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Abstract 

In the present work, the effect of strain-path on the microstructure, texture and 

hardness properties of AlCoCrFeNi2.1 eutectic high entropy alloy was investigated. 

The EHEA was first cryo-rolled at 77K upto 90% thickness reduction using three 

different cross-rolling routes namely unidirectional cryo-rolling (UCR), multistep 

cross-rolling (MSCR) and two-step cross-rolling (TSCR(45º)) followed by annealing 

at three different temperatures. The UCR processed material showed heterogeneous 

microstructure as compared to MSCR and TSCR(45º)) processed materials. The 

deformation texture of L12/FCC in MSCR processed material agrees quite well the 

texture of cryo-rolled FCC materials whereas the texture of both the phases in 

TSCR(45º) processed material appears relatively weak. Upon recrystallization at 

800ºC, the UCR processed material showed a rather novel heterogeneous 

microstructure whereas MSCR and TSCR(45º)) processed materials indicate ultra-

fine micro-duplex structure. At higher annealing temperature, the micro-duplex 

structures remain stable in all the three processed materials. The annealing texture of 

L12/FCC phase showed presence of strong α-fibre (ND//<110>) whereas B2 phase 

revealed intense ND-fibre (ND//<111>) which is usual recrystallization texture found 

in BCC material. The UCR processed material showed much higher hardness as 

compared to MSCR and TSCR(45º)) processed materials which is attributed to its 

novel heterogeneous microstructure. Hence, it can be concluded that strain-path 

results in significant influence in controlling microstructure, texture and hardness 

properties of EHEA. 
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Nomenclature  

 

HEA- High Entropy Alloy 

EHEA- Eutectic High Entropy Alloy 

TMP- Thermo-mechanical processing  

FCC- Face Centered Cubic  

BCC- Body Centered Cubic 

HCP- Hexagonal Close Packed  

IQ map- Image Quality map  

ODF- Orientation Distribution Function  

RD- Rolling Direction  

TD- Transverse Direction  

ND- Normal Direction  

UCR-Unidirectional Rolling  

MSCR-Multi Step Cross Rolling  

TSCR (45°)-Two Step Cross Rolling (45°)  

SEM- Scanning Electron Microscopy 

LAGB- Low Angle Grain Boundary  

EBSD- Electron Back Scattered Diffraction  

Bs - Brass orientation  

BS
ND - ND rotated Brass orientation  

G- Goss orientation  
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Chapter 1 

INTRODUCTION 

 

1.1 Overview 

The conventional alloys are based on the concept of one principal element in which 

other elements are added to enhance the properties of the material. However, with the sharp 

contrast to this theory, recently the idea of novel multi-components alloys has been introduced 

in which a large number of elements (usually ≥ 5) are mixed in equiatomic or near equiatomic 

proportion (5-35 at%) [1]. These are usually known as high entropy alloys (HEAs). Despite 

their complex concentrated alloy chemistry, the HEAs may show simple crystal structure such 

as FCC [2], BCC [3], FCC+BCC [4] or even HCP [5]. This is mainly due to an effect of high 

configurational entropy of mixing which diminishes the free energy and stabilize these simple 

phases[1]. There are many factors which have considerable effect on the microstructure and 

properties of HEAs, however, the major contribution comes from the four core effects namely 

high-entropy, sluggish diffusion, severe lattice distortion and cocktail effects[6-9]. 

Thermo-mechanical processing (TMP) are now being used as one of the vital method 

to further enhance the properties of the materials [10, 11]. TMP is a combined process which 

involves heavy plastic deformation followed by annealing treatment which leads to a 

significant effect on microstructure, texture and mechanical properties of the material. The 

effect of usual TMP parameters including plastic strain [12], starting grain size [13], cryo-

rolling [14] and heating rate [15] on microstructure and texture development in FCC 

equiatomic CoCrFeMnNi HEA have been reported. 

 

1.2  Objective of the present work 

The present work attempts to understand the effect of strain path on the microstructure, 

texture and hardness evolution during thermo-mechanical processing of AlCoCrFeNi2.1 

EHEA. In this experiment, three different cross-rolling routes have been done and the 

development of microstructure and texture during deformation and annealing has been 

investigated.  
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Chapter 2  

LITERATURE REVIEW  

  

2.1 Eutectic High Entropy Alloys (EHEAs) 

EHEAs are another special subgroup of multiphase HEAs. Guo et al first observed the 

presence of an eutectic morphology in AlCoCrFeNi2.1 EHEA [16]. The EHEAs immediately 

attracted considerable attention due to their attractive microstructure and possibilities of 

achieving superior strength-ductility combination. Consequently, the underlying principles for 

developing EHEAs with novel properties remains a key area of interest.    

