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Abstract

Computed Tomography (CT) is one of the signi�cant research areas in the �eld of
medical image analysis. As X-rays used in CT image reconstruction are harmful to
the human body, it is necessary to reduce the X-ray dosage while also maintain-
ing good quality of CT images. Since medical images have a natural sparsity, one
can directly employ compressive sensing (CS) techniques to reconstruct the CT im-
ages. In CS, sensing matrices having low coherence (a measure providing correlation
among columns) provide better image reconstruction. However, the sensing matrix
constructed through the incomplete angular set of Radon projections typically pos-
sesses large coherence. In this paper, we attempt to reduce the coherence of the sensing
matrix via a square and invertible preconditioner possessing a small condition num-
ber, which is obtained through a convex optimization technique. The stated properties
of our preconditioner imply that it can be used e�ectively even in noisy cases. We
demonstrate empirically that the preconditioned sensing matrix yields better signal
recovery than the original sensing matrix.
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1 Introduction

X-ray Computed Tomography (CT) is widely used in hospitals and clinics for di-
agnosis and intervention. CT is a technique for reconstructing the cross-section
of an object from measurements that are essentially the line integrals of it. The
general image reconstruction in CT is a mathematical process that generates
an image from X-ray projection data acquired at di�erent angles around the
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object. As X-rays are harmful to human bodies, minimization of risk posed by
radiation receives the attention of many researchers [1, 2]. The basic objective
of CT in medical use is to obtain high quality images from projection data with
as little of radiation dosage as possible.

The Reconstruction methodology of CT images is divided into two cate-
gories, namely, analytical and iterative methods. The �ltered back-projection
(FBP) method [3] is a commonly used analytical method for image reconstruc-
tion in CT due to its computational e�ciency and numerical stability [4]. De-
spite its popularity, the FBP su�ers from systematic geometric distortion and
streak artifacts when the measured projection data are not su�cient. When
dealing with insu�cient data, the iterative class of methods has better per-
formance [5]. In recent years, the reconstruction methods [4] [6] [7] based on
optimization have become popular due to their ability in reducing number of
X-ray projection samples while maintaining good reconstruction �delity. The
basic premise behind these methods lies in e�ciently exploiting natural spar-
sity present in CT images using ideas from the emerging �eld of Compressive
Sensing.

Compressive Sensing (CS) theory [8, 9] relies on two fundamental principles,
Sparsity and Coherence. Sparse signals x ∈ RM can be recovered from small
number m (where m < M) of measurements y satisfying y = Ax with k < m
where k is the number of non zero elements in x. The results pertaining to
the recovery guarantee depend on the coherence and the Restricted Isometry
Property (RIP) of the sensing matrix A which we discuss in Section 3. CS
theory states that matrices having smaller coherence give better recovery, which
signi�es the need for reducing the coherence of the sensing matrix.

Over the last few years, researchers [10, 11, 12, 13, 14, 15] proposed various
methods to reduce the coherence of a given sensing matrix, which has potential
to imply fewer measurements in reconstruction. Elad [10] proposed an iter-
ative method which minimizes the t−averaged mutual coherence of a sensing
matrix. The authors in [11] considered an application to MRI, which uses an
incoherent criterion based on Point Spread Function (SPF). Duarte et. al. [12]
considered the problem of making any subset of columns in sensing matrix as
approximately orthogonal as possible by making its Gram matrix lie close to
identity matrix. Xu et.al. [13] proposed an alternating minimization method to
�nd a sensing matrix which is as close to an equiangular Tight Frame (ETF) as
possible. The minimization of mutual coherence was investigated in a formula-
tion of sequential non-smooth convex programming, which was solved by using
subgradient projection algorithm in [15]. Most of the preconditioning methods
that minimize coherence provide nonsquare matrices, which may not address
the compressed data acquisition problem in a true sense. The square and in-
vertible preconditioners, however, imply that the original under-determined as
well as preconditioned systems are equivalent. To our knowledge, square and
invertible preconditioners with good condition number, applicable to CT, are
not available in the literature.

