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Abstract

The aim of this thesis is to define the Elliptic Curves and some of intresting properties of a special

class of terms,namely,rational point of elliptic curve ,The properties of the rational pooint of curve

is airthmetic ,and rational point on elliptic curve forms a finitely generated group structure group it

will be done by using the chord-tangent group law of composition.After completing the the abelian

group structure,so we look some elementary properties like for a given elliptic curve we find the

torsion subgroup of that elliptic curves.and finally done the elliptic curve and their isomorphism.

Further, we study different families of elliptic curves which depend on different parameters.

Moreover, we look at the reduction modulo p of an elliptic curve and infer the meaning of good and

bad reduction of an elliptic curve. Lastly, the statement and proof of Mordell-Weil theorem is given.

The topics of the thesis are based on the book Elliptic Curves by Dale Husemöller. I have

not added anything new, except making a few observations of my own.

This thesis may contain many errors. I am responsible for these errors as I did not get the thesis

corrected on time.
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Chapter 1

Rational Plane Curves

In this chapter, we describe the basics of rational plane curve and rational point on lines, conics and

cubics viewed as a rational plane curves. We also study some intersection properties of a curve with

tangents and after that we will define the projective plane.

Further, we define the set of rational points on cubic curves and the structure of this set aided by

the Mordell’s theorem which allow us to visualize the structure of the elliptic curves. Finally we

discuss the curves of degree more than 3 and the real and complex points on elliptic curves.

1.1 Rational Lines in the Projective Plane

Definition 1.1.1. An elliptic curve is viewed as a plane curve given by a non-singular cubic equa-

tion.

In the case of rational plane curve Cf we have rational ,real and complex points Cf (Q) ⊂ Cf (R) ⊂
Cf (C) or loci.

Definition 1.1.2. The projective plane P2 is the set of all triples w : x : y ,where w, x and y are not

all the zero and the points w : x : y = l : m : n provided there is a constant k with l = kw, m = kx,

n = ky as with the affine plane and plane curves we have three basic cases P2(Q) ⊂ P2(R) ⊂ P2(C)

Consisting of all triples proportional to w : x : y, where x, y, w ∈ Q for P2(Q) similarly for R and C

Remark 1.1.3. A line Cf in P2 locus of all the w : x : y satisfying the equation F (w, x, y) = aw +

bx+ cy = 0.The line at infinity L∞ is given by the the equation w=0.

Remark 1.1.4. Two distinct point P and Q in P2(C) lie on a unique line L in the projective

plane,and, further ,if P and Q are the rational points, then the line L is rational. Two distinct lines

L and Q in P2(C) intersects at a unique point P, and , further,if L and Q are the rational lines,

then the intersection point P is the rational.

Definition 1.1.5. A rational plane curve in P2 is of the form

CF = {(w : x : y) ∈ P2|F (w, x, y) = 0}

1



F is a polynomial with rational coefficient and we have

Cf (Q) ⊂ Cf (R) ⊂ Cf (C)

1.2 Rational Points on Conics

Now here the rational point of plane curve of degree 2 which in x, y- coordinates are given by the

equation

0 = f(x, y) = a+ bx+ cy + dx2 + exy + fy2

and in the homogeneous form in projective space as

0 = F (w, x, y) = aw2 + bwx+ cwy + dx2 + exy + fy2

and we observe that the these two polynomials are related by

f(x, y) = F (1, x, y)

and

F (w, x, y) = w2f(
x

w
,
y

w
)

generally , if f(x, y) has degree d then

F (w, x, y) = wdf(
x

w
,
y

w
)

i.e we divide w2 in the homogeneous form of the equation then we get

0 = F (w, x, y) = w2(a+ b(
x

w
) + c(

y

w
) + d(

x

w
)2 + e(

x

w

y

w
) + f(

y

w
)2)

implies that

w2(a+ bX + cY + dX2 + eXY + fY 2) = 0

where X =
x

w
and Y =

y

w
w2f(X,Y ) = F (w, x, y)

w2f(
x

w
,
y

w
) = F (w, x, y)

and in the general

F (w, x, y) = wdf(
x

w
,
y

w
)

Theorem 1.2.1 (Legendre’s Theorem). For a conic ax2 + by2 = w2 there exist m ∈ N such that

ax2 + by2 = w2

2



has an integral solution if and only if the congruence

ax2 + by2 ≡ w2 (mod m)

has a solution in the integer modulo m.

Theorem 1.2.2 (Hasse-Minkowski Theorem). A homogeneous quadratic equation in several vari-

ables is solvable by rational numbers, not all zeros, if and only if it is solvable in p-adic numbers

for each prime p including the infinite prime. the p-adic numbers at the infinite primes are the real

numbers.

1.3 Pythagoras,Diophantus,and Fermat

The triples of whole numbers (a, b, c) satisfying the relation

c2 = a2 + b2

are called the Pythagorean triples

if (a, b, c) is a Pythagorean triple, then any scalar multiple (ka, kb, kc) is also a Pythagorean triples

A pythagorean triples (a, b, c) is primitive Pythagorean triples if gcd(a, b, c) = 1

Theorem 1.3.1. Let m and n be two relatively prime natural numbers such that n−m is positive

and odd, then (n2 − m2, 2mn, n2 + m2) is a primitive Pythagorean triple,further, each primitive

Pythagorean triples is of the form some m,n ∈ N.

Proof. Consider the conic x2 + y2 = 1. Let O = (−1, 0) and take any line which is not a tangent

to the circle at O passing through O. suppose this line intersects the y − axis at (0, t) and the

circle at (xt, yt). Equation of Lt, the line passing through (−1, 0) and (0, t) is y = t(x + 1). Now,

this line intersects the conic at (xt, yt). We get, x2
t + y2

t = 1. Substituting the value of y, we have,

x2
t + t2(xt + 1)2 = 1. By solving the quadratic equation in xt gives the value of xt as 1−t2

1+t2 . Thus,

yt = 2t
1+t2 . Thus if t is rational, then (xt, yt) is also rational.

let (a : b : c) be a Pythagorean triples.and then we show that there exists m,n such that n−m > 0

and m,n are relatively prime, satisfying

a = n2 −m2

b = 2mn

c = m2 + n2

Since t ≤ 1, for any n > m, where m,n are relatively prime, m
n < 1.

Choose t = m
n ,then we get a point (xt, yt) on the circle, which is as,

xt =
1− m2

n2

1 + m2

n2

=
n2 −m2

n2 +m2

and
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yt =
2(mn )

1 + m2

n2

=
2mn

n2 +m2

So (a, b, c) is a Pythagorean triple, we have, a2 + b2 = c2. Dividing by c2 on both sides, then we

get (ac )2 + ( bc )
2 = 1. Note that any for any Pythagorean triple, we can divide it by c2 so that the

point (ac ,
b
c ) lies on the circle x2 + y2 = 1. Thus the point (ac ,

b
c ) lies on the circle x2 + y2 = 1. Since

every point on the circle is of the form (xt, yt), comparing (xt, yt) with (ac ,
b
c ), we get,

a = n2 −m2

b = 2mn

c = n2 +m2

and each Pythagorean triple can be obtained using these values of m and n.

Definition 1.3.2 (Fermat’s curve Fn of order n). The Fermat’s curve of order n is given by the

equation in x,y- coordinates

xn + yn = 1

,

or in the projective coordinates by

xn + yn = wn.

1.4 Fermat’s Last Theorem

The only rational points on Fn lie on the x-axis and y-axis for n > 3

For n = 2 , the number of rational points on

F2 are infinitely many. i.e it is of the form (
a

c
,
b

c
), where the a, b, c forms a Pythagorean triples.

Proposition

For a square-free integers K there is a bijective correspondence between the following three sets.

1. A = {(a, b, c) | a2 + b2 = c2, a < b < c,K =
1

2
ab}

2. Rational number x, where x+K and x-K are squares

3. rational points (x, y) on the cubic y2 = x3 − K2x such that x is a square of rational number

and denominator of x is even.

1.5 Rational Cubics

The cubics comes up two places first there is a Fermat’s cubic x3 + y3 = 1 which Euler showed that

it has only two rational points (1, 0) and (0, 1) and there is a cubic y2 = x3 − K2x whose rational

4



points tells about the existence of right rational triangles of area K.

The rational cubics in projective coordinates is given by

F (w, x, y) = c1w
3 + c2x

3 + c3y
3 + c4w

2x+ c5wx
2 + c6x

2y + c7xy
2 + c8w

2y + c9wy
2 + c10wxy = 0

,

the coefficient are determined only up to a non zero constant multiple , and,hence, the cubic is given

by

c1 : c2 : c3 : c4 : c5 : c6 : c7 : c8 : c9 : c10

.

a point in a nine dimensional projective space.

Intersection of line and the cubics.

Let C be a rational cubic and L be a rational line. if the line intersects the cubic at 3 points in

which two of them are rational then third point of intersection is also a rational point.

Proof. Let

F (w, x, y) = 0.

be a rational cubics and the line

L(w, x, y) = aw + bx+ cy = 0

. be a rational line for the line aw + bx+ cy = 0 we eliminate the value of y.

so the value of y = −aw + bx

c
.

substitute the value of y in the cubic then we get the equation in x and w.

for the line at infinity , w = 0 , we get the cubic in x i.e cubic polynomial in x.

from this we get the value of x and put the value of x in the y = −aw + bx

c
and the line at infinity w = 0

then we get the (x, y).

thus (x, y) will be the rational point if and only if x is rational.

If two root of a cubic polynomial are rational then third one is also rational.

Remark 1.5.1. If two of the three intersection point of a rational cubics with a rational line are

the rational points, then the third point is rational.

Definition 1.5.2 (Irreducible cubic). A irreducible cubic is one whose equation cannot be factored

over the complex number.

Definition 1.5.3 (Singular point on a cubic C). A point O on an irreducible cubic C is called a

singular point provided each line through O intersects C at only one other point.

Definition 1.5.4 (Nonsingular cubic). An irreducible cubic without a singular point is called Non-

singular cubic curve.

Definition 1.5.5 (Singular cubic). An irreducible cubic with a singular point is called a singular

cubic curve.
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Rational points on cubics

We describe rational points on the reducible and singular cubics, which is same as to describe the

rational point on the conics,and then, we describing the rational points on non-singular cubics.

Case 1-[Cubic is singular]

we consider the cubic with singular rational point O.

Let C be a singular cubic. and O be a singular point on the cubic C then each rational L through O

cuts the cubic at any other point, say P , and P is rational because its x-coordinate is the solution

of a cubic equation in x or in y with a double rational root corresponding to the x or y coordinate

of O.

Case 2- [cubic is nonsingular]

we consider the cubic the cubic is non-singular

Let P and Q be any two rational point on the cubic. and let L be the line passing through P and

Q clearly L is a rational line.

i.e if we draw the line connecting the two points P and Q. This is a rational line L since P and Q

are rational, and this line meet the cubic at one more point, say PQ which must be rational by the

intersection result of line and cubic.

even if we have only rational point say P . we can still find another and consider the line M tangent

to that point i.e we join the point itself

Then tangent lineM intersects the cubic ”twice” at P and the intersection point is rational say ”PP”.

1.6 Primitive Form of Mordell’s Theorem

For any nonsingular rational cubic curve C. there exist a finite set M of rational points on the curve

C are generated using the iterates of the chord-tangent law of composition.

i.e if M is a finite set of rational points on the nonsingular rational cubic such that every rational

point P can be decomposed in the form

P = (....((P1P2)P3)...Pr)

where P1, ....Pr are in the finite set M .

Chord Tangent Composition Law

If P and Q be two rational points on the cubic. then the function that associates P and Q to the

rational point PQ where PQ is the third intersection point of P and Q for the line and the cubic,

is called as the chord tangent composition law.

Note− The chord-tangent composition law is not a group law, because, there is no identity element

i.e an element 1 with 1P = P = P1 for all P .and however it satisfy a commutative law property

PQ = QP.

6



1.7 The Group Law on Cubic curves

The chord tangent composition law is not a group law because there is no identity element. but with

a choice of rational point O as zero element (identity element O) we define the group law P +Q by

the relation.

P +Q = O(PQ)

it means P +Q is the third intersection point of line through O and PQ.

(1)CLOSURE-

P +Q = O(PQ)

P +Q is the third intersection point on the line through O and PQ meet the cubic which is again

a rational point, thus, the group law is closed with respect to the addition

(2) EXISTENCE OF IDENTITY-

The point O is the identity on a rational point on the cubic, whose coordinates in projective planes

is given by (x, y, w) = (0, 1, 0) , and its also called as point at infinity.

P +O = O(PO) = O + P = O(OP ) = P

where P is the rational point on the cubic.

(3) EXISTENCE OF INVERSE-

To find −P given P we use the tangent line to the cubic at O ant its third intersection point OO.

P + (−P ) = O(OO) = O

(4) COMMUTATIVITY-

Line through P and Q is same as the line through Q and P .thus, the point of intersection of the

line and the cubic is the same i.e we consider O(PQ) and O(QP ) then we get

P +O = O(PO) = P

, and

O + P = O(OP ) = P

Definition 1.7.1 (Elliptic curve over a field k). An elliptic curve E over the field k is a nonsingular

cubic curve E over k together with a point O in E(k).

The group law on E(k) is defined by O and the chord tangent law of composition PQ is defined by

P +Q = O(PQ)

Theorem 1.7.2. (Mordell)-

On a rational elliptic curve E(Q) the group of rational point is a finitely generated abelian group.

7



Remark 1.7.3. The structure theorem for finitely generated abelian group applied to E(Q) to obtain

a decomposition

E(Q) = Zg ⊕ E(Q)tor

where g is Natural number called the rank of E. and E(Q)tor is a finite abelian group consisting of

all the element of the finite order in E(Q).

Mazur proved that the torsion subgroup is either a cyclic group or a direct sum of a cyclic group.

which is stated in following theorem.

Theorem 1.7.4 (Mazur). Let E be an elliptic defined over Q i.e E(Q) and Tors E(Q) be the group

of all torsion points is isomorphic to either

Z/mZ for m = 1, 2, 3, ..., 10, 12

Z/mZ⊕ Z/2Z for m = 2, 4, 6, or 8

Remark 1.7.5. Let E be an elliptic curve defined over the Q by the equation y2 = x3 +ax+b. there

is no any way to to determine the rank of E by using these two coefficient a and b.in fact, there is

no any other way to determining the whether or not E(Q) is finite. and E(Q) is finite if and only

if the rank of g is zero.

Theorem 1.7.6 (Birch,Swinnerton-Dyer Conjecture). The rank g of an elliptic curve E de-

fined over the rational numbers Q is equal to the order of the zero of LE(s) at s = 1.

1.8 Mordell Conjecture for plane curve

Let C be a smooth rational plane curve of degree strictly greater than 3. then the set C(Q) of

rational point on a cubic C is finite.

Genus of the curve

Let X(C) be an algebraic curve defined over the complex number C ,topologically, X(C) is a closed

oriented surface with g holes.

Definition 1.8.1 (Genus). The invariant g is called the genus of the curve.

Lines and Conic have genus g = 0

singular cubic have genus g = 0

Nonsingular cubic have genus g = 1

Note- A nonsingular plane curve of degree d has genus.

g =
(d− 2)(d− 1)

2
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Theorem 1.8.2 (Siegel). The number of integral point on a nonsingular rational curve of genus

strictly greater than 0 and is finite.

Note- this applies to a nonsingular cubic curves, but not to the singular cubic

for eg. y2 = x3 it has infinitely many integral points of the form (n2, n3), where n is any integer.

1.9 Real and Complex Point on Elliptic Curve

Let E be an elliptic curve defined over the the real R or complex C numbers. the structure of E(R)

and E(C) is continuous or Lie group structure.

Definition 1.9.1 (Lie group). A lie group is a finite dimensional smooth manifold together with

group structure on G such that the multiplication G × G −→ G and the attaching of an inverse

g −→ g−1 are the smooth maps.

the product of twp lie group or a finite sequence of lie group is a lie group.

Note- An abelian, compact and connected Lie group is isomorphic to a product of circle.

COMPACTNESS

Consider the real projective projective plane P2(R) then we have

(1)− P2(R) is the quotient of two sphere S2 in R3.

