Rational Points on Elliptic Curves
Shubham Mishra

A Thesis Submitted to
Indian Institute of Technology Hyderabad
In Partial Fulfillment of the Requirements for

The Degree of Master of Science

wrt A ey
Izaliam baslitute of Technslogy Hpdershid

Department of Mathematics

May 2018



Declaration

I declare that this written submission represents my ideas in my own words, and
where ideas or words of others have heen inchnded, T have adequately cited and ref-
erenced the original sources. | also declare that | have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsified
any idea/data/fact /source in my submission. I understand that any violation of the
above will he a canse for disciplinary action hy the Institnte and can also evoke penal
action from the sources that have thus not, heen properly cited, or from whom proper
permission has not. heen taken when needed,

<hebha

(Signaturc)

SHUBHAM MITSHRA
(Shubham Mishra)

MAIGMSCSTIIOIGﬂ

(Roll No.)



Approval Sheet

This Thesis entitled Rational Points on Elliptic Curves by Shubham Mishra is

approved for the degree of Master of Science from IIT Hyderabad

'C—Hléﬂ‘m”ﬂbﬁlodir

(Dr. Narasimha Kumar) Adviser
Dept. of Mathematics
IITH

(18 '3 Y

(Dr. C S Sastry) Faculty Adviser
Dept. of Mathematics
IITH

b3y
(
(Dr. J Balasubramaniam) H.O.D

Dept. of Mathematics
1I'TH




Acknowledgements

First of all i would like to thank my thesis advisor Dr. Ch VG Narasimha Kumar for guiding me
throughout the project on ””.He has been a constant source of inspiration and help.

Secondly I would like to thank my classmates and my seniors who have always been there for
me whenever I had any doubts or other problems

Last but not least I would like to thank my parents who have guided me throughout my life and

are my greatest source of motivation.

iv



Abstract

The aim of this thesis is to define the Elliptic Curves and some of intresting properties of a special
class of terms,namely,rational point of elliptic curve ,The properties of the rational pooint of curve
is airthmetic ,and rational point on elliptic curve forms a finitely generated group structure group it
will be done by using the chord-tangent group law of composition.After completing the the abelian
group structure,so we look some elementary properties like for a given elliptic curve we find the
torsion subgroup of that elliptic curves.and finally done the elliptic curve and their isomorphism.
Further, we study different families of elliptic curves which depend on different parameters.
Moreover, we look at the reduction modulo p of an elliptic curve and infer the meaning of good and
bad reduction of an elliptic curve. Lastly, the statement and proof of Mordell-Weil theorem is given.
The topics of the thesis are based on the book Elliptic Curves by Dale Huseméller. I have

not added anything new, except making a few observations of my own.

This thesis may contain many errors. I am responsible for these errors as I did not get the thesis

corrected on time.
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Chapter 1

Rational Plane Curves

In this chapter, we describe the basics of rational plane curve and rational point on lines, conics and
cubics viewed as a rational plane curves. We also study some intersection properties of a curve with
tangents and after that we will define the projective plane.

Further, we define the set of rational points on cubic curves and the structure of this set aided by
the Mordell’s theorem which allow us to visualize the structure of the elliptic curves. Finally we

discuss the curves of degree more than 3 and the real and complex points on elliptic curves.

1.1 Rational Lines in the Projective Plane

Definition 1.1.1. An elliptic curve is viewed as a plane curve given by a non-singular cubic equa-

tion.

In the case of rational plane curve Cy we have rational ,real and complex points C¢(Q) C C¢(R) C
C¢(C) or loci.

Definition 1.1.2. The projective plane Py is the set of all triples w: x: y ,where w,  and y are not
all the zero and the points w: x:y = l: m: n provided there is a constant k with | = kw, m = kz,
n = ky as with the affine plane and plane curves we have three basic cases P2(Q) C P2(R) C Po(C)
Consisting of all triples proportional to w: x: y, where x,y,w € Q for Po(Q) similarly for R and C

Remark 1.1.3. A line Cy in Py locus of all the w: z: y satisfying the equation F(w,z,y) = aw +
bx + cy = 0.The line at infinity Lo, is given by the the equation w=0.

Remark 1.1.4. Two distinct point P and Q in Py(C) lie on a unique line L in the projective
plane,and, further ,if P and Q are the rational points, then the line L is rational. Two distinct lines
L and Q in Py(C) intersects at a unique point P, and , further,if L and Q are the rational lines,

then the intersection point P is the rational.
Definition 1.1.5. A rational plane curve in Py is of the form

Cp = {(w: 2: y) € Pa|F(w,z,y) = 0}



F is a polynomial with rational coefficient and we have

Cr(Q) € Cy(R) € C¢(C)

1.2 Rational Points on Conics

Now here the rational point of plane curve of degree 2 which in x, y- coordinates are given by the
equation
0= f(z,y) = a+bx +cy + dv’ + exy + fy?

and in the homogeneous form in projective space as
0= F(w,z,y) = aw? + bwz + cwy + dz? + exy + fy>
and we observe that the these two polynomials are related by

f(x,y) = F(lvx’y)

and
Ty
F =wf(=, =
(w,z,y) = w f(— =)
generally , if f(x,y) has degree d then
F — it Y
(w,2,) = w2, )

i.e we divide w? in the homogeneous form of the equation then we get
< Y Lo ry Y2
0=F =w?(a+ b(= L) +d(= == =
(w,2,9) = w0+ b(2) + o L) +d(EP 4 e E L) 4 (LY
implies that
w?(a+bX +cY +dX?* +eXY + fY?) =0

where X = = and Y = 2 w2 f(X,Y) = F(w,z,y)
w w

I ) = Flw,a,y)

xT
w

and in the general
F(w,z,y) = wf(

Y

gl=
g |=

Theorem 1.2.1 (Legendre’s Theorem). For a conic az? + by? = w? there exist m € N such that

ax® + by* = w?



has an integral solution if and only if the congruence

ax® + by®> = w?  (mod m)

has a solution in the integer modulo m.

Theorem 1.2.2 (Hasse-Minkowski Theorem). A homogeneous quadratic equation in several vari-
ables is solvable by rational numbers, not all zeros, if and only if it is solvable in p-adic numbers
for each prime p including the infinite prime. the p-adic numbers at the infinite primes are the real

numbers.

1.3 Pythagoras,Diophantus,and Fermat
The triples of whole numbers (a, b, ¢) satisfying the relation
A=a?+0

are called the Pythagorean triples
if (a,b,c) is a Pythagorean triple, then any scalar multiple (ka, kb, kc) is also a Pythagorean triples
A pythagorean triples (a, b, ¢) is primitive Pythagorean triples if ged(a,b,c) =1

Theorem 1.3.1. Let m and n be two relatively prime natural numbers such that n — m s positive
and odd, then (n? — m?2 2mn,n? + m?) is a primitive Pythagorean triple,further, each primitive

Pythagorean triples is of the form some m,n € N.

Proof. Consider the conic 2 + y?> = 1. Let O = (—1,0) and take any line which is not a tangent
to the circle at O passing through O. suppose this line intersects the y — axis at (0,t) and the
circle at (x4,y:). Equation of Ly, the line passing through (—1,0) and (0,¢) is y = ¢(z + 1). Now,
this line intersects the conic at (x4, y;). We get, 27 + y? = 1. Substituting the value of y, we have,

22 +t%(zy + 1) = 1. By solving the quadratic equation in x; gives the value of x; as % Thus,

_ 2t
yt - 1+t2 .

Thus if ¢ is rational, then (x4, y;) is also rational.

let (a:b:c) be a Pythagorean triples.and then we show that there exists m,n such that n —m > 0

and m,n are relatively prime, satisfying

a:nz—mZ

b=2mn

c=m?+n?

Since t < 1, for any n > m, where m,n are relatively prime, 7 < 1.

Choose t = ™ then we get a point (z,%;) on the circle, which is as,

2

1-2 n?-—m?
zt_l le_n2+m2
+ 2

and



2(7) 2mn
Yt = =
L e
So (a, b, c) is a Pythagorean triple, we have, a? + b*> = ¢?. Dividing by ¢? on both sides, then we

get (%)2 + (%)2 = 1. Note that any for any Pythagorean triple, we can divide it by ¢? so that the

point (2, 2) lies on the circle 22 + 32 = 1. Thus the point (2, 2) lies on the circle 2 4 y? = 1. Since

c’c c’c

every point on the circle is of the form (2, y;), comparing (z¢,y) with (2,2), we get,

(&

a:nQ—m2

b=2mn

c=mn?+m?
and each Pythagorean triple can be obtained using these values of m and n.

O

Definition 1.3.2 (Fermat’s curve F,, of order n). The Fermat’s curve of order n is given by the
equation in x,y- coordinates

7

or in the projective coordinates by

" +y" = w".

1.4 Fermat’s Last Theorem

The only rational points on F,, lie on the z-axis and y-axis for n > 3

For n = 2 | the number of rational points on

a b
F5 are infinitely many. i.e it is of the form (—, —), where the a, b, ¢ forms a Pythagorean triples.
c'c

Proposition

For a square-free integers K there is a bijective correspondence between the following three sets.
1
1. A={(a,b,e) | >+ =cta<b<cK= §ab}
2. Rational number x, where x+K and x-K are squares

3. rational points (z,y) on the cubic y?> = 2% — K2z such that x is a square of rational number

and denominator of x is even.

1.5 Rational Cubics

The cubics comes up two places first there is a Fermat’s cubic 23 +3* = 1 which Euler showed that

it has only two rational points (1,0) and (0,1) and there is a cubic y*> = 23 — K?z whose rational



points tells about the existence of right rational triangles of area K.

The rational cubics in projective coordinates is given by
F(w, x, y) = clw3 + 02:103 + C3y3 + C4w2x + cswmQ + 06x2y + 07:10;1/2 + csty + 09wy2 + crowxy =0

Y

the coeflicient are determined only up to a non zero constant multiple , and,hence, the cubic is given
by

Cl1:C2:C3:Cq4:C5:Cg:Cr:C8: Cg: C10

a point in a nine dimensional projective space.
Intersection of line and the cubics.
Let C be a rational cubic and L be a rational line. if the line intersects the cubic at 3 points in

which two of them are rational then third point of intersection is also a rational point.

Proof. Let
F(w,z,y) = 0.

be a rational cubics and the line
Lw,z,y) =aw+bxr+cy=0

. be a rational line for the line aw + bx + cy = 0 we eliminate the value of y.
so the value of y = —M.

substitute the value of y icn the cubic then we get the equation in z and w.

for the line at infinity , w = 0 , we get the cubic in z i.e cubic polynomial in z.
from this we get the value of x and put the value of x in the y = ,M
and the line at infinity w =0 ‘
then we get the (z,y).

thus (z,y) will be the rational point if and only if z is rational.

If two root of a cubic polynomial are rational then third one is also rational.

O

Remark 1.5.1. If two of the three intersection point of a rational cubics with a rational line are

the rational points, then the third point is rational.

Definition 1.5.2 (Irreducible cubic). A irreducible cubic is one whose equation cannot be factored

over the complex number.

Definition 1.5.3 (Singular point on a cubic C). A point O on an irreducible cubic C is called a

singular point provided each line through O intersects C' at only one other point.

Definition 1.5.4 (Nonsingular cubic). An irreducible cubic without a singular point is called Non-

singular cubic curve.

Definition 1.5.5 (Singular cubic). An irreducible cubic with a singular point is called a singular

cubic curve.



Rational points on cubics

We describe rational points on the reducible and singular cubics, which is same as to describe the
rational point on the conics,and then, we describing the rational points on non-singular cubics.
Case 1-[Cubic is singular]

we consider the cubic with singular rational point O.

Let C' be a singular cubic. and O be a singular point on the cubic C then each rational L through O
cuts the cubic at any other point, say P, and P is rational because its z-coordinate is the solution
of a cubic equation in z or in y with a double rational root corresponding to the x or y coordinate
of O.

Case 2- [cubic is nonsingular]

we consider the cubic the cubic is non-singular

Let P and @ be any two rational point on the cubic. and let L be the line passing through P and
Q clearly L is a rational line.

i.e if we draw the line connecting the two points P and (). This is a rational line L since P and @
are rational, and this line meet the cubic at one more point, say P which must be rational by the
intersection result of line and cubic.

even if we have only rational point say P. we can still find another and consider the line M tangent
to that point i.e we join the point itself

Then tangent line M intersects the cubic "twice” at P and the intersection point is rational say ” PP”.

1.6 Primitive Form of Mordell’s Theorem

For any nonsingular rational cubic curve C. there exist a finite set M of rational points on the curve
C are generated using the iterates of the chord-tangent law of composition.
i.e if M is a finite set of rational points on the nonsingular rational cubic such that every rational

point P can be decomposed in the form

P = (..((P.P,)Ps)...P,)

where Py, .... P, are in the finite set M.

Chord Tangent Composition Law

If P and @ be two rational points on the cubic. then the function that associates P and @ to the
rational point PQ where P(Q is the third intersection point of P and @ for the line and the cubic,
is called as the chord tangent composition law.

Note— The chord-tangent composition law is not a group law, because, there is no identity element

i.e an element 1 with 1P = P = P1 for all P.and however it satisfy a commutative law property

PQ = QP.



1.7 The Group Law on Cubic curves

The chord tangent composition law is not a group law because there is no identity element. but with
a choice of rational point O as zero element (identity element O) we define the group law P + @ by

the relation.

P+Q=0(PQ)

it means P + @ is the third intersection point of line through O and PQ.

(1)CLOSURE-
P+Q=0(PQ)
P + @ is the third intersection point on the line through O and PQ meet the cubic which is again

a rational point, thus, the group law is closed with respect to the addition

(2) EXISTENCE OF IDENTITY-
The point O is the identity on a rational point on the cubic, whose coordinates in projective planes

is given by (x,y,w) = (0,1,0) , and its also called as point at infinity.
P+0=0(P0O)=0+P=0(0P)=P
where P is the rational point on the cubic.

(3) EXISTENCE OF INVERSE-
To find —P given P we use the tangent line to the cubic at O ant its third intersection point OO.

P+ (~P)=0(00) = 0

(4) COMMUTATIVITY-
Line through P and @ is same as the line through @ and P .thus, the point of intersection of the
line and the cubic is the same i.e we consider O(PQ) and O(QP) then we get

P+0=0(PO)=P

, and
O+P=0(0OP)=P

Definition 1.7.1 (Elliptic curve over a field k). An elliptic curve E over the field k is a nonsingular
cubic curve E over k together with a point O in E(k).

The group law on E(k) is defined by O and the chord tangent law of composition PQ is defined by
P+Q=0(PQ)

Theorem 1.7.2. (Mordell)-

On a rational elliptic curve E(Q) the group of rational point is a finitely generated abelian group.



Remark 1.7.3. The structure theorem for finitely generated abelian group applied to E(Q) to obtain

a decomposition
E(Q) = Zg @ E(Q)tor

where g is Natural number called the rank of E. and E(Q)ior is a finite abelian group consisting of
all the element of the finite order in E(Q).
Mazur proved that the torsion subgroup is either a cyclic group or a direct sum of a cyclic group.

which is stated in following theorem.

