman 

spectroscopy was performed. Typical signatures for MWCNTs were observed for both 

pristine and rolled pin pre-compaction press of 5Kg/cm2 MWCNTs as shown in figure 7.2b. 

D band at 1342 cm-1 represents defect band, G band at 1576 cm-1 represents graphitic band 

and peak at 2708 cm-1 represents G’ band. It was found that on pre-compaction press 

MWCNT retained sp2 hybridized structure with some defects induced. This was verified by 

taking ID/IG ratio of both pristine and pre-compaction pressed MWCNTs. For pristine 

MWCNTs ID/IG ratio was found to be 0.315 while ID/IG ratio for pre-compaction pressed 

MWCNTs was found to be 0.385. Each wall of CNT are bonded to each other by weak van 

der Waals forces. On application of pressure, due to the weak nature of van der Waals 

forces, the nanotubes merge together giving rise to sp3 hybridized bonds. This sp3 

hybridized bonds contribute to the D band of the raman spectra. Here on application of 

pressure of 5 Kg/cm2 some of the nanotube merge together which increases defects and 

thereby increasing the ID/IG ratio. It should be noted that even though pre-compaction press 

induced few defects in MWCNTs it does not totally modify the structure from sp2 to sp3 

hybridization and hence 5Kg/cm2 pre-compaction pressure was optimized for the process. 

The shift in Raman peaks after rolling pin cycles could be attributed to the residual strain 

developed on MWCNTs after rolling pin process followed by pre-compaction mechanical 

press [27]. Increase in the resistance observed in figure 2a can also be attributed to the 

defects induced due to the pressure applied. Increasing the pre-compaction pressure not only 

induces more defects but also stiffens the eraser which does not serve the purpose of flexible 

substrate. 
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Owing to the stretchable and bendable nature of the eraser substrate, flexible strain sensor 

was conveniently fabricated for different lengths of eraser.  Length of the eraser had 

significant impact on the amount of maximum strain that it can induce due to bending. 

Derivation and plot for relationship between the bend angle of the eraser and the 

corresponding strain produced can be found in Appendix B. It was observed that as length 

of the eraser increases there is a decrease in the maximum strain that can be produced at 

360° bend. As length of the eraser increases, change in length (∆L) decreases which 

decreases the overall strain produced in the MWCNTs film. Figure 7.3a shows the 

hysteresis curve for the resistance against strain for different lengths of the eraser. The 

sensor regained its initial value of resistance thus demonstrating negligible hysteresis which 

can be attributed to the strong interfacial binding between the MWCNTs and the eraser 

substrate and is superior to many other flexible strain sensors[18].Hysteresis is primarily 

caused due to friction between the slippage of filler elements under stretching and delay 

time associated with the re-establishment of the elements network upon release [28].In this 

case, due to the strong bonding between the MWCNTs film and eraser substrate, no slipping 

or detachment of MWCNTs occurs giving rise to the excellent recoverability of MWCNTs-

eraser device. Moreover, MWCNTs conforms well to nanofiber porous like structure which 

develops strong mechanical interlock between MWCNTs and eraser. The as fabricated 

sensor was easily able to distinguish between compressive and tensile strains. Figure 7.3b 

shows the change in current against tensile strain i.e. when the sensor was bend outwards. 

When the sensor is bend outwards tensile stress is developed in the eraser substrate and is 

then transferred to MWCNTs film which causes the re-arrangement and re-orientation of 

MWCNTs and forms cracks in the MWCNTs film thereby increasing the electrical 

resistance of the MWCNTs film. It should be noted that the re-arrangement and re-

orientation of MWCNTs is due to the tensile strain developed in eraser and not in MWCNTs 

itself. Moreover MWCNTs have excellent elastic properties with tensile strain upto 40% 