(2)− P2(C) is the quotient of five sphere S5 in C3.

CONNECTEDNESS

For an elliptic curve given by the equation in normal form.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

right hand side is the cubic polynomial and it is denoted by f(x)

f(x) = x3 + a2x
2 + a4x+ a6

is a cubic polynomial and so by completing the square

(y +
a1x+ a3

2
)2 = f∗(x)

where f∗(x) is another cubic polynomial, Now we see that the graph of this equation for real coef-

ficient is symmetric around the line 2y + a1x+ a3 = 0 and for the real coefficient has two forms.

In the case of one real root, the group E(R) has one connected component.

And in the case of three real root the group E(R) has two connected component.

Proposition 1-

Let E be an elliptic curve defined by (y + ax+ b)2 = g(x)

where g(x) is a cubic polynomial over R,

(1)− If g(x) has only one root then E(R) is isomorphic to the circle.

9



(2)− if g(x) has three real root then E(R) is isomorphic to direct sum of circle and Z/2Z.

Proposition 2-

Let E be an elliptic curve defined by (y + ax+ b)2 = g(x).

where g(x) is a cubic polynomial over C, then E(C) is isomorphic to the direct sum of two circles.

Remark 1.9.2. The finite subgroup of E(R) are of the form a cyclic group or a cyclic group direct

sum with he group of order 2.

E(R) ∼= Z/nZ

E(R) ∼= Z/nZ× Z/2Z

10



Chapter 2

Chord-tangent Computational

Method on Normal Cubic Curve

In this chapter we show how, by using simple analytic geometry, and a large number of numerical

calculation are possible with the group law on cubic curve.we define the normal form of cubic curve

without the terms x2y , xy2, or y3. and defining the sum of the two rational points by using the

group law.and finally we define the group law on singular cubics.

2.1 Computation on Normal Cubic Curve

A cubic equation in normal form, or general Weierstrass form, is an expression

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the coefficients aiare in the in the fields K.

So term of y3 in the above equation,a vertical line x = x0 intersects the the locus of the normal

cubic at two points (x0, y1) and (x0, y2), where y1 and y2 are the roots of the quadratic equation.

y2 + a1x0y + a3y − x3
0 − a2x

4
0 − a4x0 − a6 = 0

we can write the above equation

y2 + (a1x0 + a3)y − (x3
0 + a2x

4
0 + a4x0 + a6) = 0

in the completed plane,that is, the projective plane, we see that the equation in normal form has

one more solution at infinity which we call as O, and the O is the third intersection point of the

locus of the vertical line with the locus of the cubic equation in normal form in projective plane.

Definition 2.1.1. The elliptic curve for the cubic equation in normal form is the locus of all solu-

tion (x, y) ∈ k2 of the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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with the point O which is on every vertical line.

Remark 2.1.2. Let E be an elliptic curve defined by an equation in normal form. if P = (x, y) is

a point on a curve then the negative −P is (x, y∗),where

y + y∗ = −a1x− a3

or, we can say that,

−(x, y) = (x,−y − a1x− a3)

Observe that the point O , (x, y) ,and (x, y∗) are the points of intersection of the vertical line through

(x, 0) with the curve E over the field k i.e E(k)

so for the equation

y2 + (a1x0 + a3)y − (x3
0 + a2x

4
0 + a4x0 + a6) = 0

. y and y∗ are the two roots of the quadratic equation over k. Where the sum of the roots are

−(a1x+ a3) in k and so, if y is in k, then y∗ is also is in the k.

and the curve has a reflection symmetry with respect to the line y =
−a1x+ a3

2
in the plane.

Example-1: For E given by the equation

y2 + y − xy = x3

we have −(x, y) = (x,−y − 1 + x) and the curve is vertically symmetric about the line

y =
x− 1

2

In the curve the two tangent line to the curve T at (1, 1) and and T’ at (1,−1) which have slopes

coming from the implicit differentiation of the equation of the curve.

i.e

y2 + y − xy = x3

12



,

differentiating both side we get

2yy′ + y′ − xy′ − y = 3x2

(2y + 1− x)y′ = 3x2 + y

,

Note- let E be an elliptic curve defined by the equation in normal form.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

.

if we add two point P1 = (x1, y1) and P2 = (x2, y2). we first draw the line through P1 and P2 and

the third intersection point is P1P2 = (x3, y3) and

P1 + P2 = −P1P2

.

Case 1- if x1 6= x2, so that P1 6= P2 then the line through P1 and P2 has an equation y = λx+β where

λ =
y1 − y2

x1 − x2

Case 2- if x1 = x2 but P1 6= P2 then the line through P1 and P2 is the vertical line x = x1 and

P2 = −P1

Case 3- if P1 = P2 then the tangent line through P1 has the equation y = λx+ β where

λ =
f ′(x1)− a1y1

2y1 + a1x1 + a3

since (2y + a1x+ a3)y′ = f ′(x)− a1y

we put the value of y into the normal form of the cubic equation then we get

0 = x3 + (a2 − λ2 − λa1)x2 + (a4 − 2λβ − a1β − λa3)x+ (a6 − β2 − a3β)

the three root of this cubic are x1, x2,and x3

the x coordinate of the three intersection point is either P1 , P2 and P1P2 for the Case1 and P1 , P1

and P1P1 for the Case3

Now the sum of the root of the cubic equation is

x1 + x2 + x3 = −coefficient of x2

coefficient of x3

so

x3 = λ2 + λa1 − a2 − x1 − x2

13



for the case 1.

x3 = λ2 + λa1 − a2 − 2x1

for the case 3. finally,

(x1, y1) + (x2, y2) = (x3,−y3 − a1x3 − a3)

for the case 1. and

2(x1, y1) = (x3,−y3 − a1x3 − a3)

for the case 3.

Example-2: The Elliptic curve E : y2 + y − xy = x3 find −P . for any P=(x, y)

let P=(x, y) be any point of the elliptic curve E then we have to find the -P of that curve

−P = (x,−y − a1x− a3)

for the given Elliptic curve the coefficient a1 = −1 and a3 = 1 then −P = (x,−y + x+ 1).

Example-3: The elliptic curve E : y2 +y−xy = x3 find the group generated by the point P = (1, 1)

given P = (1, 1)

y2 + y − xy = x3

2yy′ + y′ − xy′ − y = 3x2

(2y + 1− x)y′ = 3x2 + y

y′ =
3x2 + y

2y + 1− x

where y’ is the slope of the tangent.

at the point (1, 1) the value of y’ is 2, and the equation of the tangent at the point (1, !) is

y − 1 = 2(x− 1)

i.e y = 2x− 1

Put the value of y in the equation of the elliptic curve then we get

(2x− 1)2 + (2x− 1)− x(2x− 1) = x3

x(x− 1)2 = 0

x = 0 or x = 1 and y = −1 or y = 1

so we get the two points (1, 1) and (0,−1), the point (1, 1) is the same as the point P then we take

the point (0,−1),

since PP = (0,−1)

and P + P = −PP or 2P = −PP
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and −PP = −(0,−1) = (0, 0)

2P = (0, 0). Now , 3P = P + 2P = −(2P )P

The equation of the line through P and 2P is y = x. Put the value of the y in the equation of the

elliptic curve to get

x(x2 − 1) = 0

Where x = 0, 1,−1 and y = 0, 1,−1. So we have three points which are (0, 0), (1, 1) and (−1,−1) .

So the points (0, 0) and (1, 1) are same as the points P and 2P .We consider the third point (−1,−1).

(2P )P = (−1,−1) and 3P = P + 2P = −(2P )P = −(−1,−1) = (−1,−1)

3P = (−1,−1)

Consider tangent at 3P.

y′ = 0 ,there is a vertical tangent at 3P

=⇒ 3P + 3P = O

=⇒ 2(3P ) = O

=⇒ 6P = O

here the point O is the point is the point at infinity and the identity of the Group E(Q) so P is the

point of order 6

In, particular 4P + 2P = O

4P = −2P = −(0, 0) = (0,−1)

and,

5P = −P = −(1, 1) = (1,−1)

so the {P, 2P, 3P, 4P, 5P, 6P = 0} forms a cyclic subgroup of order 6 in E(Q).

2.2 Illustration of the elliptic curve group law

if 2 6= 0 in the field k i.e the characteristic of k is different from 2 then in the normal form.

y2 + y(a1x+ a3) = x3 + a2x
2 + a4x+ a6

. We can complete the square on the left-hand side

y2 + y(a1x+ a3) +
(a1x+ a3)2

4
= (y +

a1x+ a3

2
)2

Remark 2.2.1. if the equation for E is y2 = f(x) is cubic polynomial then the negative of an

element is given by −(x, y) = (x,−y). furthermore the cubic will be non-singular if and only if f(x)

has no repeated root.

Remark 2.2.2. The point (0, 0) is on the curve y2 = f(x) if and only if equation has the form

y2 = x3 + ax2 + bx. if we take r is the root of f(x) then y2 = f(x) + r as this form and we will

use the equation of elliptic curve in this form. If the characteristic of k from 3, then in the special

normal form y2 = f(x). we can complete the cube in right in the side and after translation of x by
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a constant. We have Weierstrass of the cubic

y2 = x3 + ax+ b

.

2.3 The curves with equation y2 = x3 + ax and y2 = x3 + a

Torsion subgroup of y2 = x3 + ax

If we substitute u2x for x and u3y for y in the equation then we get

(u3y)2 = (u2x)3 + a(u2x)

u6x2 = u6x3 + au2x

u6x2 = u6(x3 +
ax

u4
)

So we conclude that a is non zero integer which is free of any fourth-power factor i.e a is fourth

power free.

Theorem 2.3.1. The torsion subgroup of E(Q) is

TorsE(Q) =


Z
4Z a = 4
Z
2Z ⊕

Z
2Z −a is a square

Z
2Z −a is not a square

Proof. -Any point of order two has the form (x, 0).

Slope of the tangent is y′ =
3x2 + a

2y
Case 1-

Point of order two when a is a square

x-coordinate is the root of the cubic equation 0 = x3 + ax

From here we get x(x2 + a) = 0 i.e x = 0 or x2 = −a
in particular, there are three point of order two if and only if -a is a square say, (0, 0) and

and which is isomorphic to Z/2Z⊕ Z/2Z
Case 2- Point of order 4

Consider the equation 2(x, y) = (0, 0) on E(Q) then (x, y) is a point of order 4.

For such a point there would be a line L i.e y = λx through (0, 0) and tangent to E at (x, y) Thus.

(λx2) = x3 + ax

x(x2 − λ2x+ a) = 0

x = 0, x2 − λ2x+ a = 0

x = 0 and y = 0 is a point of P so we consider the quadratic equation

x2−λ2x+ a = 0 the discriminant of the quadratic equation is D = λ4− 4a for the solution to exist,

D ≥ 0.

Since y = λx is tangent to E at (x, y) , D=0

λ4 = 4a
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But we know that a is fourth power free.

λ⇐⇒ a = 4⇐⇒ λ = ±2

Substitute the value of a and λ in the above quadratic equation,

=⇒ (x− 2)2 = 0

=⇒ x = 2

And y = λx = ±4

in this case the points (x, y) satisfying 2(x, y) = 0 are (2, 4) and (2,−4)

The point of finite order forms the subgroup O, (0, 0), (2, 4), (2,−4) ,which makes the torsion sub-

group is isomorphic Z/4Z .

Case 3- When -a is not a square or a 6= 4 then the only solution to the quadratic equation is

x = 0 and hence y = 0

So the torsion subgroup formed is O, (0, 0) and which is isomorphic to Z/2Z
Claim-we will show that there is no 3-torsion,

If there were such a point P, on E(Q)

=⇒ 2P = −P
So the tangent line y = λx+ β to E at P when substituted into

(λx+ β)2 = x3 + ax

or

x3 − λ2x2 + (a− 2βλ)x− β2 = 0

would be a perfect cube (x− r)3 = 0 with r is the x-coordinate of P this would means that

3r = λ2

r3 = β2

3r2 = a− 2βλ

so we get the value of r and λ and finally

3(
λ4

9
) = a− 2(

λ4

3
√

3
)

Which is impossible for a and λ are the rational numbers since
√

3 is irrational, which is a contra-

diction.

since there is no three torsion.

Torsion Subgroup for y2 = x3 + a
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we substitute u2x for x and u3y for y in the equation then we get

=⇒ (u3y)2 = (u2x)3 + a

=⇒ u6x2 = u6x3 + a

=⇒ u6x2 = u6(x3 +
a

u6
)

so we conclude that a is non zero integer which is free of any six-power factor i.e a is six power free.

Theorem 2.3.2. The torsion subgroup of E(Q) is

TorsE(Q) =


Z
6Z a = 1
Z
3Z a 6= 1, a is a square or a = −432
Z
2Z a 6= 1, a is not a square and a is a cube

O a 6= 1, a is not a square, not a cube and 6= −432

Proof -

Case 1- A point of order 2.

A point of order 2 has the form (x, 0) .

Substituting y = 0 in the equation we get x3 + a = 0 =⇒ x3 = −a
This exist on E iff a is a cube of c3 of some integer c .

=⇒ a = c3 =⇒ x = −a
then (−c, 0) is the point of order two

thus we get the torsion subgroup O, (−c, 0) , which is isomorphic to
Z

2Z
we show that there is no point of order 4

Let if possible (x, y) is a point of order 4

=⇒ 2(x, y) = (−c, 0)

consider the tangent line y = λx+ c through (−c, 0) when substitute into the equation of the curve

λ2(x+ c)2 = x3 + c3

or λ2(x+ c) = x2 − cx+ c2

the line through (−c, 0) is the tangent at another point (x, y) on E iff the quadratic equation has a

double root

x2 − (λ2 + c)x+ c(c− λ2) = 0

that is the discriminant D = 0

D = λ4 + 2λ2c+ c2 − 4c(c− λ2) = 0, After completing the square in this equation we get

(λ2 + 3c)2 = 12c2

(λ2 + 3c) = ±2
√

3c

There is no rational solutions of this equation because 12 is not a square but λ and c are rational.
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Thus we get a contradiction.

Since there is no point of order 4 in E.

Case 2- Point of order 3 .

A point (x, y) of order 3 i.e, 2(x, y) = −(x, y) iff there is a line y = λx+ β through (x, y) such that

(λx+ β)2 = x3 + a

is a perfect cube

(x− r)3 = x3 − λ2x2 − 2λβx+ (a− β2)

comparing the coefficient we get,

−3r = −λ2

3r2 = −2λβ

and

a− β2 = −r3

=⇒ r =
λ2

3
and λ4 = −6λβ

=⇒ λ(λ3 + 6β) = 0

if λ = 0

a− β2 = −r3 =
−λ6

27
= 0 =⇒ a = β2

Then (0, β) and (0,−β) are the two point of order 3.

if λ 6= 0

we get λ3 + 6β = 0

Substituting λ =
3r2

−2β
we derive the relation r632 = 24β4.

This relation is satisfied only in case β = 2232m3 and r = 233m in this we calculate a = β2 − r3 =

−432m6.

where m = 1 since a is a sixth power free.

Thus if a = −432 or a = β2 we get the torsion subgroup which is isomorphic to
Z

3Z
.

2.4 Multiplication by two on an Elliptic Curve

Theorem 2.4.1. Let E be an elliptic curve defined over the field k by the equation

y2 = (x− α)(x− β)(x− γ) = x3 + ax2 + bx+ c
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For Q = (x′, y′) ∈ E(k) there exist P = (x, y) ∈ E(k) with 2P = Q if and only if x′−α ,x′− β, and

x′ − γ are the squares.