Although several EHEAs have been reported following the first report by Guo et al 

[16], the AlCoCrFeNi2.1 remains one of the most investigated EHEA system. Guo et al have 

reported that the eutectic constituent in the is a mixture of FCC and B2 phases. However, Wani 

et al [10] have established that the as-cast EHEA consisted of an eutectic lamellar mixture of 

(Ni, Al) rich but Cr depleted B2 phase and Al-depleted L12 phases, having volume fractions 

of ~35% and 65%, respectively. Nanosized precipitates enriched in Cr and having disordered 

BCC structure are found dispersed inside the B2 phase. Further, the B2 phase reveals 

dispersion of nano-precipitates having disordered BCC structure [17].  

Although the AlCoCrFeNi2.1 EHEA shows attractive properties over a temperature 

range spanning from ambient to cryogenic temperatures [18] even in the as-cast state, thermo-

mechanical processing can significantly enhance the properties of the processed materials by 

controlling microstructure and texture. Hence, understanding the thermo-mechanical 

processing behavior of EHEAs remains central to developing novel materials for advanced 

structural applications.  

2.2 Thermo-mechanical processing of AlCoCrFeNi2.1 EHEA  

Wani et al. have extensively investigated the thermo-mechanical processing behavior 

of AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA)[10, 19-21]. The B2 phase is much harder 

(~ 3 times) than the L12 phase as revealed by careful nano-indentation mapping. Heavy cold-

rolling to 90% reduction in thickness results in progressive disordering of the L12 phase, while 

the B2 phase remained ordered. Brass type (Bs) deformation texture is observed in the 

FCC/L12 phase, while the B2 phase revealed {111} <110> component located at the 

intersection of RD (//<110) and ND (//<111>) fibers.  
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  Annealing of the 90% cold-rolled material at 800°C results in a duplex microstructure 

composed of disordered FCC and precsipitate-free B2 phases with equiaxed morphologies and 

possessing significant resistance to grain growth. Recrystallization texture in L12 phase shows 

the development of α-fiber (ND//<110>) components. The B2 phase shows strong ND fiber 

(ND//<111>) components. Significant improvement in tensile properties as compared to the 

as-cast alloy could be achieved by thermo-mechanical processing featured by high tensile 

strength (≥1000 MPa) with tensile ductility over 10%.   

  Wani et al. have further clarified the remarkable effect of cryo-rolling on microstructure 

and mechanical properties of the EHEA [22]. The cryo-rolled and annealed EHEA develops a 

novel heterogeneous microstructure. The heterogeneous microstructure of the cryo-rolled and 

annealed material results in simultaneous enhancement in strength (Yield Strength/YS: 

1437±26 MPa, Ultimate Tensile Strength/UTS: 1562±33 MPa) and ductility (elongation to 

failure/ef ~14±1%) as compared to the as-cast as well as cold-rolled and annealed materials.  

 

2.3 Effect of strain-path on microstructure, texture and properties  

In addition to typical thermo-mechanical processing variables, strain-path remains a 

key parameter having considerable effects on microstructure and properties. The effect of 

strain-path during deformation can be understood by cross-rolling. In contrast to conventional 

rolling in which the rolling direction (RD) is maintained constant throughout the processing, 

the RD is not fixed during cross-rolling. Strain-path leads to continuous destabilization of the 

deformed substructure in the cross-rolled materials which substantially affect the texture of the 

various metals and alloys [23-25].  

The effect of strain-path on microstructure and texture in single FCC phase 

CoCrFeMnNi HEA has been investigated by Reddy et al  [26]. The alloy could be processed 

through three different cross-rolling routes. In unidirectional cold-rolling (UCR), the rolling 

direction (RD) is kept unchanged throughout the processing. In multistep cross-rolling 

(MSCR), the sheets are rotated by 90° about the normal direction (ND) after each pass, so that 

the RD and the transverse direction (TD) are interchanged in every pass. In the two step cross 

cold-rolling (TSCR) route, the samples are first deformed to half of the total equivalent strain 

(
𝜀𝑒𝑞

2⁄ ~1.3 corresponding to a thickness reduction of ~65%) along a fixed RD. Further 

thickness reduction to total equivalent strain of ~2.65 (corresponding to 90% reduction in 

thickness) is carried out using two different routes. In the TSCCR(90°) route, the samples are 

rotated by 90° around ND and the further rolling was carried out along the new direction. In 
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the TSCCR(45°) route, the sample are rotated by 45° around ND and further deformation was 

carried along this diagonal direction. Therefore, the direction of rolling is changed only once 

(i.e. after stage 1 after a true equivalent strain of ~1.3) in the TSCCR(90°) and TSCCR(45°) 

routes [26].  

