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To date, the only limit on graviton mass using galaxy clusters was obtained by Goldhaber and Nieto 
in 1974, using the fact that the orbits of galaxy clusters are bound and closed, and extend up to 
580 kpc. From positing that only a Newtonian potential gives rise to such stable bound orbits, a limit 
on the graviton mass mg < 1.1 × 10−29 eV was obtained [1]. Recently, it has been shown that one can 
obtain closed bound orbits for Yukawa potential [2], thus invalidating the main ansatz used in Ref. [1]
to obtain the graviton mass bound. In order to obtain a revised estimate using galaxy clusters, we use 
dynamical mass models of the Abell 1689 (A1689) galaxy cluster to check their compatibility with a 
Yukawa gravitational potential. We use the mass models for the gas, dark matter, and galaxies for A1689 
from Refs. [3,4], who used this cluster to test various alternate gravity theories, which dispense with the 
need for dark matter. We quantify the deviations in the acceleration profile using these mass models 
assuming a Yukawa potential and that obtained assuming a Newtonian potential by calculating the χ2

residuals between the two profiles. Our estimated bound on the graviton mass (mg ) is thereby given by, 
mg < 1.37 × 10−29 eV or in terms of the graviton Compton wavelength of, λg > 9.1 × 1019 km at 90% 
confidence level.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A century after its inception, General relativity (GR) passes all 
observational tests at solar system and binary pulsar length scales 
with flying colors [5–7]. The recent direct detection of gravitational 
waves has confirmed the validity of general relativity in the dy-
namical strong-field regime [8]. Despite this, a whole slew of mod-
ified theories of gravity have been explored, ever since the equa-
tions of GR were first written more than a century ago. Most of the 
recent resurgence in studying and proposing the plethora of mod-
ified theories of gravity has been driven by the need to address 
problems in Cosmology such as Dark matter, Dark Energy, Inflation, 
and Baryogenesis [9–18], which cannot be explained using GR and 
the Standard model of particle physics. Independent of cosmologi-
cal problems, a number of alternatives have also been extensively 
proposed to resolve conceptual problems in classical GR at the in-
terface of fundamental Physics, such as Big Bang singularity [19], 
arrow of time [20,21], or the quantization of gravity [22–24]. An 
updated summary of almost all the modified theories of gravity 
can be found in monographs such as [25] and also in recent re-
views [26–28] and references therein.
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One such modification to GR, namely massive gravity in which 
a graviton is endowed with non-zero mass dates back to more than 
70 years. The first ever theory of massive gravity in the perturba-
tive limit was proposed by Pauli and Fierz [29]. However, this the-
ory does not reproduce the GR result, in the limit when the gravi-
ton mass goes to zero, usually referred to in the literature as the 
vDVZ discontinuity [30,31]. However, Vainshtein showed that this 
discontinuity is due to how the gravitational degrees of freedom 
are treated during the linearization procedure and can be fixed 
in a non-linear version of massive gravity [32]. Bouleware and 
Deser then showed that this non-linear version has a ghost [33]. 
Therefore, the field of massive gravity theories lay dormant be-
cause of these conceptual problems. However in the last decade, 
the Bouleware–Deser ghost problem has been solved, leading to a 
resurgence of interest in these massive gravity theories [34–37]. 
These massive gravity models can address multiple problems in 
cosmology such as dark energy [38], dark matter [39,40], infla-
tion [41] and also in fundamental physics related to quantization 
of gravity [42].

One generic feature of massive gravity models is that the grav-
itational potential has a Yukawa behavior in the linear weak field 
limit, typically parameterized as [1,43–45]:

V = GM
exp(−r/λg), (1)
r
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where λg is the Compton wavelength of the graviton and is given 
by λg ≡ h

mg c , where mg is the graviton mass.