Proof - The equation 2(x, y) = (x′, y′) has a solution on E(k) if and only if the the related

equation 2(x, y) = (0, y′) has a solution on the curve defined by the normal cubics

y2 = (x+ x′ − α)(x+ x′ − β)(x+ x′ − γ)

Hence we reduced to proving the statement for the point (0, y′). in this case y′2 = c

For 2(x, y) = (0, y′) the equation of the tangent line y = λx+δ is tangent to E at (x, y) substitute the

value of y in the cubic equation then we get (λx+δ)2 = x3+ax2+bx+c x(x2+(a−λ2)x+(b−2λδ)) = 0,

x3 + (a− λ2)x2 + (b− 2λδ)x+ c− δ2 = 0

Since (0, y′) is the point of intersection of this tangent to E then we get δ2 = c = y′2

x3 + (a− λ2)x2 + (b− 2λδ)x = 0

x(x2 + (a− λ2)x+ (b− 2λδ)) = 0

Since y = λx+ δ is the tangent, this quadratic equation in x must have a repeated root i.e D = 0

Thus we have

(λ2 − a)2 = 4(b− 2y′λ)

implies that (λ2 − a+ u)2 = 2uλ2 − 8λy′ + (u2 + 4b− 2ua)

The right hand side of the quadratic term is a perfect square if and only if the discriminant is zero

i.e

(−8y′)2 − 8u(u2 + 4b+ 2ua) = 0

64c− 8u3 − 32ub+ 16u2a = 0

u3 − 2au2 + 4ub− 8c = 0

substitute u = −2v the above equation becomes

(−8)(v3 + av2 + bv + c) = 0

This the cubic term in the equation of the curve, and, hence, the roots are v = α, β, γ so that

u = 2α, 2β, 2γ

Now substituting u = −2α in (λ2 − a+ u)2 = 2uλ2 − 8λy′ + (u2 + 4b− 2ua)

implies that (λ2 − a+ (−2α))2 = 2(−2α)λ2 − 8λy′ + ((−2α)2 + 4b− 2(−2α)a)

(λ2 − a− 2α)2 = 2(−2α)λ2 − 8λy′ + (4α2 + 4b+ 4aα)

Now,

α+ β + γ = −a

(αβ + βγ + γα) = b

αβγ = c

Thus the equation for λ becomes

(λ2 + α+ β + γ − 2α)2 = −4αλ2 − 8y′λ+ (4a2 + 4(αβ + βγ + γα)− 4α(α+ β + γ)) or

(λ2 + α+ β + γ)2 = −4αλ2 − 8y′λ+ 4βγ = 4(α′λ− β′γ′)2,

Taking α′2 = −α β′2 = −β γ′2 = −γ and taking the square root on both the side we get ,

λ2 + β + γ − α = ±2(α′λ− β′γ′)
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in this equation we complete the square to get

(λ2 ∓ 2α′λ− α) = −β ∓ 2β′γ′ − γ or

(λ∓ α′)2 = (β′ ∓ γ′)2

Taking the square root of both side of the equation,we find four solution for λ proving the existence

of λ in hence also of the point (x, y) since

x =
λ2 + α+ β + γ

2

and

y = λx+ δ

This proves the theorem i.e the point P exist.

2.5 Corollary

For an elliptic curve E defined over an algebraically closed field the group homomorphism

ψ : E(k)
2→ E(k)

is surjective, that is, the group E(k) is 2 divisible.

this corollary gives an exact sequence.

0
2→ E(k) = (

Z

2Z
)2 −→ E(k)

2→ E(k) −→ 0

we can generalized for prime n.

0 −→ E(k) = (
Z

nZ
)2 −→ E(k)

n→ E(k) −→ 0

2.6 Remarks on the Group Law on the Singular Cubics

The two basic example of singular point on cubic curve are

(1)− A double point (0, 0) on y2 = x2(x+ a)

(2)− A cusp (0, 0) on y2 = x3

For a cubic in normal form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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the derivative of y’ is

(2y + a3 + a3x)y′ = 3x2 + 2a2x+ a4

at the point (0, 0)

a3y
′ = a4

the has a curve at singularity (0, 0) if and only if a3 = a4 = 0

We consider the cubic A y = x3 + ax+ b which is not in the normal form because there is no term

of y2.

if (x1, y1), (x2, y2) and (x3, y3) are the three points on the cubic A and on a line y = λx+ β then

λx+ β = x3 + ax+ b

and x1 + x2 + x3 = 0

so the set A(k) has the structure of the group where (0, b) = 0 and −(x, y) = −(x, x3 + ax + b) =

(−x, (−x)3 − ax+ b).

Remark 2.6.1. The function f(t) = (t, t3 +at+b) is an isomorphism f : k −→ A(k) of the additive

group of the line k onto A(k).

22



Chapter 3

Elliptic Curve and Their

Isomorphism

3.1 The Group Law on a Nonsingular Cubic

Remark 3.1.1. Suppose L be a line and C be the cubic curve and both of them are defined over the

field k. and k′ be an algebraically closed extension of k.

so the different case holds for the L(k′) ∩ C(k′).

(1)- If L(k′) ∩ C(k′) = P1, P2, P3, and the multiplicity i(P ;L,C) = 1 for i = 1, 2, 3

and the composition is as PiPj = Pk , and if Pi and Pj are the rational then Pk is also rational over

k for i, j, k = 1, 2, 3.

(2)- If L(k′) ∩ C(k′) = P, P ′, and the multiplicity i(P ;L,C) = 2,and i(P ;L,C) = 1 thus here

Line L is tangent to cubic C at P or we can say that the point P is a singular point on the cubic C,

and the composition is PP = P ′ and if P is rational over the field k, then P’ is also rational .

(2)- if L(k′) ∩ C(k′) = P , one point, and the multiplicity i(P ;L,C) = 3

and the composition is PP = P ′ and the point P is a singular point.

3.2 Normal Form of Elliptic curve

Definition 3.2.1. (Invariant differential) Let E be an elliptic curve in normal form.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

then the invariant differential is is given by

ω =
dx

2y + a1x+ a3
=
dx

fy
=
−dy
fx

=
dy

3x2 + 2a2x− a4 − a1y

.

Definition 3.2.2. (Admissible change of variable) An admissible change of variable is one of the

form
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x = u2x+ r

and

y = u3y + su2x+ r

where the u,r,s,t are in k with u invertible . if we substitute the value of x and y in the normal form

of the equation then we get the new form of the equation in term of variables x and y:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and the coefficient is

ua1 = a1 + 2s,

u2a2 = a2 − sa1 + 3r − s2,

u3a3 = a3 + ra1 + 2t = fy(r, t)

u4a4 = a4 − sa3 + 2ra2 − (t− rs)a1 + 3r2 − 2st = −fx(r, t)− sfy(r, t),

u6a6 = a6 + ra4 + r2a2 + r3 − ta3 − rta1 − t2 = −f(r, t),

and

ω = uω

Remark 3.2.3. if ψ : E −→ E is an isomorphism such that the function x,y on E composed with

ψ are related to the function x , y on E by an admissible change of variable.

xψ = u2x+ r,

and

yψ = u3y + su2x+ t

Definition 3.2.4 (Section). For any open subset U of X,O(U) is termed as a section for U .

Definition 3.2.5 (Presheaf). A presheaf O is is a collection of all abelian group on a ringed space

X,where for every open subset U of X , O(U) is an abelian group , and between any two subset of

X there is a morphism between O(U) and O(V ).

Definition 3.2.6 (Sheaf). A presheaf whose section are determined by local data such as continuity

and differentiability is called a sheaf..

Definition 3.2.7 (Germs of Regular Functions). Functions f and g define the same germ if for all

x in X ,there is a neighbourhood U of X such that f and g are equal in U.
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Theorem 3.2.8 (Riemann-Roch for Curves of Genus 1). Suppose ΘC(m.K) be the structure sheaf

on the non-singular curve C of the germs of the regular function and having at most an mth order

pole at K ,Then for the vector space of the section Γ(ΘC(m.K)) where C is the curve of genus 1.

and we can find a basis for Γ(ΘC(m.K)) for small m and using the inclusions Γ(ΘC(m.K)) ⊂
Γ(ΘC(m′.K)) and m 6 m′.

dimk(Γ((ΘC(m.K))) =

m m > 1

1 m = 0

Γ(ΘC(1.K)) = k.1,

Γ(ΘC(2.K)) = k.1⊕ k.x,

Γ(ΘC(3.K)) = k.1⊕ k.x⊕ k.y,

Γ(ΘC(4.K)) = k.1⊕ k.x⊕ k.y ⊕ k.x2,

Γ(ΘC(5.K)) = k.1⊕ k.x⊕ k.y ⊕ k.x2 ⊕ k.xy,

Here 1 has a pole of order of 1 ,x has a pole of order 2 ,and y has a pole of order 3

In Γ(ΘC(6.K)) there are seven natural basis elements,

{1, x, y, x2, xy, x3, y2}.

3.3 The Discriminant and the Invariant j

The cubic equation in normal form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

the new coefficient bi for i = 2, 4, 6, 8 and cj for j = 4, 6 these two new coefficient originate first for

completing the square and then completing the cube.

Notation-

b2 = a2 + 4a2, b4 = a1a3 + 2a4 , b6 = a2
3 + 4a6 and

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4 and these new coefficient are related by the 4b8 = b2b6 − b24
and the discriminant in terms of the new coefficient for b′is

4 = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

with the help of the discriminant we say that when the cubic is non-singular, so the cubic is non-

singular if and only if the 4 6= 0.
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Remark 3.3.1. Under an admissible change of variable we have the following relations

u2b
′

2 = b2 + 12r,

u4b
′

4 = b4 + rb2 + 6r2,

u6b
′

6 = b6 + 2rb4 + r2b2 + 4r3,

u8b
′

8 = b8 + 3rb6 + 3r2b4 + 3r4,

and lastly

u124
′

= 4

Proposition 3.3.2. If k is field of characteristic different from 2, then equation of normal form

becomes

(y′)2 = (x′)3 +
b2
4

(x′)2 +
b4
2
x′ +

b6
4

Proof. First we substitute y′ = y +
a1x+ a3

2
and x′ = x

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6

so k is a field which is differ from 2 then the equation becomes

y2 + 2
a1x+ a3

2
y + (

a1x+ a3

2
)2 − (

a1x+ a3

2
)2 = x3 + a2x

2 + a4x+ a6

(y +
a1x+ a3

2
)2 = x3 + a2x

2 + a4x+ a6 +
1

4
(a2

1x
2 + a2

3 + 2a1a3x)

(y +
a1x+ a3

2
)2 = x3 + x2(

a2
1 + 4a2

4
) + (a4 +

1

2
a1a3) + (a6 +

a2
3

4
)

Arranging the coefficient and then we get the equation in normal form for the characteristic different

from 2.

(y′)2 = (x′)3 +
b2
4

(x′)2 +
b4
2
x′ +

b6
4

Notation- Coefficient for cj in term of b′is are

c4 = b22 − 24b4,
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and

c6 = −b32 + 36b2b4 − 216b6

for the 4 then invariant j is,

j(E) = j =
c34
4

and we have the following relation 1234 = c34 − c26, so we get the invariant j ,

j = 123 c34
c34 − c26

Remark 3.3.3. Under an admissible change of variable we have

u4c
′

4 = c4,

and

u6c
′

6 = c6

and j
′

= j.

and if k is a field of characteristic different from 3 then for y′′ = y′ and x′′ = x′ +
b2
12

then equation

of normal form become,

(y′′)2 = (x′′)3 − x′′( c4
48

)− c6
864

and ω =
dx′′

2y′′
,Now we have to consider a cubic polynomial,

f(x) = x3 + px+ q

, the discriminant of the cubic polynomial become

D(f) = 27q2 + 4p3

.

Remark 3.3.4. The cubic polynomial f(x) = x3 + px + q has a repeated root in some extension

field of k if and only if D(f) = 0.

Equation

y2 = x3 −−x(
c4
48

)− c6
864

= f(x),

where p =
c4
48

and q =
c6

864
, 864 = 25.33 and 48 = 24.3 then we have

−24D(f) ==
c34 − c26

123
= ∆
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Proposition 3.3.5. Over a field k of characteristic different from 2 and 3 the cubic equation

y2 = x3 −−x(
c4
48

)− c6
864

represent an elliptic curve if and only if ∆ 6= 0 and ω =
dx

2y
.

Remark 3.3.6. For j 6= 0 or 123 the following cubic

y2 + xy = x3 − x 36

1728
− 1

j − 1728

defines the elliptic curve with j-invariant equals j over any field of k.

The elliptic curve with equation

y2 = x3 + a

has j = 0, and the elliptic curve with equation

y2 = x3 + ax

has j = 0 = 1728.

3.4 Isomorphism classification for Characteristic 6= 2, 3

For the characteristic of the base field 6= 2, 3, an elliptic curve over k the Weierstrass model of the

equation become.

y2 = x3 + a4x+ a6,

ω =
dx

2y
,

c4 = −48a4,

c6 = −864a6,

and

∆ = −16(4a3
4 + 27a2

6),

And the curve E is smooth or non-singular if and only if ∆ 6= 0

j = 123 4a3
4

4a3
4 + 27a2

6

.
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3.5 Isomorphism between two elliptic curves with same j in-

variant

Isomorphism between two elliptic curve is of the form of an admissible change of variable, suppose

the two elliptic curve E and E
′

defined over the field k such that j = j(E) = j(E′).

E : y2 = x3 + a4x+ a6

E
′
: y2 = x3 + a4x+ a6

if

ψ : E −→ E
′

is an isomorphism, then

xψ = u2x.

yψ = u3y

a4 = u4a4

a6 = u6a6

we will consider these relation in three different cases for j.

Case 1- j 6= 0 or j 6= 123

if j 6= 0 then a4 6= 0 and a6 6= 0 =⇒ a4a6 6= 0 Then E and E
′

are isomorphic if and only if
a4a

′

6

a
′
4a6

=
a

′

4a
′

6u
4

a
′
4a

′
6u

6
= u−2 is a square.

Hence E and E
′

are isomorphic over any field extension of k containing the square root of the quo-

tient. To find the automorphism group of E then E = E
′
, then we have u2 = 1

Aut(E) = {+1,−1}

the group of square root of 1 .

Case 2- j = 123

if j = 123 then a6 = 0

then E and E
′

are isomorphic if and only if the quotient
a4

a
′
4

is a fourth power u4

Hence E and E
′

are isomorphic over any field extension of k containing the fourth root of the quo-

tient
a4

a
′
4

is a fourth power u4

to find the automorphism group of E then E = E
′

then we have u4 = 1

Aut(E) = {+1,−1, i,−i}

the group of fourth root of unity.
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Case 3- j = 0

if j = 0 then a4 = 0

then E and E
′

are isomorphic if and only if the quotient
a6

a
′
6

is a six power u6

Hence E and E
′

are isomorphic over any field extension of k containing the six root of the quotient.

to find the automorphism group of E then E = E
′

then we have u6 = 1

Aut(E) = {+1,−1, ρ,−ρ, ρ2,−ρ2}

the group of six root of unity where

ρ2 + ρ+ 1 = 0

At this point, the following two questions are

1-if j(E) = j(E
′
) =⇒ E ∼= E

′

2-For all values in k besides 0 and 123, are j values of some elliptic curve.

The answer of both the question is yes

Consider E : y2 = x3 + a4x+ a6

by rescaling the coefficient the Weierstrass equation has the form E : y2 = 4x3 − cx− c

j = j(E) = 123 c3

c3 − 27c2
,

= 123 c

c− 27
,

= 123J,

where

j =
c

c− 27
=

j

1728
,

Thus,

c = 27
J

J − 1
= 27

j

j − 1728

′

substituting the value of c in equation E : y2 = 4x3 − cx− c
we get

y2 = 4x3 − 27
j

j − 1728
x− 27

j

j − 1728

and has j- invariant equal to the parameter j.
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3.6 Isomorphism Classification in Characteristic = 3

For an elliptic curve E over the field k of characteristic 3 in normal form after completing the square

the equation

E : y2 = x3 + a2x
2 + a4x+ a6,

and

ω =
−dx
y

,

For E we have the following,

b2 = a2

b4 = −a4

b6 = a6,

b8 = −a2
4 + a2a6,

c4 = a2
2,

c6 = −a3
2,

∆ = a2
2a

2
4 − a3

2a6 − a3
4,

j =
c34
∆

=
a6

2

a2
2a

2
4 − a3

2a6 − a3
4

The curve E is non-singular ,∆ 6= 0

We will find the condition for u,r,s,t for the isomorphism of E,

Consider the two elliptic curves defined over the field k.