Theorem 1.7.4 (Mazur). Let E be an elliptic defined over Q i.e E(Q) and Tors E(Q) be the group

of all torsion points is isomorphic to either

Z/mZ for m=1,23,...,10,12
Z/mZS7/2Z for m=2,4,6,or 8

Remark 1.7.5. Let E be an elliptic curve defined over the Q by the equation y?> = x> +ax+b. there
is no any way to to determine the rank of E by using these two coefficient a and b.in fact, there is
no any other way to determining the whether or not E(Q) is finite. and E(Q) is finite if and only

if the rank of g is zero.

Theorem 1.7.6 (Birch,Swinnerton-Dyer Conjecture). The rank g of an elliptic curve E de-

fined over the rational numbers Q is equal to the order of the zero of Lg(s) at s = 1.

1.8 Mordell Conjecture for plane curve

Let C' be a smooth rational plane curve of degree strictly greater than 3. then the set C(Q) of

rational point on a cubic C is finite.

Genus of the curve

Let X(C) be an algebraic curve defined over the complex number C jtopologically, X (C) is a closed
oriented surface with g holes.

Definition 1.8.1 (Genus). The invariant g is called the genus of the curve.
Lines and Conic have genus g =0
singular cubic have genus g =0

Nonsingular cubic have genus g = 1

Note- A nonsingular plane curve of degree d has genus.

(d—2)(d-1)

9= 9



Theorem 1.8.2 (Siegel). The number of integral point on a nonsingular rational curve of genus

strictly greater than 0 and is finite.

Note- this applies to a nonsingular cubic curves, but not to the singular cubic

for eg. y? = 23 it has infinitely many integral points of the form (n?, n3), where n is any integer.

1.9 Real and Complex Point on Elliptic Curve

Let E be an elliptic curve defined over the the real R or complex C numbers. the structure of E(R)

and E(C) is continuous or Lie group structure.

Definition 1.9.1 (Lie group). A lie group is a finite dimensional smooth manifold together with
group structure on G such that the multiplication G x G — G and the attaching of an inverse

1

g —> g~ " are the smooth maps.

the product of twp lie group or a finite sequence of lie group is a lie group.

Note- An abelian, compact and connected Lie group is isomorphic to a product of circle.
COMPACTNESS
Consider the real projective projective plane Po(IR) then we have
(1)— P5(R) is the quotient of two sphere S? in R3.
(2)— Py(C) is the quotient of five sphere S° in C3.
CONNECTEDNESS

For an elliptic curve given by the equation in normal form.
2 _ .3 2
Y-+ a1ry +asy = x° + ax” + a4 + ag

right hand side is the cubic polynomial and it is denoted by f(x)

f(z) = 23 + asx? + agx + ag
is a cubic polynomial and so by completing the square

a1x + as

(y+ 2L = (@)

where f*(z) is another cubic polynomial, Now we see that the graph of this equation for real coef-
ficient is symmetric around the line 2y + a1z + a3 = 0 and for the real coefficient has two forms.
In the case of one real root, the group E(R) has one connected component.

And in the case of three real root the group E(R) has two connected component.

Proposition 1-
Let E be an elliptic curve defined by (y + az + b)? = g(z)
where g(z) is a cubic polynomial over R,

(1)— If g(x) has only one root then E(R) is isomorphic to the circle.



(2)— if g(x) has three real root then E(R) is isomorphic to direct sum of circle and Z/2Z.

Proposition 2-
Let E be an elliptic curve defined by (y + ax + b)? = g(z).

where g(z) is a cubic polynomial over C, then E(C) is isomorphic to the direct sum of two circles.

Remark 1.9.2. The finite subgroup of E(R) are of the form a cyclic group or a cyclic group direct

sum with he group of order 2.

E(R) = Z/nZ

E(R) = 7Z/nZ x 7.)2Z

10



Chapter 2

Chord-tangent Computational
Method on Normal Cubic Curve

In this chapter we show how, by using simple analytic geometry, and a large number of numerical
calculation are possible with the group law on cubic curve.we define the normal form of cubic curve
without the terms 22y , zy?, or ¥3. and defining the sum of the two rational points by using the

group law.and finally we define the group law on singular cubics.

2.1 Computation on Normal Cubic Curve
A cubic equation in normal form, or general Weierstrass form, is an expression
y2 +ai1xy +azy = 3+ CL2I2 + asx + ag

where the coefficients a;are in the in the fields K.
So term of y3 in the above equation,a vertical line 2 = ¢ intersects the the locus of the normal
cubic at two points (zo,y1) and (xg,y2), where y; and ys are the roots of the quadratic equation.
2 3 4 _
Y~ + a1xoy + azy — g — asxy — aswo —ag =0

we can write the above equation

v + (a120 + a3)y — (x% + agmé + aqxo + ag) =0

in the completed plane,that is, the projective plane, we see that the equation in normal form has
one more solution at infinity which we call as O, and the O is the third intersection point of the

locus of the vertical line with the locus of the cubic equation in normal form in projective plane.

Definition 2.1.1. The elliptic curve for the cubic equation in normal form is the locus of all solu-

tion (z,y) € k? of the equation
y2 + a1y +asy = 2> + a2x2 + agx + ag

11



with the point O which is on every vertical line.

Remark 2.1.2. Let E be an elliptic curve defined by an equation in normal form. if P = (x,y) is

a point on a curve then the negative —P is (x,y*),where
Y+ yx=—a1x —as

or, we can say that,

7($ay) = (I7 —Y—a1r — CL3)

Observe that the point O , (x,y) ,and (x,y*) are the points of intersection of the vertical line through
(x,0) with the curve E over the field k i.e E(k)
so for the equation

v+ (a120 + a3)y — (:Ug + agmé + aqxo + ag) =0

y and yx are the two roots of the quadratic equation over k. Where the sum of the roots are
—(a1z + a3) in k and so, if y is in k, then yx is also is in the k.
—a1x + as

5 in the plane.

and the curve has a reflection symmetry with respect to the line y =

Example-1: For E given by the equation

V+y—ay=2a"

we have —(z,y) = (z,—y — 1 4+ x) and the curve is vertically symmetric about the line
z—1

2

y:

In the curve the two tangent line to the curve T at (1,1) and and T’ at (1, —1) which have slopes
coming from the implicit differentiation of the equation of the curve.
ie

v +y—ay=a°

12



differentiating both side we get
2yy' +y —xy —y =32

2y +1—x)y =32°+y

Y

Note- let E be an elliptic curve defined by the equation in normal form.

y2 +a1xy +azy = 2+ CL2(E2 + aqax + ag

if we add two point P; = (z1,y1) and Py = (22,y2). we first draw the line through P; and P, and
the third intersection point is Py P, = (x3,ys3) and

P +P=—-PP

Case 1-if 1 # x9, so that P; # P, then the line through P; and P, has an equation y = Ax+ [ where

\ = Y1 — Y2
X1 — Tg

Case 2- if x1 = x2 but P; # P, then the line through P; and P, is the vertical line x = x; and
P,=-P
Case 3- if P, = P; then the tangent line through P; has the equation y = Az 4  where

_ f@) —ap
2y1 + a1y + a3

since (2y + a1z + az)y’ = f'(z) — a1y
we put the value of y into the normal form of the cubic equation then we get

0=+ (ag — A\? — Xa1)z? + (ag — 2\B — a1 8 — Naz)z + (ag — B — azp)

the three root of this cubic are x1, z2,and x3
the x coordinate of the three intersection point is either P; , P, and P} P, for the Casel and P; , P,
and P; P, for the Case3
Now the sum of the root of the cubic equation is
coefficient of z2

Ty by
coefficient of 23

SO

23 =N 4+ Xay — as — 1 — T

13



for the case 1.

23 = A2 4+ Xay — as — 214

for the case 3. finally,

(w1,91) + (z2,92) = (3, —y3 — a173 — az)

for the case 1. and

2(x1,1) = (v3, —y3 — a123 — as)

for the case 3.

Example-2: The Elliptic curve E: y? +y — vy = 23 find —P. for any P=(xz,v)

let P=(z,y) be any point of the elliptic curve E then we have to find the -P of that curve
—P=(xz,—y— a1z — a3)
for the given Elliptic curve the coefficient a; = —1 and ag = 1 then —P = (z,—y + = + 1).

Example-3: The elliptic curve E: y?+y—ay = 22 find the group generated by the point P = (1,1)

given P = (1,1)

vty —ay=a°

2y’ +y —ay —y=32"
Qy+1—az)y =32"+y

) 3:z:2+y
Y 20+1—2

where y’ is the slope of the tangent.
at the point (1,1) the value of y’ is 2, and the equation of the tangent at the point (1,!) is

y—1=2(z-1)

iey=2x—1

Put the value of y in the equation of the elliptic curve then we get
2z — 1>+ 2z —1) — 222z — 1) = 23
z(z—1)2=0
r=0orx=1landy=—-lory=1
so we get the two points (1,1) and (0, —1), the point (1,1) is the same as the point P then we take
the point (0, —1),

since PP = (0,—1)
and P+ P =—-PPor 2P =—-PP

14



and —PP = —(0,—1) = (0,0)
2P =(0,0). Now , 3P =P +2P =—(2P)P
The equation of the line through P and 2P is y = . Put the value of the y in the equation of the

elliptic curve to get
z(z? —1)=0

Where £ =0,1,—1 and y = 0,1, —1. So we have three points which are (0,0), (1,1) and (—1,—1) .
So the points (0,0) and (1,1) are same as the points P and 2P .We consider the third point (—1, —1).
(2P)P=(-1,-1)and 3P=P+2P =—-(2P)P = —(-1,-1) = (-1,-1)

3P =(-1,-1)

Consider tangent at 3P.

y' = 0 ,there is a vertical tangent at 3P

= 3P+3P=0

= 2(3P)=0

= 6P =0

here the point O is the point is the point at infinity and the identity of the Group E(Q) so P is the
point of order 6

In, particular 4P + 2P = O

4P = —2P = —(0,0) = (0,—1)

and,
5P=-P=—-(1,1)=(1,-1)

so the {P,2P,3P,4P,5P,6P = 0} forms a cyclic subgroup of order 6 in E(Q).

2.2 Illustration of the elliptic curve group law

if 2 # 0 in the field k i.e the characteristic of k is different from 2 then in the normal form.
2 _ .3 2
y° +ylarz + as) = x° + ax” + asx + ag

. We can complete the square on the left-hand side

a1z + as)? ar +a
y2 +y(a1$+a3) + % — (y+ %)2
Remark 2.2.1. if the equation for E is y> = f(z) is cubic polynomial then the negative of an
element is given by —(z,y) = (x, —y). furthermore the cubic will be non-singular if and only if f(x)

has no repeated root.

Remark 2.2.2. The point (0,0) is on the curve y*> = f(x) if and only if equation has the form
y? = 23 + ax? + bx. if we take v is the root of f(x) then y?> = f(x) +r as this form and we will
use the equation of elliptic curve in this form. If the characteristic of k from 3, then in the special

normal form y*> = f(x). we can complete the cube in right in the side and after translation of x by

15



a constant. We have Weierstrass of the cubic

vV =a34+ar+0b

2.3 The curves with equation y> = 2% + az and y?> = 2> + a

Torsion subgroup of y? = 23 + ax

If we substitute u2z for x and v?y for y in the equation then we get
(u’y)? = (u?2)’ + a(v?)
ubx? = ubx® + au’x
ubz? = ub(z? + %)
So we conclude }cthat a is non zero integer which is free of any fourth-power factor i.e a is fourth

power free.

Theorem 2.3.1. The torsion subgroup of E(Q) is

a=4
TorsE(Q) = &) % —a 18 a square

SEINEIN

—a 15 not a square

Proof. -Any point of order two has the form (z,0).
322 +a

2y

Slope of the tangent is vy’ =
Case 1-

Point of order two when a is a square

x-coordinate is the root of the cubic equation 0 = 22 + az

From here we get z(2? 4+ a) =0iez =0 or 2% =

—a
in particular, there are three point of order two if and only if -a is a square say, (0,0) and
and which is isomorphic to Z/2Z & Z /27

Case 2- Point of order 4

Consider the equation 2(x,y) = (0,0) on E(Q) then (z,y) is a point of order 4.

For such a point there would be a line L i.e y = Az through (0,0) and tangent to E at (x,y) Thus.
(\z?) = 23 + ax

(2?2 =Nz +a)=0

r=0,22—-X2x+a=0

=0 and y =0 is a point of P so we consider the quadratic equation

22 — X224 a = 0 the discriminant of the quadratic equation is D = A* — 4a for the solution to exist,
D >0.

Since y = Az is tangent to E at (x,y) , D=0

M =4a

16



But we know that a is fourth power free.
A= a=4= =22

Substitute the value of a and A in the above quadratic equation,
= (z—-2)?=0
— =2
And y =z =44
in this case the points (z,y) satisfying 2(x,y) = 0 are (2,4) and (2, —4)
The point of finite order forms the subgroup O, (0,0), (2,4), (2, —4) ,which makes the torsion sub-
group is isomorphic Z/4Z

Case 3- When -a is not a square or a # 4 then the only solution to the quadratic equation is
x =0 and hence y =0
So the torsion subgroup formed is O, (0,0) and which is isomorphic to Z/27Z
Claim-we will show that there is no 3-torsion,
If there were such a point P, on E(Q)
= 2P=-P
So the tangent line y = Ax + 8 to E at P when substituted into
Az +B)? =2® + ax

or

23— \22% 4+ (a — 28\)x — 2 =0

would be a perfect cube (z — )3 = 0 with r is the x-coordinate of P this would means that

3r = \2
TSZ/BZ

3r? =a— 26\

so we get the value of r and A\ and finally

A4 A1

3(5) =a~— 2(@

)

Which is impossible for a and A are the rational numbers since /3 is irrational, which is a contra-
diction.

since there is no three torsion.

Torsion Subgroup for 2 =23 +a

17



we substitute u2z for x and u3y for y in the equation then we get
— (@) = (P2 + a
= uS2? = ub2® +a
R
= uS2? = ub(23 + )

so we conclude that a is non zero integer which is free of any six-power factor i.e a is six power free.

Theorem 2.3.2. The torsion subgroup of E(Q) is

a=1

TorsE(Q) = a#1, aisasquare or a = —432
a#1, aisnot asquare and a is a cube

SESERRN

a#1, a is not a square, not a cube and # —432

Proof-
Case 1- A point of order 2.
A point of order 2 has the form (x,0) .
Substituting ¥ = 0 in the equation we get 2% +a =0 = 23 = —a
This exist on E iff a is a cube of ¢® of some integer c .
—a=c =2x=—a
then (—c¢, 0) is the point of order two

thus we get the torsion subgroup O, (—¢,0) , which is isomorphic to %
we show that there is no point of order 4

Let if possible (z,y) is a point of order 4

= 2(z,y) = (—¢,0)

consider the tangent line y = A\x + ¢ through (—c,0) when substitute into the equation of the curve
Ma+ce)P=a>+c

or N2(x+c¢) =22 —cx+c?

the line through (—c,0) is the tangent at another point (z,y) on E iff the quadratic equation has a

double root
22— Ntz +celc—XN)=0

that is the discriminant D = 0
D =M +2)\%¢ + ¢? — 4e(c — N%) = 0, After completing the square in this equation we get

(A2 4 3¢)? = 12¢

(A2 +3¢) = +2¢/3¢

There is no rational solutions of this equation because 12 is not a square but A and ¢ are rational.