Basically there are three model-independent methods, which 
have been used to obtain graviton mass bounds [45]. The first 
method involves looking for a weakening of the gravitational force 
due to a Yukawa-like potential. The second type of constraint 
comes from looking for fifth force interactions, which arise in mas-
sive gravity models. The third type of limit comes from the prop-
agation of gravitational waves, either due to modified dispersion 
relations or from difference in arrival times between gravitational 
waves and other astrophysical messengers (photons, neutrinos). In 
the gravitational wave literature, the limits from the first two types 
of measurements are referred to as “static” bounds, whereas the 
limits from gravitational wave observations are referred to as “dy-
namical” bounds. In addition to these three traditional methods, 
one can also obtain bounds on graviton mass by studying its im-
plications for cosmology, such as large scale structure and late 
time evolution. But these are strongly model-dependent. In ad-
dition, one can also get constraints on Yukawa gravity from the 
weak-field limit of certain modified gravity theories such as f (R)

gravity or Moffat’s Scalar-Vector-Tensor gravity [46,47]. A compre-
hensive summary of all the observational/experimental bounds on 
the mass of the graviton as well as future prospects can be found 
in Ref. [45] and a tabular summary can be found in Table 1 of the 
same paper. We now briefly recap the limits from these different 
types of methods.

Two years ago there was a watershed event in the history of 
physics, due to the direct detection of gravitational waves from 
the two LIGO detectors in Hanford and Livingston [48]. These 
observations enabled us to obtain the most stringent dynamical
bounds on the graviton mass, by looking for dispersion in the 
observed signal as it propagated towards the detectors. The first 
detection from GW150914 [48] provided a limit of λg > 1013 km, 
or mg < 10−22 eV [49], based on looking for a modified disper-
sion relation for a non-zero graviton mass. Subsequently, a more 
stringent bound of mg < 7.7 × 10−23 eV has been obtained us-
ing GW170104 [50]. We note however that Deser [51] has pointed 
out that no strong field generation of radiation in massive gravity 
models can reproduce the observed ringdown patterns observed 
in LIGO. For a gravitational wave source in our galaxy, one could 
also constrain this mass using the line of sight Shapiro delay from 
the source of the gravitational wave [52]. Most recently, the direct 
detection of photons in coincidence with the gravitational waves 
from a binary neutron star merger have enabled us to constrain 
the mass of the graviton to mg � 10−22 eV [53]. In the future, 
eLISA could obtain bounds of mg < 10−26 eV [43], and from the 
detection of inflationary gravitational waves from stage IV CMB ex-
periments, one could get a bound of mg < 3 × 10−29 eV [54].

Many massive gravity models give rise to a fifth force. However, 
these results are theory dependent and in particular depend on 
how the non-linear Vainshtein mechanism operates in these the-
ories [45]. However, one common feature in these models is the 
existence of a Galileon-like scalar. As of now, the bounds on gravi-
ton mass in this category have been obtained from the decoupling 
limit of DGP [55] and dRGT [56] theories. Data from lunar laser 
ranging experiments give a mass bound of mg < 10−30 eV within 
the context of the decoupling limit of dRGT theory [45]. From the 
corresponding decoupling limit of DGP, future surveys on galaxy-
galaxy lensing could set a bound up to mg < 10−33 eV [57].

We finally recap the limits on graviton mass by looking for 
Yukawa-type fall off of the gravitational force. The first such bound 
was obtained by Hare [58], by assuming that the gravitational 
force from the center of the galaxy is diminished by factor of less 
than 1 . From this argument, a mass bound of mg < 6.7 × 10−28 eV
e
was obtained [58]. A similar reasoning was then extended by Gold-
haber and Nieto to extragalactic observations of galaxy clusters [1].

The current best limit (from all the three types of methods) 
on the mass of a graviton comes from the measurements of weak 
lensing cosmic shear [59], obtained by comparing the variance of 
the modified shear convergence power spectrum in massive grav-
ity models to the observed data [60].1 By imposing the condition 
that the observed deviations from the �CDM power spectrum are 
less than 1σ , a limit of mg < 6 × 10−32 eV was obtained [60]. One 
assumption however made in obtaining this limit is that the gravi-
ton mass has no effect on the cosmological expansion, growth of 
structure and also the CDM transfer function. Furthermore, there is 
also a degeneracy in the modified power spectrum between a non-
zero graviton mass and other cosmological parameters. To evade 
this degeneracy, the other parameters were determined using the 
values of the power spectrum at smaller values of the radius, for 
which the effect of a non-zero graviton mass is assumed to be 
negligible. These fitted parameters were then used for the limit on 
graviton mass using the measurements for larger values of the ra-
dius [60].