E : y2 = x3 + a2x
2 + a4x+ a6

E
′
: y2 = x3 + a

′

2x
2 + a

′

4x+ a
′

6

If

ψ : E −→ E
′

is an isomorphism, , then its form is determined by j 6= 0 or j = 0

Case 1- j 6= 0 , then a2 6= 0 by completing the square in both Weierstrass equations in E,

y2 = x3 + a2x
2 + a4x+ a6

= a2(
1

a2
x3 + (x2 + a4x+ (

a4

2
)2) + a6 −

a2
4

4
)

= a2(
1

a2
x3 + (x+

a4

2
)2 +

4a6 − a2
4

4
)
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= x3 + a2(x+
a4

2
)2 +

4a2a6 − a2
4a2

4

then we get a4 = a
′

4 = 0

Also, j(E) =
−a3

2

a6
and j(E

′
) =
−a′32
a

′
6

and the following holds

xψ = u2x
′
,

yψ = u3y
′
,

and

a2 = u2a
′

2

Hence E and E
′

are isomorphic over any field extension of k containing the square root of the quo-

tient
a2

a2
= u2

To find the automorphism group of E then E = E
′

then we have u2 = 1

Aut(E) = {+1,−1}

the group of square root of 1.

Case 2- j = 0 then a2 = 0

Then ∆ = a3
4 and ω =

dy

a4
then we have the following change of variable,

xψ = u2x
′
+ r

yψ = u3y
′

u4a
′

4 = a4

a6 + ra4 + r3 = u6a
′

6

Hence E and E
′

are isomorphic over any field where
a4

a
′
4

is a fourth power and there is a solution

for cubic equation for r

if E = E
′

then automorphism are parametrized by u and r

if u = 1,−1

then

r3 + a4r = 0
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if u = i,−i
then

r3 + a4r + 2a6 = 0

Automorphism group is a semidirect product ,

Aut(E) =
Z
4
× Z

3

For j 6= 0or123we had

y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728

in Characteristic 3 the equation become

y2 + xy = x3 − 1

j

where

j =
1

a6

via rescaling the coefficient using admissible change of variable 3

y2 = x3 + x2 + a6

where

a6 =
−1

j

Proposition 3.6.1. Curves with equation

y2 = x3 + x2 − 1

j
,

and

y2 + xy = x3 − 1

j
,

have j-invariant equal to the parameter j.

3.7 Isomorphism Classification in Characteristic 2

Consider the elliptic curve E over the field k of characteristic 2 and the invariant differential

ω =
dx

2y + a1x+ a3
=

dx

a1x+ a3
so that a1a3 6= 0

b2 = a2
1,

b4 = a1a3,

b6 = a2
3,
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c4 = b22,

c6 = −b32,

j =
a12

1

∆

For the different cases of j we get the different cubic equation in normal form .

Case 1- j 6= 0

if j 6= 0 =⇒ a1 6= 0

change x −→ x+ c we get ,

y2 + a1xy + a3 = y2 + a1xy + (a1c+ a3)y

For a1 6= 0 so we can choose a3 = 0

changing x to a3
1x and y to a3

1y we get,

y2 + xy = x3 + a2x
2 + a6

and

ω =
dx

x

b2 = 1

b4 = 0 = b6

b8 = a6

c4 = 1

∆ = a6 =
1

j

Case 2- j = 0

if j = 0 =⇒ a1 = 0

By completing the cube, the normal form of the cubic to be,

y2 + a3y = x3 + a4x+ a6,

and

ω =
dx

2y
,

b2 = 0,

b4 = 0,

b6 = a2
3,

b8 = a2
4,
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∆ = a4
3

In both the cases it follows that the curve is smooth if and only if ∆ 6= 0.

Suppose E and E
′

are the two elliptic curves defined over the field k such that j(E) = j(E
′
) = j

We have,E : y2 = x3 + a4x+ a6

E
′
: y2 = x3 + a4x+ a6

if

ψ : E −→ E
′

is an isomorphism, , then its form is determined by j 6= 0 or j = 0

Case a- j 6= 0

Then,

E : y2 = x3 + a4x+ a6

E
′
: y2 = x3 + a

′

4x+ a
′

6

the change of variable is

xψ = x
′
,

yψ = y
′
+ sx

′
,

a
′

2 = a2 + s2 + s,

a
′

6 = a6

Then E and E
′

are isomorphic over any field extension of k containing a solution to the quadratic

equation

s2 + s = a2 − a2

If E = E then a2 = a
′

2 so we get s2 − s = 0 i.e s = 0, 1

Aut(E) = {0, 1}

Case b- j = 0

Then,

E : y2 = x3 + a4x+ a6,

E
′
: y2 = x3 + a4x+ a6

the change of variable is
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xψ = u2x
′

yψ = u2y
′
+ sa3 + s4,

a3 = u3a
′

3,

u4a
′

4 = a4 + sa3 + s4

u6a
′

6 = a6 + s2a4ta3 + s6 + t2

Then E and E
′

are isomorphic if and only if

(1)− a3

a
′
3

= u3

(2)− s4 + a3s+ a4 + u4a
′

4 = 0 has a solution in the field extension of k.

(3)− t2 + a3t + (s6 + s2a4 + a6 + u6a
′

6) = 0 as a quadratic equation in t has a solution in field

extension of k.

Special case -

When k = F2 so there are 5 elliptic curves up to isomorphism

If j = 1 then

y2 + xy = x3 + a2x
2 + 1

we have to take two different cases for a2 i.e

If a2 = 0 then

y2 + xy = x3 + 1,

If a2 = 1 then

y2 + xy = x3 + x+ 1

If j = 0 then

y2 + y = x3 + a4x+ a6

we have to take three different cases for a4 and a6 i.e

if a4 = 0, a6 = 1 then

y2 + y = x3 + 1,

if a4 = 1, a6 = 1 then

y2 + y = x3 + x+ 1,
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if a4 = 1, a6 = 0 then

y2 + y = x3 + x

Proposition 3.7.1. Up to isomorphism over F2 there are 5 elliptic curves over the field F2 i.e E

y2 + xy = x3 + 1,

y2 + xy = x3 + x+ 1,

y2 + y = x3 + 1,

y2 + y = x3 + x+ 1,

y2 + y = x3 + x

3.8 Singular Cubic curves

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0

consider tese cubic equation in normal form over the field k

suppose it has a singular point which is rational

This singular point can be transformed to origin using change of variable (x, y, w) = (0, 0, 1)

Observe that (0, 0) is on the curve, i.e F (0, 0) = 0 if and only if a6 = 0

Now we determine whether or not (0, 0) is a singular point

Fx = a1y − 3x2 − 2a2x− a4

and

Fy = 2y + a1x+ a3

Both partial derivative must be zero =⇒ a3 = −a4 = 0 we get

y2 + a1xy = x3 + a2x
2

For this

b4 = b6 = b8 = 0

and

∆ = 0

b2 = a2
1 + 4a2

Substitute t =
−x
y

and s =
−1

y
i,e x =

t

s
then the equation become

s = t3 + a1ts+ a2t
2s
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and thus s is rational function of t,

s =
t3

1− a1t− a2t2

Cns = (t, s)|s =
t3

1− a1t− a2t2
, 1− a1t− a2t

2 6= 0

where Cns is the set of all non-singular points.

Theorem 3.8.1. Let E be a cubic curve over k with the equation y2 + a1xy = x3 + a2x
2 which we

factor (y − βx)(y − αx) = x3 over the field k1 = k(α) = k(β)

(1) α 6= β (multiplicative case)

φ : Ens −→ Gm

is homomorphism such that (x, y) −→ y − βx
y − αx

(a) if k = k1 i.e α and β are in k, then the map

φ : Ens −→ Gm = k∗

is an isomorphism onto the multiplicative group of k.

(b) if k1 is a quadratic extension of k, i.e, α β are not in k, then he map

φ : Ens −→ ker(Nk1

k

)

where

Nk1

k

: k∗1 −→ k∗

is the norm map and ker(Nk1

k

) is the subgroup element in k∗1 with norm 1.

(2) α = β (additive case)

Ens −→ Ga

over k1 and

(x, y) −→ x

y − αx

is a homomorphism over k1. and the map

Ens(k1) −→ Ga(k1)

is an isomorphism onto the additive group of k1.(observe k = k(α) except possibly in characteristic

2).

Proof. (1) Let u =
y − βx
y − αx

and v =
1

y − αx
, u = (y − βx)v

(y − βx)(y − αx) = x3
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using these relation we get

(u− 1)3 = (α− β)3uv

Moreover, lines with x,y with equations Ax + By + C = 0 are transformed into lines in u,v with

equations A′u+B′v + C ′ = 0

Let (u1, v1) (u2, v2) and (u3, v3) are the three points on the cubic Ens which lie on the line v = λu+δ

then we get

(u− 1)3 − (α− β)3u(λu+ δ) = (u− u1)(u− u2)(u− u3)

And u1u2u3 = 1 (identity) it means the function

(x, y) −→ u

carries the group law on Ens into the multiplicative group law on k∗1 .

Nk1

k

(u) = uu′ =
y − βx
y − αx

.
y − αx
y − βx

= 1

Norm of u is 1 where α′ = β and β′ = α

if z is in k1 has norm 1

=⇒ c ∈ k1 such that w = c+ c′z 6= 0

we have w′ = c′ + z′c

=⇒ zw′ = zc′ + zz′c = c+ zc′ = w

Hence z =
w

w′
=
y − βx
y − αx

for x,y in k

(2) in case of additive we take

u =
x

y − αx

and

v =
1

y − αx

using the relation we get

(y − αx)3u3 = x3

and lines in x-y transformed in lines in u-v as v = u3

Let (u1, v1), (u2, v2) and (u3, v3) are the three points on the cubic Ens which lie on a line v = λu+ δ

then we get

u3 − v = u3 − (λu+ δ) = (u− u1)(u− u2)(u− u3) = 0

and hence the relation u1 + u2 + u3 = 0 in the additive group.

(x, y) −→ u carries group law on Ens, into the additive group law on k1, and Ens −→ k+
1 is an

isomorphism of group.
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Remark 3.8.2. Consider

x3 = y2 + a1xy − a2x
2

= (y − αx)(y − βx)

the tangent line are given by y = αx and y = βx and the discriminant is D = a2
1 + 4a2 = b2

Two cases corresponds to two kinds of singularities

(1)-

(0, 0) is a node if and only if D = b2 6= 0 i.e α 6= β and observe that b2 6= 0 c4 6= 0 and c6 6= 0 so

j =
c34
∆

=∞

where ∆ = 0 The tangent are rational over k if and only if b2 is a square in k.

(2)-

(0, 0) is a cusp if and only if D = b2 = 0 i.e α = β and observe that b2 = 0 c4 = 0 and c6 = 0 so all

are equivalent in this case and j =
0

0
is indeterminate.
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Chapter 4

Family of Elliptic Curves and their

Geometric Properties

In the previous chapters, we saw that the basic properties of elliptic curves, defined Normal form of

an elliptic curve and see how the two elliptic curve are isomorphic to each other over a field k. In

this chapter we investigates some families of elliptic curves and know about torsion point on those

kind of families of elliptic curves.Such families can be computed by a cubic in normal form and

their coefficient depends upon the parameter.We close the chapter by defining with a dual isogeny

or explicit isogeny, that is, a homomorphism of elliptic curves for particular curves and see their

importance.

4.1 The Legendre Family

The Legendre family is one of the most important family of the elliptic curves.

Consider a cubic in normal form of an equation with ai(t) ∈ k[t]

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t).

giving an elliptic curve E over k(t), then we can substitute in any value for t ∈ T , the parameter

space, and obtained a normal form of an cubic equation, and, hence, an elliptic curve E over k(t)

at all points T where M (Et) 6= 0. Now the Each point P (t) = (x(t), y(t)) ∈ E(k(t)) can be viewed

as a mapping from T to E.such a map is called the cross- section.

Remark 4.1.1. The group of points of E over k(t) is the group of rational cross-section of the

algebraic family of the elliptic curves Et over k. and the one such cross-secion of the algebraic

family of an elliptic curves is always the zero cross-section.

Definition 4.1.2. (Legendre Family) For the field of characteristic not equals to two, the Legendre

family of an elliptic curves is defined as

Eλ : y2 = x(x− 1)(x− λ).
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From the definition, we observe that the curve Eλ is nonsingular for λ 6= 0, 1, so that over k − 0, 1,

it is a family of nonsingular elliptic curves.

Remark 4.1.3. The four basic cross-section for the nonsingular curve Eλ are 0(λ) = 0, e1(λ) =

(0, 0), e2(λ) = (1, 0), e3(λ) = (λ, 0). the value of these four cross section E(λ) give the group of

2-division point on E(λ). With the three nonzero cross-section, there are six possible ordering for

the 2-division point on an the elliptic curve E, or equivalently, six possible bases (e1, e2) for the

subgroup of the two division point on Eλ.

Proposition 4.1.4. The orbit of λ under G acting on P1 − {0, 1,∞} is

λ, 1− λ, 1

λ
,

1

1− λ
,
λ− 1

λ
,

λ

λ− 1
.

If s is an element in G, then s(λ) is same as one the above terms. The curve Eλ and Eλ′ are

isomorphic to each other, in the other words their expressions should be differ by a linear change of

variable which conserves the group structure, if and only if there exists s ∈ G with s(λ) = λ′.

Remark 4.1.5. The j-invariant j(Eλ) of Eλ : y2 = x(x− 1)(x− λ) is the value.

j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

This j− invariant is some kind of special case of the j- invariant of any cubic in normal form, and

their normalization factor 28 arises naturally.

Proposition 4.1.6. The j-invariant has one of the special property that j(λ) = j(λ′) if and only if

Eλ and Eλ′ are isomorphic under change of variable preserving the group structure.

Remark 4.1.7. The orbit of λ ∈ P1 under G has six distinct elements λ, 1 − λ,
1

λ
,

1

1− λ
,
λ− 1

λ

and
λ

λ− 1
except in three case :

(1) j(λ) =∞ where orbit is {0, 1,∞}.
(2) j(λ) = 0 where the orbit is {+ρ,−ρ2} for ρ2 +ρ+1 = 0,i.e.,ρ is the third primitive root of unity.

(3) j(λ) = 123 where the orbit is {1

2
,−1, 2}.

Now we put out few things about the few exceptional values j = 123 or j = 0.

(1) For j(λ) = 123 take λ = −1, then the curve is the familiar

y2 = x(x− 1)x(x+ 1) = x3 − x

which is one of the family of the curve y2 = x3 + ax.

(2) For j(λ) = 0 take λ = −ρ then the curve has equation of the form,

y2 = x(x− 1)x(x+ ρ).

and make a change of variable x+
1− ρ

3
for x. This gives the equation

y2 = (x+
1− ρ

3
)(x+

−2− ρ
3

)(x+
1 + 2ρ

3
).
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and this is just

y2 = x3 − i

3
√

3

and which is one of the the family of the curve y2 = x3 + a.

The discriminant for the family Eλ is given by ∆λ = 24λ2(λ− 1)2.

4.2 The Hessian Family

Consider the normal form of cubic,

E0 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We observe that (0, 0) is a point on the curve if and only if a6 = 0.

Differentiating both sides of E0 with respect to x we get,

(2y + a1x+ a3)y′ = 3x2 + 2a2x+ a4 − a1y.

=⇒ y′ =
3x2 + 2a2x+ a4 − a1y

2y + a1y + a3

slope of tangent at (0, 0) is y′ =
a4

a3
on E0.

Remark 4.2.1. Now, (0, 0) is singular point if and only if a3 = a4 = 0 on E0. if a3 = 0 and a4 6= 0,

then we get a vertical tangent so a4 should also be zero. The point (0, 0) is a nonsingular point of

order 2 in the group E if and only if a3 = 0 and a4 6= 0, in this case the family of cubic reduces to

E00 : y2 + a1xy = x3 + a2x
2 + a4x. Now we assume that (0, 0) is a nonsingular point which is not

of order 2. by the change of variable of the form

x′ = x,

y = y′ + (
a4

a3
)x′.

The equation for E0 takes the form

E′ : y2 + a1xy + a3y = x3 + a2x
2

Since a4 = 0 , a3 6= 0.

Slope of tangent at (0, 0) in E′ is equals to zero (horizontal tangent).

Remark 4.2.2. The point (0, 0) on E′ has order 3 if and only if a2 = 0 and a3 6= 0. In this case

,the family reduces to

E(a1, a3) : y2 + a1xy + a3y = x3.

