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Abstract 

 

The influence of interfacial layers, introduced between electrodes and active layer, 

on organic solar cells was understood. Anode interfacial layer was made of 

vanadium oxide (V2O5) or 4,4′,4′′-Tris[phenyl(m-tolyl)amino]triphenylamine (m-

MTDATA). V2O5 is an inorganic material and m-MTDATA is an organic material. 

Tris(8-hydroxyquinolinato)aluminium (Alq3) was chosen as cathode interfacial 

layer. Two thicknesses of 5 nm and 10 nm were considered for each of V2O5, m-

MTDATA and Alq3. Modeling and simulation of devices was done using transfer 

matrix methodology for the measurement of optical electric field, device reflectance, 

power dissipation, absorptance and power re-distribution. Optical and electrical 

characterization of fabricated devices was done for the measurement of current 

density-voltage characteristics, device reflectance, thickness, refractive index and 

extinction coefficient. It was observed that device with m-MTDATA of 5 nm as 

anode interfacial layer and Alq3 of 5 nm as cathode interfacial layer resulted in 

better performance. 
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Chapter 1 

 

Introduction 

   

In this chapter, section 1.1 describes the importance of sources of renewable energy. 

Section 1.2 explains about the motivation for this thesis. Section 1.3 discusses about 

the solar cells and their classification into three generations. Section 1.4 mentions 

the thesis objective. Section 1.5 gives the thesis outline and section 1.6 presents the 

thesis contribution. 

1.1 Renewable energy 

The energy sources that can be replenished and will never run out are known as 

renewable energy sources. Some examples of renewable energy sources are: solar, 

wind, bio-power, tidal, geo-thermal and small hydro power. Solar energy is one of 

the most potential renewable energy sources owing to its free and abundant nature 

of availability. 

As per International Energy Outlook (2016), world energy consumption projected to 

be expanded by 48 per cent from 2012 to 2040 [1]. In order to meet this energy 

demands in a sustainable and environment-friendly way, harnessing solar energy is 

an urgent requirement at large scale. 

Solar energy is a potential alternative to fossil fuels such as coal, petroleum and 

natural gas. The issues such as non-renewability and green house gas emissions from 

the fossil fuel sources can be overcome using solar energy. 

Solar energy can be converted into electrical energy by solar panels. This electrical 

energy can be utilized in operating solar water pumps (agriculture), solar panels 
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(residential and industrial usage), solar-powered vehicles (transport) and solar 

panels for satellites and spacecrafts (space). Other modes of energy include petrol, 

diesel, natural gas and coal based thermal energy. These modes of energy are non-

renewable in nature and not environment-friendly since they are fossil fuels. 

This thesis focuses on development of efficient organic solar cell to convert solar 

energy into electrical energy. 

1.2 Motivation 

Based on Figure 1.1, it is evident that percentage of renewable energy sources to 

India’s energy sector is only 17 per cent and that of fossil fuel energy sources is 67 

per cent. Also, there is mismatch between demand and supply of energy in India [2]. 

From Figure 1.2, it can be observed that solar energy contribution to India’s energy 

sector is less than 10 per cent. 

 

Figure 1.1: Installed capacity of energy sources in India (as of April 2017) [3] 

 

 

Figure 1.2: Installed capacity of renewable energy sources in India (as of March 2017) [3] 
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Low contribution of solar energy to India’s energy sector and high dependence on 

fossil fuel energy sources motivated me to pursue research in the field of solar 

energy. The percentage of solar energy can be increased by developing low-cost 

technology based on organic semiconductors which will be explained in the next 

section. 

1.3 Solar cells 

Solar cells convert solar energy into electrical energy which can be used in various 

sectors such as agricultural, industrial, residential and transportation. Solar cells 

work on the principle of photovoltaic effect which was firstly observed by Edmond 

Becquerel, a French scientist in 1839 [4]. In 1883, first solar cell was fabricated by 

using silicon material. The commercial production of silicon based solar cells started 

from 1950s. Later, research focused on non-silicon based materials such as Cadmium 

Telluride (CdTe) and Copper Indium Gallium diSelenide (CIGS) for lowering cost 

of production of solar cells. These different solar cell technologies can be classified 

into three generations. 