18



Thus we get a contradiction.

Since there is no point of order 4 in E.

Case 2- Point of order 3 .
A point (z,y) of order 3 i.e, 2(x,y) = —(x,y) iff there is a line y = Az + S through (x,y) such that

Az +B)? =2+a

is a perfect cube
(x—7)3 =23 = N\%2? — 2)\Bz + (a — ()

comparing the coefficient we get,

—3r = —\?
3r? = 278
and
a— 162 — _7,3

)\2
= r =" and \ = —6)\3

— AA*+68) =0

ifA=0

Then (0, 3) and (0,—0) are the two point of order 3.

iftA#£0
we get A3+ 68 =0
Substituting \ = 3

we derive the relation 7632 = 2434
This relation is satisfied only in case 8 = 223%2m3 and r = 233m in this we calculate a = 5% —r
—432m°.

where m = 1 since a is a sixth power free.

3:

Z
Thus if a = —432 or a = 32 we get the torsion subgroup which is isomorphic to 37

2.4 Multiplication by two on an Elliptic Curve
Theorem 2.4.1. Let E be an elliptic curve defined over the field k by the equation
v=@-a)(z—-p8)(z—7)=2>+a’+br+c
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For Q = (2',y') € E(k) there exist P = (x,y) € E(k) with 2P = Q if and only if 2’ —a ;@' — 3, and

2’ — v are the squares.

Proof- The equation 2(x,y) = (2/,3’) has a solution on E(k) if and only if the the related
equation 2(z,y) = (0,3") has a solution on the curve defined by the normal cubics

y' =@+ —a)(z+a’ = Bz +2" —7)

Hence we reduced to proving the statement for the point (0,%’). in this case y"? = ¢

For 2(z,y) = (0,y") the equation of the tangent line y = Az +4 is tangent to E at (z,y) substitute the
value of y in the cubic equation then we get (A\r+6)? = 23 +az?+bz+c z(22+(a—A?)z+(b—2)\5)) = 0,
22+ (a—= A2+ (b—2\)x+c—62=0

Since (0,') is the point of intersection of this tangent to E then we get 6> =c =y
23+ (a—A)z2 + (b—2X\)x =0

(2% + (a = Az + (b—2)X5)) =0

Since y = Az + ¢ is the tangent, this quadratic equation in x must have a repeated root i.e D =0

12

Thus we have
(A2 —a)?2 =4(b—2y'))
implies that (A% — a + u)? = 2u\? — 8\y’ + (u? + 4b — 2ua)
The right hand side of the quadratic term is a perfect square if and only if the discriminant is zero
i.e
(—8y')? — 8u(u? + 4b + 2ua) = 0
64c — 8u® — 32ub + 16u%a = 0
u? — 2au® + 4ub — 8¢ =0
substitute u = —2v the above equation becomes
(=8)(v3 +av? +bv+¢) =0
This the cubic term in the equation of the curve, and, hence, the roots are v = «, 3,7 so that
u = 2a,203,2y
Now substituting © = —2a in (A2 — a + u)? = 2u\? — 8\y’ + (u? + 4b — 2ua)
implies that (A% — a + (—2a))? = 2(=2a)A\? — 8\y' + ((—2a)? + 4b — 2(—2a)a)
(A2 —a —2a)? = 2(—2a)\? — 8\Y' + (402 + 4b + 4aa)
Now,
a+pB+v=-a

(B +pBy+ya)=b

afy=c

Thus the equation for A becomes

(AN +a+B+7—20)% = —4ar? — 8y A + (4a® + 4(aB + By + ya) — da(a+ B+ 7)) or
(A +a+B+7)? = —4ar’ — 8y A + 4By = 4(a'A - B'7')?,

Taking o/? = —a 82 = —f8 7' = —v and taking the square root on both the side we get ,
N4+ B+y—a==x2(a'X-p"Y)
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in this equation we complete the square to get

A2 F2a'\—a)=—-BF26'Y —vor

(O F o= (8 F )

Taking the square root of both side of the equation,we find four solution for A proving the existence

of X\ in hence also of the point (z,y) since

LN tat B4y
B 2

and
y=Ar+9

This proves the theorem i.e the point P exist.

2.5 Corollary

For an elliptic curve E defined over an algebraically closed field the group homomorphism

v E(k) 2 E(k)

is surjective, that is, the group E(k) is 2 divisible.

this corollary gives an exact sequence.

we can generalized for prime n.

0 —s BE(k) = (%)2 B S B(k) — 0

2.6 Remarks on the Group Law on the Singular Cubics

The two basic example of singular point on cubic curve are

(1)— A double point (0,0) on y? = z2(x + a)
(2)— A cusp (0,0) on y? = 3
For a cubic in normal form

y2 + a1y +asy = 28 + a2x2 + asx + ag
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the derivative of y’ is
(2y + az + azx)y’ = 3% + 2a02 + ay

at the point (0, 0)

/
agzy = Gy

the has a curve at singularity (0,0) if and only if a3 = a4 =0

We consider the cubic A y = 22 + ax + b which is not in the normal form because there is no term
of 2.

if (x1,91), (x2,y2) and (x3,ys3) are the three points on the cubic A and on a line y = Az + S then
M4+ B8=234+ax+b

and x1 + o + 23 =0

so the set A(k) has the structure of the group where (0,b) = 0 and —(z,y) = —(z, 23 + ax + b) =
(—z, (=) —azx +b).

Remark 2.6.1. The function f(t) = (t,t3+at+b) is an isomorphism f: k — A(k) of the additive
group of the line k onto A(k).
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Chapter 3

Elliptic Curve and Their

Isomorphism

3.1 The Group Law on a Nonsingular Cubic

Remark 3.1.1. Suppose L be a line and C be the cubic curve and both of them are defined over the
field k. and k' be an algebraically closed extension of k.
so the different case holds for the L(k") N C(k').

()- If L(K')NC(K') = Py, Py, P3, and the multiplicity i(P; L,C) =1 fori=1,2,3
and the composition is as P;P; = Py, , and if P; and P; are the rational then Py, is also rational over

k fori,j,k=1,2,3.

(2)- If L(K) N C(K') = P, P, and the multiplicity i(P;L,C) = 2,and i(P;L,C) = 1 thus here
Line L is tangent to cubic C at P or we can say that the point P is a singular point on the cubic C,

and the composition is PP = P’ and if P is rational over the field k, then P’ is also rational .

(2)- if L(K')NC(K') = P, one point, and the multiplicity i(P; L,C) = 3

and the composition is PP = P’ and the point P is a singular point.

3.2 Normal Form of Elliptic curve

Definition 3.2.1. (Invariant differential) Let E be an elliptic curve in normal form.
E:y? +a1zy + asy = 2% + asx? + aux + ag

then the invariant differential is is given by

dx _dz  —dy dy

== = =
2y +aix+az  fy Je 322 4 2a0x — ag — a1y

Definition 3.2.2. (Admissible change of variable) An admissible change of variable is one of the

form
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J;:u2§+r

and

y:usﬂ—l—suzf—kr

where the u,r,s,t are in k with u invertible . if we substitute the value of x and y in the normal form

of the equation then we get the new form of the equation in term of variables T and y:

and the coefficient is

ua; = aj + 2s,
u?@s = as — saq + 3r — 82,
w?ds = az +ra; + 2t = fy(r,t)
u'dy = ay — saz + 2rag — (t —rs)ay + 3% — 2st = —fo(r,t) — sfy(r,t),

uSag = ag + rag + riay +r —tag — rtay — 2 = —f(r, 1),

and

€l
Il

IN
S

Remark 3.2.3. if¢: E — E is an isomorphism such that the function z,y on E composed with

1 are related to the function T , § on E by an admissible change of variable.

) = T 47,

and
Y = w3y + sulT 4+t

Definition 3.2.4 (Section). For any open subset U of X,0(U) is termed as a section for U.

Definition 3.2.5 (Presheaf). A presheaf O is is a collection of all abelian group on a ringed space
X,where for every open subset U of X , O(U) is an abelian group , and between any two subset of
X there is a morphism between O(U) and O(V).

Definition 3.2.6 (Sheaf). A presheaf whose section are determined by local data such as continuity

and differentiability is called a sheaf..

Definition 3.2.7 (Germs of Regular Functions). Functions f and g define the same germ if for all
x in X ,there is a neighbourhood U of X such that f and g are equal in U.
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Theorem 3.2.8 (Riemann-Roch for Curves of Genus 1). Suppose Oc(m.K) be the structure sheaf
on the non-singular curve C' of the germs of the regular function and having at most an mth order
pole at K ,Then for the vector space of the section T'(O¢(m.K)) where C is the curve of genus 1.
and we can find a basis for T'(Oc(m.K)) for small m and using the inclusions T'(Oc(m.K)) C
L(O¢c(m'.K)) and m <m'.

m m>1

1 m=0

dimy(I'((@c(m.K))) =

I'(0c(1.K)) = k.1,
[(Oc(2.K)) = k1@ k.x,
MOc(3.K)) =kl®kadky,
FOc(4.K) =kl kadky® k.a?,

IOc(5.K)=kl®ksd®kyd ks kay,

Here 1 has a pole of order of 1 ,x has a pole of order 2 ,and y has a pole of order 3

InT(Oc(6.K)) there are seven natural basis elements,

{179573/7 552755%95373/2}-

3.3 The Discriminant and the Invariant j

The cubic equation in normal form

y2 +a1xy + azy = 2+ CL2(E2 + aqsx + ag

the new coeflicient b; for i = 2,4,6,8 and c¢; for j = 4,6 these two new coefficient originate first for
completing the square and then completing the cube.

Notation-

by = a® + 4dag, by = ajaz + 2a4 , bg = a3 + 4ag and

bg = a%aﬁ —ajazaq + 4asag + agag — ai and these new coefficient are related by the 4bg = bybg — bi

and the discriminant in terms of the new coefficient for b;s

A = —b3bg — 8b3 — 27bZ + 9babybs.

with the help of the discriminant we say that when the cubic is non-singular, so the cubic is non-
singular if and only if the A # 0.
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Remark 3.3.1. Under an admissible change of variable we have the following relations

uzbl2 = by + 127,
utby = by + by + 617,
uSbg = bg + 2rby + 2y + 413,
uBbg = bg + 3rbg + 3r2by + 31,

and lastly
u?A = A

Proposition 3.3.2. If k is field of characteristic different from 2, then equation of mormal form

becomes b ) .
(y/)2 _ (I/)S + Z2(33,/)2 + 5456/ + Zﬁ
Proof. First we substitute ' =y + Mz +as and ' = x

y2 +a1xy + azy = :E3 -+ a2x2 “+ asx + ag

v+ (a1x 4+ a3)y = 22+ asx® + ayr + ag

so k is a field which is differ from 2 then the equation becomes

a1 r+a axr+a a1 T+ a
Y2 +2 ! 3 +( ! 3)2—( ! 3)2=x3+a2x2+a4x+a6
2 2 2
a1x +a 1
(y %)2 = 2% + a2 + ayr + ag + Z(a%xQ + a3 + 2a1a37)
a1r + a a? + 4a 1 a?
(y+ %)2 =2’ + xQ(lTQ) + (as + §a1as) + (a6 + f)

Arranging the coefficient and then we get the equation in normal form for the characteristic different

from 2.

b b b
N2 _ /.13 Y2 2 Y4y Y6

Notation- Coefficient for ¢; in term of bjs are
12
Cq = b2 — 24b4,
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and
ce = —b3 + 36baby — 216bg

for the A then invariant j is,

() ==

and we have the following relation 123A = ¢} — ¢2, so we get the invariant j ,

3

. c
] = 12373 4 5
€y — G

Remark 3.3.3. Under an admissible change of variable we have

u40:1 = c4,
and
u’cg = cg
and j' = 7.
b
and if k is a field of characteristic different from 3 then for y" =y’ and 2" = 2’ + 2 then equation

12
of normal form become,

Cq C6

(y//)2 _ (33//)3 _ CC”(@) _ @

"

and w = 507 ,Now we have to consider a cubic polynomial,
Y

fla) =2 +pr+q
, the discriminant of the cubic polynomial become

D(f) = 27¢* + 4p®

Remark 3.3.4. The cubic polynomial f(x) = x® + pxr + q has a repeated root in some extension

field of k if and only if D(f) = 0.

Fquation
2 3 4y _ 6 _
y = - —elg) - ge — @
where p = el and q = 6 864 = 25.3% and 48 = 2.3 then we have
48 864
c3 — c?
—2D(f) == 2 _S5 =A
(===
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Proposition 3.3.5. Quer a field k of characteristic different from 2 and 3 the cubic equation

2_ .3 _ _ %y _ G
y == —2(e) ~ gy
dx

represent an elliptic curve if and only if A #£ 0 and w = 5
Y

Remark 3.3.6. For j # 0 or 123 the following cubic

P S N S
o= 1728 j — 1728

defines the elliptic curve with j-invariant equals j over any field of k.
The elliptic curve with equation

v =% +a

has j = 0, and the elliptic curve with equation
y2 =2%+ax

has j =0 =1728.

3.4 Isomorphism classification for Characteristic # 2,3

For the characteristic of the base field # 2,3, an elliptic curve over k the Weierstrass model of the

equation become.

2 3
Yy© =" + asx + as,

_dx

2y’
Cqp = —48(7,47
Ceg — —864&6,

and
A = —16(4a3 + 27a?),

And the curve E is smooth or non-singular if and only if A # 0

3
3 4ay

| =12° —— .
J 4a3 + 27a2

28



3.5 Isomorphism between two elliptic curves with same j in-

variant

Isomorphism between two elliptic curve is of the form of an admissible change of variable, suppose
the two elliptic curve E and E~ defined over the field k such that j = j(E) = j(E').

E:y? =234+ asx + ag
E':y? =a3 +aur +as

if
Vv:E— E
is an isomorphism, then
x) = u’T.
y = u’y
a4 = U4E4
ag = uGEG

we will consider these relation in three different cases for j.

Case 1- j # 0 or j # 123

if 7 # 0 then ay # 0 and ag # 0 = a4ag # 0 Then E and E' are isomorphic if and only if

4
CL4CL6 _ a4a6u _ —2 . .
=Uu 1S a square.

ayag  ayagus
Hence E and E’ are isomorphic over any field extension of k containing the square root of the quo-
tient. To find the automorphism group of E then E = E', then we have u2 = 1

Aut(E) = {+1, -1}

the group of square root of 1 .