[29] enabling MWCNTs to stretch and bend with the elongation and bending of eraser 

substrate. Under applied tensile strain, MWCNTs tend to form cracks which are occupied 

either by eraser substrate or by air. Electron can tunnel through eraser or air when the 

distance between the adjacent MWCNTs is below threshold distance. The tunneling 

resistance depends on the distance between the adjacent CNTs. On tensile strain, due to the 

stretching of MWCNTs film there is an increase in the interspace at CNT-CNT junction 

which consequently increases the tunneling resistance. Hence, being conventionally 

different from metal strain sensors, the resistance strain dependency of the MWCNTs on 

eraser substrate is not mainly due to the geometrical changes but also due to the tunneling 
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effect between the MWCNTs and the geometrical deformations itself. When the tensile 

strain is removed, eraser releases the tensile strain and hence MWCNTs retain its initial 

position thereby again occupying cracks. Figure 7.3c shows the change in the current when 

the sensor was subjected to compressive strain i.e. bending the eraser inwards. It was found 

that current increases due to the compressive strain. This can be attributed to the decrease in 

the tunneling resistance due to the overlapping of CNTs. When the eraser is bend inwards, 

this interspace between the adjacent MWCNTs are occupied and hence there is an overall 

decrease in the tunnel resistance of the MWCNTs film thereby increasing the current. It 

should be noted here that compressive strain was manually applied and hence there was 

variation in the current levels observed. This was done to ensure that sensor operates in real 

time situations where the strain variations are non-uniform. To demonstrate the response of 

sensor under constant compressive strain, same experiment was repeated for constant 

compressive strain of 10% and the sensor response was uniform and can be found in 

Appendix as fig S13. There are reports which identify the mechanism for piezoresistivity is 

due to the disconnection of CNTs because of the application of strain [18] [30]. This 

disconnection can be attributed to the weak interfacial adhesion between CNTs and the 

substrate which not only reduces the sensitivity, reversibility but also reduces the lifetime of 

the sensor. However, dominant reason for the piezoresistivity in MWCNTs-eraser film is 

the tunneling effect due to the elastic behavior of CNTs and strong interfacial binding and 

mechanical interlock between MWCNTs and eraser substrate, rather than disconnection of 

the adjacent CNTs which is the primary reason for excellent recoverability of MWCNTs 

and negligible hysteresis in the performance of the sensor. Figure 7.3d shows the graph of 

resistance change with both compressive and tensile strain. The positive values of strain in 

the graph corresponds to tensile strain and the negative values corresponds to the 

compressive strain. The graph shows the similarity in the values of the normalized 

resistance when the sensor is under compression and tensile strain.  

Gauge factor (GF) was used for quantitative analysis and to calculate the sensitivity of the 

strain sensor which is defined as ratio of relative change in resistance to strain and is given 

by GF = ∆R/∆ε, where ε represents strain. The GF calculated for the as fabricated sensor is 

2.4 which is better than some of the reports on MWCNTs based strain sensors 

[15][10][31]on different substrates with subtle design architectures.  

The technological goal is to integrate these sensors as artificial electronic skin (e-skin) 

which requires the sensors to detect motion and sense touch. Most of the papers in literature 

report either human motion monitoring sensor or touch sensor with very few reports 
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demonstrating both [18]. Even though there are reports on both human motion monitoring 

and touch, the fabrication procedures outlined are time consuming and energy inefficient. 

To fulfill this gap, the as fabricated sensor was further applied as capacitive based pressure 

sensor. To do so, the eraser not only acts as a substrate for strain sensing but also acts as a 

dielectric for capacitive based pressure sensor. This greatly reduces the efforts in integrating 

dielectrics which requires cleanroom environment involving sophisticated processes like 

evaporation and sputtering. In this case, MWCNTs film was deposited on back side of the 

eraser with the above mentioned rolling pin and pre-compaction method. The MWCNTs 

film on top as well as bottom side of eraser behaved as metal plates for parallel plate 

capacitor with contacts taken from silver paste and copper tape. This greatly reduces the 

efforts in deposition of metal plates for parallel plate capacitor. Finally the as-fabricated 

capacitive pressure sensor was laminated by polyimide tape as MWCNTs are known to 

respond to temperature and humidity [32]. The cross sectional view of the capacitive 

pressure sensor in relaxed and pressed condition can be found in Appendix A as fig S14.  