The recovery of images in CT from incomplete measurements is an ill-posed
problem [16]. The reconstruction from a limited set of views (referred to as
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Limited angle or sparse-view tomography) was addressed using wavelets by B.
Sahener et. al [17]. Another wavelet based statistical inversion method was
proposed in [18]. These methods e�ciently incorporate a priori information
about missing portions of data into reconstruction process. Of late, addressing
this ill-posed problem in sparsity framework became an active direction of re-
search, which does not in general require any a priori information about missing
views. The work presented in [4] highlighted the importance of sparsity based
methods in CT. The authors of [19] (and references therein) discussed the CT
reconstruction in circular cone-beam geometry by constrained TV minimiza-
tion. Ritschl et. al. [20] proposed an improved TV method within the Adaptive
Steepest Descent-Projection Onto Convex Sets (ASD-POCS) for CT image re-
construction. In [7], a novel algorithm, called linearized Split-Bregman method,
was proposed to e�ciently solve the reconstruction of CT images. By approx-
imating an intermediate matrix that arises in the Split-Bregman method, the
authors of [21] addressed incomplete data problem in tomography. This being
an approximate method does not involve any kind of preconditioning.

To the best of our knowledge, the methods available in the literature mostly
are aimed at improving the performance of the solvers while e�ciently exploiting
the inherent sparsity in CT images. The present work, however, aims at im-
proving the recovery property of the Radon sensing matrix via preconditioning.
In particular, we determine a square and invertible preconditioner, through a
convex optimization problem, that improves the coherence of the Radon sensing
matrix while simultaneously maintaining small condition number for the precon-
tidioner. Experimentally, we demonstrate that the improved coherence reduces
the reconstruction error in CT. Consequently, for a given error tolerance, our
preconditioning approach uses a reduced number of measurements even in the
noisy setting.

The remainder of the paper is organized into several sections. In Section 2,
we discuss the basics of CT, discretization of the Radon transform and recon-
struction of images from reduced set of measurements. We record the relevant
concepts of CS based techniques in Section 3. In Section 3.2, we discuss the
impact of preconditioning on spare recovery. We propose a new preconditioning
method in Section 4. We present experimental results and concluding remarks
in Sections 5 and 6 respectively.

2 Basics of Computed Tomography

The X-ray source, together with primary collimators, provides a �ne beam of
radiation that passes through the object, the intensity of the beam is then
measured by a detector. In general, for any θ and τ the projection data are
measured as

(Rf)(θ, τ) =

∫ ∞
−∞

∫ ∞
−∞

f(p, q)δ(p cos θ + q sin θ − τ)dpdq, (1)

called the Radon Transform. In (1), f is the density function and δ-function
selects the ray point set. The limits of p and q are given by the object size. The
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Fig. 1: Data acquisition in (a) Parallel-Beam and (b) Fan-Beam geometries.

task of reconstruction of the original image f(p, q) from its projection represen-
tation R(θ, τ) is the problem of �nding the inverse Radon transform. The data
acquisition in CT is done in several ways such as parallel, fan and cone beam
geometries. The parallel-beam and fan-beam modes of data acquisition, shown
in Figure 1, are connected by a transformation, called rebinning [22].

2.1 Discretization of Radon Transform

Consider a ray corresponding to some view θi and radial parameter τj . In
discrete setting, the Radon measurement may be rewritten as

(Rf)(θi, τj) =
∑
l

ai,j(l)pl, (2)

where ai,j(l) =

{
wij if (θi, τj) ray hits lth pixel

0 else.

In formulating (2), one may consider bilinear interpolation of pixels that fall in
the path of the ray. The value wij is the weight obtained through interpolation
and pl stands for the intensity value of lth pixel. The equation (2) may be
rewritten as

(Rf)(θi, τj) = [ai,j(1) . . . ai,j(M)][p1 . . . pM ]T , (3)

where M = n2, the total number of pixels in the image of size n× n. Using all
θi and τj , one obtains a matrix system

ỹ = Ãx, (4)

where ỹ contains Radon measurements (i.e. (Rf)(θi, τj)) in vector form. Ac-

cordingly, Ã is a weighted matrix (whose elements are ai,j(l)) and x is the vector

whose elements are pl. The row size of Ã is dictated by the number of radial
and angular sampling parameters and the column size of Ã is the dimension of
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the image in vector form. In generating the sensing matrix Ã, one may consider
the following standard radial and angular sampling [22]:

Radial Sampling:

τj = δτ
(
j − n

2

)
, (5)

Angular Sampling:

θi =
i+ 0.5

n
π, (6)

where i, j ∈ {0, 1, · · · , n− 1}, δτ is the increment in radial sampling.