Thus, E′ have third-order intersection with the tangent line y = 0 at (0, 0).

For these curve some of the basic invariants are the following:

b2 = a2
1, b4 = a1a3, b6 = a2

3, b8 = 0, ∆ = a3
1a

3
3 − 27a4

3, c4 = a1(a3
1 − 24a3) and j =

c34
∆
.

We can normalize a3 = 1 to obtain Hessian family of elliptic curve which gives the point of order 3.
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Definition 4.2.3. The Hessian family of elliptic curve Eα : y2 + αxy + y = x3. is defined for any

field of characteristic different from 3, where j- invariant of Eα is given by :

j(α) = α3 (α3 − 24)3

α3 − 27
.

for nonsingularity α3 6= 27, i.e α 6= 3, 3ω, 3ω2 over k/{3, 3ω, 3ω2}.
Eα consist of elliptic curve with constant section (0, 0) of order 3 where 2(0, 0) = (0,−1).

Remark 4.2.4. At the point 3, 3ω, 3ω2, Eα has 3 singular fibres which are nodal cubics at the points

where 1 +ω+ω2 = 0. Now consider the equation without normalizing y2 + a1xy+ a3y = x3 suppose

y = 0 intersects the cubic implies that x3 = 0 i.e x = 0 implies triple intersection point (0, 0) is

point of order 3.

Suppose y = x + u intersects the cubic such that it generates the the distinct subgroup of order 3.

The line y = x+ u has a triple intersection point (v.v + u) with the cubic iff

x3 − (x+ u)2 − (a1x+ a3)(x+ u) = (x− v)3

=⇒ x3 − (x2 + u2 + 2ux)− (a1x
2 + a1ux+ a3x+ a3u) = (x− v)3

comparing the coefficient of x2, x, and x0 yields the relations.

3v = a1 + 1,

−3v2 = 2v + a1u+ a3,

v3u2 + a3u

Multiply the second relation by u, we obtain

−3uv2 = 2u2 + a1u
2 + a3u.

And subtracting it from the third relation yields

v3 + 3uv2 = −u2(1 + a1).

from the first relation

v3 + 3uv2 = −3u2v.

=⇒
v3 + 3uv2 + 3u2v + u3 = u3.

=⇒
(u+ v)3 = u3.

This means that the second point of order 3 has he form (v, v+u) where (u+ v)3 = u3. Since v 6= 0,

we must have v + u = ρu, where ρ is the third primitive root of unity. From the above relation we

get u = (ρ− 1)−1v.

Since T 2 + T + 1 = (T − ρ)(T − ρ2). Put T = 1

=⇒ 3 = (1− ρ)(1− ρ2),

=⇒ (1− ρ)−1 =
1

3
(1− ρ2),

44



We have

u = (ρ− 1)−1v =
1

3
(ρ2 − 1)v = −1

3
(ρ+ 2)v.

And

u+ v =
1

3
(1− ρ)v.

Other point of order 3 can be generated by (0, 0) and (v, v + u) i.e (v,
1

3
(1− ρ)v).

We can solve a1 and a3 in terms of v, and thus obtain a one parameter family of curves with a basis.

Remark 4.2.5. The family of cubic curves

Eγ = y2 + a1(γ)xy + a3(γ)y = x3,

where a1(γ) = 3γ − 1, and a3(γ) = γ(ρ − 1)(γ − 1

3
(ρ + 1)). Defines for ∆(γ) = (a1(γ)3 −

27a3(γ))a3(γ) 6= 0,

The family of elliptic curves with basis (0, 0) (γ,
1

3
(1− ρ)γ) for the subgroup of point of order 3 on

Eγ .

4.3 Other Version of Hessian Family

The Hessian family which in homogeneous coordinate takes the form

Hµ : u3 + v3 + w3 = 3µuvw,

and in affine coordinates with w = −1, it has the form

u3 + v3 = 1− 3µuv.

If we set y = −v3 and x = −uv. We obtain
x3

y
− y = 1 + 3µx,or

E3µ : y2 + 3µxy + y = x3

This change of variable defined 3-isogeny of Hµ onto E3µ. There are nine cross section of the family

Hµ given by,

(0,−1, 1), (0, ρ, 1), (0,−ρ2, 1)

(1, 0,−1), (ρ, 0,−ρ2), (ρ2, 0,−ρ)

(−1, 1, 0), (−1, ρ2, 0), (1,−ρ, 0).

Again ρ is the primitive third root of unity. The family Hµ is nonsingular over the line minus µ3.

Any 0 = (−1, 1, 0) can be chosen. These 9 points forms a subgroup of 3- division point of the family

Hµ.

4.4 The Jacobi Family

Finally we consider the Jacobi family which along with the Legendre family and the Hessian family,

give the three basic classcal family of elliptic curves.The Jacobi family is given by a quartic equation
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and we begin by explaining how to transform a quartic equation to a cubic equation.

Remark 4.4.1. Let v2 = f4(u) = a0u
4 + a1u

3 + a2u
2 + a3u+ a4 be a quartic equation. Let

u =
ax+ b

cx+ d

and

v = y
ad− bc

(cx+ d)2

v acts like derivative of u, y likes derivative of x. Substituting u and v into the quartic equation we

get

v2 = y2 (ad− bc)2

(cx+ d)4
= f4

(ax+ b)

(cx+ d)
,

Or we can also write as

(ad− bc)2y2 = f4(
ax+ b

cx+ d
)(cx+ d)4

=⇒ (ad− bc)2y2 = a0(ax+ b)4 + a1(ax+ b)3(cx+ d) + a2(ax+ b)2(cx+ d)2 + a3(ax+ b)3(cx+ d) +

a4(cx+ d)4

=⇒ (ad− bc)2y2 =
∑
ai(ax+ b)4−i(cx+ d)i where i is from 0 to 4.

=⇒ (ad− bc)2y2 = c4f4(
a

c
)x4 + f3(x).

where f3(x) is a cubic polynomial and the coefficient of x3 is c3f ′4(
a

c
).

For
a

c
is a simple root of f4 and ad− bc = 1 we reduce the equation

y2 = f3(x).

Definition 4.4.2 (Jacobi Family). The Jacobi family of quartic curve is given by

jσ : v2 = (1− σ2u2)(1− u2

σ2
) = 1− 2ρu2 + u4,

over any field of characteristic different from 2 and here ρ =
1

2
(σ2 +

1

σ2
) so that ρ+ 1 =

1

2
(σ+

1

σ
)2.

We take the map jσ −→ Eλ where Eλ is the Legendre family of the curve with λ =
1

4
(σ +

1

σ
)2. by

the following change of variables-

x =
σ2 + 1

2σ2
(
u− σ

u− 1

σ

)

and

y =
σ4 − 1

4σ3

v

(u− 1

σ
)2

.

The point on jσ with u-coordinates

0,∞,±σ,± 1

σ
,±1,±i

maps to the point of order 4 on the elliptic curve Eλ.
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4.5 Tate’s Normal Form for a Cubic with a Torsion Point

The normal form of elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

. Assume that (0, 0) is on the the curve

E′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x,

For (0, 0) lie on E a6 = 0 ,The slope at (0, 0) is y′ =
a4

a3
.

For slope to be 0, a4 = 0, a3 6= 0, Since we get

E′ : y2 + a1xy + a3y = x3 + a2x
2.

Here, we see that (0, 0) is not of point of order 2, and the point (0, 0) is point of order 3 if and only

if a2 = 0, a3 6= 0.

Now we assume that (0, 0) is not of point of order 2 or 3,

=⇒ a2 6= 0, a3 6= 0

By changing x to u2x and y to u3y, We can make a3 = a2 = −b and depends upon two parameter.

Definition 4.5.1. The Tate normal form of an elliptic curve E with point P = (0, 0) is

E = E(b, c) : y2 + (1− c)xy − by = x3 − bx2.

Where b and c are the parameter from the field k.

For the discriminant ∆ = ∆(b, c) of E(b, c) is

∆(b, c) = (1− c)4b3 − (1− c)3b3 − 8(1− c)2b4 + 36(1− c)b4 − 27b4 + 16b5.

Remark 4.5.2. The Tate normal form describe equation for the set of pairs (E,P ) which consist a

elliptic curve E together with a point P on E such that P, 2P, 3P 6= 0.

This P corresponds to the pairs (b, c) with both b 6= 0 and ∆(b, c) 6= 0.

−→ In the two parameter, the Tate family E(b, c), there are some cases where curve has different

fibres E(b, c) are isomorphic, for example E(b, 1) and E(b,−1) are the isomorphic curves.

For nP = 0, for some integer n > 3, then the polynomial equation fn(b, c) = 0 over Z, where b and

c must satisfy the polynomial equation.

Tn : fn(b, c) = 0, b 6= 0 ∆(b, c) 6= 0 defines an open algebraic curve with a family E(b, c) of the elliptic

curves over it together with a given n distinct point P. this fn varies and can be defined explicitly.

Remark 4.5.3. This family contains all elliptic curves with torsion point P of order n upto iso-

morphism. The curve Tn maps onto open curve Y1(n)

Y1(n) : Parameter space for isomorphism classes of the pair (E,P ) of elliptic curve together with a

point P of order n.

X1(n) : The curve Y1(n) has the completion X1(n) which is nonsingular where the completing points,

called cusps.
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Remark 4.5.4. There is an elliptic curve E over a field k with torsion point P of order n over the

field k

⇔ the open algebraic curve Tn has k rational points.

⇔ Tn(k) is non empty.

⇔ Y1(n)(k) is non empty.

⇔ X1(n)(k) has noncuspidal k rational points.

Corollary 4.5.5. On the curve

E = E(b, c) : y2 + (1− c)xy − by = x3 − bx2.

we have points i.e P = (0, 0) then −P = (0, b)

For 2P = −PP = −(b, o) = (b, bc), −2P = −(b, bc) = (b, 0),3P = (c, b − c),−3P = (c, c2),

4P = (d(d− 1), d2(c− d+ 1)),−4P = (d(d− 1), d(d− 1)2), where d =
b

c
in the formula for 4P and

−4P. 5P = (de(e− 1), d2e(e− 1)2) −5P = (de(e− 1), de2(d− e)), where e =
c

d− 1
.

4.6 An Explicit 2-Isogeny

Invariant of the Curve E(a, b)

For the curve E(a, b) defined by

y2 = x3 + ax2 + bx

The following holds:

c4 = 16(a2 − 3b),

c6 = 25(9ab− 2a3),

∆ = 24b2(a2 − 4b),

j =
c34
∆

= 28 (a2 − 3b)3

b2(a2 − 4b)
.

The two basic special cases are

(1)- For j = 123 if and only if a = 0, and the curve is E[0, b] = E[b] : y2 = x3 + bx.

(2)- For j = 0 if and only if 3b = a2 = (3c)2 for the characteristic unequal to 3. so the curve is

E[3c, 3c2] : y2 = (x+ c)3 − c3, and it has the form y2 = x3 − c3 after translation of x by c.

observation-

We observe that the function,

h(a1, b1) = h(a2, b2).

=⇒ (−2a1, a
2
1 − 4b1) = (−2a2, a

2
2 − 4b2),

=⇒ a1 = a2, b1 = b2,

Let (a, b) ∈ k2, Then ∃ (c, d) such that h(c, d) = (a, b),

−2c = a =⇒ c =
−a
2

, d =
a2 − 4b

16
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h−1(a, b) = (
−a
2
,
a2 − 4b

16
)

Note-

Here a2 − 4b is the discriminant of the quadratic x2 + ax+ b.

Formula for the 2-Isogeny

The 2− Isogeny with kernel {0, (0, 0)} is given by the

E[a, b] : y2 = x3 + ax2 + bx

E[−2a, a2 − 4b] : y2 = x3 − 2ax2 + (a2 − 4b)x = x3 + āx2 + b̄x

Where a′ = −2a, b′ = a2 − 4b,

E[−2a, a2 − 4b] : y2 = x3 − 2āx2 + (ā2 − 4b̄)x,

Put the value of ā and b̄ then we get

E[−2a, a2 − 4b] : y2 = x3 + 4ax2 + 16bx,

E[−2a, a2 − 4b] = E[4a, 16b].

x −→ 4x, y −→ 8y

φ : E[a, b] −→ E[−2a, a2 − 4b]

φ(x, y) = (
y2

x2
, y(1− b

x2
)).

φ is well-defined-

We have to check

(
y2

x2
, y(1− b

x2
)) lies on the E[−2a, a2 − 4b].

=⇒ x′3 + a′x′2 + b′x′ = x′3 − 2ax′2 + (a2 − 4b)x′

=⇒ x′3 + a′x′2 + b′x′ = x′[x′2 − 2ax′ + (a2 − 4b)]

=⇒ x′3 + a′x′2 + b′x′ =
y2

x2
[
y4

x4
− 2a

y2

x2
+ (a2 − 4b)]

=⇒ x′3 + a′x′2 + b′x′ =
y2

x6
[y4 − 2ay2x2 + a2x4 − 4bx4]

=⇒ x′3 + a′x′2 + b′x′ =
y2

x6
[(y2 − ax2)2 − 4bx4]

=⇒ x′3 + a′x′2 + b′x′ =
y2

x6
[(x3 + bx)2 − 4bx4]

=⇒ x′3 + a′x′2 + b′x′ =
y2

x6
[x2(x2 − b)2] =

y2(x2 − b)2

x4
= y′2

φ((0, 0)) = 0, φ(0) = 0 so the kernel is {(0, 0), 0}

φ : E[−2a, a2 − 4b] −→ E[a, b].
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so that φ̂(x, y) = (
y2

4x2
,
y

8x2
(x2 − (a2 − 4b))),

φ̂(x, y) = (
1

4

y2

x2
,

1

8

y

x2
(x2 − b′)).

Any property which holds for φ will also holds for its dual.

Remark 4.6.1. Now we check that φ̂φ(P ) = 2P

=⇒ φ̂φ(x, y) = φ̂(
y2

x2
,
y(x2 − b)

x2
)

=⇒ φ̂φ(x, y) = (
(x2 − b)2

4y2
,
x2 − b
8x2y3

(y4 − (a2 − 4b)x4))

Consider tangent line at P to E[a, b]

y2 = x3 + ax2 + bx

differentiating both sides with respect to x we get

=⇒ 2yy′ = 3x2 + 2ax+ b

=⇒ 2yy′ = 2x2 + 2ax+ 2b+ x2 − b
=⇒ 2yy′ = 3x2 + 2ax+ b

=⇒ 2yy′ = 2(x2 + ax+ b) + (x2 − b)

=⇒ 2yy′ = 2
y2

x
+ (x2 − b)

or in other words,

y′ =
y

x
+
x2 − b

2y
If 2(x1, y1) = (x2, y2) on E[a, b], then the tangent line y = σ(x− x1) + y1 to E[a, b] at (x1, y1) must

intersect E[a, b] at (x2,−y2).

Substitute the value of y in E[a, b].

y2 = x3 + ax2 + bx

=⇒ [σ(x− x1) + y1]2 = x3 + ax2 + bx,

=⇒ σ2(x− x1)2 + y2
1 + 2σ(x− x1)y1 = x3 + ax2 + bx,

=⇒ x3 + (a− σ2)x2 + .... = 0

where a = σ2x2
1 + y2

1 − 2σx1y1

This is repeated root x1 so the sum of the root is,

2x1 + x2 = σ2 − a.

=⇒ x2 = σ2 − a− 2x1,

=⇒ x2 = [
y1

x1
+
x2

1 − b
2y1

]2 − a− 2x1,

=⇒ x2 =
(x2

1 − b)2

4y2
1

y2 = σ(x2 − x1) + y1

=⇒ y2 = (
y1

x1
+
x2

1 − b
2y1

)(
(x2

1 − b)2

4y2
1

− x1) + y1,
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=⇒ y2 = (x2
1 − b)

x1(x2
1 − b)2 + 2x2

1y
2
1 − 2by2

1 − 4x2
1y

2
1

8x1y3
1

,

=⇒ y2 = (x2
1 − b)

x2
1(x2

1 − b)2 − 2y2
1(y2

1 − ax2
1)

8x2
1y

3
1

=⇒ y2 = PP

Now, next we calculate −PP = (x2,−y2)

=⇒ −y2 = (x2
1 − b)

2y2
1(y2

1 − ax2
1)− x2

1(x2
1 − b)2

8x2
1y

3
1

.