First generation solar cells are based mono-crystalline silicon and poly-crystalline 

silicon. Second generation solar cells are based on thin-film technologies such as 

cadmium telluride (CdTe), copper indium gallium diselenide (CIGS) and amorphous 

silicon. Third generation solar cells are emerging ones and they include organic solar 

cells, dye-sensitized solar cells and perovskite solar cells. 

1.4 Thesis objective 

Organic solar cell (OSC) consists of active layer (donor and acceptor) sandwiched 

between cathode and anode along with anode and cathode interfacial layers as 

shown in Figure 1.3. The donor and acceptor are organic semiconducting materials 

which are responsible for conversion of solar energy into electrical energy. In order 

to improve charge collection at electrodes, anode and cathode interfacial layer is 

introduced between anode/donor and cathode/acceptor, respectively. 
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Figure 1.3: Schematic of an organic solar cell 

In this thesis work, research is focused on anode and cathode interfacial layer. The 

objective is to understand the influence of thickness of interfacial layer on 

performance of small molecule organic solar cell (SMOSC). Further, the comparison 

of inorganic and organic anode interface layer is studied. 

1.5 Thesis outline 

The thesis consists of experimental and modeling aspects of development of robust 

interfacial layer at anode and cathode. Chapter 2 explains of charge transport 

properties of organic semiconductors, history and configurations of organic solar 

cells, working principle and role of various layers in organic solar cells. Chapter 3 

describes methodologies related to modeling, fabrication, and characterization. 

Chapter 4 presents the influence of anode interfacial layer on performance of 

SMOSC. Similarly, chapter 5 presents the effects of thickness of cathode interfacial 

layer on the performance of SMOSC. The conclusions and future scope of thesis is 

explained in the following chapter. 

1.6 Thesis contribution 

This thesis contributed in developing efficient and stable organic solar cells by 

selecting appropriate materials of optimum thickness for various layers. The active 

layer thickness is optimized by considering the maximum light absorption within 

the active layer. The charge collection was improved by introducing interfacial 

layers. 
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Chapter 2 

 

Organic Solar Cells 

  

In this chapter, section 2.1 describes types, deposition methods, and optical and 

electronic properties of organic semiconductors. Section 2.2 explains organic 

electronic devices such as organic thin film transistors, organic solar cells, organic 

photodetectors and organic light emitting diodes. The working principle and the 

history of organic solar cells are presented in section 2.3 and 2.4, respectively. 

Section 2.5 discusses configurations of organic solar cells. The role of active layer, 

electrodes and interfacial layers in organic solar cells are explained in section 2.6. 

The figures of merit for performance and the literature review are included in 

section 2.7 and 2.8, respectively. 

2.1 Organic semiconductors 

Organic semiconductors are π-conjugated molecules which contain alternating single 

and double bonds. They mainly consists of carbon and hydrogen atoms. In some 

materials sulfur, oxygen, and nitrogen are also introduced. For example, copper 

phthalocyanine (CuPc) has nitrogen atoms as shown in Figure 2.1 (a). Organic 

molecules are covalently coupled and held together by Van-der-Waals interactions. 

Organic semiconductor materials are broadly classified into two groups, polymers 

and small molecules. Copper phthalocyanine (CuPc) and poly(3-hexylthiophene-2,5-

diyl) (P3HT) are one of the examples of small molecules and polymer as shown in 

Figure 2.1 (a) and (b), respectively. 
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Figure 2.1: Example of (a) small molecule and (b) polymer organic semiconductor 

2.1.1 Deposition of organic materials 

The depositions techniques can be broadly classified into dry techniques and wet 

techniques. Dry techniques are vacuum thermal evaporation and vapor phase 

deposition. While wet techniques are spin coating, ink-jet printing, spray-coating, 

stamping and screen-printing. In wet techniques, solute is dissolved in solvent. To 

have good uniformity of films, solute must be highly dissolved in solvents. On the 

other hand, dry techniques are solvent-free processing which also provides better 

thickness control and faster processing. Usually small molecules are deposited by 

dry techniques and polymers by solution-processing. Organic materials are deposited 

using vacuum thermal evaporation technique in our all experiments. 