2.2 Reconstruction from reduced measurements

Let Ã be the matrix corresponding to full set of measurements and ỹ its corre-
sponding projection data. In sparse-view CT, one restricts the number of angles,
and accordingly the row size of the sensing matrix Ã gets restricted. Mathe-
matically, for some row-restricted identity matrix R, the restricted projection
set may be taken as Rỹ (denoted as y) with the corresponding sensing matrix
RÃ (denoted as A). Generally, in sparse-view CT, one deals with a small set of
projection views, and hence the system in y = Ax becomes under-determined,
admitting thereby in�nitely many solutions. The inherent sparsity present in
CT images makes CS a natural choice [4] for recovering the underlying image.

3 Compressive Sensing

Compressed Sensing (CS) technique [8, 9] recovers x ∈ RM from a few of its lin-
ear measurements y ∈ Rm through an e�cient recovery process via the concept
of sparsity. From the measurement vector y and the sensing mechanism, one ob-
tains a system y = Ax, where A is an m×M (m < M) matrix. The measure for
sparsity is provided by ‖·‖0 norm, where ‖x‖0 := |{j ∈ {1, 2, . . . ,M} : xj 6= 0}|.
The sparsest solution can be obtained from the following minimization problem:

P0(A, y) : min
x
‖x‖0 subject to Ax = y.

This minimization problem is known to be NP-hard [8]. Two classes of methods,
namely greedy methods [23] and convex relaxation of P0(A, y), are available for
recovering the k-sparse x (that is, ‖x‖0 ≤ k). The convex relaxation of P0(A, y)
can be taken as

P1(A, y) : min
x
‖x‖1 subject to Ax = y.

Despite the solution to an under-determined linear system being non-unique, CS
theory provides su�cient conditions under which unique recovery of the sparse
signal is possible. The coherence, µ(A), of a matrix A is the largest absolute
normalized inner product between di�erent columns from A, that is,

µ(A) = max
1≤ i,j≤M, i6=j

| aTi aj |
‖ai‖2‖aj‖2

,
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where, ak stands for the k-th column in A. An m ×M matrix A is said to
satisfy the Restricted Isometry Property (RIP) [8, 9] of order k with constant
δk (0 < δk < 1) if for all vectors x ∈ RM with ‖x‖0 ≤ k, we have

(1− δk) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δk) ‖x‖22 . (7)

Roughly speaking, RIP measures the �overall conditioning" of the set of m ×
k submatrices of A and establishes su�cient condition for exact recovery. A
smaller value for δk implies better sparse recovery properties. The following
results ([8, 9]) establish the connection between δk and µ, and the equivalence
relation between P0 and P1 problems respectively.

Theorem 3.1. Suppose an m×M matrix A has the (2k, δ) restricted isometry
property with δ <

√
2 − 1, then P0 and P1 have the same k−sparse solution if

P0 has a k−sparse solution.

Proposition 3.1. Suppose that a1, . . . , aM are the unit norm columns of the
matrix A with coherence µ. Then A satis�es RIP of order k with constant
δk = (k − 1)µ.

The above result indicates that matrices with smaller coherence enable us
to have smaller δk.

Coherence plays an important in establishing the guaranteed recovery of
sparse signals via Orthogonal Matching Pursuit (OMP) or Basis Pursuit (BP),
as summarized by the following result [8].

Theorem 3.2. An arbitrary k−sparse signal x can be uniquely recovered as a
solution to the problem P0(A, y) using OMP and BP, provided

k <
1

2

(
1 +

1

µ(A)

)
. (8)

From (8), it is clear that smaller value for coherence results in better bounds on
sparsity. Consequently, coherence reduction methods attain signi�cance.

3.1 TV norm minimization and solvers

Total variation (TV) regularization is a generalization of the ‖·‖1 regularization
in compressive sensing problems. The advantage [24] of TV minimization is that
it can recover not only sparse signals or images, but also dense staircase signals
or piecewise constant images. Hence, it is a natural choice in problems such as
the reconstruction in CT.

Among existing versions of TV regularization methods, Total Variation Aug-
mented Lagrangin and ALternating direction ALgorithm (TVAL3) [24] is popu-
lar and outperforms other state-of-the-art solvers in the �eld.