The constraint on graviton mass in Ref. [1] using galaxy clusters 
was obtained by assuming that the orbits of galaxies in clusters are 
bound as well as closed and using the fact that the maximum sep-
aration between galaxies from the Holmberg galaxy cluster catalog 
is about 580 kpc [61]. The limit on graviton mass was obtained 
by positing e−1 ≤ exp(−μgr), (where μg is the reciprocal of the 
reduced Compton wavelength) and assuming r = 580 kpc. This 
condition implies that there are at most O(1) departures from 
Newtonian gravity at the edge of the galaxy cluster. The estimated 
limit on graviton mass thus obtained was μg < 5.6 × 10−25 cm−1

or mg < 1.1 × 10−29 eV or λg > 1020 km. We note that this is a 
very rough estimate. This limit does not use any dynamical mass 
information for the galaxy cluster or any ansatz for the potentials 
of the different cluster components (gas, galaxies, dark matter). 
Also, no confidence interval was given for this upper limit.

Furthermore, very recently it has been shown that Newtonian 
gravity is not the only central force that gives rise to bound or-
bits and one can also get bound orbits for potentials which do 
not satisfy Bertrand’s theorem [2,62]. In particular, Mukherjee et 
al. [2] have shown that one can get single-particle bound orbits in 
a Yukawa potential for certain values. Thus, the main edifice upon 
which this bound of mg < 10−29 eV has been obtained [1] is no 
longer valid.

Galaxy clusters are the most massive gravitationally bound 
objects in the universe and provide an excellent laboratory for 
studying a diverse range of topics from galaxy evolution to cos-
mology (for reviews, see [63–66]). In the past two decades a 
large number of galaxy cluster surveys in the optical [67–70], 
microwave [71–73], and X-ray [74–79] have come online. These 
surveys have enabled the discovery of a large number of galaxy 
clusters up to very high redshifts, allowing us to probe a wide 
range of questions in astrophysics and cosmology.

Multiple observables from these surveys such as galaxy cluster 
counts, gas mass fraction, and dynamics of galaxies within clusters 
have been widely used to design tests and constrain a large class of 
modified theories of gravity, which dispense with dark energy [66,
80–88]. Galaxy clusters have also been used to constrain modified 
gravity theories, which dispense with dark matter, e.g., various in-
carnations of MOND-like theories, Verlinde’s entropic gravity, Mof-
fat’s MOG theory, nonlocal gravity [89–97]. However, despite the 
wealth of exquisite multi-wavelength galaxy cluster observations, 

1 We note that the paper [60] incorrectly states that the lensing signal in Ref. [59]
is from a cluster of stars at around an average redshift of z = 1.2.
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no improvement to the initial estimate on graviton mass using 
galaxy clusters has been obtained after Goldhaber and Nieto’s 1974 
paper.2 The only related result is by De Martino and Laurentis, 
who obtained a constraint on a variant of the Yukawa gravitational 
potential considered here (from the post-Newtonian limit of f (R)

gravity), using the thermal SZE profile of the Coma cluster from the 
2013 Planck observations [46,47]. In principle however, the analy-
sis in this work could be extended to obtain a limit on the graviton 
mass.

Therefore, to the best of our knowledge, we are not aware of 
any direct constraint on graviton mass using galaxy clusters from 
completed stage II or ongoing stage III dark energy experiments, 
or any forecast on the estimated sensitivity to graviton mass from 
upcoming stage IV experiments such as LSST [98], Euclid [99], 
WFIRST [100], etc. This is despite the fact that one of the key sci-
ence driver for these upcoming surveys is to test modified gravity 
theories [101].

Therefore, to rectify the situation and to see how sensitive cur-
rent galaxy cluster data is to graviton mass compared to very 
rough estimates from four decades ago, we do a first end-to-end 
study to obtain a limit on graviton mass using the Abell 1689 
galaxy cluster, for which exquisite multi-wavelength data is avail-
able, allowing the reconstruction of detailed mass models for this 
cluster in literature.

This manuscript is organized as follows. We discuss the dynam-
ical modeling and mass estimates in Section 2. Our analysis and 
results can be found in Section 3. We examine the robustness of 
our limit to different mass models in Section 4. We conclude in 
Section 5.