The TSCCR(45°) processed material appears to develop shear bands. The UCR 

processed material shows brass type texture, while the textures of different cross-rolled 

materials are featured by different rotated brass components. Upon annealing, the UCR 

processed material shows the lowest grain size while the highest grain size is observed in the 

TSCCR(45°) processed material. This indicates greater availability of nucleation sites in the 

UCR processed material as compared to the TSCCR(45°) processed material. The differences 

in annealed grain size could be attributed to substructure destabilization and misorientation 

build-up, thus diminishing the number of potential nuclei in the TSCCR(45°) processed 

material. The annealing textures of the differently processed materials are featured by the 

presence of α-fiber (ND//<110>) and absence of preferential nucleation and growth [26].   

        Strain-path exerts a significant influence on mechanical properties such as hardness. It 

was pointed out that the cross-rolled products shows higher hardness value as compared to 

conventional UCR processed material in HCP metals like Ti [27]. However, in some cases, the 

UCR processed materials show lower hardness as compared to different cross-rolled samples 

[28]. These conflicting reports indicate that the effect of strain path on mechanical behavior of 

materials needs to be understood in depth.  

 

 

2.4 Novelty of the work 

In the present work, the effect of strain-path on microstructure, texture, and hardness 

in AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) processed by heavy cryo-rolling is 

investigated for the first time. As already highlighted, cryo-rolling exerts significant influence 

on microstructure and mechanical properties of EHEAs [29, 30]. Therefore, further tailoring 

and enhancing properties through strain-path remain distinct possibilities. These unexplored 

issues remain the major motivation for undertaking the present research.  
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Chapter 3  

EXPERIMENTAL  

  

3.1 Preparation of starting material 

AlCoCrFeNi2.1 EHEA was used as a starting material in the present work. The EHEA 

was prepared by arc melting in a Ti-gettered high-purity argon atmosphere with high purity 

(>99.9%) starting materials. Once the molten alloy was cast into the copper mold, rectangular 

specimens of dimensions 20 mm (long) × 15 mm (wide) × 3 mm (thick) were cut from the as-

cast EHEA. The surface of the as-cast slabs were carefully polished to remove any 

contamination. The schematic representation of the present work in the form of flow chart is 

shown in Fig.3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

 

                             Fig.3.1 Experimental flow chart of the present work 
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3.2 Processings 

3.2.1 Cryo-rolling 

The EHEA samples were deformed up to 90% reduction using different multistep 

cross-rolling routes as shown in fig.3.2. During unidirectional cryo-rolling (UCR) (Fig.3.2(a)), 

the rolling direction (RD) was fixed until 90% deformation (corresponding to equivalent strain 

of 2.65). In multistep cross-rolling (MSCR) (Fig.3.2(b)), the samples were rotated by 90º about 

the normal direction (ND) after each pass. This obviously resulted in mutual interchange of 

RD and transverse direction (TD) in each pass. In two-step cross-rolling (TSCR 45º) 

(Fig.3.2(c)), the samples were first deformed up to 65% reduction unidirectionally up to to half 

of the equivalent strain ( Ɛ ⁓ 1.3), and then the rest of the deformation up to 90% was imparted 

by rolling along the direction inclined 45º to the original RD. In all the three different modes 

of cross-rolling, the samples were immersed in the liquid N2 for 30 minutes before and 

immediately after each rolling pass. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

UCR 

MSCR 

TSCR(45°) 

ε˳/2 

  True strain 

Engineering 

strain 

Fig.3.2 Schematic showing (a) UCR (b)MSCR (c) TSCR (45º) processing routes.  
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3.2.2  Isochronal Annealing 

In order to study the effect of strain-path on the microstructure and texture evolution, 

small samples obtained from the 90% cryo-rolled sheets were subjected to isochronal 

annealing treatments for 1 hr at three different temperatures, namely 800ºC, 1000ºC, and 

1200ºC respectively. The annealed samples were immediately quenched in cold water 

following the heat treatments. 

 

3.3 Characterization 

The microstructure and texture of the cryo-deformed and annealed samples prepared 

using different strain-paths were investigated using electron backscattered diffraction (EBSD) 

system (Oxford Instruments, UK) attached to a FEG-SEM (Maker: Carl-Zeiss, Germany; 

Model: Supra 40). The acquired EBSD data were analyzed by TSL-OIMTM (EDAX, USA) 

software. 

            Since 90% deformed samples were having many unindexed regions, so phase fractions 

in the deformed EHEA processed by the different cross-rolling routes were calculated from the 

SEM micrographs using the ImageJ software [31]. The deformed and annealed samples were 

mechanically polished using colloidal silica followed by electro-polishing using a mixture of 

perchloric acid and methanol in a ratio of 1:9 (by volume) at 0º C temperature. Several EBSD 

scans were taken from different regions of each deformed and annealed samples. The scans 

were merged for the calculation of the orientation distribution functions (ODFs). The ODFs 

were calculated using the series expansion method with series rank 22. 