For reconstructing sparse x from y = Ax, in total variation methods, one
considers the following gradient based minimization:

Ptv : min
x

‖∇x‖1 subject to Ax = y. (9)
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where ‖∇x‖1 =
∑
i,j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2. This model is di�cult

to solve because of non-di�erentiability and non-linearity of TV-norm. The
Alternating Direction Method (ADM) [25] minimizes the augmented Lagrangian
function through alternating minimization schemes. The equivalent variant of
the problem (9) is as follows:

Ptv1 :
min
d,x

‖d‖1

subject to Ax = y, d = ∇x.
(10)

Its corresponding augmented Lagrangian function and minimization problems
are as follows:

Pal : min
d,x

LA(d, x) (11)

where LA(d, x) is augmented Lagrangian function

LA(d, x) = ‖d‖1 − βT1 (∇x− d) +
β2
2
‖∇x− d‖22 − βT3 (Ax− y) +

β4
2
‖Ax− y‖22.

The alternating direction method is used here to solve the problem (11). For a
�xed x, the minimizer di for all i can be obtained via following formula:

di = max

{
‖∇ix−

(β1)i
β2
‖ − 1

β2
, 0

} ∇ix− (β1)i
β2

‖∇ix− (β1)i
β2
‖
.

For a �xed di, with respect to x, one minimizes the quadratic in 11 approx-
imately by taking steepest descent step. After each steepest descent step, di
is updated and the process is repeated until 11 results in a solution which is
approximate with respect to the prescribed tolerance [26]. Let (d̂, x̂) be an ap-
proximate solution to (11). The multipliers are then updated with the following
two formulas for all i:

(β1)i = (β1)i − β2(∇ix̂− d̂i),

β3 = β3 − β4(Ax̂− y).
The performance of TVAL3 depends on the parameters β2, β4. In general, β2

is chosen in accordance with the noise level in the measurement vector y and the
sparsity level of the underlying signal x. An elaborate description of TVAL3
along with the selection of β2, β4 can be found in [24, 26] and the references
therein.

3.2 Impact of preconditioning on sparse recovery

To begin with, we analyze the impact of preconditioning on sparse recovery as
relevant to CT. For a nonsingular m × m matrix P , the system of equations
y = Ax and Py = PAx have same set of solutions. Consequently, the problems
P0(A, y), P0(PA,Py) and P1(A, y), P1(PA,Py) are equivalent respectively. In
view of this, Theorem 3.2 may be restated as follows:
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Theorem 3.3. Let P be any nonsingular matrix. An arbitrary k−sparse signal
x can be uniquely recovered as a solution to the problem P0(PA,Py) using OMP
and BP, provided

k <
1

2

(
1 +

1

µ(PA)

)
. (12)

When µ(PA) < µ(A), (12) shows improved bound on the sparsity parameter for
the new system PAx = Py. The improvement in the bound is expected to con-
tribute to reduction in the number of measurements to be used in reconstruction.
The objective of present study is to determine a square and invertible matrix P
possessing small condition number, and to analyze its bearing on reconstruction
in CT.

4 On designing preconditioners

The discretization of Radon transform along with integral approximation on a
rectangular grid makes Radon inversion ill-conditioned [27]. Further, the pre-
conditioner with large condition number ampli�es the power of noise, if present,
in Radon measurements. Due to these reasons, designing of preconditioner with
low condition number attains importance. The problem of determining the pre-
conditioner P, with small condition number such that µ(PA) < µ(A), is posed
as the following optimization problem:

Pµ :
min
P 6=0

max
i 6=j

|〈Pai, Paj〉|
‖Pai‖2‖Paj‖2

,

subject to κ(P ) ≤ γ.
(13)

This problem, however, is non-convex. We now reformulate it as follows.
The coherence of the preconditioned matrix PA is the maximum absolute

value of o�-diagonal elements of the Gram matrix ATPTPA. Therefore, we
approximate the matrix ATPTPA to the identity matrix I in terms of the
Frobenius norm with a constraint on the condition number, which is stated as
follows:

P :
min
X

‖ATXA− I‖F

subject to κ(X) ≤ γ,
(14)

for some suitable choice of γ. In (14), X is PTP , a positive de�nite matrix and
κ(X) is the spectral condition number of X, which is de�ned [28] as follows:

κ(X) =


λmax(X)
λmin(X) , if λmin(X) > 0,

∞, if λmin(X) = 0 and λmax(X) > 0,

0, if X = 0,

(15)
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where λmax(X) and λmin(X) are the maximum and minimum eigenvalues of X
respectively. The constrained optimization problem may be considered in the
following unconstrained form:

P : min
X

‖ATXA− I‖2F + ηκ(X), (16)

for some suitable choice of η. We replace the nonconvex function κ(X) with
ν‖X‖2F −λ log det(X) and obtain the following unconstrained convex optimiza-
tion problem:

Pc : min
X

‖ATXA− I‖2F − λ log det(X) + ν‖X‖2F , (17)

where det(·) denotes the determinant and ‖ · ‖F denotes the Frobenius norm.
log det(X) and ‖X‖F respectively account for the sum of logarithm of eigen
values of X and the maximum eigen value of X. The presence of �negative
log det(X)" in (17) enforces the smallest eigen value, in particular, to be away
from zero. Consequently, for a suitable choice of λ, minimization of ‖X‖2F −
λ log det(X) reduces the gap between largest and smallest eigen values of X,
and hence leads to an approximate minimization of the nonconvex function
κ(X). The cost functions involving the negative log-determinant penalties and
upper-bounding κ(X) in terms of such penalties were studied in [29, 30].

The objective function in (17), f(X) = ‖ATXA − I‖2F − λ log det(X) +
ν‖X‖2F is convex and di�erentiable. The derivative [31] of each term in f(X)
with respect to X is

∇X ‖ATXA− I‖2F = 2A(ATXA− I)AT (18)

∇X log detX = X−T (19)

∇X ‖X‖2F = 2X. (20)

Therefore, the derivative of f(X) is ∇Xf(X) = 2A(ATXA − I)AT − λX−T +
2νX. Setting ∇Xf(X) to 0, we obtain the following equation, which provides
optimal X.

2A(ATXA)AT − 2AAT − λX−T + 2νX = 0. (21)

The equation (21) can be solved by using gradient methods. In particular,
we obtain X by solving it using conjugate gradient method [32]. Finally, we
determine the preconditioner P by splitting X as PTP via Cholesky decompo-
sition. The paprameters λ and ν are crucial in generating the preconditioner
with good condition number, which are in general tuned experimentally. The
pseudo code of solver for (17) is shown in algorithm (1). After determining P ,
we solve Py = PAx for sparse x, which stands for CT image, using TVAL3 as
detailed in Sec 3.1.
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Algorithm 1 Pseudo code for determining preconditioner from (17)

• Part A: On solving (21):

1: Given initial points X0, r0 = ∇Xf(X0), p0 = −r0, 0 < ε � 1 and
K ∈ Z+. Set k = 0.

2: Choose α by using backtracking line search [33]
3: Update X :

Xk+1 = Xk + αpk

stop if ‖Xk+1 −Xk‖2 < ε or k + 1 > K. Otherwise go to next step.
4: Update rk and pk

γk =
‖rk‖F
‖pk‖F

rk+1 =∇Xf(Xk+1)

pk+1 =− rk+1 + γkpk

5: Set k := k + 1, return to step 2.

• Part B: On obtaining P :

Find P such that X = PTP via Cholesky decomposition

Remark 4.1. By setting λ and ν in (17) to 0, one obtains the closed form
for the preconditioner as (AAT )−1, provided A has full rank. In particular,
if A = UDV T , the Singular Value Decomposition of A, then (AAT )−1 =
(UDDTUT )−1. Consequently, the preconditioner in this case takes the form

(DDT )−
1
2UT , which is denoted as Pint. For some suitable choice of η, the

authors of [34] regularized the preconditioner as (DDT + ηI)−
1
2UT , which is

denoted as Preg. As Pint and Preg are square matrices such as P proposed in
the current work, a comparison of performances obtained through Pint, Preg and
P seems justi�ed.

Remark 4.2. By determining a rectangular preconditioner, P̃ , of size m×M ,
one may also formulate a system P̃ ỹ = P̃ Ãx where ỹ and Ã are respectively the
full set of Radon measurements and the associated sensing matrix as de�ned in
section 2.1. Such a preconditioner P̃ merely acts as a dimentionality reduction
operator by converting an M -vector to an m-vector. In a true sense it does
not use any reduced data set as the computation of y from P̃ ỹ in this approach,
in general, requires the full set of Radon measurements. In the present work,
however, the system ỹ = Ãx is initially recast as y = Ax, where y = Rỹ and
A = RÃ, with R standing for the row-restricted identity matrix. This step is
then followed by preconditioning. Consequently, the proposed method addresses
compressed data acquisition problem in true sense.
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5 Experimental Results