Case 2- j =123

if 5 = 123 then ag = 0

then E and E’ are isomorphic if and only if the quotient

a4 .
— is a fourth power u*

ay
Hence E and E' are isomorphic over any field extension of k£ containing the fourth root of the quo-
tient

Qg4 .
— is a fourth power u*

ay
to find the automorphism group of E then E = E' then we have u? = 1

Aut(E) = {+1,-1,i, —i}

the group of fourth root of unity.
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Case 3- =0
if 7 =0 then ay =0
then E and E' are isomorphic if and only if the quotient

ag . . 6
— 1S a SIX power u

g
Hence E and E are isomorphic over any field extension of k containing the six root of the quotient.

to find the automorphism group of E then F = E’ then we have u® = 1

AUt(E) = {+17 *Lpa P ,027 7p2}

the group of six root of unity where
PP +p+1=0

At this point, the following two questions are

1-if j(BE) = j(E') = E~F'

2-For all values in k besides 0 and 123, are j values of some elliptic curve.
The answer of both the question is yes

Consider E: 3% = 2% 4+ a4z + ag

by rescaling the coefficient the Weierstrass equation has the form E: y? = 423 — cx — ¢

3

c
= j(E) =123 —
.7 ]() 6372702
_193__C
- c—27
=123J,
where
|
JE T T 1w
Thus,
J - /!
c=27 - J

=27
J—1 j— 1728

substituting the value of ¢ in equation E: y? = 423 —cx — ¢

we get . .
2 3 J J
= 423 — 27 — o7
e 1728t ' 12

and has j- invariant equal to the parameter j.
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3.6 Isomorphism Classification in Characteristic = 3

For an elliptic curve E over the field k of characteristic 3 in normal form after completing the square

the equation
E:y? =2 + as2® + asx + ag,

and
—dx
w=—",
For E we have the following,
by = as
b4 = —Qa4
bg = ag,
b 2
s = —ay + azag,
2
Cq4 = G,Q,
3
Cg = —CLQ,

The curve E is non-singular ,A # 0

We will find the condition for u,r,s,t for the isomorphism of F,
Consider the two elliptic curves defined over the field k.

E:y? =22+ asx® + ayx + ag

E':y? =23 + aya® 4 ayz + ag

If
Vv E— E

is an isomorphism, , then its form is determined by j # 0 or j =0
Case 1- j # 0, then ay # 0 by completing the square in both Weierstrass equations in E,

2 3 2
Y  =x° + a2x” + aqx + ag

2

_ L 3 2 2 ay
_ag(a2x + (z +a4x+(2))—|—a6 4)
_ 1 4 a4\ 9 4a6—ai
_ag(a2m +(z+ 2) + ) )
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a dasag — a2a
=2 fag(w+ 2)2 4 26 742

2 4
then we get ag = ay = 0
—aj; / —a%
Also, j(F)= —= and j(F ) = —
(¢ Qg
and the following holds
Y = uzx/,
y =uty,
and
as = uzal2

Hence E and E' are isomorphic over any field extension of k containing the square root of the quo-

. a2
tient — = u?
a2

To find the automorphism group of E then E = E' then we have u? = 1

Aut(E) = {+1,-1}

the group of square root of 1.

Case 2- j =0 thenay; =0
d
ThenA:aiandw:—y

a4
then we have the following change of variable,

!
z) =iz +r
3/
Yy =u’y
uta, = ay

ag + ra +r3—u6a/
6 4 - 6

’ Q.
Hence E and E are isomorphic over any field where —fl is a fourth power and there is a solution
ay
for cubic equation for r

if B =FE

then automorphism are parametrized by u and r
ifu=1,-1

then

4 agr =0
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if u=1,—i
then
% + aqr + 2a6 = 0

Automorphism group is a semidirect product ,

7 Z

For j # Oor123we had
36 1

17287 T j 1728

Y’ 4oy =2 —

in Characteristic 3 the equation become

Y}ty =a® - =
where
. 1
j=—
Qe

via rescaling the coefficient using admissible change of variable 3
v =%+ a2 1 ag

where

ag = ——

Proposition 3.6.1. Curves with equation

1
Y2 =% a2t o,
J

and

1
y2+xy:x3f;,

have j-invariant equal to the parameter j.

3.7 Isomorphism Classification in Characteristic 2

Consider the elliptic curve F over the field k£ of characteristic 2 and the invariant differential
dx dx
= = so that ajaz # 0
2y + a1z + ag ar1r + as

2
b2 = ay,
by = ayas,

2
b(; = as,



2
Cq4 = b27

3

C6:_b2,
_a’
TTA

For the different cases of j we get the different cubic equation in normal form .
Case 1- j #0

ifj#0= a1 #0

change x — x 4 ¢ we get ,

v+ arxy + as = y? + a1y + (arc+a3)y

For a; # 0 so we can choose a3 =0

changing z to a3z and y to ajy we get,

y2+xy:x3+a2x2+a6

and
dx
W= —
T
by =1
by =0 =bg
b8:a6
C4—1
1
A=asg= -
J
Case 2- j =0

lfj =0=a; =0
By completing the cube, the normal form of the cubic to be,

Y2 + azy = ° + a4z + ag,

and
_de
= 2y7
by = 0,
by =0,
b6 = a§7
b8 == (147
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_ 4
A =az

In both the cases it follows that the curve is smooth if and only if A # 0.

Suppose E and E' are the two elliptic curves defined over the field k such that j(E) = j(E ) = j
We have,E: y? = 23 + a4z + ag

E':y? =23 + agx + ag

if
Vv E— E

is an isomorphism, , then its form is determined by j # 0 or j =0
Case a- j #0
Then,

E: y2 = 2% + a4z + ag

El:y2:x3+a;z+a/6

the change of variable is

Then E and E are isomorphic over any field extension of k containing a solution to the quadratic
equation

82—1—3:62—@2

IfE:Ethenagza/Qsowegetsz—s:Oi.es:O,l

Aut(E) = {0,1}

Case b- 7 =0
Then

)

E:y* =23 4 ayx + ag,

E':y? =23 +aur + ag
the change of variable is
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xp = u?a’
Yy = u2y/ + sag + 57,
as = uga;,
u4a; = a4 + sas + st
uﬁaé =ag + 52a4ta3 + 554+ ¢2
Then E and E are isomorphic if and only if
a:
()= =’
as

(2)— s* + ass + a4 + u*ay = 0 has a solution in the field extension of k.

(3)— % + ast + (s® + s2a4 + ag + ubag) = 0 as a quadratic equation in t has a solution in field

extension of k.

Special case -
When k = F5 so there are 5 elliptic curves up to isomorphism
If 5 =1 then
2 _ .3 2
Yy F+axy=z"+ax” +1

we have to take two different cases for aq i.e

If as = 0 then
Y +ay =2 +1,
If ao = 1 then
VHry=a>+r+1
If j = 0 then

v 4y =2+ asw + ag

we have to take three different cases for a4 and ag i.e
if ag =0, ag = 1 then
y2 +y= x3 1,

if ag =1, ag = 1 then
v+y=2"+z+1,
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if ag = 1, ag = 0 then
v ry=a"+a

Proposition 3.7.1. Up to isomorphism over Fy there are 5 elliptic curves over the field Fy i.e E
v oy =2 +1,

vV 4oy = +x+1,
v ry=a"+1,
Yy +y=a o+,

v ry=2"+a

3.8 Singular Cubic curves

F(z,y) = v* + a1zy + azy — 2° — aga® — ayx — ag = 0

consider tese cubic equation in normal form over the field k

suppose it has a singular point which is rational

This singular point can be transformed to origin using change of variable (z,y,w) = (0,0, 1)
Observe that (0,0) is on the curve, i.e F'(0,0) = 0 if and only if ag =0

Now we determine whether or not (0,0) is a singular point

F,=a1y — 322 — 2asx — ay

and
Fy=2y+ax+as
Both partial derivative must be zero = a3 = —a4 = 0 we get
y2 + a1y = 2+ a2x2
For this
by =bg=bg =0
and
A=0

by = a% + 4aq

— -1 t
Substitute ¢t = T ands= - iexr=-

Y S

Y
then the equation become

s=t3+ aits + a2t2$
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and thus s is rational function of t,
t3

S= ——7—35
1—a1t—02t2

t3

C. . — (¢ - v
ns = (Ls)ls = g

1—a1t—a2t27é0

where C),s is the set of all non-singular points.

Theorem 3.8.1. Let E be a cubic curve over k with the equation y*> + a1zy = x> + asx? which we
factor (y — Bx)(y — ax) = 2% over the field ki = k(o) = k(B)

(1) o # B (multiplicative case)

¢: Epns — G,
is homomorphism such that (z,y) — y— e
Yy —ax

(a) if k=k1 i.e a and B are in k, then the map
¢: Eps — Gy = k°

is an isomorphism onto the multiplicative group of k.

(b) if k1 is a quadratic extension of k, i.e, a B are not in k, then he map

¢: Eps — k‘er(Nﬁ)

k

where
Nk1 Dk — kT
k

is the norm map and ker(Nkl ) is the subgroup element in kT with norm 1.

(2) a = B (additive case)
E.i — Gq
over k1 and

(2,y) — —

y—ax

is a homomorphism over ky. and the map
Ens(k‘1) — Ga(k'l)

is an isomorphism onto the additive group of ki.(observe k = k() except possibly in characteristic

2),

y= and v =
Y — ax y—ax

Proof. (1) Let u = su=(y— Py

(y = Bz)(y — az) = 2°
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using these relation we get
(u—1)° = (a— B)*uv

Moreover, lines with x,y with equations Az + By + C' = 0 are transformed into lines in u,v with
equations A’u + B'v+C' =0
Let (u1,v1) (u2,v2) and (us, v3) are the three points on the cubic E, s which lie on the line v = Au+4

then we get

(u—1)% = (a = B)Pu(Mu+ ) = (u —u1)(u — ug)(u — u3)

And ujugusz = 1 (identity) it means the function
(Jf, y) — U

carries the group law on E, s into the multiplicative group law on £j.

Norm of u is 1 where o/ = S and ' = «
if z is in k7 has norm 1
= c€kysuchthat w=c+cz#0
we have w’ = ¢ + 2/c
== 2w’ =2 +27c=c+z2d =w
w y— Pz
Hence z = — =

w  y—ax

(2) in case of additive we take

for x,y in k

and

using the relation we get

and lines in x-y transformed in lines in u-v as v = u?

Let (u1,v1), (ug,vs) and (usz,v3) are the three points on the cubic E, s which lie on a line v = Au+46

then we get

uP —v =1~ (Mu+0) = (u—up)(u—uz)(u—u3) =0

and hence the relation u; 4+ us + ug = 0 in the additive group.
(7,y) — u carries group law on E,, into the additive group law on ki, and E,, — k; is an

isomorphism of group.
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Remark 3.8.2. Consider

z = y2 + a1xy — asx

= (y — ax)(y - fr)

2

the tangent line are given by y = ax and y = Bx and the discriminant is D = a? + 4as = by

Two cases corresponds to two kinds of singularities

(D)-
(0,0) is a node if and only if D = by # 0 i.e a # B and observe that bs # 0 cq4 # 0 and cg # 0 so

3
o
J_A o0

where A =0 The tangent are rational over k if and only if bs is a square in k.

(2)-
(0,0) is a cusp if and only if D = by =0 i.e « = B and observe that by =0 c4 =0 and cg =0 so all

are equivalent in this case and j = 0 1s indeterminate.
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Chapter 4

Family of Elliptic Curves and their

Geometric Properties

In the previous chapters, we saw that the basic properties of elliptic curves, defined Normal form of
an elliptic curve and see how the two elliptic curve are isomorphic to each other over a field k. In
this chapter we investigates some families of elliptic curves and know about torsion point on those
kind of families of elliptic curves.Such families can be computed by a cubic in normal form and
their coefficient depends upon the parameter.We close the chapter by defining with a dual isogeny
or explicit isogeny, that is, a homomorphism of elliptic curves for particular curves and see their

importance.

4.1 The Legendre Family

The Legendre family is one of the most important family of the elliptic curves.

Consider a cubic in normal form of an equation with a;(t) € k[t]
v+ ar(t)zy + as(t)y = 23 + ax(t)z? + ag(t)x + ag(t).

giving an elliptic curve E over k(t), then we can substitute in any value for ¢ € T, the parameter
space, and obtained a normal form of an cubic equation, and, hence, an elliptic curve E over k()
at all points T" where A (E;) # 0. Now the Each point P(t) = (z(t),y(t)) € E(k(t)) can be viewed

as a mapping from 7" to E.such a map is called the cross- section.

Remark 4.1.1. The group of points of E over k(t) is the group of rational cross-section of the
algebraic family of the elliptic curves Ey over k. and the one such cross-secion of the algebraic

family of an elliptic curves is always the zero cross-section.

Definition 4.1.2. (Legendre Family) For the field of characteristic not equals to two, the Legendre

family of an elliptic curves is defined as
Ex:y? =z(x —1)(z— \).
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From the definition, we observe that the curve Ey is nonsingular for A # 0,1, so that over k — 0,1,

it is a family of nonsingular elliptic curves.

Remark 4.1.3. The four basic cross-section for the nonsingular curve Ey are 0(A) = 0, e1(A\) =
(0,0), e2(A) = (1,0), es(A) = (A, 0). the value of these four cross section E(N) give the group of
2-diwvision point on E(X). With the three nonzero cross-section, there are six possible ordering for
the 2-division point on an the elliptic curve E, or equivalently, siz possible bases (e1,ez2) for the

subgroup of the two division point on E).

Proposition 4.1.4. The orbit of A under G acting on P; — {0, 1,00} is

1 1 A=1 A
D N R

A 1= A

If s is an element in G, then s(\) is same as one the above terms. The curve Ey and Ex are
isomorphic to each other, in the other words their expressions should be differ by a linear change of

variable which conserves the group structure, if and only if there exists s € G with s(\) = X.

Remark 4.1.5. The j-invariant j(E)) of Ex: y? = x(xz — 1)(z — \) is the value.

s(A2 =X +1)3

This j— invariant is some kind of special case of the j- invariant of any cubic in normal form, and

their normalization factor 28 arises naturally.

Proposition 4.1.6. The j-invariant has one of the special property that j(A\) = j(X) if and only if
E\ and E\: are isomorphic under change of variable preserving the group structure.
1 1 A—1

Remark 4.1.7. The orbit of A € Py under G has siz distinct elements A\, 1 — A, IS U

and

(1) 5N

(2) §(X) = 0 where the orbit is {+p, —p?} for p> +p+1 = 0,i.e.,p is the third primitive root of unity.
1

(3) §(X) = 123 where the orbit is {57 —1,2}.

1 except in three case :

A) = oo where orbit is {0,1,00}.

Now we put out few things about the few exceptional values j = 123 or j = 0.
(1) For j(\) = 123 take A = —1, then the curve is the familiar

v =z - Dzz+1)=2—2

which is one of the family of the curve y?> = x> + ax.
(2) For j(A) =0 take A = —p then the curve has equation of the form,

y? = x(x — Dz + p).