Now using x3
1 − bx1 = y2

1 − ax2
1 − 2bx1,

=⇒ 2y2
1(y2

1 − ax2
1)− (y2

1 − ax2
1 − 2bx1)2,

Now we get,

=⇒ (y4
1 − (a2 − 4b)x4

1).

Hence we deduce that 2P = (x2, y2) = (
(x2

1 − b)2

4y2
1

,
(y4

1 − (a2 − 4b)x4
1)(x2

1 − b)
8x2

1y
3
1

),

2P = φ̂φ.

Proposition 4.6.2. On the curve E[a, b] we have

(0, 0) + (x, y) = (
b

x
,− by

x2
).

Proof. For (x1, y1) + (0, 0) = (x2, y2)

Consider the line y = x
y1

x1
through (0, 0) and (x1, y1). Now for the third point of interection we

compute

x2 y
2
1

x2
1

= x3 + ax2 + bx,

=⇒ x3 − (
y2

1

x2
1

− a)x2 + bx = 0.

Sum of the root is

x1 + x2 + 0 =
y2

1

x2
1

− a

=⇒ x2 =
y2

1 − ax2
1 − x3

1

x2
1

=
bx1

x2
1

=
b

x1

And y2 =
by1

x2
1

PQ = (x2,−y2) = (
b

x1
,
−by1

x2
1

).

Remark 4.6.3. φ((x, y) + (0, 0)) = φ(x, y)

Now φ((x, y) + (0, 0)) = φ(
b

x1
,
−by1

x2
1

)

φ((x, y) + (0, 0)) = (
y2

1

x2
1

,
y1

x2
1

(x2
1 − b)).

Proposition 4.6.4. The function α : E[a, b] −→ k∗

(k∗)2
defined by α(0) = 1, α(0, 0) = b mod (k∗)2,

and α((x, y)) = x mod (k∗)2 is a group homomorphism.
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Proof. Let (x1, y1), (x2, y2), (x3, y3) on E[a, b] on a line y = λx+ µ

=⇒ (λx+ µ)2 = x3 + ax2 + bx.

x1, x2, x3 are the roots of the above equation,

so the product of the root x1x2x3 = µ2

α(x1, y1)α(x2, y2)α(x3, y3) = x1x2x3 mod (k∗)2 = 1,

α((x, y) + (0, 0)) = α(
b

x1
,
−by1

x2
1

) =
b

x
mod (k∗)2 = bx mod (k∗)2 = α(0, 0)α(x, y)

which shows that the α is a group homomorphism.

Proposition 4.6.5. The sequence

E[a, b] −→ E[−2a, a2 − 4b] −→ k∗

(k∗)2

is exact.

Proof. First α(φ(x, y)) = α(
y2

x2
, ∗) =

y2

x2
mod (k∗)2 = y2x2 mod (k∗)2 = 1

Next, if α(x, y) = 1,i.e.,if α2 = t, then we choose two points.

(x+, y+) = (
1

2
(t2 − a+

y

t
), x+t) and (x−, y−) = (

1

2
(t2 − a− y

t
), x−t).

We wish to show that (x±, y±) is on E[a, b] and φ(x±, y±) = (x, y), Where (x, y) is on E[−2a, a2−4b].

Now,

x+x− =
1

4
[(x− a)2 − y2

x2
],

=⇒ x+x− =
x3 + a2x− 2ax2 − y2

4x
,

=⇒ x+x− = b

since y2 = x3 − 2ax2 + (a2 − 4b)x

Now a point (xi, yi) for i = 1, 2 lies on E[a, b] iff
(y±)2

(x±)2
= x± + a+

b

x±
,

i.e.
y2

1

x2
1

= x1 + a+ x2, and
y2

2

x2
2

= x2 + a+ x1.

But x1 + x2 = t2 − a
=⇒ x1 + x2 + a = t2

Now

φ(xi, yi) = (x, y)

φ(xi, yi) = ((
(yi)

2)

(xi)2
, yi(1−

b

x2
i

)),

(xi, yi) = (t2, txi(1−
b

x2
i

)),

(xi, yi) = (x, t(xi −
b

xi
)),

(xi, yi) = (x, t(x± − x∓)),

(xi, yi) = (x, t(±(
y

t
))) = (x,±y).

This proves the proposition.
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Chapter 5

Reduction mod p and torsion point

5.1 Reduction mod p of Projective Space and Curves

Notation

Now we will use the following notation in the next three section. Let R be a factorial ring with field

of fraction of k. For each irreducible p in R we form the quotient ring R/p = R/Rp and their field

of fraction is to be denoted by k(p).And the each element a in k can be decomposed as a quotient.

a = pn
u

v
,

Where p does not divide either u or v and n is an integer which is uniquely determined by a. Let

ordp(a) = n denote the order function associated with p.

The order function satisfy the following property :

ordp(ab) = ordp(a) + ordp(b)

ordp(a+ b) ≥ min{ordp(a), ordp(b)}

When

ordp(a) < ordp(b)

ordp(a+ b) ≥ ordp(a)

ordp(a+ b) = ordp(a).

The reduction mod p function

rp : R(p) −→ k(p)

can be defined on affine space by taking products.

kn ⊃ R(p)
n −→ (k(p))n.
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This is defined on points x = (x1, x2, ...., xn) such that ordp(xi) > 0, for all i.

rp(x1, x2, ..., xn) = (x̄1, x̄2, ..., x̄n).

Definition 5.1.1. The reduction mod p function

rp : Pn(k) −→ Pn(k(p)).

is defined by the relation.

rp(y0 : , y1 : , ..., yn) = (ȳ0, ȳ1, ..., ȳn).

where (y0 : , y1 : , ... : yn) is the homogenous coordinate of point in Pn(k), yi ∈ R, for every i they

don’t have a common irreducible factor. Such a representatives (y0 : , y1 : , ... : yn) of a point in Pn(k)

is called p-reduced. There p-reduced representatives are unique upto multiplication by a unit in R(p).

Remark 5.1.2. Let F (y0, y1, ..., yn) ∈ k[y0, y1, ..., yn]. Multiply the polynomial F by an appropriate

non zero element of k such that the polynomial f all are in R and here no common irreducible

factor. Then f̄(y0, y1, ..., yn) is a polynomial over k(p) and coefficient of f are reduced modulo p.

degf̄ = degF .

Definition 5.1.3. Let C be an algebraic curve of degree d in P2 defined over k.

rp : P2(k) −→ P2(k(p)).

reduces to,

rp : Cf (k) −→ Cf (k(p)).

The reason is that if (w, x, y) ∈ Cf (k), then f(w, x, y) = 0 so rp(f(w, x, y)) = f̄(w̄, x̄, ȳ)

=⇒ rp(f(w, x, y)) = f̄(rp(w, x, y)) = 0.

Example 5.2. Consider the nonsingular conic defined by wx + py2 = 0 reduces to singular conic

equals to the union of two lines defined by wx = 0.

Example 5.3. The conic defined by the pwx+ y2 = 0 reduces to y2 = 0 which is a double line.

Reduction of a Cubic-

Intersection multiplicity i(P ;L,Cf ) of P on L and Cf it is defined by the following formula,

φ(t) = f(w + tw′, x+ tx′, y + ty′),

where P = (w, x, y) and (w′, x′, y′) ∈ L− Cf .
The points of L ∩ Cf are of the form (w + tw′, x+ tx′, y + ty′) where φ(t) = 0, and order of zero is

the intersection multiplicity. Further the order of any P on Cf ≤ i(P ;L,Cf ).

We reduce those constructions,

φ̄(t) = f̄(w̄ + tw̄′, x̄+ tx̄′, ȳ + tȳ′)

We must choose (w′, x′, y′) such that (w′, x′, y′) ∈ L̄−Cf̄ . this is only possible given L̄ not contained

in Cf̄ .
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Remark 5.3.1. For the above notation we have the following inequalities.

i(P ;L,Cf ) ≤ i(P̄ ; L̄, Cf̄ );

and order of P on Cf is less than or equals to the order of P̄ on Cf̄ . For P = (1, 0, 0) origin

(w′, x′, y′) = (0, a, b) where constant term is zero.

We get the polynomial

φ(t) = fr(ta, tb) + ...+ fd(ta, tb)

where r is the order of P on curve Cf .

Proposition 5.3.2. Suppose P, P ′ ∈ L∩Cf , where P 6= P ′ and P̄ = rp(P ) = rp(P
′).If the order of

P on Cf is equals the order of P̄ on Cf̄ , then the reduced line L̄ is a part of the tangent cone Cf̄ .if

P̄ has order 1 on Cf̄ , then L̄ is tangent line to Cf̄ at P̄ .

Proof. Since P ∈ L ∩ Cf and ord(P ) ≥ r, the polynomial tr divides φ(t). Also P ′ ∈ L ∩ Cf
=⇒ poly.(t− to)|φ(t), Since tr(t− to)|φ(t), rp(P ) = rp(P

′)

=⇒ t̄omod(p)|φ̄(t)

=⇒ tr+1|φ̄(t)

5.4 Minimal Normal Forms for an Elliptic Curve

Proposition 5.4.1. Let k be a field of fraction for an integral domain R, and let E be an elliptic

curve over k. Then there is a cubic equation for E in normal form with all ai ∈ R.

Proof. Let E be an elliptic curve over k. Choose normal form of E with coefficient āi in variable

x̄ and ȳ. Let u be the common denominator for all āi, i.e. uāi ∈ R, Using the change of variable

x −→ u2x̄ and y −→ u3ȳ. We get the coefficient ai = uiāi is in R for all i.

Definition 5.4.2. Let K be a field with a discrete valuation ν, and let E be an elliptic curve over

K.A minimal normal form for E is in normal form with all aj in the valuation ring R of K such

that ν(∆) is minimal among all such equation with coefficients aj in R.

−→ Minimal is possible as valuation is greater than 0 on discriminant on the given equation in

normal form over R.

Proposition 5.4.3. Let E and E′ be two elliptic curves over K with mimimal models having

coefficient aj and a′j, respectively. Let f : E −→ E′ be an isomorphism with xf = u2x′ + r ;

yf = u3y′+ su2x′+ t, Then ν(∆) = ν(∆′), u ∈ R∗and r, s, t ∈ R, The differential ω is unique up to

a unit in R.

Proof. The equality ν(∆) = ν(∆′) by the definition of minimal, and hence

=⇒ ν(u) = 0

=⇒ u is a unit in R (u12∆′ = ∆). The relation u8b′8 = b8 + 3rb6 + 3r2b4 + 3r4,implies that 3r is in

R, and u6b′6 = b6 + 2rb4 + r2b2 + 4r3 in R implies 4r is in R. Hence the diffrence r is in R.

u2a′2 = a2 − sa1 + 3r − s2 implies s is in R

u6a′6 = a6 + sa4 + a2s
2 + r3 − ta3 − sta1 − t2 implies t is in R

and the last assertion follows from the formula ωf = u−1ω′.
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Proposition 5.4.4. If all aj are in R, and if 0 ≤ ν(∆) < 12, then the model is minimal.

Note-

If P 4|A and P 6|B in R,then the equation y2 = x3+Ax+B is not minimal. All elements of K = j(E),

for some E over K,implies that j(E) is not in R for all E.

Proposition 5.4.5. Let E be an elliptic curve over K and assume that characteristic of K are not

equals to the 2 and 3. For a minimal model the valuation of discriminant satisfies

v(∆) +min{v(j), 0} < 12 + 12v(2) + 6v(3).

In addition,assuming that the residue class characteristic is different from 2 and 3, it follows that a

model over R is minimal iff v(∆) +min{v(j), 0} < 12.

Proof. We know,

c34 = ∆j

and,

c26 = ∆(j − 123)

We have the relation

v(∆) + v(j) = 3v(c4)

and,

v(∆) + v(j − 123) = 2v(c6).

And the equation of the cubic can be transformed into the form

(y)2 = (x)3 − x(
c4
48

)− c6
864

.

If 48P 4|c4 and 864P 6|c6, then equation is not minimal.But as equation is minimal and since 48 = 24.3

and 864 = 25.33,

it follows that

v(∆) + v(j) = 3v(c4) < 12 + 3v(48) = 12 + 12v(2) + 3v(3),

or

v(∆) + v(j − 123) = 6v(c6) < 12 + 2v(864) = 12 + 10v(2) + 6v(3).

Since, v(∆) +min{v(j), 0} ≤ v(∆) + v(j)

or, v(∆) +min{v(j), 0} ≤ v(∆) + v(j − 123). ,We obtain the inequality

v(∆) +min{v(j), 0} < 12 + 12v(2) + 6v(3).

Now observe that for v(2) = v(3) = 0

The minimal model satisfies v(∆) +min{v(j), 0} < 12.and the converse holds for the above propo-

sition

0 < v(∆) +min{v(j), 0}.

Then model is minimal.
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Now suppose R-factorial ring, with field of fraction k. two normal forms for E with coefficient

aj in R are related by the admissible change of variables. u12∆̄ = ∆

For an irreducible element p in R, we have

ordp(∆) = 12ordp(u) + ordp(∆̄).

Since, by a change of variable we can always choose an equation whre ordp(∆) is minimal for all

irreducible p in R.

Definition 5.4.6. Let k be the field of fractions of a factorial ring R, and let E be an elliptic curve

over k. A minimal normal form for E is a normal form with all aj ∈ R such that ordp(∆) is

minimal among all equation in normal form with coefficient aj ∈ R.

5.5 Good Reduction of Elliptic Curves

Notation-

For an irreducible p a canonical reduction homomorphism rp : R(p) −→ k(p) denoted by rp(a) = ā.

Definition 5.5.1. Let E be an elliptic curve over k with minimal normal form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

.The reduction Ē of E modulo p is given by

y2 + ā1xy + ā3y = x3 + ā2x
2 + ā4x+ ā6

.Now it is a plane cubic curve over k(p).and Ē is also denoted by Ep.

Note-

The normal form of an equation E only has to be minimal at p.

Now observe that an admissible change of variable between two minimal normal form of E at p is

given by x = u2x′ + r, y = u3y′ + su2x′ + t over R(p) reduced to x = ū2x′ + r̄, y = ū3y′ + s̄ū2x′ + t̄

for Ē over k(p).

Remark 5.5.2. Now for the above notation the discriminant of the reduced curve Ē is ∆̄. Clearly

Ē is nonsingular iff ∆̄ 6= 0 or equivalently ordp(∆) = 0.

Definition 5.5.3. An elliptic curve E over k has a good reduction at p given Ē, the reduced curve

at p, is nonsingular. and Ē is singular, we say E has a bad reduction at p.

In general the reducttion function

rp : P2(k) −→ P2(k(p))

restrict to

rp : E(k) −→ Ē(k(p)).

Proposition 5.5.4. Let E be an elliptic curve over k with good reduction at p. Then the reduction

function rp : E(k) −→ Ē(k(p)) is a group morphism.
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Proof. Clearly rp(0 : 0 : 1) = 0 : 0 : 1 so that zero is preserved.

for P,Q ∈ E(k) and let L be a line through P and Q when P 6= Q and the tangent line to E at P

when P = Q. then L reduces to L′, the line through rp(P ) and rp(Q).

Again L′ is tangent to E′ at rp(P ) when rp(P ) = rp(Q).Now if PQ denote as usual the third

intersection point of L with Ē, then we have

rp(PQ) = rp((PQ)O) = (rp(P )rp(Q)rp(O)) = rp(P ) + rp(Q),

and thus rp is a group morphism.

Remark 5.5.5. Since 0 = 0 : 0 : 1 on both E and the reduced curve over k(p),we see that the p−
reduced w : x : y on E(k) is in ker(rp) if and only if ordp(y) = 0, ordp(x) > 0, and ordp(w) > 0. in

fact, we should divide by y and assume that the point is of the form w : x : 1, where w and x have

strictly positive ordinal at p.

Example 5.6. If the minimal normal form of an elliptic curve E is of the form y2 = f(x) over k ,

where f(x) is a cubic polynomial, then E has a bad reduction at all p where k(p) has characteristic

2 and at all irreducibles p which divide the discriminant D(f) of the cubic f(x).