 

 

 

 

 

 

 

  



8 

Chapter 4 

EXPERIMENTAL RESULTS  

  

4.1 Evolution of microstructure and texture during deformation 

The SEM micrographs of the 90% cryo-deformed materials processed by different 

routes are shown in the Fig.4.1. In the UCR processed material (Fig.4.1(a)), the microstructure 

reveals lamellar regions (marked by yellow circles) elongated along the RD co-existing with 

fine fragmented regions (shown by white circles). In contrast, the SEM micrographs of the 

MSCR (Fig.4.1(b)) and TSCR(45º) (Fig.4.1(c)) processed materials show remarkably 

fragmented B2 phase. These fragmented B2 phases are having elongated and spherical 

morphologies. The elongated B2 phase is several microns in length, whereas fragmented B2 

phase shows a wider range in size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(c) 

  (b) 

Fig.4.1: SEM micrographs of 90% cryo-rolled EHEA processed by (a) UCR, (b) MSCR and 

(c) TSCR(45°) processing routes 
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The remarkable differences in the microstructure of the three processed materials can 

be understood from the EBSD image quality maps (IQ) (Fig.4.2). The IQ map of the UCR 

processes materials (Fig.4.2(a)) shows heterogeneous microstructure having a narrow lamellar 

region (marked by circle) along with fine fragmented regions. However, the IQ maps of the 

MSCR (Fig.4.2(b)) and TSCR (45º) (Fig.4.2(c)) processed materials depicts severely 

fragmented microstructure such that lamellar eutectic regions are not observed unlike UCR 

processed material.  

The phase fraction of the constituent L12/FCC and B2 phases of 90% cryo-rolled EHEA 

processed by three different routes are compared in Fig.4.3. The phase fraction (calculated 

using Image J software) doesn’t show much variations in all the three processed material 

including as-cast EHEA.  
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Fig.4.2: EBSD IQ maps of 90% cryo-rolled EHEA processed by (a) UCR, (b) MSCR and 

(c) TSCR (45°) processing route 

(b) 

(c) 

(a) 
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Fig.4.3: Phase fraction in as-cast and 90% cryo-deformed EHEA processed by different  

rolling routes. 

 

Table 1: List of important deformation and recrystallization texture components in L12/FCC 

phase  

Texture 

component 
Symbol 

Euler angle (°) 
Miller Indices 

Ф1 Φ Ф2 

Cube (C)  0, 0, 0 {001} <100> 

Copper (Cu)  90,35,45 {112}[4] <111> 

S  59,37,63 {123} <634> 

Bs  35,45,0 {110} <112> 

G  0,45,0 {110} <001> 

Rt-G  90,45,0 {110} <110> 

G/B  17,45,0 {110} <115> 

Bs/Bs
ND  45,45,0 {110} <755> 

Bs
ND  55,45,0 {110} <111> 

BR  80,31,34 {236} <385> 

D  90,25,45 {113} <332> 

K  27,64,14 {142} <211> 

M  80,30,65 {13 6 25} <20 15 14> 
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The development of texture in the L12/FCC phase of the 90% cryo-deformed material 

processed by the three different routes is shown by the relevant ODF sections in Fig.4.4. The 

important deformation and recrystallization texture components in the L12/FCC phase of the 

HEAs are summarized in Table 1. In the UCR processed material(Fig.4.4(a)), the φ2 = 0º 

section of the ODF of the L12/FCC phase shows strong intensity at φ1,Φ,φ2 = (25º, 45º, 0º) 

between G and Bs texture components, but somehow shifted from ideal Bs location. The φ2 = 

45º section of the ODF reveals the presence of the Cu component whereas the φ2 = 65º section 

confirms the S component which is rather weak. In contrast, the φ2 = 0º section of the ODF in 

the MSCR processed material (Fig.4.4(b)) shows the development of an α-fiber (ND// <110>) 

having strong intensity at G and exactly at the φ1,Φ,φ2 = (45º, 45º, 0º) location corresponding 

to the Bs/BSND component {011}<755>. The φ2 = 45º section of the ODF shows a complete 

absence of Cu-component. In TSCR(45º) (Fig.4.4(c)) processed material, the φ2 = 0º section 

only shows intensities at the vicinity of the G orientation but does not show {011}<755> 

texture component unlike the MSCR processed material. Presence of an (011)[122] orientation 

corresponding to φ1,Φ,φ2 = (66°,45°,0°) along the α-fiber is also noticed. However, the φ2 = 

45º section confirms the complete absence of Cu component in this case as well. 
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Fig.4.4: Relevant ODF sections of the L1
2
/FCC phase in 90% cryo-rolled EHEA processed by 

(a) UCR, (b) MSCR and (c) TSCR(45°) processing routes (for legends, refer to Table 1). 
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Table 2: List of Important deformation and recrystallization texture components in the B2 

phase.  