2.1.2 Optical and electronic properties of organic semiconductors 

The electronic configuration of carbon atom is 1s2 2s2 2p2. In the ground state as 

depicted in Figure 2.2 (a), one 2s orbital is completely filled and two of three 2p 

orbital are partially filled.  In the excited state as shown in Figure 2.2 (b), one 

electron of 2s orbital excites to remaining 2p orbital. In organic semiconducting 

materials, carbon is in sp2 hybridization due to mixing of 2s orbital and two 2p 

orbital in the excited state presented in Figure 2.2 (c). Three sp2 hybrid orbitals 

form a triangle within a plane and remaining unhybridized p orbital (pz) is in 

perpendicular to this plane. The side and top views of sp2 hybridized carbon atoms 

are shown in Figure 2.2 (d) and (e) respectively. This pz orbital forms π-bond with 

pz orbital of another carbon atom as depicted in Figure 2.3. π-bond gives rise to 

new energy levels known as, highest occupied molecular orbital (HOMO) and lowest 
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unoccupied molecular orbital (LUMO). The moderate energy gap organic materials 

can be used as semiconducting layer in the device. It leads to various applications 

as explained in next section. 

 

Figure 2.2: (a) ground state; (b) excited state; (c) hybridized sp
2
 carbon atom; (d) side view 

and (e) top view of hybridized carbon atom  

 

Figure 2.3: HOMO and LUMO formation due to bonding of two sp
2
 hybridized atoms 

2.2 Organic electronic devices 

The low-cost fabrication methods, good charge transport and optical properties 

opened the possibilities to use them in most of the electronic devices.  Some of the 

devices are described below: 

Organic thin film transistors (OTFTs): The advantage of low processing 

temperature and low cost fabrication on various substrates such as glass and plastic 
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makes OTFTs attractive candidates over conventional silicon based transistors. But 

because of their low-field mobility, OTFTs have limited applications in smart cards, 

sensor, radio frequency identification tags (RFID), e-paper, and flat panel displays 

[5], [6]. 

Organic solar cells (OSCs): In order to meet rising energy demands using renewable 

sources of energy such as organic solar cells are potential candidates [7]. Currently, 

silicon based solar cells are dominantly used and their efficiencies is around 25.3 

percent [8]. But still research in organic solar cells is emerging because of low 

temperature processing, fabrication on flexible and plastic substrates, availability of 

transparent devices and less material consumption. All these advantages of organic 

solar cells drive towards low-cost solar cells. But two main challenges in the 

development or commercialization of organic solar cells are low efficiency and less 

stability. 

The energy band gap of an organic semiconductor is typically between 1 and 3 eV 

[9]. Therefore they can absorb light of 300-700 nm wavelengths which lead to their 

applications in solar cells and LEDs. For example, copper phthalocyanine (CuPc) is 

an organic semiconducting material with energy band gap of 1.7 eV. The energies 

range in visible spectrum is 1.8 eV to 3.1 eV. Therefore, CuPc absorbs most of the 

visible spectrum wavelengths and it is used light absorbing layer in organic solar 

cells. 

Organic light emitting diodes (OLEDs): Light emitting diodes emit light in response 

to an electric current. OLEDs provides advantages over liquid crystal display 

(LCDs) and conventional LEDs, due to their self-emitting property, brightness, 

speed, wide viewing angle, low power consumption, and contrast [10]. 

Organic photo detectors (OPDs): Large area detectors are possible using printed 

electronic techniques such as roll-to-roll processing, inkjet printing and spray-

coating. By fabricating OPDs on plastic, paper or glass can be transformed into 

intelligent surfaces [11]. 
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In this thesis work, organic solar cells were developed on glass substrates by using 

thermal evaporation. 