1—
and make a change of variable x + Tp for x. This gives the equation

Lory

-2 — 1+ 2
- Py + = 22P

2
Y- =(r+ 3 3

x+ ).
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and this is just .
2 3 t
=T —
Y 373
and which is one of the the family of the curve y* = x® + a.
The discriminant for the family Ey is given by Ay = 2*\2(\ — 1)2.

4.2 The Hessian Family

Consider the normal form of cubic,
Eo:y* + a1zy + asy = 2° + axx® + asx + ag.

We observe that (0,0) is a point on the curve if and only if ag = 0.
Differentiating both sides of Ey with respect to = we get,

(2y + a1z + a3)y’ = 32% + 2a2x + ay — ary.

_ 322 + 2a32 + ay — a1y

B 2y + a1y + a3 "

slope of tangent at (0,0) is ¥/ = = on Ey.
as

:}y/

Remark 4.2.1. Now, (0,0) is singular point if and only if a3 = a4 = 0 on Ey. if a3 = 0 and aq # 0,
then we get a vertical tangent so a4y should also be zero. The point (0,0) is a nonsingular point of
order 2 in the group E if and only if a3 = 0 and a4 # 0, in this case the family of cubic reduces to
Eoo : y? + a12y = 23 + asa® + agx. Now we assume that (0,0) is a nonsingular point which is not

of order 2. by the change of variable of the form

T =z,
a

y=y + (=)’
as

The equation for Ey takes the form
E y? +ajzy + asy = x° + asa?

Since ay =0 , az # 0.
Slope of tangent at (0,0) in E' is equals to zero (horizontal tangent).

Remark 4.2.2. The point (0,0) on E' has order 3 if and only if ay = 0 and az # 0. In this case
,the family reduces to

E(aq,a3): y? + a1zy + agy = 2°.

Thus, E' have third-order intersection with the tangent line y = 0 at (0,0).

For these curve some of the basic invariants are the following:
3
c
by = a2, by = ajas, bg = a2, bs = 0, A = a3a} — 27a3, c4 = ay(a? — 24a3) and j = 2.

We can normalize ag = 1 to obtain Hessian family of elliptic curve which gives the point of order 3.
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Definition 4.2.3. The Hessian family of elliptic curve E, : y? + axy +y = 3. is defined for any

field of characteristic different from 3, where j- invariant of E, is given by :

3 (a® —24)3

jla)=a a3 —27

for nonsingularity o3 # 27, i.e o # 3, 3w, 3w? over k/{3, 3w, 3w?}.
E, consist of elliptic curve with constant section (0,0) of order 3 where 2(0,0) = (0, —1).

Remark 4.2.4. At the point 3,3w, 3w?, E, has 3 singular fibres which are nodal cubics at the points
where 1 +w +w? = 0. Now consider the equation without normalizing y* + axy + asy = =3 suppose
y = 0 intersects the cubic implies that 3 = 0 i.e x = 0 implies triple intersection point (0,0) is
point of order 3.

Suppose y = x + u intersects the cubic such that it generates the the distinct subgroup of order 3.
The line y = x 4+ u has a triple intersection point (v.v 4+ u) with the cubic iff

3 — (z+u)? — (mz + a3)(z +u) = (x — v)?

= 2% — (2% + u?® + 2uz) — (a1 2% + ajux + a3z + azu) = (v —v)3

comparing the coefficient of 2, x, and ¥ yields the relations.
v=a;+1,
—3v? =20+ aju + as,
v3u? + asu
Multiply the second relation by u, we obtain
—3uv? = 2u® + a1u?® + asu.
And subtracting it from the third relation yields
v® 4+ 3uv? = —u*(1 4 ay).

from the first relation

3 + 3uv? = —3u>v.

03 + 3uv? 4 3u?v 4+ u® = ud.

(u+v)3 = ub.
This means that the second point of order 3 has he form (v,v+u) where (u+v)® = u®. Since v # 0,
we must have v + u = pu, where p is the third primitive root of unity. From the above relation we
getu=(p—1)"to.
Since T? + T+ 1= (T —p)(T —p?). Put T =1
= 3=(1-p)(1—-p%),
= (1-p) =30 47),
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We have ) )
u=(p=1)"v=3(" = v =—z(p+2v.

And )
utv= §(1 — p)v.

1
Other point of order 3 can be generated by (0,0) and (v,v+ u) i.e (v, §(1 — p)v).

We can solve a1 and as in terms of v, and thus obtain a one parameter family of curves with a basis.
Remark 4.2.5. The family of cubic curves

Ey =y* 4+ a1(v)zy + as(v)y = 2°,

1
where ax(y) = 3y — 1, and ay(7) = 7(p ~ V(3 — 3(p + 1)). Defines for M) = (m(3)" -
27a3(7))as(y) # 0,
The family of elliptic curves with basis (0,0) (v,

E,.

1
g(l — p)y) for the subgroup of point of order 3 on

4.3 Other Version of Hessian Family

The Hessian family which in homogeneous coordinate takes the form
H,: ud + 03 + w? = 3puvw,
and in affine coordinates with w = —1, it has the form

ud + 03 =1 - 3puw.

3
If we set y = —v> and = —uv. We obtain r_ y =1+ 3ux,or
Y

Es,,: 2+ 3pay +y = a3

This change of variable defined 3-isogeny of H,, onto F3,. There are nine cross section of the family
H,, given by,

(0,-1,1), (0,p,1), (0, —p%, 1)

(1,0,=1), (p,0,—p), (p*,0,~p)

(=1,1,0), (~1,0%,0), (1, -p,0).

Again p is the primitive third root of unity. The family H,, is nonsingular over the line minus ps.
Any 0 = (—1,1,0) can be chosen. These 9 points forms a subgroup of 3- division point of the family
H,.

4.4 The Jacobi Family

Finally we consider the Jacobi family which along with the Legendre family and the Hessian family,

give the three basic classcal family of elliptic curves.The Jacobi family is given by a quartic equation
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and we begin by explaining how to transform a quartic equation to a cubic equation.

Remark 4.4.1. Let v2 = fa(u) = aou® + a1u® + asu® + asu + a4 be a quartic equation. Let

ar +b
cr+d

and
ad — be
vzy(

cx + d)?

v acts like derivative of u, y likes derivative of ©. Substituting u and v into the quartic equation we

get
02 o2 (ad —bc)* , (ax+b)
Y (cx+d)* ~ "*(cx+d)’

Or we can also write as
ar +b

cr+d
= (ad — bc)?y? = ag(az + b)* + ai(az + b)3(cx + d) + az(az + b)%(cx + d)? + az(ax + b)3(cx + d) +
as(cx +d)*

= (ad — be)?y? = a;(ax + b)2 " (cz + d)? where i is from 0 to 4.

(ad — be)*y® = fal Y(ex +d)*

= (ad — bc)?y? = c4f4(%)334 + f3().
where f3(x) is a cubic polynomial and the coefficient of x3 is c3f4(g).
c

a
For — is a simple root of f1 and ad — bc = 1 we reduce the equation
c

y? = fa(x).
Definition 4.4.2 (Jacobi Family). The Jacobi family of quartic curve is given by

2
Jo:v?=(1—-c%u?)(1 - %) =1-2pu? + u?,

1 1 1 1
over any field of characteristic different from 2 and here p = 5(02 + 7) so that p+1= 5(0 + =)=
o o

1 1
We take the map j, — E\ where Ey is the Legendre family of the curve with A\ = Z(O’ + =)% by
o

the following change of variables-
o’+1 u—o

r= T (D)

202 1
o
and
_ ot —1 v
y 403 1 2.
(u——)
o

The point on j, with u-coordinates

0,00, 40, 4, 41, +i
g

maps to the point of order 4 on the elliptic curve E.
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4.5 Tate’s Normal Form for a Cubic with a Torsion Point
The normal form of elliptic curve
E: y2+alxy+a3y :x3+a2x2 + a4x + ag

. Assume that (0,0) is on the the curve

E': y? +arzy + asy = 2 + asx® + aqz,

For (0,0) lie on E ag = 0 ,The slope at (0,0) is 3/ = %
3

For slope to be 0, ay = 0, ag # 0, Since we get
E': y? + arzy + asy = 2° + asz®.

Here, we see that (0,0) is not of point of order 2, and the point (0,0) is point of order 3 if and only
if ag =0, az # 0.

Now we assume that (0,0) is not of point of order 2 or 3,

= as#0,a3#0

By changing z to u2z and y to u3y, We can make a3z = as = —b and depends upon two parameter.

Definition 4.5.1. The Tate normal form of an elliptic curve E with point P = (0,0) is
E=E(®b,¢):y*+ (1 — ¢)zy — by = x> — ba?.

Where b and c are the parameter from the field k.
For the discriminant A = A(b,c) of E(b,c) is

A(b,c) = (1 —)*® — (1 —¢)®b® — 8(1 — ¢)?b* 4 36(1 — ¢)b* — 27b* + 160°.

Remark 4.5.2. The Tate normal form describe equation for the set of pairs (E, P) which consist a
elliptic curve E together with a point P on E such that P,2P,3P # 0.

This P corresponds to the pairs (b, ¢) with both b # 0 and A(b,c) # 0.

— In the two parameter, the Tate family E(b,c), there are some cases where curve has different
fibres E(b, c) are isomorphic, for example E(b,1) and E(b,—1) are the isomorphic curves.

For nP =0, for some integer n > 3, then the polynomial equation f, (b,c) =0 over Z, where b and
c must satisfy the polynomial equation.

Ty fa(bye) =0,b %0 A(b,c) # 0 defines an open algebraic curve with a family E(b, c) of the elliptic

curves over it together with a given n distinct point P. this f, varies and can be defined explicitly.

Remark 4.5.3. This family contains all elliptic curves with torsion point P of order m upto iso-
morphism. The curve T,, maps onto open curve Y1(n)

Yi(n): Parameter space for isomorphism classes of the pair (E, P) of elliptic curve together with a
point P of order n.

X1(n): The curve Y1(n) has the completion X1(n) which is nonsingular where the completing points,

called cusps.
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Remark 4.5.4. There is an elliptic curve E over a field k with torsion point P of order n over the
field k

& the open algebraic curve T,, has k rational points.

< T, (k) is non empty.

< Yi(n)(k) is non empty.

< X1(n)(k) has noncuspidal k rational points.

Corollary 4.5.5. On the curve
E=E(b,¢):y*+ (1 — c)zy — by = x> — ba?.

we have points i.e P = (0,0) then —P = (0, b)
For 2P = —PP = —(b,0) = (b,bc), —2P = —(b,bc) = (b,0),3P = (¢,b — ¢),—3P = (c,c?),
4P = (d(d —1),d*(c —d +1)),—4P = (d(d — 1),d(d — 1)?), where d = b in the formula for 4P and
c
(

—4P. 5P = (de(e — 1),d?*e(e — 1)?) —5P = (de(e — 1),de*(d — €)), where e = ﬁ

4.6 An Explicit 2-Isogeny

Invariant of the Curve E(a,b)

For the curve E(a,b) defined by
y? =23 + ax? + bx

The following holds:
c4 = 16(a® — 3b),

c = 2°(9ab — 2a®),
A = 2% (a® — 4b),

c3 s (a® —3b)3

TTA T @@ )
The two basic special cases are
(1)- For j = 123 if and only if a = 0, and the curve is E[0,b] = E[b] : y?> = 23 + bz.
(2)- For j = 0 if and only if 3b = a? = (3¢)? for the characteristic unequal to 3. so the curve is

E[3c,3¢?] 1 y? = (z + ¢)® — 3, and it has the form y? = 2% — ¢ after translation of z by c.

observation-

We observe that the function,
h(al, bl) = h(az, bg)

= (—2ay,a? — 4by) = (—2az, a3 — 4by),
= a1 = az, by = by,
Let (a,b) € k2, Then 3 (c,d) such that h(c,d) = (a,b),
a® — 4b
16

—2c:a:>c:_7a,d:
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_ —a a?—4b
h~'(a,b) = (7»T)

Note-

Here a? — 4b is the discriminant of the quadratic 2 + ax + b.

Formula for the 2-Isogeny

The 2— Isogeny with kernel {0, (0,0)} is given by the

Ela,b]: y? = 2® + az?® + bz

E[—2a,a® — 4b]: 3? = 23 — 2a2® + (a® — 4b)x = 2° + ax® + bz
Where a’ = —2a, Y = a® — 4b,

E[—2a,a® — 4b]: y? = 23 — 2ax? + (a® — 4b)z,

Put the value of @ and b then we get

E[-2a,a® — 4b]: y* = 23 + 4a2? + 16bz,

E[-2a,a® — 4b] = E[4a, 16b).

x— 4z, y — 8y

¢: Ela,b] *2> E[-2a,a® — 4b]

o) = (L = )

¢ is well-defined-

We have to check
b, . 5
(=5,y(1 = —)) lies on the E[—2a,a” — 4b].
x

= 23 + a2 + V2 =2 — 202" + (a® — 4b)2’
= 23 4+ a2 + V2 = 2'[2"? — 2a2’ + (a® — 4b))]

13 /.02 [ y2 y4 y2 2
= 2" +adz +bx_ﬁ[ﬁ_2aﬁ+( — 4b)]
2
— 2B 4+ ad2?+ b = y—ﬁ[y4—2ay2x2+a2x4—4bx4]
x

2
= 2B +d2? + b = %[(yz — az?)? — 4bz?]

2
=B +ad2? + V2 = y—ﬁ[(x?’ +bx)? — 4ba?
x

2 20,2 b 2
= Z’/3 + a’x’2 + b/l‘/ = %[1‘2(%‘2 — b)z] = 72/ (xx‘l ) = y/2

#((0,0)) =0, ¢(0) = 0 so the kernel is {(0,0),0}

¢: E[—2a,a® — 4b] — Ela,b).
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so that q@(m,y) = ( y’ i(gc2 — (a? — 4b))),

422 822
N 1y2 ly o
¢($7y):(1ﬁa§ﬁ(x =b)).

Any property which holds for ¢ will also holds for its dual.

Remark 4.6.1. Now we check that ¢¢(P) = 2P

R R 2 2 _ b
— dow.y) = (g, LT
R 2 _ b 2 2 _ b
— dote) = (T @ - )

Consider tangent line at P to Ela, b

y? =23 +ax? +bx

differentiating both sides with respect to x we get
= 2yy’ = 322 +2ax + b

= 2yy’ = 22% 4+ 2ax +2b+ 2% — b

= 2yy’ = 322 +2ax + b

= 2yy’ = 2(z® + ax +b) + (2% — b)

= 2uyy’ = 2yx—2 + (22 - b)

or in other words,
2 —b
y =24
T 2y
If 2(x1,y1) = (x2,y2) on Ela,b], then the tangent line y = o(x — x1) + y1 to Ela,b] at (z1,y1) must

intersect Ela,b] at (2, —y2).