2. Dynamical modeling of A1689

We use the galaxy cluster Abell 1689 (hereafter A1689) for our 
analysis. A1689 is one of the largest and most massive galaxy 
cluster located at a redshift of 0.18. In the past decade, it has 
been subjected to intensive dynamical modeling within the con-
text of the �CDM cosmological paradigm, using multi-wavelength 
observations from weak and strong lensing, SZE and X-Ray ob-
servations [102–105] (and references therein). These observations 
have enabled us to obtain estimates separately for the dark mat-
ter, gas, and galaxy components for this cluster. Most recently, this 
cluster was extensively studied to see if its available data is com-
patible with MOND-like theories, which provide a solution for the 
dark matter problem from a modification of Newtonian gravity 
and without the need for dark matter [3,4,106]. We use the same 
modeling from these papers to test to what extent the data is vi-
able with a Yukawa potential in order to constrain the graviton 
mass. The first step in this procedure involves estimating the to-
tal mass of the different components of the galaxy cluster, viz. its 
dark matter content, galaxies, and gas in the intra-cluster medium. 
We follow the same procedure as in Ref. [4].

The total dark matter mass can be obtained by assuming the 
density obeys the Navarro–Frenk–White profile [107] and is given 
by [4]:

Mdm = 4πρsr3
s

[
log

(
rs + r

rs

)
− r

rs + r

]
, (2)

where rs and ρs represent the dark matter halo scale radius and 
scale density respectively. They are usually obtained from the rela-

2 In fact this paper has not obtained any citations from any other galaxy cluster 
or cosmology paper, according to the ADS database. The only citations to this paper 
are from the gravitational wave literature or review papers, which constrain the 
mass of the graviton.
tion between the NFW concentration parameter (c200) and the to-
tal mass at a radius 200 times the critical universe density (M200). 
To calculate the total dark matter mass, we use the NFW concen-
tration parameters for this cluster measured by Umetsu et al. [104], 
viz. c200 = 10.1 ± 0.82, M200 = (1.32 ± 0.09) × 1015M�h−1, ob-
tained using a combination of weak and strong lensing observa-
tions. Masses obtained from weak or strong lensing do not depend 
on the dynamical state of the cluster and hence do not rely on as-
sumptions of hydrostatic equilibrium. We however note that spher-
ical symmetry has been assumed in the dynamical mass modeling, 
whereas there is observational evidence that this cluster has triax-
ial symmetry [104]. Although this cluster has been modeled using 
ellipsoidal halo [104], for this work spherical symmetry has been 
assumed throughout.

The central galaxy (often called BCG, which is an acronym for 
Brightest Cluster Galaxy) mass distribution is modeled by positing 
a density distribution of the form [3,102]:

ρgal(r) = Mcg(Rco + Rcg)

2π2(r2 + R2
co)(r2 + R2

cg)
, (3)

where Mcg and Rcg represent the BCG mass and core radius re-
spectively; Rco represents the core size. The values for Mcg , Rcg , 
and Rco that we use for our analysis can be found in Refs. [3,4,
106], which we use for our analysis. The gas mass is obtained us-
ing a cored Sersic profile and given by [3,108]:

ρgas = 1.167mpne0 exp

⎧⎨
⎩kg − kg

(
1 + r2

R2
g

)1/(2ng)
⎫⎬
⎭ , (4)

where mp is the proton mass, ne0 is the central electron density; 
R g represents the radial extent of the gas; while kg and ng are 
dimensionless parameters which control the shape of the gas pro-
file. The values for all these parameters can be found in Refs. [3,4]. 
The total baryonic mass Mbar up to a given radius R can be found 
by integrating the galaxy and gas density profiles from Eq. (3) and 
Eq. (4): Mbar = ∫ R

0 4π [ρgal + ρgas]r2dr. We note that these mass 
estimates have been made by positing spherical symmetry.

Once, we have calculated the mass of the different components, 
the total acceleration assuming only Newtonian Gravity (anewt ) 
from the center of the galaxy cluster is given by

anewt = G(Mdm + Mbar)/R2. (5)

3. Results

In order to test the viability of Yukawa gravity, the gravitational 
acceleration can be obtained from the derivative of the Yukawa 
potential (Eq. (1)) and is given by [43]:

ayuk = G(Mdm + Mbar)

R
exp

(−R

λg

)(
1

λg
+ 1

R

)
. (6)

In the limit that mg → 0, Eq. (6) will asymptote to Eq. (5). In 
order to test for the validity of this modified acceleration law, we 
assume that the total mass is the same as that in Newtonian grav-
ity and we only look for deviations compared to ordinary gravity 
as a function of distance from the cluster center. This is similar 
to the approaches used to constrain modified theories of gravity, 
which dispense with the dark matter paradigm [3,4,106].