2.3 Working principle of organic solar cells 

Conversion of solar energy into electrical energy includes of exciton generation, 

exciton dissociation, and charge collection at the electrodes. The overall efficiency is 

the product of absorption efficiency (ȠA), dissociation efficiency (ȠD), and charge 

collection efficiency (Ƞcc). Absorption of incident light in the active layer results in 

generation of bounded electron-hole pair (exciton) as illustrated in step 1 of Figure 

2.4. In organic molecules, frenkel excitons with strong columbic force due to low 

relative permittivity are present. While because of high dielectric constant of silicon, 

wannier-mott excitons are present. 

Excitons diffuse within the material and they can either dissociate into electrons 

and holes at the interface or recombine before reaching the interface. Excitons 

diffusion and dissociation are shown as step 2 and step 3, respectively in Figure 2.4. 

In heterojuction organic solar cells, the difference in LUMO energy levels of donor 

and acceptor acts as driving force for exciton dissociation. The separated electrons 

and holes are transported as illustrated in the step 4. As shown in step 5, electrons 

and holes are collected by cathode and anode, respectively. If the exciton diffusion 

length is small, then the probability of recombination is higher than dissociation. 

 

Figure 2.4: Schematic of working of a heterojunction organic solar cell. Open circles represents 

holes; filled circles represents electrons; ellipse represents bounded hole-electron pair (exciton); 

yellow symbol represents incidence of light and E represents the energy scale.  
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2.4 History of organic solar cells 

In 1959, Kallaman and Pope [12] reported photovoltaic effect using a single crystal 

of anthracene which was sandwiched between two similar electrodes consisting of 

NaCl solution and silver electrodes. The single layer device (as shown in Figure 

2.5(a)) requires less material but it leads to very low efficiencies, because of poor 

exciton dissociation [13]. In 1986, Tang et. al. [14] demonstrated the first single 

heterojunction organic solar cell, in which active layer consists of two materials 

named as donor and acceptor as shown in Figure 2.5 (b). The interface between 

acceptor and donor enhanced exciton dissociation efficiency. In 1991, Hiramoto [15] 

proposed the first bulk heterojunction photovoltaic device by co-sublimation. This 

bulk heterojunction device schematic represented in Figure 2.6 resulted in increased 

interfacial areas as compared to planar heterojunction devices. In this device 

structure, the overall efficiency is function of morphology of bulk heterojunction 

layer. In order to have broader absorption, first multi-junction solar cell structure 

was demostrated by Bedair et al. [16], [17]. The active layer materials have 

complementary absorption spectrum to absorb photons of broader wavelengths. 

Recently, ternary organic solar cells are gaining research attention owing to 

broadened absorption range of organic solar cells as an alternative to tandem cell 

structures [18]. This structure includes three materials of different band gaps in a 

single active layer. 

 

Figure 2.5: (a) Single material based organic solar cell and (b) Single heterojunction organic 

solar cell 
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Figure 2.6: Bulk heterojunction organic solar cell proposed by Hiramoto [15] 

 

Figure 2.7: Schematic of (a) tandem organic solar cell and (b) ternary organic solar cell 

2.5 Configurations of organic solar cells 

Two configurations of organic solar cells: conventional and inverted are 

demonstrated in Figure 2.8 (a) and (b), respectively. A basic structure of organic 

solar cell consists of anode, active layer and cathode. In conventional devices, holes 

are collected on substrate side whereas in inverted devices, electrons are collected at 

the substrate side. Conventional solar cells provide better efficiency than inverted 

configuration based devices but relatively less stability. The top layer of inverted 

device is made of high work-function material which provides more air stability. 
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Figure 2.8: Schematic of (a) conventional organic solar cell and (b) inverted organic solar cells 

2.6 Role of different layers 

A schematic of an organic solar cell including cathode, anode, anode interfacial 

layer, cathode interfacial layer and active layer is shown in Figure 2.9. Each layer of 

organic solar cell has specific role in the device operation as explained below. 