Substitute the value of y in Ela,b].

y? =23 +az? + bx

= [o(z — 21) + y1)? = 2° + az? + bz,

= 02(x —21)? + 97 + 20(x — x1)y1 = 23 + ax? + bu,
=23+ (a—0?)2?+...=0

where a = 0222 + y? — 20w,

This is repeated root x1 so the sum of the root is,

2x1+x2:02—a.

= 19 = 0% —a — 211,
2_p

:}z2:[y1 1 ]2—a_21»‘1,

X 2y

2 2

x5 —>b
Rt )

dyi

yo =o(xe —x1) + 11

b (a0

:}y:
RS 2y1 4y}

- xl) + Y1,
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— = 2 _ b

vi(a? —0)* — 23 (yf — aa?)

= Y2 = (1’2 —b)
! 83y}

Now, next we calculate —PP = (9, —y2)
—ax}) — i (af — b)?

8ty
Now using x3 — bry = y? — ax? — 2bxy,

2 2(,,2
:>—y2:($%—b) yl(yl

= 23 (yi — ax?) — (4 — axf — 2bx1)?,
Now we get,
= (y1 — (a® — 4b)z?).

2 b 2
Hence we deduce that 2P = (x2,y2) = ((xl )

x1(23 — b)? + 223yf — 26y} — 4aty?

(yi

(a® — 4b)ay)(z] — b)

4y?
2P = ¢¢.

Proposition 4.6.2. On the curve E[a,b] we have

(0,0) + (z,9) = (

Proof. For (z1,y1) + (0,0) = (72,y2)

b by
x’

);

8xiy?

by)'

22

Consider the line y = 2 through (0,0) and (z1,y1). Now for the third point of interection we
T

compute
2
21
T3
7

2
— 23 - (y1
Ty

Sum of the root _is
2
Y1

T1+r2+0==5—a
Ty

2 2 3

yi —ary —x7  bry b
I R

b 1 1 1
And y, = %

L1

b —byl

PQ:(:E%*yZ):(;la J)% .

Remark 4.6.3. ¢((x,y) + (0,0)) = ¢(z,y)

Now o((z.4) + (0.0)) = (. =)

2
Yi N
=, =5 (a1 = b)).
Ty

27
Ty

¢((2,y) +(0,0)) = (

Proposition 4.6.4. The function «: Ela,b] —

= -

*

(k*)?

=23 + azx? + bz,

a)r? +bx = 0.

defined by (0) = 1, «(0,0) = b mod (k*)?,

and o((z,y)) = x mod (k*)? is a group homomorphism.

51



Proof. Let (z1,y1), (z2,¥2), (x3,y3) on Ela,b] on a line y = A\x + u
= (\z + pu)? = 23 + az? + ba.

1, T2, T3 are the roots of the above equation,

so the product of the root xyxox3 = uz

04(9617311)(1(302,2/2)04(333,@3) = r1Tox3 mod (k*)2 =1,

a((z.) + (0,0)) = a(, ‘j%’ﬂ =2 mod ()2 = br mod (K")2 = (0, 0)a(x,y)

which shows that the « is a group homomorphism.

Proposition 4.6.5. The sequence

Ela,b] — E[—2a,a® — 4b] — )2

s exact.

2 2

Proof. First a(¢(z,y)) = a(y—z, *) = y—Q mod (k+)? = y?z? mod (kx)? =1
x

Next, if a(z,y) = 1,i.e.,if a® = ¢, then we choose two points.

(r90) = (32 —at D) myt) and (o_y) = (G2 —a— ),z ).

We wish to show that (z+,y+) ison Ela, b] and ¢(x+,y+) = (z,y), Where (z,y) is on E[—2a, a®—4b].
Now,

rio = llw-a)? - L)

3 + a’z — 2ax% — y?
4x ’
= x42_ =0

2[])_"_1‘_:

since y? = 23 — 2az? + (a® — 4b)x

2
b
Now a point (x;,y;) for i = 1,2 lies on Ela, b] iff <yi)2 =zy+a+—,
2 2 (w2) T
ie. y—12 =x1 4+ a+ x9, and ?% =To+a+ .
7 T3

But 21 +253=t2—a
= 11+ 23 +a=1t
Now

(zi,yi) = (2, y)

B )

(i, i) = (8, tai (1 — x%))’

%

(i, yi) = ((

(1) = (a0 (s — 2)),

(xwyz) = (fﬂ,t(lL’i - £C¢)),

This proves the proposition.

52



53



Chapter 5

Reduction mod p and torsion point

5.1 Reduction mod p of Projective Space and Curves

Notation

Now we will use the following notation in the next three section. Let R be a factorial ring with field
of fraction of k. For each irreducible p in R we form the quotient ring R/p = R/Rp and their field
of fraction is to be denoted by k(p).And the each element a in k can be decomposed as a quotient.

U
a=p —,
v
Where p does not divide either u or v and n is an integer which is uniquely determined by a. Let
ordy(a) = n denote the order function associated with p.
The order function satisfy the following property :
ordy(ab) = ordy(a) + ord,(b)
ordy(a + b) > min{ordy(a), ord,(b)}

When
ordy(a) < ordy(b)

ordy(a+b) > ord,(a)
ordy(a + b) = ordy(a).

The reduction mod p function
rp: Rp) — k(p)

can be defined on affine space by taking products.
k"D Rp)" — (k(p))"-
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This is defined on points z = (x1, T2, ...., &) such that ordy,(z;) > 0, for all 4.

rp(T1, &2, ...y Tn) = (T1, T2y ey Tn).

Definition 5.1.1. The reduction mod p function
rp: Pp(k) — P, (k(p)).

is defined by the relation.
Tp(yO: s YLt e yn) = (g()a 2717 ey gn)
where (Yo: ,Y1: ,---: Yn) 18 the homogenous coordinate of point in P, (k), y; € R, for every i they

don’t have a common irreducible factor. Such a representatives (yo: ,y1: ,...: Yn) of a point in P, (k)

is called p-reduced. There p-reduced representatives are unique upto multiplication by a unit in Rp).

Remark 5.1.2. Let F(yo,Y1, -, Yn) € k[Y0, Y1, ---» Yn]. Multiply the polynomial F' by an appropriate
non zero element of k such that the polynomial f all are in R and here no common irreducible
factor. Then f(yo,y1,...,Yn) is a polynomial over k(p) and coefficient of f are reduced modulo p.
degf = degF.

Definition 5.1.3. Let C be an algebraic curve of degree d in Py defined over k.
rp: Pa(k) — Pa(k(p)).

reduces to,
rp: Cy(k) — Cy(k(p)).

The reason is that if (w,x,y) € Cr(k

)7 then f(w,a:,y) =0 so rp(f(w7x,y)) = f(u’;,@g)
= rp(f(w,x,y)) = f(Tp(TU,%y)) = 0.

Example 5.2. Consider the nonsingular conic defined by wx + py® = 0 reduces to singular conic

equals to the union of two lines defined by wx = 0.

Example 5.3. The conic defined by the pwz + y? = 0 reduces to y?> = 0 which is a double line.

Reduction of a Cubic-

Intersection multiplicity i(P; L, Cy) of P on L and C} it is defined by the following formula,
o(t) = fw+tw,x+tz',y +ty'),

where P = (w, z,y) and (v',2",y’) € L — Cj.
The points of L N Cy are of the form (w + tw’, z + ta’, y + ty’) where ¢(t) = 0, and order of zero is
the intersection multiplicity. Further the order of any P on Cy < i(P; L, Cy).

We reduce those constructions,

o(t) = f(w+tw',z +tz', g+ ty)

We must choose (w', #’,y') such that (w’,2’,y’) € L—Cj. this is only possible given L not contained
in CJZ
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Remark 5.3.1. For the above notation we have the following inequalities.
i(P;L,Cy) <i(P; L,Cj);

and order of P on Cy is less than or equals to the order of P on Cy. For P = (1,0,0) origin
(w',2',y") = (0,a,b) where constant term is zero.

We get the polynomial
O(t) = fr(ta,th) + ... + falta, th)

where 1 is the order of P on curve Cy.

Proposition 5.3.2. Suppose P,P' € LNC}y, where P # P' and P = r,(P) = r,(P').If the order of
P on Cy is equals the order of P on C7y, then the reduced line L is a part of the tangent cone Cr.if
P has order 1 on Cy, then L is tangent line to Cr at p.

Proof. Since P € LN Cy and ord(P) > r, the polynomial ¢" divides ¢(t). Also P’ € LNCy

= poly.(t —to)|¢(t), Since t"(t — t,)|(t), rp(P) = 15 (F’)

= tomod(p)|o(t)

= t"H|¢(¢) O

5.4 Minimal Normal Forms for an Elliptic Curve

Proposition 5.4.1. Let k be a field of fraction for an integral domain R, and let E be an elliptic

curve over k. Then there is a cubic equation for E in normal form with all a; € R.

Proof. Let E be an elliptic curve over k. Choose normal form of E with coefficient @; in variable
Z and y. Let u be the common denominator for all a;, i.e. ua; € R, Using the change of variable

x — u?Z and y — u?y. We get the coefficient a; = u'a; is in R for all 1. O

Definition 5.4.2. Let K be a field with a discrete valuation v, and let E be an elliptic curve over
K.A minimal normal form for E is in normal form with all a; in the valuation ring R of K such
that v(A) is minimal among all such equation with coefficients a; in R.

— Minimal is possible as valuation is greater than 0 on discriminant on the given equation in

normal form over R.

Proposition 5.4.3. Let E and E’ be two elliptic curves over K with mimimal models having
coefficient a; and a;-, respectively. Let f: E — E' be an isomorphism with zf = u?x’ +r ;
yf = udy +su?x’ +t, Then v(A) = v(A'), u € R*and r,s,t € R, The differential w is unique up to

a unit in R.

Proof. The equality v(A) = v(A’) by the definition of minimal, and hence

= v(u) =0

= wu is a unit in R (u'2A’ = A). The relation u8b§ = bg + 3rbg + 3r2by + 3r? implies that 3r is in
R, and u6béi = bg + 2rbs + r2by + 473 in R implies 4r is in R. Hence the diffrence r is in R.

u2a’2 = ay — sa; + 3r — s2 implies s is in R

uﬁag = ag + Sas + ass® + 13 — tas — sta; — t2 implies t is in R

and the last assertion follows from the formula wf = u=1w’.
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Proposition 5.4.4. If all a; are in R, and if 0 < v(A) < 12, then the model is minimal.

Note-

If P4|A and PS|B in R,then the equation y? = 23+ Ax+ B is not minimal. All elements of K = j(E),
for some E over K ,implies that j(E) is not in R for all E.

Proposition 5.4.5. Let E be an elliptic curve over K and assume that characteristic of K are not
equals to the 2 and 3. For a minimal model the valuation of discriminant satisfies

v(A) +min{v(j),0} < 12 4 120(2) 4 6v(3).
In addition,assuming that the residue class characteristic is different from 2 and 3, it follows that a
model over R is minimal iff v(A) + min{v(j),0} < 12.

Proof. We know,
and,

We have the relation
v(A) +v(j) = 3v(cy)

and
v(A) +v(j — 12%) = 2v(cg).

And the equation of the cubic can be transformed into the form
Y. B G A
(1) = (@)° — o(52) - o2
If 48 P*|c4 and 864 P%|cg, then equation is not minimal.But as equation is minimal and since 48 = 2%.3
and 864 = 2°.33,
it follows that
v(A) +v(j) = 3v(cs) < 12+ 3v(48) = 12 + 120(2) + 3v(3),

v(A) +v(j —12%) = 6v(cs) < 12+ 20(864) = 12 + 10v(2) + 6v(3).

Since, v(A) + min{u(f), 0} < v(A) + v(j)
or, v(A) + min{v(j),0} < v(A) +v(j — 123). ;We obtain the inequality

v(A) +min{v(j),0} < 12 4+ 12v(2) 4 6v(3).

Now observe that for v(2) = v(3) =0
The minimal model satisfies v(A) + min{v(j),0} < 12.and the converse holds for the above propo-
sition

0 < v(A) + min{v(j),0}.

Then model is minimal. O
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Now suppose R-factorial ring, with field of fraction k. two normal forms for E with coefficient
a; in R are related by the admissible change of variables. u?A = A

For an irreducible element p in R, we have
ordy(A) = 120rdy,(u) + ord,(A).
Since, by a change of variable we can always choose an equation whre ordy,(A) is minimal for all

irreducible p in R.

Definition 5.4.6. Let k be the field of fractions of a factorial ring R, and let E be an elliptic curve
over k. A minimal normal form for E is a normal form with all a; € R such that ord,(A) is

minimal among all equation in normal form with coefficient a; € R.

5.5 Good Reduction of Elliptic Curves

Notation-
For an irreducible p a canonical reduction homomorphism r,: R(p) — k(p) denoted by r,(a) = a.

Definition 5.5.1. Let E be an elliptic curve over k with minimal normal form
y2 + a1y +asy = x> + a2x2 —+ asx + ag

.The reduction E of E modulo p is given by
Y2 + dizy + dzy = 2° + dax® + dux + dg

.Now it is a plane cubic curve over k(p).and E is also denoted by E,.

Note-

The normal form of an equation F only has to be minimal at p.

Now observe that an admissible change of variable between two minimal normal form of E at p is
given by © = u?z’ 4+ r, y = v’y + su®z’ 4+t over R(p) reduced to x = w2 + 7,y = udy + sule’ +1
for E over k(p).

Remark 5.5.2. Now for the above notation the discriminant of the reduced curve E is A. Clearly
E is nonsingular iff A # 0 or equivalently ord,(A) = 0.

Definition 5.5.3. An elliptic curve E over k has a good reduction at p given E, the reduced curve
at p, is nonsingular. and E is singular, we say E has a bad reduction at p.
In general the reducttion function

rp: Pa(k) — P2(k(p))

restrict to
rp: E(k) — E’(k(p))

Proposition 5.5.4. Let E be an elliptic curve over k with good reduction at p. Then the reduction
function r,: E(k) — E(k(p)) is a group morphism.
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Proof. Clearly r,(0:0:1) =0:0: 1 so that zero is preserved.

for P,Q € E(k) and let L be a line through P and @ when P # @ and the tangent line to F at P
when P = Q. then L reduces to L', the line through r,(P) and 7,(Q).

Again L’ is tangent to E' at r,(P) when r,(P) = r,(Q).Now if PQ denote as usual the third

intersection point of L with E, then we have

mp(PQ) = 1,((PQ)O) = (rp(P)rp(Q)rp(0)) = 1p(P) +1p(Q),

and thus 7, is a group morphism. O

Remark 5.5.5. Since 0 =0:0: 1 on both E and the reduced curve over k(p),we see that the p—
reduced w : x 1y on E(k) is in ker(ry) if and only if ord,(y) = 0, ordy(z) > 0, and ord,(w) > 0. in
fact, we should divide by y and assume that the point is of the form w : x : 1, where w and x have

strictly positive ordinal at p.