For this analysis, the NFW density profile, the BCG density pro-
file, and gas density estimates from literature, used to calculate 
the total mass have been obtained after positing a Newtonian po-
tential. Strictly speaking, the total estimated mass would be larger 
within the context of Yukawa gravity, because of the weakness 
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of gravity in a Yukawa potential compared to the corresponding 
Newtonian one. However, a self-consistent constraint on the gravi-
ton mass is out of the scope of the current paper and at this 
time would require significant additional work from the commu-
nity, since one would need to determine three unknown density 
profiles (the dark matter, gas, galaxy) in addition to the graviton 
mass from the observational data. For the dark matter component, 
one would need to do a suite of N-body simulations in Yukawa 
gravity as a function of graviton mass and then obtain a paramet-
ric estimate as a function of graviton mass. Similarly, the baryonic 
mass would need to be determined assuming hydrostatic equilib-
rium in such a modified potential. Therefore, because of the large 
number of additional free parameters, doing the whole problem 
self-consistently in order to obtain more robust bounds on gravi-
ton mass would pose formidable challenges.

However, if the graviton mass is very small, the deviations in 
the total mass estimates should be small compared to those ob-
tained using Newtonian gravity and the errors in our estimate of 
graviton mass should be negligible. Furthermore, since we shall 
only be interested in deviations in the acceleration profile (com-
pared to a Newtonian potential) for the same mass, the total mass 
would only be a normalization constant and would not make a dif-
ference to the final limit. Therefore, similar to what is usually done 
in constraining alternate gravity theories, which dispense with the 
dark matter paradigm (see e.g. [4] and references therein), we as-
sume that the total density profile is the same as in Newtonian 
gravity and then look for deviations in the acceleration profile as 
a function of distance from the center of the cluster to constrain 
departures from a standard Newtonian acceleration profile. Due 
to the above assumption, the limit is of course conservative. In 
Sect. 4, we shall examine how the limit on graviton mass changes 
when varying the mass models for the cluster used here.

We also point out that if we posit that dark matter is made 
up of massive gravitons (see e.g. [39]), then only the dark matter 
potential would be modified while the other terms in the potential 
would be unchanged and our limits would be different. Here, we 
assume that all the distinct mass components (gas, galaxy, dark 
matter) uniformly obey the Yukawa potential and dark matter is 
some hypothetical elementary particle, with the same gravitational 
laws as the baryonic components.

To quantify the deviations between Newtonian and Yukawa 
gravity as a function of distance from the center of the cluster, 
we construct a χ2 functional given by,

χ2 =
N∑

i=1

(
anewt − ayuk

σa

)2

, (7)

where anewt and ayuk are given by Eqs. (5) and (6); σa is the un-
certainty in the estimated acceleration. To get the 90% c.l. upper 
limit on the mass of the graviton, we find the threshold value of 
mg for which �χ2 > 2.71 [109], where �χ2 = χ2 −χ2

min . We note 
that χ2

min = 0 corresponds to a zero graviton mass. Therefore, �χ2

is identically equal to χ2 from Eq. (7). Since, the mass of the gravi-
ton cannot be negative, mg = 0 is a physical boundary. Therefore, 
in such cases �χ2 values for a given confidence interval could in 
principle get modified compared to the values in Ref. [109]. To ob-
tain the modified �χ2, we use the procedure recommended by 
the Particle Data Group [110,111], which has previously been used 
for neutrino oscillation analysis [112]. The effect of the physical 
boundary is determined by the difference between the minimum 
value of χ2 and the value of χ2 at the boundary of the physical 
region. If the minimum value of χ2 occurs at the physical bound-
ary (which is true in our case), then �χ2 intervals for a given 
confidence interval are the same as without a physical bound-
ary [111]. Therefore, to obtain the 90% confidence level upper limit 
Fig. 1. �χ2 as a function of graviton mass. The horizontal line at �χ2 = 2.71 gives 
the 90% c.l. upper limit on graviton mass of 1.37 × 10−29 eV or a lower limit on 
the Compton wavelength of λg > 9.1 × 1019 km. We note that since χ2

min = 0 for 
mg = 0, this is mathematically equivalent to the χ2 functional defined in Eq. (7).