2.6.1 Active layer 

The active layer is composed of organic semiconductor materials. Photons are 

absorbed by the active layer materials and therefore low bandgap materials are 

preferred. Depending on relative HOMO and LUMO levels, they are named as 

donor and acceptor materials. Donor provides electrons and acceptor accepts 

electrons. In early devices, active layer was made of one semiconducting material 

while in later devices, it consists of minimum of two organic materials. In 

heterojunction solar cell, generated excitions are dissociated at donor/acceptor 

interface. 

 

Figure 2.9: Schematic of an organic solar cell with interfacial layers 
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2.6.2 Electrodes 

The separated charge carriers from the active layer are collected by electrodes. 

Anode and cathode collect holes and electrons, respectively. 

2.6.3 Interfacial layers 

Interfacial layers are present between electrodes and active layer. The interfacial 

layer at anode side is termed as anode interfacial layer (AIL) while at cathode side 

as cathode interfacial layer (CIL). Anode interfacial layer improves holes collection 

at anode by blocking exciton and electron transport to anode. 

2.7 Figures of merit 

The current-voltage characteristics of a typical solar cell in dark and light 

conditions are presented in Figure 2.10. The performances of different solar cells are 

compared by their values of power conversion efficiency, short-circuit current 

density, open-circuit voltage and fill factor 

(a) Open-circuit voltage (VOC): It is the maximum voltage available from a solar 

cell and it is measured under open circuit condition.  

(b) Short-circuit current (ISC): It is the maximum current in the device and it is 

measured under short circuit condition. 

 

Figure 2.10: Current-voltage characteristics of a solar cell under dark and illumination 

conditions [19] 
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(c) Fill factor (FF): It is defined as the ratio of the maximum power from the solar 

cell to the product of VOC and ISC. It also tells about the extent of squareness of 

the I-V curve of the device. The maximum fill factor is one when the I-V curve 

is a rectangle. 

𝐹𝐹 =  
𝑉𝑚𝑝 𝐼𝑚𝑝

𝑉𝑂𝐶 𝐼𝑆𝐶
  

Vmp and Imp are the voltage and current corresponding to the maximum power 

point of solar cell. Series resistance (Rs) and shunt resistance (Rsh) affects the fill 

factor. Ideally series resistance should be zero and shunt resistance should be 

infinite. 

(d) Efficiency: It is the ratio of maximum output power to the input power. 

                                           Ƞ =  
𝑽𝑶𝑪𝑰𝑺𝑪𝑭𝑭

𝑷𝒊𝒏
 

(e) Stability or lifetime: It is a measure of change in of electrical characteristics (I-

V, efficiency) of the device with time. In organic solar cells degradation can be 

due to factors such as exposure to ambient oxygen and water vapor and long-

term light exposure [20]. 

2.8 Literature review 

Organic solar cells can be fabricated using low-cost processing techniques. Organic 

materials offer high absorption efficiencies, flexibility, and transparency. These 

advantages of organic solar cells make them more attractive for research. But their 

commercialization is limited because of low power conversion efficiency and poor 

long-term reliability. Introducing interfacial layer or buffer layer between anode and 

donor/acceptor layer contributes to enhancement of efficiency and stability in 

organic solar cells. 

For example, L.Cattin et al. reported surface passivation of the anode and 

improvement in efficiency using ultra thin molybdenum oxide (MoO3) as anode 

interfacial layer (AIL) [21]. Pao-Hsun Huang et al. used double anode buffer layers 

(MoO3 and pentacene) in CuPc:C60 based active layer configuration in order to 
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improve reliability and efficiency [22]. Similarly, A. R. Yu et al. reported 

improvement in efficiency by depressing the dissociation of excitons introduction of 

double AIL [23]. Yongbiao Zhao et al. reported efficient and stable hole injection by 

MoO3 and PEDOT:PSS as AIL [24]. Quinn Burlingame et al. used TPBi:C70 

materials between cathode and active layer as cathode interfacial layer [25]. 