Example 5.6. If the minimal normal form of an elliptic curve E is of the form y? = f(x) over k ,
where f(x) is a cubic polynomial, then E has a bad reduction at all p where k(p) has characteristic
2 and at all irreducibles p which divide the discriminant D(f) of the cubic f(x).

Example 5.7. If the minimal normal form of an elliptic curve E over k is

v = (z—a)(z— Bz —),

then no p? divides the all roots o, 3, and ~y for any irreducible p. The elliptic curve E has good
reduction at p > 2 if and only if p does ot divide any of the diffrence o — 3, B — 1, v — «.

5.8 The Kernel of Reduction mod p

Now In this section, we define a few results on the kernel of reduction map and the p-adic filtration.
This is very useful for studying torsion points of an elliptic curves. We use some notations which
we described above and the reduction map is as defined in the previous section. Now in the end the

following proposition gives some result on relation between the order function valuation.

Proposition 5.8.1. Let (w,x,1) be a point on the elliptic curve E(k). If ord,(w) > 0, then
ordy(z) > 0 and ord,(w) = 3ord,(x) holds.

Proof. The projective normal form for y = 1 for cubic equation of E is w + ajwz + azw? = 23 +
asw? + agw?x + agw3. Let L denote the LHS of this equation and R denote the RHS. We have,
ordy(w) > 0. We have to prove ord,(z) is positive. We prove this by contradiction. Let if possible
ordy(z) < 0. Then ord,(R) = ordy(z3 + aswz?® + aqw? + agw?) = ordy(z3) = 3ord,(z) < 0.
On the other hand, ord,(L) = min{ord,(w),ord,(aiwz), ord,(asw?)} = min{ord,(w), ord,(a1) +
ordy(w) +ord,(z), ord,(as) 4+ 2ord,(w)}. Since ord,(w) > 0, we have 3ord,(z) > ordy,(z) + ord,(w).
This gives 0 > 2ord,(w) > ordpy(w). It follows that ord,(w) < 0 which is a contradiction.
For the second part, ord,(w) = ord,(g+a;w+azw?), because ord,(w) is less than min{ord,(a1w®), ord,(azw?)}.

Hence ord,(w) = ord,(R) = 3ord,(x). O
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Definition 5.8.2. (p-adic filtration on E) Let E(k) be an elliptic curve defined by cubic in normal
form. The p-adic filtration on E is a sequence of subgroups E™ (k) which is defined as (w : x : 1) €
E™ if ordy(w) > 0 and ord,(z) > n.

Now the next proposition which gives some results on order function valuations at coordinates

of some different points of intersection of a line with elliptic curve over the feild k i.e.E(k).

Proposition 5.8.3. Let P = (w:xz : 1), P = (v : 2',1), P’ = (w" : 2" : 1) be three points of
intersection of E with L, where E is elliptic curve defined by cubic in normal form. If P, P' € E™ (k)
for n > 1, then ord,(x + 2’ + 2'") > 2n and ord,(w") = 3ord,(w") > 3n.

Proof. We take w = cx + b as the equation of line L through the three points P, P/, P”. We aim to
calculate ¢ and ord,(c) using equation of cubic.

’::;“,/ is the slope of L. Consider the two

equations E; : w + ajwz + asw? = 23 + aswa? + aww?z + agw® and Ey @ w' + ajw'a’ + azw’? =
2"+ asw'z"? + agw?x’ + agw’. Consider B3 = By — By : (w—w') + a1 (wz —w'z’) + az(w? —w'?) =
(23 —2") +az(wr? —w'z"?)+as (wWir—w?2")+ag (w3 —w?) = (x—2") (2" +x2’'+2?)+. ... Each of the
terms is of the form w2z’ —w%z’® = wax® —w'*2'®, which we can write as (w?® —w'®)z? +w'*(z® —2').
From the equation of E3, we get, (w — w')(1 + ayz + az(w +w')) = (x — 2')(z? + z2’ +...). Thus,
(w—w")(14u) = (x—a')(2? + z2’ + 2'* 4+ v) for u,v € k, where ord,(u) > 0, so, ord,(u+ 1) = 0.

Also, each term of v is divisible by some w or w’, so ord,(v) > 3n. Since, ord,(x) and ordy,(z') > n,

First we consider the case when P # P’. Then ¢ =

therefore, ord,(z? + zz’ + 2'? + v) > 2n as all the quantities are greater than or equal to 2n. Thus

we obtain ord,(c) = ord,(“=%") > ordy, (22 + a2’ + 2> — v) — ord,(1 + u) > 2n.

rz—z’
Next consider the case when P = P’, then the slope of tangent line is ¢ = ‘fi—‘;’ Differentiating
Ey with respect to z implicitly, we get %2 + aj(w + z%2) + 2a392) = 32% + ay(2wz + 2292) +

as(w? + wa%) + 3a6w2(%). This gives us (1 + a1z + 2azw — agx? — 2a43wT — 3a6w2)%’ =

32%+2aswz+asw?—a;w. Coefficient of 2 is of the form 1+u, where ord,(u) > 0, so, ord,(1+u) = 0.
RHS of the above equation is of the form 3z + v, where ord,(3z? + v) > ord,(3z*) > 2ord,(z).
Now since ord,(w) = 3n, we have, ordy(c) = ord,(%2) = ord,(3z® + v) > 2n.

Therefore, in both the cases, we get ord,(c) > 2n. From equation of line L, we have b = w — cz.
Therefore, ordy,(b) > min{ord,(w), ordy(c) + ord,(x)} > 3n.

Now to estimate the ordy,(z + 2’ + 2'), we first substitute the equation of line L through P
and P’ in the equation of cubic E;. We get, (cx + b) + aj(cx + b)x + az(cx + b)? = 23 + az(cx +

b)? + as(cx + b)x + ag(cx + b)3. This gives us a polynomial equation in z, and the sum of root of

_az2b+2a4bc+3ag bc®—ay c7a3c2
1+asctasc?+agc’

Therefore, we get, ord,(1 + u) = 0. It follows that ord,(z + 2’ + z”) > 2n. We also observe that

' =x+a +2" —x—2a, s0 ordy(z") > min{ord,(z + 2’ + 2"), ord,(—x), ord,(—z')} > n. Since

w = cx + b, we have ord,(w”) > 3n, and thus (w”,2”,1) € E( (k). This proves the proposition.
O

. Take u = age + asc® + agc®.

this polynomial equation is x + 2’ + 2" =

Remark 5.8.4. From proposition 5.4.1 and 5.4.8, it follows that ord,(x + =’ + ") > 3n whenever

a1:O.

Theorem 5.8.5. If E is an elliptic curve in normal form over k with p-adic filtration E™ (k)
on E(k). Then E™ (k) are subgroups. Moreover, if P is a function defined from E™ (k) to p"R
such that P(w,z,1) = z(P) is composed with the quotient morphism p,R — p,R/p*"R defines
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a group morphism from E™ (k) to p"R/p*" with kernel in E?™ (k) induces a monomorphism
EMR/ECYR — p"R/p*™R forn > 1.

Remark 5.8.6. From this theorem, we conclude that if a; = 0, then we get an injective map from

E™ (k) "R
E7 (k) to 1;371 R.

5.9 Torsion in Elliptic Curve over Q : Nagell-Lutz Theorem

Notation-

Let Asors denote the torsion subgrop of an abellian group A.

Theorem 5.9.1. (Nagell-Lutz Theorem) Let E be an elliptic curve over Q.

(1)- Subgroup E(Q)iors N EX(Q) = 0 for odd prime p and the Subgroup E(Q)iors N E2(Q) = 0 for
prime p = 2.

(2)— The restriction of the reduction homomorphism rp|E(Q)tors 1 E(Q)tors —> Ep(EF)p) is injective
for any odd prime p where E has a good reduction and r2|E(Q)tors: E(Q)tors —> E2(Fs) has kernel
at most Z/27 when E has a good reduction at 2.

Proof. The function
x+— x(T)

defines a monomorphism and
E™Q)/E*™Q) — Zp" [ Zp™" = L/pL,

and this implies that there is no torsion prime to p in F((Q) prime to p. Assume that pT = 0
where T € E0)(Q) — EC+)(Q) and r > 1
if p is odd then

0=2z(pT) = p(zT) mod p°"

Hence x(T) € p> ~1Z and this means that T' € E3"~1Q implies that r > 3r — 1 so that r = 0.
If p =2 so we use
0=2(2T) = 2(zT) mod 2%"

Hence x(T) € 227=17Z and this means that T' € E?"~1Q implies that r = 2r — 1 so that r = 1.
Hence E(Q)¢ors N E(Q) = 0 for p odd and with E(Q) for p = 2.

For the second assertion recall that
ker(rp) = El((@).

Now we use the first assertion then we get the group E(Q)ors N E(Q)/E?(Q) injects to the 27Z /47 =
7.)21. O

Remark 5.9.2. If C is a cubic curve defined by an equation over F, in normal form, then for each
x in F, we have at most two possible (z,y) on the curve C(F,) and so the cardinality is less than or

equal to 2q + 1.
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Corollary 5.9.3. Let E be an elliptic curve over the set of rational numbers. if E has good reduction
at an odd prime p, then the cardinality of the torsion subgroup satisfies |E(Q)tors| < 2p+ 1. if E
has a good reduction at 2 then |E(Q)¢ors| < 10.

Corollary 5.9.4. For an elliptic curve E over Q, the torsion subgroup E(Q)iors of E(Q) is finite

and is either cyclic or cyclic direct sum with Z/27.

5.10 Computability of Torsion Points on Elliptic Curves from

Integrability and Divisibility Properties of coordinates

Theorem 5.10.1. Let E be an elliptic curve defines over the rational numbers in normal form with

integer coefficient. if (x,y) € Quors, then the coordinates x and y are integers.

Proof. if y = 0 then the z is a solution of the cubic equation in normal form.
0=23%+ a2x2 + asx + ag.

With integer coefficients. Since z is a rational number, and so it is also an integer number i.e. x is

m
of the form x = — so the equation which is of the form
n
m? + agmzn + a4mn2 + a6n3 =0,

and any prime which divides n must divide m also. Thus we have to taken an integer which is of
the form z = m. Now we have to take the second condition.

if y # 0, then the point with homogeneous coordinate is of the form (w: 2’ :1) = (1: x: y), where
the w = 1 and 2’ = E, so we have (w : 2’ : 1) € r,'(0) where p is odd and (w : 2’ : 1) € E*(Q)at
2. Now ir?{ other WOI‘C?lJS we have ord,(w) < 0 for p is odd and ords(w) < —1 at 2. This condition
becomes from the relation ordy,(y) > 0 for all p odd and orda(y) > —1 at 2. Now y is of the form

h m
y = — for an integer h. Again take x = —, and x saisfies the cubic equation with the coefficient
n
of 23 is 1, and the coefficient of 22 is an integer, and coeffcient of x is an integer over 2, and the
constant term is an integer over 4. the change, using 2, shows * = m and that £ = m and h is an

even. This proves the theorem. O

Theorem 5.10.2. Let E be an ellliptic curve over Q, and let Weierstrass equation of the form
y? = f(x) for E and here f(x) has an integer coefficient. if the point (x,y) is a torsion point on E,
then the integer y is zero ory divides D(f), where D(f) is the discriminant of the cubic polynomial.

Proof. if y = 0, then (z,0) is of order 2 and thus 0 divides the discriminant. Otherwise, 2(z,y) =
(Z,7) not equals to zero on an elliptic curve over the rational numbers E(Q). The tangent line to F
has slope f’(x)/2y, and substituted y = Az + § into the Weierstrass form of an equation and thus

we obtain the cubic equation with z has the double root and Z has the single root.

f'(z)
2y

Hence the sum of the root is

)%

2+ =a—(

Since x , T and a are integers , it follows that f'(z)/2y is an integer, and 2y|f’(x).
Now, we can write the discriminant D(f)of f(z) as a linear combination D(f) = u(z) f(z)+v(z) f'(z),
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where the u(z),v(z) € Z[z]. Since y = f(z) and y|f'(z) for the points (z,y) on E, Now we infer
that y|D(f). This proves the theorem. O

Remark 5.10.3. For finding the E(Q)iors 15 to take for E a Weierstrass equation y? = f(x) where
f(z) is a cubic polynomial and the coefficient of a, b and ¢ are the integers. Consider the finite set of
all divisors y, of D(f). Solve the cubic y> = f(z) for the integer solution x,. Among these (x,,%,)

are all points of E(Q)iors whic are not equals to zero.

Remark 5.10.4. If (z,y) € E(Q) such that some multiple n(x,y) has nonintegral coefficients, then

(z,y) is not a torsion point.

5.11 Bad Reduction and Potentially Good Reduction

Definition 5.11.1. An elliptic curve E(k) has:
(1)— Multiplicative reduction at p given the reduction Ep) has a double point or node.

(2)— Additive reduction or unstable reduction at p provided the reduction E(p) has a cusp.

Remark 5.11.2. Let E(k) with discriminant A and having bad reduction at p, i.e., ord,(A) > 0.or
A =0 The reduction is:
(1)— multiplicative reduction iff ord,(cs) = 0 or, equivalently, ordy,(bs) = 0.

(2)— additive reduction iff ordy(cqs) > 0 or, equivalently, ord,(b2) > 0.

Remark 5.11.3. Let E(k) with good reduction at p. Then the reduction modulo p of j(E) is given
by rp(§(E)) = j(Ep)) and ord,(j(E)) > 0. We have two congruence relation.

ord,(j(E)) =0 mod 3

and
ord,(j(E) —12%) =0 mod 2.

since j(E) = c3 /A, j(E) — 123 = 2/A, and 123A = ¢} — ¢2. Conwversely, if ord,(j —123) =0 =
ordy,(j), then the equation

123 1
Jo128 12

y2—|—aﬁy:x3—aﬁ

shows that the curve has the same j invariant which is defined over k.

Definition 5.11.4. An elliptic curve over K has potential good reduction provided there exist a
finite extension L and an extension w of v to L such that E over L has the good reduction at the

valuation .

Theorem 5.11.5. An elliptic curve E defined K has potentially good reduction iff j(E) is a local
integers, i.e., ¥(j(E)) > 0.

5.12 Tate’s Theorem on Good Reduction over the Rational

Numbers

Theorem 5.12.1. FEwvery elliptic curve E over the rational numbers Q has bad reduction at some

prime, i.e., A cannot be equal to £1.
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Proof. Assume that A = +1 such that
A = —b3bg — 8b3 — 27b% — babybs,
and
b2 = a% + 4&2,
by = ara3 + 2a4.

if a; is even, then 4|by and 2|by so that bs will have to be odd, and in fact, +1 = A = 5b2(mods).
Since any square modulo 8 is congruent to 0, 1, 4 mod(8) , this is not possible.

If a; is odd, and hence b is also odd. Then the coefficient ¢, = b2 — 24b, = 1(mod8). Now we write
c4 = x £ 12 from the relation ¢ — ¢2 = 123A = 4+123, and thus

cz = x(2? +36x +3.12%) = 2*(x +4) mod 8.

it means that = 5 mod 8. Now 3|z, for otherwise any p|z with p > 3, it would follow that p?|x
and +x would be a square. so this contradicts that x =5 mod 8.