Example 5.7. If the minimal normal form of an elliptic curve E over k is

y2 = (x− α)(x− β)(x− γ),

then no p2 divides the all roots α, β, and γ for any irreducible p. The elliptic curve E has good

reduction at p > 2 if and only if p does ot divide any of the diffrence α− β, β − γ, γ − α.

5.8 The Kernel of Reduction mod p

Now In this section, we define a few results on the kernel of reduction map and the p-adic filtration.

This is very useful for studying torsion points of an elliptic curves. We use some notations which

we described above and the reduction map is as defined in the previous section. Now in the end the

following proposition gives some result on relation between the order function valuation.

Proposition 5.8.1. Let (w, x, 1) be a point on the elliptic curve E(k). If ordp(w) > 0, then

ordp(x) > 0 and ordp(w) = 3ordp(x) holds.

Proof. The projective normal form for y = 1 for cubic equation of E is w + a1wx + a3w
2 = x3 +

a2w
2 + a4w

2x + a6w
3. Let L denote the LHS of this equation and R denote the RHS. We have,

ordp(w) > 0. We have to prove ordp(x) is positive. We prove this by contradiction. Let if possible

ordp(x) ≤ 0. Then ordp(R) = ordp(x
3 + a2wx

2 + a4w
2 + a6w

2) = ordp(x
3) = 3ordp(x) ≤ 0.

On the other hand, ordp(L) = min{ordp(w), ordp(a1wx), ordp(a3w
2)} = min{ordp(w), ordp(a1) +

ordp(w)+ordp(x), ordp(a3)+2ordp(w)}. Since ordp(w) > 0, we have 3ordp(x) ≥ ordp(x)+ordp(w).

This gives 0 ≥ 2ordp(w) ≥ ordp(w). It follows that ordp(w) ≤ 0 which is a contradiction.

For the second part, ordp(w) = ordp(q+a1w+a3w
2), because ordp(w) is less thanmin{ordp(a1w

x), ordp(a3w
2)}.

Hence ordp(w) = ordp(R) = 3ordp(x).
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Definition 5.8.2. (p-adic filtration on E) Let E(k) be an elliptic curve defined by cubic in normal

form. The p-adic filtration on E is a sequence of subgroups E(n)(k) which is defined as (w : x : 1) ∈
E(n) if ordp(w) > 0 and ordp(x) ≥ n.

Now the next proposition which gives some results on order function valuations at coordinates

of some different points of intersection of a line with elliptic curve over the feild k i.e.E(k).

Proposition 5.8.3. Let P = (w : x : 1), P ′ = (w′ : x′, 1), P ′′ = (w′′ : x′′ : 1) be three points of

intersection of E with L, where E is elliptic curve defined by cubic in normal form. If P, P ′ ∈ E(n)(k)

for n ≥ 1, then ordp(x+ x′ + x′′) ≥ 2n and ordp(w
′′) = 3ordp(w

′′) ≥ 3n.

Proof. We take w = cx+ b as the equation of line L through the three points P, P ′, P ′′. We aim to

calculate c and ordp(c) using equation of cubic.

First we consider the case when P 6= P ′. Then c = w−w′

x−x′ is the slope of L. Consider the two

equations E1 : w + a1wx + a3w
2 = x3 + a2wx

2 + a4w
2x + a6w

3 and E2 : w′ + a1w
′x′ + a3w

′2 =

x′3 +a2w
′x′2 +a4w

′2x′+a6w
′3. Consider E3 = E1−E2 : (w−w′) +a1(wx−w′x′) +a3(w2−w′2) =

(x3−x′3)+a2(wx2−w′x′2)+a4(w2x−w′2x′)+a6(w3−w′3) = (x−x′)(x′2+xx′+x′2)+. . . . Each of the

terms is of the form waxb−w′ax′b = waxb−w′ax′b, which we can write as (wa−w′a)xb+w′a(xb−x′b).
From the equation of E3, we get, (w −w′)(1 + a1x+ a3(w +w′)) = (x− x′)(x2 + xx′ + . . . ). Thus,

(w − w′)(1 + u) = (x− x′)(x2 + xx′ + x′2 + v) for u, v ∈ k, where ordp(u) > 0, so, ordp(u+ 1) = 0.

Also, each term of v is divisible by some w or w′, so ordp(v) ≥ 3n. Since, ordp(x) and ordp(x
′) ≥ n,

therefore, ordp(x
2 + xx′ + x′2 + v) ≥ 2n as all the quantities are greater than or equal to 2n. Thus

we obtain ordp(c) = ordp(
w−w′

x−x′ ) ≥ ordp(x2 + xx′ + x′2 − v)− ordp(1 + u) ≥ 2n.

Next consider the case when P = P ′, then the slope of tangent line is c = dw
dx . Differentiating

E1 with respect to x implicitly, we get dw
dx + a1(w + xdwdx ) + 2a3

dw
dx ) = 3x2 + a2(2wx + x2 dw

dx ) +

a4(w2 + 2wxdwdx ) + 3a6w
2(dwdx ). This gives us (1 + a1x + 2a3w − a2x

2 − 2a4wx − 3a6w
2)dwdx =

3x2+2a2wx+a4w
2−a1w. Coefficient of dwdx is of the form 1+u, where ordp(u) > 0, so, ordp(1+u) = 0.

RHS of the above equation is of the form 3x2 + v, where ordp(3x
2 + v) ≥ ordp(3x

2) ≥ 2ordp(x).

Now since ordp(w) = 3n, we have, ordp(c) = ordp(
dw
dx ) = ordp(3x

2 + v) ≥ 2n.

Therefore, in both the cases, we get ordp(c) ≥ 2n. From equation of line L, we have b = w− cx.

Therefore, ordp(b) ≥ min{ordp(w), ordp(c) + ordp(x)} ≥ 3n.

Now to estimate the ordp(x + x′ + x′′), we first substitute the equation of line L through P

and P ′ in the equation of cubic E1. We get, (cx + b) + a1(cx + b)x + a3(cx + b)2 = x3 + a2(cx +

b)2 + a4(cx + b)x + a6(cx + b)3. This gives us a polynomial equation in x, and the sum of root of

this polynomial equation is x + x′ + x′′ = −a2b+2a4bc+3a6bc
2−a1c−a3c2

1+a2c+a4c2+a6c3
. Take u = a2c+ a4c

2 + a6c
3.

Therefore, we get, ordp(1 + u) = 0. It follows that ordp(x + x′ + x′′) ≥ 2n. We also observe that

x′′ = x + x′ + x′′ − x − x′, so ordp(x
′′) ≥ min{ordp(x + x′ + x′′), ordp(−x), ordp(−x′)} ≥ n. Since

w = cx+ b, we have ordp(w
′′) ≥ 3n, and thus (w′′, x′′, 1) ∈ E(n)(k). This proves the proposition.

Remark 5.8.4. From proposition 5.4.1 and 5.4.3, it follows that ordp(x+ x′ + x′′) ≥ 3n whenever

a1 = 0.

Theorem 5.8.5. If E is an elliptic curve in normal form over k with p-adic filtration E(n)(k)

on E(k). Then E(n)(k) are subgroups. Moreover, if P is a function defined from E(n)(k) to pnR

such that P (w, x, 1) = x(P ) is composed with the quotient morphism pnR → pnR/p
2nR defines
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a group morphism from E(n)(k) to pnR/p2n with kernel in E(2n)(k) induces a monomorphism

E(n)R/E(2n)R→ pnR/p2nR for n ≥ 1.

Remark 5.8.6. From this theorem, we conclude that if a1 = 0, then we get an injective map from
E(n)(k)
E2n(k) to pnR

p3n R.

5.9 Torsion in Elliptic Curve over Q : Nagell-Lutz Theorem

Notation-

Let Ators denote the torsion subgrop of an abellian group A.

Theorem 5.9.1. (Nagell-Lutz Theorem) Let E be an elliptic curve over Q.

(1)- Subgroup E(Q)tors ∩ E1(Q) = 0 for odd prime p and the Subgroup E(Q)tors ∩ E2(Q) = 0 for

prime p = 2.

(2)− The restriction of the reduction homomorphism rp|E(Q)tors : E(Q)tors −→ Ep(Fp) is injective

for any odd prime p where E has a good reduction and r2|E(Q)tors : E(Q)tors −→ E2(F2) has kernel

at most Z/2Z when E has a good reduction at 2.

Proof. The function

x 7−→ x(T )

defines a monomorphism and

En(Q)/E2n(Q) 7−→ Zpn/Zp2n ∼= Z/pZ,

and this implies that there is no torsion prime to p in E(1)(Q) prime to p. Assume that pT = 0

where T ∈ E(r)(Q)− E(r+1)(Q) and r > 1

if p is odd then

0 = x(pT ) ≡ p(xT ) mod p3r

Hence x(T ) ∈ p3r−1Z and this means that T ∈ E3r−1Q implies that r ≥ 3r − 1 so that r = 0.

If p = 2 so we use

0 = x(2T ) ≡ 2(xT ) mod 22r

Hence x(T ) ∈ 22r−1Z and this means that T ∈ E2r−1Q implies that r = 2r − 1 so that r = 1.

Hence E(Q)tors ∩ E1(Q) = 0 for p odd and with E1(Q) for p = 2.

For the second assertion recall that

ker(rp) = E1(Q).

Now we use the first assertion then we get the group E(Q)tors∩E1(Q)/E2(Q) injects to the 2Z/4Z =

Z/2Z.

Remark 5.9.2. If C is a cubic curve defined by an equation over Fq in normal form, then for each

x in Fq we have at most two possible (x, y) on the curve C(Fq) and so the cardinality is less than or

equal to 2q + 1.
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Corollary 5.9.3. Let E be an elliptic curve over the set of rational numbers. if E has good reduction

at an odd prime p, then the cardinality of the torsion subgroup satisfies |E(Q)tors| ≤ 2p + 1. if E

has a good reduction at 2 then |E(Q)tors| ≤ 10.

Corollary 5.9.4. For an elliptic curve E over Q, the torsion subgroup E(Q)tors of E(Q) is finite

and is either cyclic or cyclic direct sum with Z/2Z.

5.10 Computability of Torsion Points on Elliptic Curves from

Integrability and Divisibility Properties of coordinates

Theorem 5.10.1. Let E be an elliptic curve defines over the rational numbers in normal form with

integer coefficient. if (x, y) ∈ Qtors, then the coordinates x and y are integers.

Proof. if y = 0 then the x is a solution of the cubic equation in normal form.

0 = x3 + a2x
2 + a4x+ a6.

With integer coefficients. Since x is a rational number, and so it is also an integer number i.e. x is

of the form x =
m

n
so the equation which is of the form

m3 + a2m
2n+ a4mn

2 + a6n
3 = 0,

and any prime which divides n must divide m also. Thus we have to taken an integer which is of

the form x = m. Now we have to take the second condition.

if y 6= 0, then the point with homogeneous coordinate is of the form (w : x′ : 1) = (1 : x : y), where

the w =
1

y
and x′ =

x

y
, so we have (w : x′ : 1) ∈ r−1

p (0) where p is odd and (w : x′ : 1) ∈ E2(Q)at

2. Now in other words we have ordp(w) ≤ 0 for p is odd and ord2(w) ≤ −1 at 2. This condition

becomes from the relation ordp(y) ≥ 0 for all p odd and ord2(y) ≥ −1 at 2. Now y is of the form

y =
h

2
for an integer h. Again take x =

m

n
, and x saisfies the cubic equation with the coefficient

of x3 is 1, and the coefficient of x2 is an integer, and coeffcient of x is an integer over 2, and the

constant term is an integer over 4. the change, using 2, shows x = m and that x = m and h is an

even. This proves the theorem.

Theorem 5.10.2. Let E be an ellliptic curve over Q, and let Weierstrass equation of the form

y2 = f(x) for E and here f(x) has an integer coefficient. if the point (x, y) is a torsion point on E,

then the integer y is zero or y divides D(f), where D(f) is the discriminant of the cubic polynomial.

Proof. if y = 0, then (x, 0) is of order 2 and thus 0 divides the discriminant. Otherwise, 2(x, y) =

(x̄, ȳ) not equals to zero on an elliptic curve over the rational numbers E(Q). The tangent line to E

has slope f ′(x)/2y, and substituted y = λx + β into the Weierstrass form of an equation and thus

we obtain the cubic equation with x has the double root and x̄ has the single root.

Hence the sum of the root is

2x+ x̄ = a− (
f ′(x)

2y
)2.

Since x , x̄ and a are integers , it follows that f ′(x)/2y is an integer, and 2y|f ′(x).

Now, we can write the discriminantD(f)of f(x) as a linear combinationD(f) = u(x)f(x)+v(x)f ′(x),
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where the u(x), v(x) ∈ Z[x]. Since y = f(x) and y|f ′(x) for the points (x, y) on E, Now we infer

that y|D(f). This proves the theorem.

Remark 5.10.3. For finding the E(Q)tors is to take for E a Weierstrass equation y2 = f(x) where

f(x) is a cubic polynomial and the coefficient of a, b and c are the integers. Consider the finite set of

all divisors yo of D(f). Solve the cubic y2
o = f(x) for the integer solution xo. Among these (xo, yo)

are all points of E(Q)tors whic are not equals to zero.

Remark 5.10.4. If (x, y) ∈ E(Q) such that some multiple n(x, y) has nonintegral coefficients, then

(x, y) is not a torsion point.

5.11 Bad Reduction and Potentially Good Reduction

Definition 5.11.1. An elliptic curve E(k) has:

(1)− Multiplicative reduction at p given the reduction E(p) has a double point or node.

(2)− Additive reduction or unstable reduction at p provided the reduction E(p) has a cusp.

Remark 5.11.2. Let E(k) with discriminant ∆ and having bad reduction at p, i.e., ordp(∆̄) > 0.or

∆̄ = 0 The reduction is:

(1)− multiplicative reduction iff ordp(c4) = 0 or, equivalently, ordp(b2) = 0.

(2)− additive reduction iff ordp(c4) > 0 or, equivalently, ordp(b2) > 0.

Remark 5.11.3. Let E(k) with good reduction at p. Then the reduction modulo p of j(E) is given

by rp(j(E)) = j(E(p)) and ordp(j(E)) ≥ 0. We have two congruence relation.

ordp(j(E)) ≡ 0 mod 3

and

ordp(j(E)− 123) ≡ 0 mod 2.

since j(E) = c34/∆, j(E) − 123 = c26/∆, and 123∆ = c34 − c26. Conversely, if ordp(j − 123) = 0 =

ordp(j), then the equation

y2 + xy = x3 − x 123

j − 123
− 1

j − 123
.

shows that the curve has the same j invariant which is defined over k.

Definition 5.11.4. An elliptic curve over K has potential good reduction provided there exist a

finite extension L and an extension w of v to L such that E over L has the good reduction at the

valuation ψ.

Theorem 5.11.5. An elliptic curve E defined K has potentially good reduction iff j(E) is a local

integers, i.e., ψ(j(E)) ≥ 0.

5.12 Tate’s Theorem on Good Reduction over the Rational

Numbers

Theorem 5.12.1. Every elliptic curve E over the rational numbers Q has bad reduction at some

prime, i.e., ∆ cannot be equal to ±1.
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Proof. Assume that ∆ = ±1 such that

∆ = −b22b8 − 8b34 − 27b26 − 9b2b4b6,

and

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4.

if a1 is even, then 4|b2 and 2|b4 so that b6 will have to be odd, and in fact, ±1 = ∆ ≡ 5b26(mod8).

Since any square modulo 8 is congruent to 0, 1, 4 mod(8) , this is not possible.

If a1 is odd, and hence b2 is also odd. Then the coefficient c4 = b22− 24b4 ≡ 1(mod8). Now we write

c4 = x± 12 from the relation c34 − c26 = 123∆ = ±123, and thus

c26 = x(x2 ± 36x+ 3.123) ≡ x2(x+ 4) mod 8.

it means that x ≡ 5 mod 8. Now 3|x, for otherwise any p|x with p > 3, it would follow that p2|x
and ±x would be a square. so this contradicts that x ≡ 5 mod 8.