The capacitance C of a parallel plate capacitor is proportional to 1/d, where d is the spacing 

between the plates. On applying pressure, the spacing d changes thus changing the 

capacitance. First, the dielectric constant (ε) of eraser was evaluated by plotting capacitance 

value with different A/d, where A is area. The plot was linearly fitted and the ε value was 

calculated to be 3.94. Figure 7.4a shows the variation of capacitance with A/d. Dielectric 

constant was extracted as reported in [33]. Figure 7.4b shows the response of the sensor to 

different pressures. The pressure was applied using an air compressor whose pressure can be 

varied. The compressed air with fixed pressure was pointed towards the sensor and 

corresponding change in the capacitance was observed. As pressure of compressed air was 

increased, increase in the capacitance was observed. Sensitivity of the sensor was calculated 

by S = (∆C/C0)/∆P, where ∆C is the relative change in capacitance and C0 is the initial 

capacitance of the sensor under no load or press and ∆P is the change in the applied 

pressure. As shown in figure 7.4b, with linear fit of the graph between (∆C/C0) and ∆P, the 

sensitivity of the sensor was calculated to be 0.135MPa-1. It is worth noting that even though 

the sensitivity is not significant with some of the reported literatures which make use of 

complex fabrication techniques[18][34], the focus of our approach is solvent free, simple 

fabrication and low cost while still maintaining a fairly good sensitivity suitable for touch 

sensing applications. The sensing mechanism is the change in the distance don applying 

pressure, which is nothing but width of the eraser. As the pressure is applied, distance d 

between the plates decreases which increases the capacitance. Figure 7.4c shows the 
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temporal response of the sensor wherein the pressure was applied several times showing 

excellent repeatability. The sensor was further tested for soft and hard touch wherein the 

pressure was applied by human hand with different pressures as shown in figure 7.4d. It was 

clearly observed that sensor demonstrates repeatable performance for distinct pressure 

touches of human hand.  

 

To demonstrate the potential application of the eraser based sensor in artificial electronic 

skin the as fabricated sensor was integrated onto various parts of the body such as fingers, 

wrist, elbow, neck etc. where the bodily movement is significantly high. Different types of 

bodily movements either produce tensile or compressive strain in the sensor and hence the 

sensor (capable of detecting both compressive and tensile strain) was able to detect the 

motion of almost every part of human body. Figure 5 shows photographic images of 

integration of the sensor on different human body parts and their corresponding temporal 

response showing excellent repeatability. Figure 7.5a shows the temporal response of the 

sensor when it was integrated with forefinger wherein it was bend and released several 

times and the corresponding response was measured. It was observed that finger movements 

induces tensile strain and hence there was decrease in current when finger was bend. The 

same was repeated for 10 times and similar response was observed. Figure 7.5b shows 

response of the sensor when the finger was bend and held in the bent position for few 

seconds and then released. It was observed that when the sensor was in bent position the 

sensor retains the response of the bent position with a slight increment in the current levels. 

This could possibly be due to the eraser substrate trying to regain its lowest energy state i.e. 

relaxed state. When the sensor is perturbed by bending it always tries to regain its original 

state by opposing the tensile strain and inducing small amount of compressive strain which 

slightly increases the current levels. The same was repeated 5 times with sensor showing 

similar response. Figure 7.5c shows response of the sensor when integrated onto wrist of 

human hand where the movement induces compressive strain thereby increasing the current 

levels. Lastly, it was integrated onto human neck and elbow wherein the upside down 

movement of both induces tensile strain as shown in Figure 7.5d and 7.5e respectively.  

 

The process developed for the development of facile pressure and strain sensors for e-skin 

applications can easily be scaled up to allow for production of large area flexible e-skin. 

Entire pencil eraser (30mm x 15mm x 5mm) was directly used to fabricate artificial e-skin 
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with 8 pixels x 6 pixels. Detailed fabrication procedure is explained in Appendix A. The 

obtained scaled up artificial e-skin is as shown in figure 7.6b. Due to soft and porous nature 

of the pencil eraser used, the touch feeling of the as-obtained as fabricated artificial skin is 

elastic as that of real skin. The pressure sensing mechanism of artificial e-skin is related to 

capacitive variations of the eraser with MWCNT deposited on both top and bottom side. 