Texture component Symbol 

{001}<110> 
 

 

{114}<110> 
 

 

{112}<110> 
 

 

{111}<110> 
 

 

{111}<112> 
 

 

 

 

 

 

   

           
 

Fig.4.5: φ
2
=45° section ODFs of the B2 phase in 90% cryo-rolled EHEA processed by (a) 

UCR, (b) MSCR and (c) TSCR(45°) processing routes (for legends, refer to Table 2). The 

intensities of the contour lines are same as in Fig.4.4 

 

     

   (b) (a)     (c) 
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The texture of B2 phase in the 90% cryo-rolled materials processed by three different 

processed routes is shown in Fig.4.5. The important texture components in the B2 phase of the 

HEAs are summarized in Table 2. The φ2=45° section of the ODF of the B2 phase in the UCR 

processed material (Fig.4.5(a)) shows slightly shifted {111}<011>component which lies at the 

intersection of the ND and RD-fibers. In contrast, the φ2=45° section of the ODF of the B2 

phase in the 90% MSCR processed material (Fig.4.5(b)) shows a distinct {001}<110> 

component belonging to the RD-fiber. The intensities of the contour lines show that the texture 

is weakened after MSCR processing. In the 90% TSCR(45°) processed material (Fig.4.5(c)), 

the φ2=45° section of the ODF shows the absence of any predominant RD or ND-fiber 

components. The texture appears to be significantly weakened in this case. In essence, the 

texture is weakened in both MSCR and TSCR(45°) processed materials. 

 

4.2  Evolution of microstructure, texture and hardness during annealing 

The development of microstructure in the 90% deformed material after annealing is 

shown in Fig.4.6. The phase map of the UCR processed material after annealing at 800°C 

(Fig.4.6(a)) shows a remarkable heterogeneous microstructure characterized by lamellar 

regions and non-lamellar regions of coarse B2 and ultra-fine recrystallized L12/FCC grains. 

The coarse B2 phase shows extensive LAGB network (highlighted by white lines) indicating 

that the B2 grains are still in unrecrystallized condition. However, after annealing at 1000ºC 

(Fig.4.6(b)) and 1200ºC (Fig.4.6(c)), the heterogeneous microstructure is replaced by relatively 

homogeneous fine micro-duplex structure. In stark contrast MSCR (Fig.4.6(d)) and 

TSCR(45°) (Fig.4.6(g)) processed material show the development of micro-duplex structure 

after annealing at 800ºC unlike the UCR processed material. The micro-duplex structure is 

rather stable even after annealing at 1000ºC and 1200ºC in both these cases. 
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Fig.4.6: EBSD phase map of EHEA processed by ((a)-(c)) UCR, ((d)-(f)) MSCR and 

((g)-(i)) TSCR(45°) following annealing at ((a), (d), (g)) 800°C, ((b), (e), (h)) 1000°C and 

((c), (f), (i)) 1200°C 
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RD 
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The change in FCC phase fraction with annealing temperature in the EHEA processed 

by the three different routes are compared in Fig.4.7(a). In the 90% cryo-deformed state, the 

materials processed by the three different routes shows very similar phase fractions. The 

L12/FCC phase fraction decreases in all the three processed materials after annealing at 800ºC. 

It has been observed that the decrease in the L12/FCC phase fraction is relatively lower in the 

UCR processed material as compared to the EHEA processed by the other two routes. The 

L12/FCC phase fraction tends to increase in all the three processed materials with increasing 

annealing temperature. However, the UCR processed material show higher L12/FCC phase 

fraction after annealing at 1200ºC as compared to the MSCR and TSCR(45º) processed 

materials.  

 

 

                                                                    

                                                                             

                                                                                    

 

 

 

 

 

 

 

 

 

 

         

Fig.4.7: (a) Change in phase fraction and (b) hardness with annealing temperature in the EHEA 

processed by the three different routes.    

 

                

 

 

(b)  (a)  
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The evolution of hardness in the materials processed with three different routes reveals 

very interesting behavior (Fig.4.7(b)). The hardness of the EHEA increases significantly after 

cryo-rolling by three processed routes as compared to as-cast material. However, the hardness 

value is quite similar in all the three processed material after 90% cryo-deformation. 