Let x = 3y so that y ≡ 7 mod (8) and hence c6 = 9c

3c2 = y(y2 ± 12y + 4.123) = y((y ± 6)2 + 540).

Now y > 0 Since y((y ± 6)2 + 540) is positive. if p not equal to 3 divides y, so it does so to an even

power.

Also the relation for 3c2 shows that if 3|y, then 27|3c2. In this case let y = 3z and c = 3d which

leads to

d2 = z(z2 ± 4z + 64)

From the relation for 3c2. if an odd prime p|z, then p2|z and z|8 is a square. But y ≡ 7 mod 8 this

implies that z ≡ 5 mod (8) which contradicts the facts that z is a square.

Example 5.13. The following curve

y2 + xy + ε2y = x3,

where ε =
5 +
√

29

2
over K = Q

√
29 was shown by Tate to have good reduction at all place of K,

and ∆ = −ε10.
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Chapter 6

Proof of Mordell-Weil Theorem

In this chapter, we see the proof of Mordell-Weil’s theorem. The Mordell-Weil’s Theorem is essential

in the theory of elliptic curves as this results tells us that the group of elliptic curves is finitely

generated. We set up a few results used in proving the theorem, and finally prove the Mordell-weil

theorem.

6.1 Some Preliminary Ideas

Definition 6.1.1. A Norm function on an abelian group A is defined as a function from A −→ R

such that it satisfies the following properties:

(1) |P | ≥ 0 ∀P ∈ A, and for the each real numbers r such that |P | ≤ r is finite.

(2) |mP | = |m||P | for all P ∈ A and m ∈ Z.

(3) |P +Q| ≤ |P |+ |Q| ∀P,Q ∈ A.

Proposition 6.1.2. An abelian group G is finitely generated if and only if the index (G : mG) is

finite for some m > 1 and the group G has a norm function.

Proof. Firstly suppose that the group G be finitely generated. And we know that if G is finitely

generated, the index (G : mG) is finite for all non zero m. Now the norm function can be constructed

as follows. As G is finitely generated group has norm function since, G ∼= Zn × Tors(G). If P ∈ G,

then we can write P as (P1, P2, . . . Pn), where the each Pi ∈ Z. The norm function on Z is |.|. Then

the norm function on G can be defined as |P | = |P1|1 + |P2|2 + · · ·+ |Pn|n.

Conversely, Now assume that the index (G : mG) is finite, i.e. it ust be equals to n and G has a norm

function. And we have,
G

M
= {P + mG | P ∈ G}. Let R1, R2, . . . , Rn be the coset representatives

of
G

mG
. We also let c = max |Ri|+1, X = {P ∈ A||P | ≤ c} and A = 〈P1, P2, . . . , Pk〉, where Pi ∈ X.

Suppose if it is possible take G − A is as non empty set. So, there exists a P ∈ G − A. Then

by the first point of the definition of norm, P has a minimal norm. For some coset representative

Ri of G − mG, P ≡ Rimod(mG). This means Pi = Ri + mQ for some Q ∈ G. This implies

mQ = P − Ri = P + (−Ri). Hence, m|Q| = |mQ| ≤ |P | + |Ri| < |P | + c ≤ m|P |. Therefore,

|Q| ≤ |P |. But we know that the P has a minimal norm and that P ∈ G−A. It follows that Q ∈ G
and P = Ri + mQ ∈ G. Thus if any element is in G, it also has to be in A, which a contradiction
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to the fact that G− A is non empty. Therefore, G = A = 〈Xi〉, where Xi ∈ X. Thus, the group G

is finitely generated by elements of X.

6.2 Finiteness of (E(Q : 2E(Q)) for E[a, b]

Here, E[a, b] is defined by y2 = x3+ax2+bx for all a, b ∈ k. So our aim is to show that (E(Q : 2E(Q))

is finite for an elliptic curve of the form y2 = x3 + ax2 + bx.

(1)- The function α : E[a, b] −→ k∗

(k∗)2
defined with

α(0) = 1,

α((0, 0)) = bmod(k∗)2,

α((x, y)) = xmod(k∗)2

for x 6= 0 is a group homomorphism.

(2)− The sequence

E[a, b]
n−→ E[−2a, a2 − 4b]

α−→ k∗

(k∗)2

is exact.

φ(x, y) = (
y2

x2
,
y(x2 − b)

x2
).

For K = Q, the field of rational numbers, The quotient group
Q∗

(Q∗)2
is a vector space over F2 with

a basis = −1 ∪ p where p is a prime numbers.

Proposition 6.2.1. Let E[a, b] is an be an elliptic curve over the rational numbers Q. The homo-

morphism α : E[a, b] −→ Q∗

(Q∗)2
has image im(α) ∈W , where W is a subspace of F2.

if r distinct primes divides b,

|im(α)| < 2r+1.

Theorem 6.2.2. Let a, b ∈ Z, with ∆ = 24b2(a2 − 4b) 6= 0, and let r is number distinct primes

divisors of b and s is number of distinct primes divisor of a2 − 4b. Then for E[a, b] = E we have

(E(Q : 2E(Q)) ≤ 2r+s+2.

Proof. The sequence

E[a, b]
φ−→ E[−2a, a2 − 4b]

φ′

−→ E[a, b]

here α1 and α2 are induced isomorphisms.

E(Q)

φ′(E′(Q))
−→ im(α1)

E′(Q)

φ(E(Q))
−→ im(α2)
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(1)− for α1 we take the sequence

E′
φ′

−→ E
α1−→ Q∗

(Q∗)2
.

here im(φ)′ = ker(α1) by the isomorphism theorem we have
E′

ker(α1)
−→ im(α1) and ker(α) =

im(φ′) = φ′(E′(Q)).

(2)− for α2 we take the sequence

E
φ−→ E′

α2−→ im(α2).

here im(φ) = ker(α2) so by the isomorphism theorem
E′

ker(α2)
−→ im(α2) and im(φ) = φ(E). Also

φ′ induced to an isomorphism

E′(Q)

φ(E(Q))
−→ E(Q)

φ′(E′(Q))
=

E(Q)

2E(Q)
.

there is a 2-stage filtration

φ′φE(Q) = 2E(Q) ⊂ φ′(E(Q)) ⊂ E(Q).

it follows that the index

[E(Q) : 2E(Q)] = |im(α1)||im(α2)| ≤ 2r+1.2s+1 = 2r+s+2

6.3 Finiteness of the index (E(k) : 2E(k))

Theorem 6.3.1. Suppose E be an elliptic curve over an algebraic number field k. Then index

(E(k) : 2E(k)) is finite.

6.4 Quasilinear and Quasiauadratic Maps

Definition 6.4.1. For a set X a function h : X −→ R is proper function given h−1([−c, c]) is finite

for all c ≥ 0.

Definition 6.4.2. Two function h and h′ are equivalent if the map h, h′ : X −→ R,i.e. h − h′ is

bounded. in other words, there exists a > 0 such that |h(x)− h′(x)| ≤ a for all x ∈ X.

Definition 6.4.3. Let A be an abellian group, a function u : A −→ R is quasilinear given u(x+ y)

and u(x) + u(y) are equivalent function A×A −→ R.

Definition 6.4.4. A function β : A × A −→ R is quasibilinear given the pair of function β(x +

x′, y),β(x, y) +β(x′, y), β(x, y+ y′), and β(x, y) +β(x, y′) are equivalent function A×A×A −→ R.

Definition 6.4.5. A function q : A −→ R is quasiquadratic given ∆q(x, y) is equivalent and q(x) =

q(−x). Moreover, q is positive q(x) ≥ 0 for all x ∈ A. Again ∆q(x, y) = q(x+ y)− q(x)− q(y).

Proposition 6.4.6. A function q : A −→ R is quadratic iff q(x) = q(−x), q(2x) = 4q(x), and q is

quasiquadratic.
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Theorem 6.4.7. If a function q : A −→ R is a quadratic function satisfying q(x) = q(−x) then

q∗(x) = limn→∞2−2nq(2nx) exists and the function q∗(x) is quadratic.

Proof. Since we know that q is quasiquadratic iff the weak parallelogram law holds, q(x+ y) + q(x−
y) ∼ 2q(x) + 2q(y). Now we set x = y then we have q(2x) ∼ 4q(x), i.e. |q(2x) − 4q(x)| ≤ A for A

should be positive constant. And replacing x by 2nx, we get the expression

|2−2(n+1)q(2n+1x)− 2−2nq(2nx)| = 2−2nA

For this we have following estimate for all n and p

|2−2(n+p)q(2n+px)− 2−2nq(2nx)| = 2−2n.
4A

3
.

so from this the sequence q∗(x) is cauchy, implies it is convergent. and by the previous proposition the

condition q∗(x) = 4q∗(x) comes from the defining the limit and the condition that q∗(x) = q∗(−x)

and q∗(x) is quasiquadratic are preserved in the limit.

6.5 The General Notion of Height on Projective Space

A height on projective space is a proper, positive real valued function.

Definition 6.5.1. Let k be a field, A k-morphism f : Pm(k) −→ Pm(k) of degree d is a function is

of the form

f(y0 : ... : ym) = fo(y0 : ... : ym) : ... : fm(y0 : ... : ym),

Where each fi(y0 : ... : ym) ∈ k[yo, y1, ..., ym] is homogeneous of degree d and not all are equals to

zero at any yo : ... : ym ∈ Pm(k̄).

Definition 6.5.2. A height h on Pm(k) is a proper function h : Pm(k) −→ R such that for any

k-morphism f : Pm(k) −→ Pm(k) of degree d the composition hof is equivalent to d.h, i.e., there

exists a constant c with

|h(f(y))− d.h(y)| ≤ c

for all y ∈ Pm(k).

Notation-

For a point in Pm(Q) we choose a Z-reduced representatives yo : ... : ym

H(yo : ... : ym) = max|yo|, ..., |ym|

and

h(P ) = logH(P )

Where P = yo : ... : ym.This h(P ) is called the canonical height on Pm(Q).

In one dimensional case there is a bijection

u : Q ∪+∞→ P1(Q)
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defined by u(m/n) = n : m and u(∞) = 0 : 1 and the composition

hu : Q ∪+∞→ R

hu/Q : Q→ R

Means the composition restricted to Q is given by h(m/n) = logmax|m|, |n|, where m/n is reduced

to the lowest term.

Z- Reduced-

if we take the set (a1/b1, ...an/bn) take the product of the denominator b1...bn and

(a1b2...bn, ..., anb1...bn−1) = 1

so the lcm of denominator is l i.e. (a1l1, ..., anln) Then gcd(a1l1, a2l2, ..., anln) = 1.

Lemma 6.5.3. Let φ be a form of degree d in yo, ..., ym. Then there exists a positive constant c(φ)

such for Z-Reduced y ∈ Pm(Q) we have |φ(y)| ≤ c(φ)H(y)d.

Proof. Decompose φ(y) =
∑
aαmα(y), where the index α counts of the monomials mα(y) of degree

d. Then we have

|φ(y)| ≤
∑
|aα||mα(y)|

|φ(y)| ≤
∑

(|aα|).(max|yo|, ..., |ym|)d = c(φ)H(y)d,

Where c(φ) =
∑
|aα|,as upper estimate.

Remark 6.5.4. A sequence of forms (fo, f1, ..., fm) of degree d in Z[yo, y1, ..., ym] defines a Q-

morphism.

Means that fo, f1, ..., fm have no common zero in Pm(Q̄) ⇔ there exists s ∈ Z+, b ∈ Z and the

polynomial gij(y) ∈ Z[yo, y1, ..., ym] such that∑
gijfj = bys+di

for all i = 0, ...,m.

Theorem 6.5.5. If h is the canonical height on PmQ and f : Pm(Q) → Pm(Q) is a Q-morphism

of degree d is h(f(y))− d.h(y) is bounded on Pm(Q.

Proof. Now in this proof we use the previous lemma, and we have an upper estimate for H(f(y),

where H(f(y)) = max
i
|fi(y)| ≤ max

i
cfi(y)H(y)d = c2H(y)d. And by the previous remark, we also

have a lower estimate on H(f(y)).

We have, |b|.|yi|s+d = (max
i,j

c(gij)).H(y)s.
∑
j

|fj(y)| ≤ (max
i,j

(c(gi,j)))(m+ 1)H(y)s(max
j
|fj(y)|).

Since common factor among fj(y) | b. Also, by the previous remark, max
j
|fj(y)| ≤ |b|H(f(y)).

Taking maximum over i, we get, |b|H(y)s+d ≤ (max
i,j

c(gi,j))(m + 1)H(y)s|b|H(f(y)). This implies

c1H(y)d ≤ H(f(y)), for some c1 > 0. Thus, c1H(y)d ≤ H(f(y)) ≤ c2H(y)d. Taking logarithm

on both sides, we get log(H(f(y))
H(y)d

) = h(f(y)) − d.h(y) is bounded on Pm(Q). Which completes the

proof.
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6.6 The Canonical Height and Norm on an Elliptic curve

Lemma 6.6.1. Let E be an elliptic curve over k defined by y2 = f(x) where f(x) is a cubic polyno-

mial. and define the function q : E(k) −→ P1(k) defined by q(x, y) = (1, x) and q(0) = (0, 1). Then

there is a k- morphism g : P1(k) −→ P1(k) of degree 4 such that the diagram is commutative.

Proof. First of all we take the point (x, y) ∈ E(k). And suppose 2(x, y) = (x′, y′). So our aim to

find the relation between (x, y) and 2(x, y). Now consider the tangent line y = λx+β to the elliptic

curve E at (x, y). And we know that, 2P = P + P = −PP . This line passing through the point

(x′,−y′). Since y2 = f(x) where f(x) is a cubic polynomial, and we get, y′ =
f ′(x)

2y
= λ, which is

the slope of tangent line. put y = λx+β in the equation of elliptic curve, we get the cubic equation

in x i.e. x3 + x2(a − λ2) + x(b − 2βλ) + c − β2 = 0. Sum of roots of this polynomial = λ2 − a.

We get, 2x+ x′ = λ2 − a = (
3x2 + 2ax+ b

4(x3 + ax2 + bx+ c)
)2 − a. Thus, x′ =

x4 − 2bx2 − 8cx+ (b2 − 4ac)

4x3 + 4ax2 + 4bx+ 4c
.

Therefore, g(w, x) = (g0(w, x), g1(w, x)), where g0(w, x) = 4wx3 + 4aw2x2 + 4bw3x + 4cw4 and

g1(w, x) = x4 − 2bw2x2 − 8cxw3 + (b2 − 4ac)w4. Hence, the above diagram commutes.

Theorem 6.6.2. Let E be an elliptic curve over a number field k in Weierstrass form y2 = f(x) =

x3 + bx+ c. Then there is a unique function hE : E(k) −→ R such that

(1) hE(P ) − (1/2)h(x(P )) is bounded, where x(P ) = q(P ) is the x-coordinate of P and h is the

canonical height on P1(k), and

(2) hE(2P ) = 4hE(P ) and hE(P ) = hE(−P ).

furthermore, hE is proper, positive and quadratic.

Corollary 6.6.3. With the assumption and the notations of the above theorem, the function |P | =√
hE(P ) is a norm on E(k) i.e, P satisfies all the properties of the norm-function.

Theorem 6.6.4 (Mordell-Weil). Let E be an elliptic curve over the number field k. Then the group

E(k) is finitely generated.

Proof. The proof can be seen in two separate cases. First we consider the case when E is an elliptic

curve Q. When E = E[a, b], the index (E(Q) : 2E(Q)) is finite, which we proved in theorem 6.2.2.

Using the corollary 6.6.3, we know about the the norm on the elliptic curve, |P | =
√
hE(P ). Now

we use the proposition 6.1.2, E(Q) is a finitely generated abelian group.

Secondly, when E is any elliptic curve over any field k. Then we complete the proof as like. For

if any general elliptic curve, we can extend the field k to be the field k′ such that the elliptic curve

breaks in the form of y2 = (x − a)(x − b)(x − c). Again,also we know the index (E(k′) : 2E(k′))

is finite. The norm function in this case is |P | =
√
hE(p) is a norm on E(k′). It follows from the

proposition 6.1.2 that E(k′) is a finitely generated abelian group. Since, E(k) is a subgroup of a

finitely generated abelian group E(k′), it is also finitely generated. This proves the theorem.
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