Mapping out the capacitive variation of each pixel on applying load clearly showed the two 

dimensional pressure distribution on the e-skin. For this alphabets “I” “T” and “H” were 

placed on e-skin separately and corresponding capacitive variations were recorded and 

plotted in figure 7.6a. The measured spatial distribution is highly consistent with the shape 

and weight distribution of the object demonstrating excellent response of artificial skin to 

external pressures.  

There have been numerous reports of flexible substrates for both pressure and strain sensing 

which includes using metal nanoparticles on PDMS substrate [35], cotton based pressure 

sensors [36], pencil on paper [37], graphene-rubber composite for human motion monitoring 

[38], CNT, graphene-polyimide foam, Si nanowire and graphene nanocellulose nanopaper  

based flexible strain sensors [39-42]. CNT and graphitic films based strain sensor on natural 

rubber was reported wherein the CNT film was sandwiched in natural rubber [43]. Even 

though the fabrication is simple and the results are encouraging the process of depositing 

CNT on natural rubber is not well defined and optimized which may vary the performance 

from device to device making it unsuitable for large scale fabrication. Moreover, the process 

of passivating the device is by liquid natural rubber whose effect on the properties of CNTs 

is still unknown. Other substrates such as PU sponge, cellulose paper, tissue paper etc. are 

promising for flexible pressure and strain sensing but they lack multi-functionality of both 

pressure and strain sensing which is crucial for e-skin applications. Each of the substrate 

offers excellent response for either pressure or strain sensing, not both. In this case, we 

fabricate multi-functional pressure and strain sensor by depositing MWCNT on PVC free 

eraser by a novel rolling pin and pre-compaction pressing which not only gives uniformity 

in the film but is also a repeatable process with minimum error. It should be noted that even 

though in this case the deposition was performed manually, it can be automated by 

integrating the roll pin to electric motor thereby minimizing variation and ensuring 

repeatability suitable for commercialization. The total estimated cost of the sensor (6 x 8 

array) was less than $0.15 

7.3. Conclusion 
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In summary, a facile fabrication method for multi-functional skin like pressure and strain 

sensor was developed using MWCNTs on PVC free eraser with solvent free, low cost and 

low energy technique. A novel rolling pin and pre-compaction mechanical press technique 

for deposition of MWCNTs on eraser was developed, optimized and tested. Thickness and 

resistance variation with rolling pin cycles were studied in order to quantify the deposition 

technique. Eraser not only acts as a substrate for strain sensing but also acts as a dielectric 

for capacitive pressure sensor. Also, deposited MWCNTs acts a metal plates for capacitive 

pressure sensor. Both these process eliminates the need for depositing dielectric and metal 

which are crucial step in capacitive based pressure sensor. Gauge factor of strain sensor was 

calculated to be 2.4 which is comparable to the strain sensor fabricated with complex 

fabrication steps. The sensitivity of the capacitive pressure sensor was found to be 

0.135MPa-1. Sensing mechanism of MWCNTs eraser based strain sensor was attributed to 

the tunneling effect rather than geometrical deformations. The as fabricated sensor was then 

integrated to various parts of human body such as hand, neck, wrist and elbow wherein 

excellent responses to the corresponding movements were observed. The process was scaled 

for large area fabrication of flexible artificial skin and spatial pressure mapping results 

reveals excellent consistency in recognizing the shape and location of the object. This novel 

and low-cost fabrication process could be used in future to design and develop organic skin 

like devices and abilities to sense moisture, temperature, pH, light and chemical and 

biological species. 

7.4. Experimental Section 

Fabrication of eraser based strain sensor 

MWCNTs was deposited on PVC free eraser by pre compaction mechanical pressing and 

rolling pin. Eraser was pre-stretched and bend several times to relax the strain and open 

gaps for easy deposition of MWCNTs. Before deposition, eraser was cleaned with DI water 

and sonicated in isopropanol (IPA) for 3 minutes. It was then dried at 70°C for 20 minutes. 