Remarkably, the hardness value of the UCR processed material is much greater than the those 

of MSCR and TSCR(45º) processed materials after annealing at 800ºC. Following annealing 

at 1000°C and 1200°C, the EHEA processed by the three different routes again shows very 

similar hardness values. 

             The evolution of texture in the L12/FCC phase of the annealed EHEA are summarized 

in Fig.4.8. The φ2 = 0º section are shown to highlight the major changes in texture. The φ2 = 

0º section of the ODF of the UCR processed material annealed at 800ºC (Fig.4.8(a)) shows 

intensity at the vicinity of G component. The G component is strengthened with increasing 

annealing temperature (Fig.4.8(b)), however, upon further annealing at 1200°C, the G/B 

component emerge as the strongest recrystallization texture component (Fig.4.8(c)). In 

contrast, the MSCR processed sample annealed at 800°C (Fig.4.8(d)) appears to develop an α-

fiber containing {011}<755> component. The {011}<755> component is strengthened with 

increasing annealing temperature (Fig.4.8(e) and (f)). The TSCR(45°) processed sample also 

shows the development of a weak α-fiber after annealing at 800°C (Fig.4.8(g)). With increasing 

annealing temperature, the intensity spreading between Bs and BS
ND is particularly high ((Fig. 

4.8(h) and (i)). The material annealed at 1200°C shows a strong intensity at the {011}<755> 

location (Fig. 4.8(i)). 
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Fig.4.8: φ
2
=0° ODF sections of the L1

2
/FCC phase in annealed EHEA processed by different 

routes (for legends, refer to Table 1). The intensities of the contour lines are same as in Fig.4.4. 
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Fig.4.9: φ
2
=45° section of the ODFs of the B2 phase in annealed EHEA processed by different 

route (for legends, refer to Table 2). The intensities of the contour lines are same as in Fig.4.4.  
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The evolution of texture in the B2 phase is summarized in Fig.4.9. The φ2 =45º section 

of the ODF of the UCR processed material annealed at 800ºC (Fig.4.9(a)) shows presence of 

rotated cube components. However, after annealing at 1000ºC (Fig.4.9(b)), the ODF of the B2 

phase shows the presence of usual RD and ND components. The ODF section in the 1200ºC 

annealed material reveals very similar texture to that of the 1000ºC material confirming no 

significant change in texture at higher temperature. In case of MSCR processed material, the 

{001}<110> component present in the deformed condition in the MSCR processed material 

persists even after annealing at 800°C (Fig.4.9(d)) along with a strong ND-fiber. The ND-fiber 

is strengthened with increasing annealing temperature (Fig.4.9(e) and (f)). The texture of the 

B2 phase in the TSCR (45°) material is rather weak in the 800 °C annealed condition 

(Fig.4.9(g)), however, formation of a strong ND-fiber is also observed in this case after 

annealing at 1000 °C (Fig. 4.9(h)) and 1200°C (Fig. 4.9(i)).         
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Chapter 5  

DISCUSSION  

  

5.1 Evolution of deformation microstructure and texture 

The analysis of phase fraction in 90% cryo-deformed EHEA processed by the different 

rolling routes including as-cast material show no significant differences. This clearly indicates 

that the evolution of microstructure and texture in the three processed materials is not affected 

by phase transformations. The SEM micrograph and EBSD IQ map of the UCR processed 

material show the retention of the lamellar regions inherited from the as cast microstructure of 

the EHEA along with the fine fragmented B2 phase. In contrast, MSCR and TSCR(45°) 

processed materials reveal severe fragmentation of the B2 phase. The observed differences in 

microstructures could be rationalized considering the behavior of the two constituent phases. 

The careful nano-indentation mapping of the as-cast EHEA shows that the B2 phase is much 

harder than the L12/FCC phase [21]. Consequently, during heavy cold-rolling, the softer 

L12/FCC phase is deformed to a much larger extent as compared to the harder B2 phase which 

is rather easily fragmented. Thus, the microstructure of the EHEA heavily cold-rolled by the 

UCR route at room temperature shows the formation of deformation induced ultrafine to 

nanocrystalline grains FCC phase but presence of the mechanically fragmented B2 phase. At 

the cryo-rolling temperature, the B2 phase is expected to be even harder than the L12/FCC 

phase, which should lead to more strain partitioning to the L12 phase. Thus, the fragmentation 

of the B2 phase is observed in the EHEA processed by all the three rolling routes. Since the 

rolling direction is maintained constant in the UCR processing route, the starting lamellar 

microstructure is not completely destroyed, so that the deformed microstructure shows the 

retention of the lamellar regions inherited from the as cast microstructure of the EHEA. 