Initially we generated the sensing matrix (A) of size |θ|n×M for di�erent subsets
of angles θ, with |θ| = 20, 30, 40, 50, 60, (15.6%, 23.4%, 31.2%, 39%, 46.8% of
total data respectively), by drawing θ uniformly from the regular angular grid
generated as in (6) and by taking the radial samples as per (5). Now, for
each sensing matrix A (that is, for each subset of angles θ), we obtained a
preconditioner P such that the coherence of the preconditioned matrix, PA, is
smaller than that of A and the condition number of P is small, by solving the
convex optimization problem (17). It can be noted that the construction of A
(and hence P ) depends only on the choice of radial and angular samples, and n
(and not on the image data). Hence A and P may be designed via an o�-line
process.

5.1 Finding Preconditioner

As �nding P involves an iterative process (detailed in Algorithm 1), we con-
sidered the initial guess for P as Preg (which is de�ned in Remark 4.1) and
obtained P by carrying out the steps in Algorithm 1. The reasons for choosing
Preg as the initial guess are (i) P almost coincides with Preg when ν = λ = 0,
and (ii) Pint has a very bad condition number for all subsets of angles. With a
view towards comparing the performance of our preconditioner P against Preg,
we report in Tables 1, 2 the condition numbers κ(Preg), κ(P ) and associated
coherences µ(PregA), µ(PA). From Tables 1, 2, it is clear that, against Preg,
P has small condition number along with small value for µ(PA). Experimen-
tally we found the values η = 10−5 (in generating Preg), ν = 1 and λ = 50
(in generating P ) to be better choices among others. From Table 2, it can be
stated that new preconditioner provides marginally suboptimal values for co-
herence. This is an expected behavior due to the fact that the improvement
in condition number comes with an additional constraint as in Eq. 14, which
marginally increases coherence. Overall, the results reported in tables show the
promise that preconditioning o�ers towards the reconstruction in CT from re-
duced measurements. We carried out entire simulation work, reported in this
paper, in MATALB (2014a) environment on a machine having 32 GB RAM and
Intel Xeon processor with speed of 2.20 GHz employing a 64-bit Windows 10
operating system.

5.2 Image reconstruction

For experimental purpose we used two di�erent test images, namely Shepp-
Logan and Brain MRI images, each of size 128× 128. Using TVAL3 solver, we
reconstructed the underlying image x from (Py, PA), where y is the vector of
Radon measurements generated for di�erent sets of parameters as discussed at
the beginning of this section. In order to evaluate the accuracy of reconstruction
results quantitatively, we computed the Peak Signal to Noise Ratio (PSNR)
and the structural similarity index (SSIM) between the original image and the
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reconstructed image. The PSNR value [35] is computed as

PSNR = 10 ∗ log10
(max(xo))2

MSE
, (22)

where MSE is de�ned as

MSE =

∑m
i=1

∑n
j=1(x

o
i,j − xi,j)2

m× n
, (23)

with xoi,j and xi,j being the (i, j)
th pixel values of the original and reconstructed

images respectively. Higher PSNR values indicate better reconstruction. The
structural similarity (SSIM) index [36] is another e�ective way of measuring the
similarity between the original and reconstructed images. Suppose ρ and t are
local image patches taken from the same location of two images being compared.
The local SSIM index measures three similarities of the image patches: the
similarity of luminance l(ρ, t), the similarity of contrast c(ρ, t), and the similarity
of structures s(ρ, t). The local SSIM is de�ned as

S(ρ, t) = [l(ρ, t)]k1 · [c(ρ, t)]k2 · [s(ρ, t)]k3 ,

S(ρ, t) =

(
2µρµt + c1
µ2
ρ + µ2

t + c1

)k1 ( 2σρσt + c2
σ2
ρ + σ2

t + c2

)k2 ( 2σρt + c3
σρσt + c3

)k3
, (24)

where µρ and µt are local means, σρ and σt are local standard deviations, σρt is
cross-correlation after removing the means, c1, c2 and c3 are the regularization
constants for the luminance, contrast and structural terms and k1 > 0, k2 > 0
and k2 > 0 are parameters used to adjust the relative importance of the three
components. The SSIM score of the entire image is then computed by pooling
the SSIM map, i.e. by simply averaging the SSIM map. Higher SSIM value
indicates better quality in image reconstruction.