Fig. 2. Fractional absolute deviation between acceleration computed assuming 
Yukawa gravity (for a graviton mass of mg = 1.37 × 10−29 eV, corresponding to the 
90% cl upper limit) as a function of distance from the center of the central galaxy 
of the cluster (usually referred to as BCG). The fractional deviation is about 10% at 
1 Mpc.

we choose �χ2 = 2.71, which is the same as the value without 
a physical boundary. Alternately, the modified �χ2 threshold can 
also be obtained using the Feldman–Cousins method [113], which 
requires extensive Monte-Carlo simulations. However, they have 
been shown to not differ too much compared to the method use 
here [111].

We calculated the �χ2 for 24 points between roughly 1 and 
3000 kpc, for which errors in acceleration have been estimated 
from existing observations [3], for which spherical symmetry has 
been assumed. The first 12 points were located at radii between 
3 and 271 kpc, for which the errors in acceleration have been es-
timated from the line of sight mass density [108], obtained using 
strong lensing observations [102]. The remaining 12 data points 
were distributed between 125 kpc and 3 Mpc and the errors in 
acceleration were estimated from the weak lensing shear pro-
files [104]. We note that the errors in acceleration data do not 
include any errors in determination of the radii. χ2 was then es-
timated from Eq. (7) for these 24 data points by calculating anewt
and ayuk at these radii and using the errors in acceleration es-
timated in Ref. [3]. This plot is shown as a function of graviton 
mass in Fig. 1. The 90% c.l. upper limit on the mass of a gravi-
ton obtained from �χ2 = 2.71, is given by mg < 1.37 × 10−29 eV, 
corresponding to a Compton wavelength of λg > 9.1 × 1019 km. 
For this value of mass, we also show the fractional deviation be-
tween the ordinary Newtonian acceleration and that assuming the 
Yukawa potential in Fig. 2. We can see that for this graviton mass, 
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Table 1
Sensitivity of the graviton mass limit to different models of dark matter potential 
(different NFW fits), gas mass, and BCG mass. The first two columns indicate c200

and M200 values used for the NFW profile to calculate the total dark matter mass 
from Eq. (2). The next two columns indicate the corresponding equation (or profile), 
from which the gas and BCG mass was estimated. The final column indicates the 
upper limit on graviton mass (expressed as a multiple of 10−29 eV).

M200

(1015 M�h−1)
c200 Gas mass BCG mass mg (10−29 eV)

1.32 10.1 [104] Eq. (4) Eq. (3) < 1.37
1.81 5.7 [114] Eq. (4) Eq. (3) < 1.18
0.83 12.2 [116] Eq. (4) Eq. (3) < 1.43
1.32 10.1 [104] Eq. (4) Hernquist < 1.37

the differences are less than 1% up to 200 kpc and about 10% at 
about 1 Mpc.

4. Effect of systematic errors

We now examine the sensitivity of our limit on graviton mass 
to different mass models for the three components of A1689, com-
pared to the results in the previous section. A tabular summary of 
all these upper limits on varying the mass models can be found in 
Table 1.

We start with the dark matter part. A large number of groups 
have obtained different NFW parameters for this cluster using 
weak and strong lensing data. (See Table 9 of Ref. [104].) We 
first examine how our result changes with different NFW param-
eters from the literature by considering two values of the con-
centration parameter, which span the full range of the estimated 
values and for which spherical symmetry is assumed. The low-
est value for c200 for this cluster corresponds to c200 = 5.71 for 
M200 = 1.81 × 1015M�h−1 [114]. The corresponding upper limit 
on graviton mass is at 1.18 × 10−29 eV. At the other extreme, 
when we choose c200 = 12.2 for M200 = 0.83 × 1015 M� , we get 
mg < 1.43 × 10−29 eV.

Even though, most of the mass in this galaxy cluster is made up 
of dark matter, we don’t expect any major changes with different 
BCG or gas mass profiles. Nevertheless, to check this, instead of 
Eq. (3), we used the Hernquist profile [115] (similar to Ref. [94]) 
for the BCG mass with the same parameters as in Ref. [94]. With 
this new galaxy mass profile, the new graviton mass limit is the 
same as before.

Therefore, the change in the limit on the graviton mass by vary-
ing our ansatz for the mass models is less than 15% and does 
not change the ballpark estimate on the limit on graviton mass 
of mg � 10−29 eV.