However, structural rotation due to change in strain path in the MSCR and TSCR(45°) 

processing routes results in a complete fragmentation of the microstructure.  

The genesis of deformation texture is correlated with the relative stability of different 

orientations through the rotation field 𝑅̇ (𝜑1̇, 𝜑̇, 𝜑2̇) and the divergence of the rotation field 

 (𝑑𝑖𝑣 𝑅̇ =
𝜕𝜑1̇

𝜕𝜑1
+

𝜕𝜑̇

𝜕𝜑
+

𝜕𝜑2̇

𝜕𝜑2
) [32] [33]. For a stable orientation: Ṙ = 0 and div (Ṙ) = 0. Hong 

et al [34] have shown that the orientation {011}< 111> (which is basically ND rotated BS or 

BS
ND orientation lying on the α-fiber corresponding to φ1,Φ,φ2=(55°,45°,0°)) would be stable 
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under cross-rolling due to its higher inverse rotation rate and large negative divergence. Thus, 

the α-fiber orientations will converge at the Bs orientation (stable orientation during 

unidirectional rolling) and then will further rotate away to the {011}<111> orientation when 

the RD is rotated by 90°. Thus, the orientations will be oscillating between the BS and BS
ND 

({011}<111>), converging at φ1,Φ,φ2=(45°,45°,0°) corresponding to the orientation 

{011}<755> (BS/BS
ND) lying at the middle of the two dynamically stable end orientations BS 

and BS
ND.  

The deformation texture of the L12/FCC phase in the UCR processed material shows 

clear presence of the Bs component. In contrast, the MSCR processed material shows the 

development of α-fiber with a strong intensity peak exactly at the BS/BS
ND or the (011)[755] 

location. Evidently, the deformation texture of the L12/FCC phase agrees quite well with the 

theoretical calculations of Hong et [34] and also with the cross-rolling texture of different FCC 

materials [23]. On the other hand, the L12/FCC phase in the material processed by the 

TSCR(45°) route shows a G/B component and (011)[122] component lying on the α-fiber, 

which is different from the {011}<755> component predicted by Hong et al. [34]. Applying 

the analogy of Hong et al. [34] for predicting the origin of {011}<755> component in MSCR 

processed material, simple rotation of the Bs component by 45° does not lead to the observed 

components in the TSCR(45°) material. A very similar behavior is observed for TSCR(45°) 

processed equiatomic CoCrFeMnNi HEA [26]. This argument has been further supported by 

the study on diagonally rolled Cu (45° rolling to the prior RD similar to the TSCCR(45°) route, 

but the strain in step 1 and step 2 are different than in the present study) which develops 

different texture than 90° cross-rolled materials [35]. 

The B2 phase in the UCR processed material shows a strong but slightly shifted 

{111}<011> component which has been reported for some cold-rolled B2 phases. The MSCR 

processed material shows a distinct {001}<110> component which is typically observed in 

cross-rolled BCC, such as ferrite in duplex steel [36] and can be followed from the stability 

analysis of deformation texture components in BCC materials. In contrast, the B2 phase in the 

TSCR(45°) shows rather weak texture. Thus, the textures of both FCC and B2 phases are 

significantly different in the TSCR(45°) processed EHEA. It appears that a 45° rotation around 

the RD can affect the deformation and slip activities more fundamentally, leading to the 

observed differences in texture.  
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5.2 Evolution of annealed microstructure and texture 

The EHEA processed by the UCR route shows remarkably heterogeneous 

microstructure comprising of fine lamellar and coarse non-lamellar regions after annealing at 

800°C, while the MSCR and TSCR(45°) processed materials show rather homogeneous 

microduplex structure. The fine lamellar regions observed in the annealed microstructure of 

the UCR processed material are already present in the deformed microstructure. Further, due 

to the deformation carried out at the cryo-rolling temperature, the strain is mostly partitioned 

to the softer FCC phase as compared to the harder B2 phase. Consequently, the rather small 

accumulated strain in the B2 phase leads to insignificant driving force for recrystallization. 

Thus, the B2 phase undergoes recovery which is evidenced by the presence of heavy LAGB 

network inside the grains, while the severely deformed FCC phase gives rise to ultrafine 

recrystallized grains. Upon annealing at higher temperatures, the lamellar regions in the UCR 

processed material are completely broken down to yield microduplex structure. In contrast, the 

strain-path change implemented in the MSCR and TSCR(45°) processing routes results in a 

severely fragmented microstructure. Upon recrystallization, the fragmented deformed 

microstructures lead to fine microduplex structure. Thus, the annealed microstructure in the 

three processed material could be adequately explained on the basis of characteristics 

differences in the deformed microstructures.  