MWCNTs (different weights) was then applied on the eraser and MWCNTs film was 

formed using rolling pin. Optimization in terms of process, MWCNTs weight and rolling 

pin cycles was done to ensure uniform film with desired initial resistance. For accurate 

fabrication of the device rolling was performed for different rolling cycles to ensure 

uniformity in the film. To remove the unattached MWCNTs on eraser, it was washed with 

copious amount of DI water. The eraser was then dried at 70°C for 30 minutes. The eraser 

was then cut into desired lengths and widths. Rolling pin was performed manually wherein 
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pressure variations are difficult to control. To ensure uniform pressure, MWCNTs rolled pin 

eraser was then compressed using pre-compaction mechanical press with pressure of 

5Kg/cm2 for 15 seconds. Pre-compaction compression press decreases non-uniformity 

caused due to pressure variations during rolling pin. Contacts were then made using silver 

conductive paste. Finally the eraser was passivated by the use of polyimide (PI) tape. The 

resistance of the eraser based sensor varied with the width and length of the MWCNTs 

deposited on the eraser and can be found in supplementary information (SI) as fig S1. The 

schematic of the complete fabrication process is as shown in figure 1. Information regarding 

the materials and characterization tools can be found in SI. 
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Figure 7.1: Schematic representation of fabrication procedure for solvent free MWCNTs 

film based strain sensor on biodegradable eraser substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: FESEM images of a) MWCNTs powder b) MWCNTs deposited on eraser by 

mechanical pressing without rolling pin c) MWCNTs deposited on eraser with mechanical 
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pressing performed before rolling pin d) MWCNTs film on eraser with rolling pin for 200 

cycles followed by mechanical pressing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Graph showing a) variation of thickness and resistance with rolling pin cycles 

with average thickness of MWCNTs found to be 23-28 µm (N = 3) b) Raman spectra of 

MWCNT for pristine and pre-compaction pressed MWCNT which indicates that pre-

compaction mechanical press induces defects thereby increasing the ID/IG ratio. 
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Figure 7.4: a) Hysteresis curve for the resistance against strain for different lengths of the 

eraser b) temporal response of sensor under compressive strain c) temporal response of the 

sensor under tensile strain d) graph of resistance change showing near similar response for 

both compressive and tensile strain 
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Figure 7.5: a) Graph showing the variation of eraser capacitance with A/d which on linear 

fit gives dielectric constant of 3.94 b) Graph of normalized eraser capacitance variation with 

different pressures which on linear fit gives sensitivity of 0.135MPa-1 (N = 3) c) Graph 

showing the temporal response of capacitance variation on human hand touch for 6 cycles 

showing excellent repeatability d) Graph showing the temporal response of capacitance 

variation on different human hand (soft and hard) touch for 6 cycles showing excellent 

repeatability. 
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Figure 7.6: Graphs showing different bodily movements and their corresponding temporal 

response showing excellent repeatability. Insets are photographic images of integration of 

sensor to different human body parts such as (starting from leftmost corner and coming 

clockwise) fingers, bent finger, wrist, neck and elbow. 
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Figure 7.7: a) Mapping profile of pixels for different alphabets “I”, “T” and “H” for the 

letter “IITH” b) Photograph of as fabricated large area artificial e-skin on MWCNT 

deposited eraser substrate c) Photograph of alphabet “I” (6 g) on the surface of as fabricated 

artificial e-skin to test pressure sensing capability. 
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Chapter 8 

   Conclusion  

 

8.1. Conclusion 

In summary, Chapter 2, 3 and 4 demonstrates fabrication of flexible broadband 

photodetector on flexible substrates using different MoS2 hybrids by a simple and cost 

effective hydrothermal method. The selection of the hybrid material was made with two 

special criteria, one being, it should be high bandgap material and other that it should be n 

type material which makes the hybrid to possess straddling type of bandgap, thereby 

enabling broadband photodetection. The spectral selectivity of MoS2 has been extended to 

UV wavelength region, by combining MoS2 with ZnS, 1D V2O5 nanowires and 0D carbon 

dot having high sensitivity towards UV light. The fabricated photodetector displays high 

sensitivity towards visible spectrum when compared to UV and IR with higher responsivity 

for MoS2-V2O5 nanowire hybrid. The work presented in Chapter 2, 3 and 4 provides a 

promising route for the development of large scale flexible broadband photodetectors using 

TMD hybrids at low cost; having diverse applications in the field of wearable electronics, 

environmental monitoring, and surveillance.  