5.2.1 Reconstruction from noiseless measurements

To begin with, we report the results in the case where there is no noise in the
measurements, that is, Py = PAx. The PSNR and SSIM values, reported in
Table 3 both for initial sensing matrix A and preconditioned sensing matrix PA
for di�erent sets of Radon measurements, indicate improvement in reconstruc-
tion quality that preconditioning brings in. The images reconstructed through
the original sensing matrix A and preconditioned sensing matrices PregA, PA
are shown in Figure 3 respectively for |θ| = 20, 40 and 60. From the results in
Table 3 and Figure 3, we conclude that PA results in better performance than
its counterparts PregA and A. The corresponding results and the improvement
in reconstruction for MRI test image (Figure 2(b)) are shown in Table 4 and
Figure 4.
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Tab. 1: The condition numbers of preconditioners as well as preconditioned sensing
matrices for diferent subsets of angles. This table shows the improvement
provided by the new preconditioner P .

|θ| Size of matrix κ(Preg) κ(P ) κ(A) κ(PA)
20 2560× 16384 91.1745 35.2728 91.1759 2.5848
30 3840× 16384 119.1704 41.4987 119.1725 2.8717
40 5120× 16384 2.3091e+04 5.0474e+03 5.1585e+15 1.1815e+13
50 6400× 16384 2.5812e+04 5.3047e+03 9.9531e+14 1.2731e+13
60 7680× 16384 2.8274e+04 5.5568e+03 1.1822e+15 1.2888e+13

Tab. 2: Coherences of the sensing matrices A, PregA and PA of size |θ|n × M for
di�erent subsets of angles θ with |θ| = 20, 30, 40, 50, 60. The terms in
the brackets of second column refer to compression provided by the Radon
sensing matrix. This table indicates that the new preconditioner (P ) provides
marginally suboptimal value for coherence, compared to the values provided
by Preg. This expected behaviour is due to the additional constraint in (14),
which improves the condition number signi�cantly.

|θ| Size of Sensing matrix µ(A) µ(PregA) µ(PA)
20 2560× 16384 (15.6%) 0.9645 0.9143 0.9260
30 3840× 16384 (23.4%) 0.8817 0.7586 0.7879
40 5120× 16384 (31.2%) 0.7986 0.7102 0.7168
50 6400× 16384 (39%) 0.7544 0.5818 0.5929
60 7680× 16384 (46.8%) 0.7769 0.6201 0.6310

5.2.2 Image reconstruction from noisy measurements

The noisy Radon measurements, denoted yε, were generated by considering the
sensing matrix A and the original phantom image x such that yε = Ax + ε
where ε was taken as η

‖Ax‖2 with η representing 2-norm of a vector of white

Gaussian noise. In other words, as opposed to (y,A), the pair (yε, A) was used
in the execution of the algorithm. The PSNR and SSIM values for Shepp-logan
Phantom and Brain MRI images, reported in Tables 5, 6 for the sensing matrices
A, PregA and PA, indicate that the proposed preconditioning improves the
reconstruction performance. The corresponding results and the improvement in
reconstruction for Shepp-logan Phantom and Brain MRI test images (Figure 2)
are shown in Tables 5, 6 and Figures 5, 6.

To summarize, despite the fall in coherence obtained via the preconditioning
appearing not so signi�cant, its impact on the reconstruction is signi�cant in
reducing reconstruction error. Consequently, for a given error tolerance, pre-
conditioning of CT sensing matrix amounts to reducing the number of measure-
ments. It may be reiterated that our approach remains focused on improving
the sparse recovery properties of Radon sensing matrix as opposed to improving
the performance of solvers. It may be possible to improve the performance of
preconditioning based reconstruction further by adopting other solvers [7].
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(a) (b)

Fig. 2: Ground truth Shepp-Logan phantom and Brain images

Tab. 3: Reconstruction quality through PSNR and SSIM measures in noiseless case
for the Phantom test image: The sensing matrices A, PregA and PA are of
size |θ|n ×M . The PSNR and SSIM values are shown for n = 128 and |θ|
= 20, 30, 40, 50 and 60 angles. Here θ represents subset of angles used in
reconstruction. The values reported in this table indicate the improvement
obtained by the proposed preconditioning.