5. Conclusions

In 1974, a limit on graviton mass of mg < 1.1 × 10−29 eV was 
obtained from galaxy clusters, using the fact that the orbits of 
galaxy clusters are bound up to 580 kpc [1] and such closed bound 
orbits can only exist within Newtonian gravity. However, recently it 
has been shown that one can get closed bound orbits for a Yukawa 
potential [2]. Therefore, the main premise used to obtain the mass 
bound limit from galaxy clusters in Ref. [1] can no longer be justi-
fied and this result should no longer be quoted in the literature.

Subsequently, even though a huge amount of work has been 
done in testing a plethora of modified gravity theories with galaxy 
clusters using optical, X-ray, and SZE data, we are not aware of 
any other work on estimating a bound on graviton mass from clus-
ters, despite a wealth of new precise observational data in the past 
decade, courtesy a whole slew of multi-wavelength surveys.

We obtain a limit on graviton mass from A1689 using an in-
dependent method compared to Ref. [1]. We use recent dynamical 
mass models of the different components of galaxy cluster A1689, 
obtained using X-ray, weak and strong lensing data [3,4,106] to ob-
tain a limit on the graviton mass. For this purpose, we assume that 
the potential due to the gas, galaxy, and dark matter all follow a 
Yukawa behavior, due to non-zero graviton mass. We then look for 
deviations from the estimated acceleration data (assuming validity 
of Newtonian gravity) and a Yukawa potential, and find the criti-
cal graviton mass for which the �χ2 difference between the two 
potentials crosses 2.71. This gives us a 90% c.l. upper bound on the 
graviton mass of mg < 1.37 × 10−29 eV or on the Compton wave-
length λg > 9.1 × 1019 km. We also checked how the limit varies 
with different mass models for the dark matter and BCG poten-
tial. We find that the maximum variation in the limit on graviton 
mass is about 15% and thus does not change the ballpark estimate 
of our limit, which is O(10−29) eV.

We should point out that the fact that our upper limit is ap-
proximately of the same order of magnitude as that obtained by 
Goldhaber and Nieto [1] is only a coincidence. The maximum size 
they assumed for the galaxy cluster orbits is about 580 kpc, as this 
was the size of the largest known clusters in 1974. Using this es-
timate for the size, they obtained an upper limit of O(10−29) eV, 
which is of the same order of magnitude as ours. In principle, one 
could trivially apply the same method [1] to some of the galaxy 
superclusters currently known. For example, the recently discov-
ered Saraswati supercluster [117] (whose size is at least 200 Mpc) 
would yield a more stringent upper limit on the graviton mass of 
about 3 × 10−32 eV. However, as mentioned earlier the underly-
ing assumptions behind this argument used to obtain the limit are 
incorrect.

We however note that to obtain our limit, mass estimates for 
the different components (dark matter, gas, galaxy) have been 
obtained assuming Newtonian gravity, since otherwise the whole 
problem of simultaneously determining the mass of the three un-
known components in addition to the graviton mass becomes 
currently intractable, given the large number of free parameters. 
However, in this case since the limit has been obtained by using 
deviations from Newtonian acceleration profile as a function of the 
distance from the galaxy cluster center and the total mass of each 
component would mainly act as a normalization constant and not 
make a big difference to our final limit.

Given the large number of upcoming Stage IV dark energy ex-
periments such as LSST [98], Euclid [99], WFIRST [100] etc., it 
would be interesting to estimate the expected improvement in the 
limit on graviton mass compared to the result obtained in this 
work. We now carry out an order of magnitude estimate of the 
same.

Some of our errors in acceleration data (at radii less than about 
150 kpc) come from strong lensing measurements [102], which use 
Hubble Space Telescope data. Therefore, we do not expect signif-
icant improvements in the strong lensing based error estimates. 
The acceleration errors at higher radii are obtained from weak 
lensing measurements using Suprime-Cam data [104]. For Euclid 
and other stage IV experiments, the multiplicative bias from the 
shear must be less than 0.1% [99,118]. If we evaluate the accelera-
tion errors from these predicted shear errors for distances greater 
than 150 kpc and combine it with current errors from strong lens-
ing for smaller radii, we expect a 90% confidence upper limit of 
mg < 2.75 × 10−30 eV. This is still not as sensitive as the current 
best limit on graviton mass [60]. However, we caution that this is 
only a ballpark estimate of expected improvement sensitivity. More 
detailed forecasting studies need to be done by the relevant work-
ing groups from the various stage IV dark energy experiments. One 
key missing ingredient needed for that purpose is the generation 
of N-body simulations in Yukawa gravity and the calculation of the 
corresponding halo mass functions.
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