In all the three processed materials, the FCC phase fraction decreases after annealing 

at 800°C but increases with increasing annealing temperature, indicating that the FCC phase 

becomes stable at higher annealing temperature. This trend is observed in cold-rolled EHEA 

[19] and also in dual phase HEAs, such as Al0.5CoCrFeMnNi [4] , and could be understood 

from the fact that the phase fractions in duplex materials vary depending upon the annealing 

temperature. However, the materials processed by the three different routes show significantly 

different phase fractions upon annealing, although the phase fractions in the deformed 

conditions are rather similar. The phase fractions in the MSCR and TSCR(45°) processed 

materials are quite similar, while the UCR processed material shows significantly different 

fractions. This indicates that the equilibrium phase fractions are not attained for the 

combination of annealing temperature and time due to the differences in transformation 

kinetics, originating from the differences in the deformed microstructures.  

The UCR processed material shows much greater hardness as compared to the MSCR 

and TSCR(45°) processed material after annealing at 800°C, although the hardness values of 

the EHEA processed by the three different routes are rather similar in the deformed state. The 
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remarkable difference in the hardness originates from the novel heterogeneous microstructure 

[37] [38] of the UCR processed and annealed material. As has been clarified recently, the 

heterogeneous microstructure of the UCR processed and annealed (800°C/1 h) material is 

composed of different hardness domains which lead to significant back stress strengthening, 

resulting in simultaneous enhancement in strength and ductility [22]. At higher annealing 

temperatures, the heterogeneous microstructure transforms into microduplex structure, quite 

similar to the EHEA processed by the two other processing routes. This leads to very similar 

hardness values in the EHEA processed by the three different routes at annealing temperature 

beyond 800°C.  

             The recrystallization texture in the L12/FCC phase of the EHEA processed by the 

three different routes following annealing at 800°C is featured by the retention of the respective 

deformation texture components. Since the grain growth is rather limited at this temperature, 

the texture is mainly influenced by the nucleation pattern in the three processed material. The 

retention of deformation texture components after annealing has been interpreted in terms of 

more homogeneous nucleation or absence of preferential nucleation [12]. The apparent 

similarities in the formation of texture components indicate similar mechanism. The respective 

texture components are strengthened at higher annealing temperatures due to grain growth.   

              The annealing texture of the B2 phase in the UCR processed material shows the 

usual RD and ND-fiber components. The ND fiber is strengthened, particularly after annealing 

at higher temperatures, as expected for the recrystallization texture of BCC materials. 

Development of strong ND-fiber is observed even in MSCR and TSCR(45°) processed 

materials, particularly at higher annealing temperatures. Thus, formation of ND-fiber is 

preferred irrespective of the processing routes. The presence of strong ND-fiber in the 

recrystallization texture of BCC materials is usually attributed to greater stored energy of the 

former [39]. It appears that this mechanism is also responsible for very similar recrystallization 

texture in the B2 phase dominated by ND-fiber, even though the deformation texture may show 

characteristic differences [40]. 
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Chapter 6  

SUMMARY AND CONCLUSIONS  

 

The main conclusions that may be drawn from the present work are as follows: 

 

1. The UCR processed materials show retention of lamellar regions as opposed completely 

fragmented microstructure in the MSCR and TSCR(45°) processed material. 

 

2. The development of the BS
ND component in the L12/FCC phase of the MSCR processed 

material agrees quite well with the texture of cross-rolled single phase FCC materials. 

However, the texture of the L12/FCC phase in the TSCR(45°) processed material shows 

significant differences, indicating fundamental differences in deformation pattern. 

 

3. The texture of the B2 phase in the MSCR processed material shows a distinct 

{001}<110>component, which is in good agreement with cross-rolled texture of single phase 

BCC materials. In the TSCR(45°) material, the texture of the B2 phase is much weaker. 

 

4. Annealing of the UCR processed material at 800 °C results in a remarkably heterogeneous 

microstructure as opposed to rather homogenous microduplex structure of the MSCR and 

TSCR(45°) processed materials. However, following annealing at 1000 °C and 1200 °C, the 

EHEA processed by the three different routes show very similar duplex structure. 

 

5. The heterogeneous microstructure of the UCR processed material results in much greater 

hardness as compared to the MSCR and TSCR(45°) processed materials annealed at the same 

temperature of 800 °C for 1 h. The materials processed by the three different routes shows no 

significant difference in hardness after annealing at 1000 °C and 1200 °C, concomitant with 

the transformation of the heterogeneous structure of the UCR processed material into duplex 

structure. 
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6. The annealing texture of the L12/FCC phase shows presence of α-fiber components and is 

featured by the retention of the respective deformation texture components. The B2 phase 

shows strong ND fiber texture, which is the usual recrystallization texture of the BCC 

materials. 
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