Size of sensing matrix
PSNR (dB) with SSIM with

A PregA PA A PregA PA

2560× 16384 (15.6%) 26.6962 27.6218 28.9158 0.9629 0.9324 0.9767

3840× 16384 (23.4%) 27.5491 29.9888 30.0952 0.9670 0.9761 0.9839

5120× 16384 (31.2%) 30.8413 33.3227 34.2677 0.9865 0.9908 0.9940

6400× 16384 (39%) 32.2684 43.0107 52.6897 0.9909 0.9972 0.9998

7680× 16384 (46.8%) 32.2573 43.0505 62.4464 0.9907 0.9978 0.9999

Tab. 4: Reconstruction quality through PSNR and SSIM measures in noiseless case
for the MRI test image: In line with Table 3, the values reported in this table
indicate the improvement obtained by the proposed preconditioning.

Size of sensing matrix
PSNR (dB) with SSIM with

A PregA PA A PregA PA

2560× 16384 (15.6%) 17.0998 17.1289 17.5741 0.4825 0.4946 0.5253

3840× 16384 (23.4%) 18.1166 18.7103 19.3386 0.5741 0.5936 0.6383

5120× 16384 (31.2%) 19.9713 20.6244 21.7107 0.6793 0.7010 0.7588

6400× 16384 (39%) 20.3146 21.9110 23.0272 0.7028 0.7633 0.8150

7680× 16384 (46.8%) 20.9552 23.5582 24.6289 0.7395 0.8241 0.8639
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Fig. 3: Reconstruction in noiseless case for the Phantom test image: The images on
the �rst row correspond to the reconstruction obtained through A for 20 angles
(left), 40 angles (middle) and 60 angles (right). The �rst row corresponding to
the initial sensing matrix A and the second and third rows respectively stand
for those obtained via PregA and PA. This �gure shows the improvement
in reconstruction via proposed preconditioning. The small portions of images
highlight the better reconstruction provided by the proposed preconditioner.
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Fig. 4: Reconstruction in noiseless case for MRI test image: In line with Figure 3, this
�gure shows the e�cacy of proposed proconditioner on MRI image.

Tab. 5: Reconstruction quality through PSNR and SSIM measures in noisy case for
the Phantom test image: In line with Table 3, the values reported in this table
indicate the improvement in reconstruction obtained via P in noisy setting.

Size of sensing matrix
PSNR (dB) with SSIM with

A PregA PA A PregA PA

2560× 16384 (15.6%) 26.5204 27.2283 28.8814 0.9592 0.9689 0.9745

3840× 16384 (23.4%) 27.4991 29.6401 29.9838 0.9637 0.9722 0.9811

5120× 16384 (31.2%) 30.8746 33.0376 34.0853 0.9855 0.9876 0.9923

6400× 16384 (39%) 32.1912 41.1746 53.0983 0.9886 0.9953 0.9992

7680× 16384 (46.8%) 32.1203 42.6366 50.3459 0.9897 0.9959 0.9989
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Fig. 5: Reconstruction in noisy case for the Phantom test image: In line with Figure
3, the simulation results are shown in noisy setting with A, PregA and PA for
di�erent sets of angles.

Tab. 6: Reconstruction quality through PSNR and SSIM measures in noisy case for
the MRI test image

Size of sensing matrix
PSNR (dB) with SSIM with

A PregA PA A PregA PA

2560× 16384 (15.6%) 17.1130 17.2274 17.5686 0.4806 0.4958 0.5255

3840× 16384 (23.4%) 18.0831 18.9329 19.3256 0.5711 0.5650 0.6370

5120× 16384 (31.2%) 19.9527 20.6254 21.6984 0.6786 0.7009 0.7570

6400× 16384 (39%) 20.3004 21.9110 23.0139 0.7017 0.7633 0.8139

7680× 16384 (46.8%) 20.9543 23.5582 24.6467 0.7392 0.8241 0.8641
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Fig. 6: Reconstruction in noisy case for MRI test image: In line with Figure 5, the
simulation results are shown in noisy setting with A, PregA and PA for di�erent
sets of angles.
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6 Conclusion

In this paper, we proposed a new method for �nding a square and invertible
preconditioner that reduces the coherence of Randon sensing matrix while im-
proving its conditioning. The simulation results, discussed through the measures
such as PSNR and SSIM, indicate that the proposed preconditioning method
improves reconstruction quality for di�erent data sets of reduced sizes.
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