Chapter 5 describes the fabrication of 2D Gr/ZnO rectifying junction on PVC free pencil 

eraser using simple, low-cost solution processed hydrothermal method and has been utilized 

for increment in the responsivity of broadband photodetection using external strain 

modulation. Decrease in the bandgap (2.8 eV) was observed for 2D ZnO which was 

responsible for broadband photodetection in UV and visible region. 87% enhanced 

photosensing for UV light was observed under 30% strain. The performance improvement is 

due to piezopotential induced under compressive strain in 2D ZnO which results in lowering 

of conduction band energy and raising the schottky barrier height thereby facilitating 

electron-hole pair separation in 2D Gr/ZnO junction. The work demonstrated in chapter 5 

paves way for developing highly scalable flexible semiconductor heterojunctions on 

unconventional substrates for use in optoelectronics, analog electronics and sensors.  

Chapter 6 describes the solution processed MoS2-CuO flexible piezotronic diode using 

simple yet cost effective hydrothermal method which was utilized for active analog 
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frequency modulator and enhanced broadband photodetector upon external strain. Under 2% 

strain, 69.7% increment in normalized resistance was observed for visible illumination. 

Further, the as fabricated piezotronic diode was utilized at circuit level for designing an 

oscillator wherein the frequency of oscillator was controlled by applied external strain. The 

work demonstrated in Chapter 6 is the step ahead in utilizing the fabricated flexible devices 

at circuit level designing which holds tremendous potential in the field of flexible and 

wearable sensors, analog and digital electronics applications. 

Chapter 7 describes a facile fabrication method for multi-functional skin like pressure and 

strain sensor was developed using MWCNTs on PVC free eraser with solvent free, low cost 

and low energy technique. A novel rolling pin and pre-compaction mechanical press 

technique for deposition of MWCNTs on eraser was developed, optimized and tested. 

Thickness and resistance variation with rolling pin cycles were studied in order to quantify 

the deposition technique. Eraser not only acts as a substrate for strain sensing but also acts 

as a dielectric for capacitive pressure sensor. Also, deposited MWCNTs acts a metal plates 

for capacitive pressure sensor. Both these process eliminates the need for depositing 

dielectric and metal which are crucial step in capacitive based pressure sensor. The as 

fabricated sensor was then integrated to various parts of human body such as hand, neck, 

wrist and elbow wherein excellent responses to the corresponding movements were 

observed. The process was scaled for large area fabrication of flexible artificial skin and 

spatial pressure mapping results reveals excellent consistency in recognizing the shape and 

location of the object. The novel and low-cost fabrication process described in Chapter 7 

could be used in future to design and develop organic skin like devices and abilities to sense 

moisture, temperature, pH, light and chemical and biological species. 

 

8.2.     Future Directions  

The future scope of the thesis deals with integrating the multifunctional sensors with a 

wireless module (Bluetooth) so that data can be acquired wirelessly on the smart phone 

thereby enabling the development of smart sensors for IoT applications. Multifunctional 

sensors responding to different chemical stimuli fabricated using functional nanomaterials 

still remains a challenge due to the usage of same sensor multiple times for different sensing 

and unreliable frontend processing of the sensing data. This challenge is intensified by the 

lack of suitable techniques for fabricating disposable sensors which are integrated to 

smartphone with a dedicated application developed for each sensing. The sensor can be 
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utilized for particular sensing and then can be disposed avoiding the need for utilizing the 

same sensor for different sensing thereby increasing accuracy of the sensing data. The 

fabricated sensor can be further utilized for real time diagnosis of hydration level of human 

body using breath. Development of such unique hybrid materials for wireless disposable 

multifunctional sensor would be a great step ahead in flexible and wearable electronics 

having potential applications in medical, security, Internet of things etc. 
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Appendix A 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig S1: a) Tauc plot for ZnS wherein the bandgap calculated was 3.7 eV b) Tauc plot for 

MoS2 wherein the bandgap calculated was 1.53 eV. 