Let = 3y so that y =7 mod (8) and hence ¢g = 9¢

3¢2 = y(y? + 12y + 4.123) = y((y £ 6)? + 540).

Now y > 0 Since y((y & 6)? + 540) is positive. if p not equal to 3 divides y, so it does so to an even
power.
Also the relation for 3¢? shows that if 3|y, then 27|3¢?. In this case let y = 3z and ¢ = 3d which
leads to

d? = 2(2? + 42 + 64)

From the relation for 3¢2. if an odd prime p|z, then p?|z and 2|8 is a square. But y =7 mod 8 this

implies that z =5 mod (8) which contradicts the facts that z is a square. O

Example 5.13. The following curve
Y  +ay+ ey =a°,

5+/29
where € = ———

and A = —€l0,

over K = Qv29 was shown by Tate to have good reduction at all place of K,
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Chapter 6

Proof of Mordell-Weil Theorem

In this chapter, we see the proof of Mordell-Weil’s theorem. The Mordell-Weil’s Theorem is essential
in the theory of elliptic curves as this results tells us that the group of elliptic curves is finitely
generated. We set up a few results used in proving the theorem, and finally prove the Mordell-weil

theorem.

6.1 Some Preliminary Ideas

Definition 6.1.1. A Norm function on an abelian group A is defined as a function from A — R
such that it satisfies the following properties:

(1) |P| > 0 VP € A, and for the each real numbers r such that |P| < r is finite.

(2) |mP| = |m||P| for all P € A and m € Z.

B) [P+QI<|P|+]|Q| VP,Q € A.

Proposition 6.1.2. An abelian group G is finitely generated if and only if the index (G : mG) is

finite for some m > 1 and the group G has a norm function.

Proof. Firstly suppose that the group G be finitely generated. And we know that if G is finitely
generated, the index (G : mG) is finite for all non zero m. Now the norm function can be constructed
as follows. As G is finitely generated group has norm function since, G =2 Z™ x Tors(G). If P € G,
then we can write P as (Py, Py, ... P,), where the each P; € Z. The norm function on Z is |.|. Then
the norm function on G can be defined as |P| = |Py|; + |P2|a + -+ + | Paln.

Conversely, Now assume that the index (G : mG) is finite, i.e. it ust be equals to n and G has a norm

function. And we have, % ={P+mG | P € G}. Let Ry, Ry,..., R, be the coset representatives

Of%. We also let ¢ = max |R;|+1, X = {P € A||P| <c} and A = (P, Ps,...,Py), where P, € X.

Suppose if it is possible take G — A is as non empty set. So, there exists a P € G — A. Then
by the first point of the definition of norm, P has a minimal norm. For some coset representative
R; of G — mG, P = Rymod(mG). This means P; = R; + mQ for some @ € G. This implies
m@Q = P —R; = P+ (—R;). Hence, m|Q| = |mQ| < |P| + |R;| < |P|+ ¢ < m|P|. Therefore,
|Q| < |P|. But we know that the P has a minimal norm and that P € G — A. Tt follows that Q € G
and P = R; + m@Q € G. Thus if any element is in G, it also has to be in A, which a contradiction

65



to the fact that G — A is non empty. Therefore, G = A = (X;), where X; € X. Thus, the group G
is finitely generated by elements of X.

O

6.2 Finiteness of (F(Q:2FE(Q)) for Ela,b)

Here, Ela, b] is defined by y? = 23+ax?+bx for all a,b € k. So our aim is to show that (E(Q : 2E(Q))

is finite for an elliptic curve of the form y? = 2% 4 az? + bz.

(1)- The function « : Ela,b] — defined with

(k*)?

a((0,0)) = bmod(k*)?,
a((z,y)) = rmod(k*)?

for x # 0 is a group homomorphism.

(2)— The sequence

k,*
n 2 o
Ela,b] — E[—2a,a” — 4b] — oL
is exact. 2y — b)
yo oyl —

olay) = (5, L),
For K = Q, the field of rational numbers, The quotient group w is a vector space over Fy with
a basis = —1 U p where p is a prime numbers.

Proposition 6.2.1. Let E[a,b] is an be an elliptic curve over the rational numbers Q. The homo-

morphism « : Ela,b] — 5 has image im(a) € W, where W is a subspace of Fs.

(@)
if v distinct primes divides b,
lim(a)| < 2"

Theorem 6.2.2. Let a,b € Z, with A = 2*b*(a® — 4b) # 0, and let r is number distinct primes

divisors of b and s is number of distinct primes divisor of a®> — 4b. Then for Ela,b] = E we have
(E(Q:2E(Q)) < 27t*2,
Proof. The sequence
Ela,b] -2 E[—2a,a? — 4b] %5 Ela, b]
here a; and as are induced isomorphisms.

7E(Q) — im(a)

¢'(E'(Q))



(1)— for a; we take the sequence

g &
(Q*)2

U

here im(¢) = ker(ay) by the isomorphism theorem we have ————
ker(ay)

im(¢') = ¢'(E'(Q)).

(2)— for as we take the sequence

— im(aq) and ker(a) =

E-2 Bl im(a).
/

here im(¢) = ker(az) so by the isomorphism theorem — im(az) and im(¢) = ¢(E). Also

er(as)
¢' induced to an isomorphism
EQ . _EQ _ EQ
$(E(Q)) ¢'(E'(Q) 2EQ)

there is a 2-stage filtration

¢'¢E(Q) =2E(Q) C ¢'(E(Q)) C E(Q).
it follows that the index

[B(Q) : 2B(Q)] = lim(ay)[[im(az)] < 27+1.25%" = gre+2

6.3 Finiteness of the index (FE(k) : 2E(k))

Theorem 6.3.1. Suppose E be an elliptic curve over an algebraic number field k. Then index
(E(k) : 2E(k)) is finite.

6.4 Quasilinear and Quasiauadratic Maps
Definition 6.4.1. For a set X a function h : X — R is proper function given h='([—c, c]) is finite
for all ¢ > 0.

Definition 6.4.2. Two function h and h' are equivalent if the map h,h' : X — R,i.e. h — ' is
bounded. in other words, there exists a > 0 such that |h(x) — b/ (z)| < a for all x € X.

Definition 6.4.3. Let A be an abellian group, a function u: A — R is quasilinear given u(x + y)
and u(z) + u(y) are equivalent function A x A — R.

Definition 6.4.4. A function § : A x A — R is quasibilinear given the pair of function B(x +
' y),B(x,y)+ B2, y), B(z,y+y'), and B(x,y) + B(x,y’) are equivalent function Ax Ax A — R.

Definition 6.4.5. A function q : A — R is quasiquadratic given Aq(x,y) is equivalent and g(x) =
q(—z). Moreover, q is positive q(x) > 0 for all x € A. Again Ag(x,y) = q(x +y) — q(x) — q(y).

Proposition 6.4.6. A function ¢ : A — R is quadratic iff q(z) = q(—x), q¢(22) = 4q(x), and q is

quasiquadratic.

67



Theorem 6.4.7. If a function q : A — R is a quadratic function satisfying q(x) = q(—x) then

q* () = limp 0027 2"q(2"x) exists and the function q*(z) is quadratic.

Proof. Since we know that ¢ is quasiquadratic iff the weak parallelogram law holds, ¢(z +y) + ¢(z —
y) ~ 2q(x) + 2q(y). Now we set x = y then we have q(2z) ~ 4q(x), i.e. |q(2z) — 4q(z)] < A for A

should be positive constant. And replacing x by 2"z, we get the expression
‘272(n+1)q(2n+1:17) _ 272nq(2nz)| —9~2ny

For this we have following estimate for all n and p

44
272 (2" P ) — 27 (2")| = 277

so from this the sequence ¢*(z) is cauchy, implies it is convergent. and by the previous proposition the
condition ¢*(z) = 4¢*(x) comes from the defining the limit and the condition that ¢*(x) = ¢*(—x)

and ¢*(z) is quasiquadratic are preserved in the limit. O

6.5 The General Notion of Height on Projective Space

A height on projective space is a proper, positive real valued function.

Definition 6.5.1. Let k be a field, A k-morphism [ : P, (k) — P, (k) of degree d is a function is
of the form
Flo: e iym)=FfoWo oo iYm) oot (Yo i oor 2 Ym),

Where each fi(yo : - : Ym) € kYo, Y1y s Ym] s homogeneous of degree d and not all are equals to

zero at any Yo : ... : Ym € P (k).

Definition 6.5.2. A height h on P, (k) is a proper function h : Pp(k) — R such that for any
k-morphism f : P, (k) — Py, (k) of degree d the composition hof is equivalent to d.h, i.e., there
exists a constant ¢ with

Ih(f(y)) — d-h(y)| <c

for ally € Py, (k).

Notation-

For a point in P,,(Q) we choose a Z-reduced representatives y, : ... : Ym
H(Yo : oov : Ym) = Max|Yols v |Yml

and

h(P) = logH (P)

Where P =y, : ... : y,. This h(P) is called the canonical height on P, (Q).

In one dimensional case there is a bijection
u: QU400 — P1(Q)
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defined by u(m/n) =n:m and u(co) =0 : 1 and the composition
hu: QU400 — R

hu/Q:Q — R

Means the composition restricted to Q is given by h(m/n) = logmaz|m|, |n|, where m/n is reduced

to the lowest term.

7~ Reduced-

if we take the set (a1/b1,...a,/by) take the product of the denominator b;...b,, and
(albg...bn, ...,anbl...bn,l) =1

so the lem of denominator is [ i.e. (a1ly,...,anl,) Then ged(aqly,asls, ..., anl,) = 1.
Lemma 6.5.3. Let ¢ be a form of degree d in yo, ..., Ym. Then there exists a positive constant c(¢)
such for Z-Reduced y € P,,(Q) we have |¢(y)| < c(6)H (y)°.

Proof. Decompose ¢(y) = > aqgmea(y), where the index a counts of the monomials m,,(y) of degree

d. Then we have

()] < laallma(y)]
6 <D (laal)-(mazyo|, ..., lym|)* = c($) H(y)",

Where ¢(¢) = Y |aq|,as upper estimate. O

Remark 6.5.4. A sequence of forms (fo, f1,.., fm) of degree d in Zlyo,y1, ..., ym| defines a Q-
morphism.

Means that fo, f1, ..., fm have no common zero in P,,(Q) < there exists s € ZT, b € Z and the
polynomial g;;(y) € Z[Yo, Y1, .., Ym| such that

> giifi = by

foralli=0,...,m.

Theorem 6.5.5. If h is the canonical height on P,,Q and f : P (Q) — P (Q) is a Q-morphism
of degree d is h(f(y)) — d.h(y) is bounded on P,,(Q.

Proof. Now in this proof we use the previous lemma, and we have an upper estimate for H(f(y),
where H(f(y)) = max Ifi(y)| < max cfi(y)H(y)? = coH(y)?. And by the previous remark, we also
have a lower estimate on H(f(y)).

We have, [b].Jy;|**¢ = (max c(g;))H(y)°- %: 15| < (max(e(gi.;)))(m + 1) H (y)* (max |15 (y)])-
Since common factor among f;(y) | b. Also, by the previous remark, max|f;(y)| < [b|H(f(y)).
Taking maximum over i, we get, |b|H (y)**t¢ < (maxc(g;;))(m + 1)H(y)8|;7|H(f(y)) This implies
ciH(y)¢ < H(f(y)), for some ¢; > 0. Thus, cll}](y)d < H(f(y)) < c2H(y)¢. Taking logarithm
on both sides, we get log(m) = h(f(y)) — d.h(y) is bounded on P,,(Q). Which completes the

H(y)*
proof. O
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6.6 The Canonical Height and Norm on an Elliptic curve

Lemma 6.6.1. Let E be an elliptic curve over k defined by y*> = f(x) where f(x) is a cubic polyno-
mial. and define the function q : E(k) — Py(k) defined by q(z,y) = (1,z) and g(0) = (0,1). Then
there is a k- morphism g : Py (k) — Py (k) of degree 4 such that the diagram is commutative.

Ek) —2— E®

a la

Pi(k) —— Pi(k)

Proof. First of all we take the point (z,y) € E(k). And suppose 2(x,y) = (2',y'). So our aim to
find the relation between (z,y) and 2(x,y). Now consider the tangent line y = Ax + 8 to the elliptic
curve E at (z,y). And we know that, 2P = P + P = —PP. This line passing through the point
!
(2',—y'). Since y? = f(x) where f(x) is a cubic polynomial, and we get, 3’ = @ = A, which is
the slope of tangent line. put y = Az + 3 in the equation of elliptic curve, we get the cubic equation
in zie 23+ 2%(a—MN?) + 2(b—28)\) +c— 32 = 0. Sum of roots of this polynomial = \? — a.
32% + 2az + b 9 . xt —2b2% — 8cx + (b — dac)
)¢ —a. Thus, ¢’ =
4(x3 + ax? + bz + ¢) 423 + 4ax? + 4bx + 4c
Therefore, g(w,x) = (go(w,z), g1(w,x)), where go(w,z) = 4wz + daw?x? + 4bw s + dew* and

We get, 2z +2' = A2 —a = (

g1(w,x) = 2* — 2bw?2? — 8czw? + (b — dac)w*. Hence, the above diagram commutes.
O

Theorem 6.6.2. Let E be an elliptic curve over a number field k in Weierstrass form y? = f(x) =
2% + bx + c. Then there is a unique function hg : E(k) — R such that

(1) hg(P) — (1/2)h(x(P)) is bounded, where x(P) = q(P) is the x-coordinate of P and h is the
canonical height on P1(k), and

(2) hg(2P) = 4hg(P) and hg(P) = hg(—P).

furthermore, hg is proper, positive and quadratic.

Corollary 6.6.3. With the assumption and the notations of the above theorem, the function |P| =

hg(P) is a norm on E(k) i.e, P satisfies all the properties of the norm-function.

Theorem 6.6.4 (Mordell-Weil). Let E be an elliptic curve over the number field k. Then the group
E(k) is finitely generated.

Proof. The proof can be seen in two separate cases. First we consider the case when F is an elliptic
curve Q. When E = E]a, b], the index (E(Q) : 2E(Q)) is finite, which we proved in theorem 6.2.2.
Using the corollary 6.6.3, we know about the the norm on the elliptic curve, |P| = \/W . Now
we use the proposition 6.1.2, E(Q) is a finitely generated abelian group.

Secondly, when E is any elliptic curve over any field k. Then we complete the proof as like. For
if any general elliptic curve, we can extend the field k to be the field &’ such that the elliptic curve
breaks in the form of y?> = (z — a)(z — b)(z — ¢). Again,also we know the index (E(k’) : 2E(k"))
is finite. The norm function in this case is |P| = \/hg(p) is a norm on E(k’). It follows from the
proposition 6.1.2 that E(k’) is a finitely generated abelian group. Since, E(k) is a subgroup of a
finitely generated abelian group E(k'), it is also finitely generated. This proves the theorem. O
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