 

 

 

 

 

 

 

 

 

 

Fig S2: I-V characteristic of pristine MoS2 a) under IR illumination b) visible illumination 
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Figure S3:  UV-VIS spectra of a) V2O5 nanowire showing absorbance in UV to visible 

region b) MoS2 showing absorbance in visible to NIR region c) Tauc plot of V2O5 

demonstrating a bandgap of 2.4 eV and d) Tauc plot of MoS2 demonstrating a bandgap of 

1.53 eV. 
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Figure S4: Photographic images of a) MoS2 grown on Al foil b) Masking the side areas of 

the device for defining metal contact area 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5: Graph showing the spectral response of the MoS2/V2O5 photodetector from 365 

nm to 780 nm 
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Figure S6: I-V characteristic of pristine V2O5 for different a) UV light intensities b) 

visible light intensities 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: I-V characteristic of pristine MoS2 for different visible light intensities. 
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Fig S8: I-V characteristic of pristine MoS2 a) under IR illumination b) visible illumination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig S9: Tauc plot of a) CuO showing optical bandgap value of 2.9 eV b) MoS2 showing 

optical bandgap value to be 1.53 eV 
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Figure S10: a) I-V characteristic of pristine MoS2 under strain b) Responsivity of pristine 

MoS2 device under visible and NIR illumination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11: Graph showing the bending cycle test for MoS2/CuO piezotronic diode 

demonstrating negligible change in the responsivity values under both visible and NIR 

illumination 
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Fig S12: IV characteristic of different lengths of MWCNT film. As length increases there is 

decrease in current explaining the increase in resistance 

 

 

 

 

 

 

 

 

Fig S13: Temporal response of sensor under compressive strain of 10 %.  
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Figure S14:  Schematic showing the side view of the capacitive based pressure sensor in 

relaxed and pressed state where MWCNTs film acts as metal plates and eraser acts as a 

dielectric thus forming a capacitor 

 

 

 

Fabrication of large area flexible e-skin 

 A commercial PVC free eraser was cleaned with DI water and sonicated in IPA for 3 

minutes and then dried at 70°C for 10 minutes. MWCNT was coated on both bottom 

and tope side of eraser by rolling pin method. To remove the unattached MWCNT it 

was sonicated in DI water for 3 minutes and dried at 70°C for 30 minutes. The 

MWCNT rolled pin eraser was then compressed using pre-compaction mechanical press 

with a pressure of 5Kg/cm2 for 15 seconds. The eraser was then cut into 5mm2 x 5mm2 

dimension. Each 5mm2 x 5mm2 MWCNT coated eraser acted as a single pixel. 

Polyimide was used as a supporting substrate for large scale flexible e-skin fabrication. 

Each pixel was attached to polyimide by the use of silver paste which acted not only as 

adhesive but also as a bottom electrode. Array of 6 x 8 (each of 5mm2 x 5mm2) such 

pixels were fabricated on polyimide substrate. Each pixel was connected to other on the 

bottom side by the use of silver paste so as to get a common ground for all the pixels. 

Finally on top of the eraser, Cu tape was attached which served as a connection for 

external circuitry 
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Appendix B 

Derivation of the relation between bend angle and strain produced 

 
 
 
 
 
 
 
 
l = length of the eraser 

b = breadth of the eraser 

h = height of the eraser 

r1 = inner radius of the eraser after bending 

r2 = outer radius of the eraser after bending 

 = angle of bending 

 

The volume of the eraser will remain constant before & after bending. 

So equating the volume before and after bending, we get, 

 

l*b*h = [/360]*π*b*(r2
2 – r1

2)  

(Dividing by b on both sides), 

l*h = [/360]*π*(r2
2 – r2

2 - h2+2r1h) 

(Dividing by h on both sides), 

l = [/360]*π*(2r2 - h) 

 (360*l)/ (* π) = (2r2 - h) 

r2 = [(180*l)/ (* π)] + h/2 

  

r1 = [(180*l)/ (* π)] - h/2 

 

l’ = length of the outer arc of the eraser after bending 

 = strain 

l = change in length of the outer arc of the eraser 

h 

l 

b 

 

 

r1 r2 

h 

b 
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l’ = [/360]*2π*r2 

l’ = [/360]*2π*[{(180*l)/ (* π)} + h/2] 

l’ = l + [/360]*π*h 

 

l = [/360]*π*h 

 

 = l/l 

 = [/360]*π*h/l 

% = [[/360]*π*h/l] *100 

 

% = [/3.6]*π*h/l 

 

 

 