Interfacial layers are not limited to only organic solar cells. For example, in organic 

thin film transistors (OTFTs), vanadium oxide (V2O5) [5] and 4,4',4''- Tris[(3-

methylphenyl) -phenylamino]triphenylamine (m-MTDATA) [6] were used as 

interfacial layers in order to decrease contact resistance and improve hole mobility. 

These same materials were used as interfacial layers in organic light emitting diodes 

(OLEDs) [26], [27] also in order to improve hole injection from electrodes to active 

layer. 

We implemented m-MTDATA or V2O5 as anode interfacial layer materials in 

organic solar cell based on small molecules: copper phthalocyanine (CuPc) and 

buckminster fullerene (C60). The effect of anode interfacial layer on the performance 

of organic solar cells was investigated. The optimum thickness of m-MTDATA and 

V2O5 were determined from the modeling and experiments. The influence of cathode 

interfacial layer (Alq3) on the performance of CuPc:C60 organic solar cell was also 

briefly understood by varying thickness. 
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Chapter 3 

 

Methodology 

   

Section 3.1 describes transfer matrix approach, a method of optical modeling which 

is used to determine optical electric field distribution and reflectance within various 

layers of optical devices. Section 3.2 explains fabrication methods. The involved 

characterization methods are included in section 3.3. 

3.1 Optical modeling 

A solar cell converts solar energy to electrical energy. In order to achieve higher 

efficiency, the optical electric field and power dissipation must be maximized within 

the active layer among various layers of a solar cell. The distribution of these 

parameters depends on thickness, refractive index, and extinction coefficient of each 

layer. In this thesis, optical modeling was performed to determine the optimum 

thickness of various layers by using transfer matrix approach. Reflectance, power 

dissipation, absorptance and power redistribution were obtained from modeling. 

3.1.1 Transfer matrix method 

It was first demonstrated for optical modeling of organic solar cell by Pettersson et 

al  [1]. Each material is considered as one layer and a device can have finite number 

of n layers as show in Figure 3.1. The interaction of light at the interface is 

governed by snell’s law as given in equation 3.1. 

           𝒏𝟏 ∗ 𝐬𝐢𝐧 ѳ𝒊 = 𝒏𝟐 ∗  𝐬𝐢𝐧 ѳ𝒕                       (3.1) 

n1 and n2 is refractive index of medium 1 and medium 2. ѳ𝒊  and ѳ𝒕  are incident and 

transmit angles, respectively. These parameters are illustrated in Figure 3.2. 
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When light is incident on the interface of two different media, some part of incident 

light is reflected back into the same medium and other part is refracted in another 

medium. 

 

Figure 3.1: A multi-layer device with layers indexed as 1,2…n and arrow showing direction of 

incident light 

 

Figure 3.2: Illustration of light incidence on interface of two medium 1 and medium 2 where 

n1 and n2 are refractive indices of respective medium; ѳi, ѳr and ѳt are angle of incidence, 

reflectance and transmittance respectively 

The percentage of reflection or transmission is determined by the refractive indices 

of the two media. Fresnel equations mentioned in equations 3.2 to 3.5 are used to 

determine the fraction of light that is reflected or transmitted [2]. They are derived 

based on snell’s law and boundary conditions of electromagnetic fields. For s-

polarized light, electric field vector is perpendicular to the plane of incidence and it 
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is parallel in the case of p-polarized light. Fresnel reflection and transmission 

coefficients for s-polarized light are mentioned in equations 3.2 and 3.3: 

    𝒓𝟏,𝟐
𝒔 =  

𝒏𝟏  𝐜𝐨𝐬 ѳ𝒊−𝒏𝟐 𝐜𝐨𝐬 ѳ𝒕
𝒏𝟏 𝐜𝐨𝐬 ѳ𝒊+𝒏𝟐 𝐜𝐨𝐬 ѳ𝒕

     (3.2) 

    𝒕𝟏,𝟐
𝒔 =  

𝟐𝒏𝟏 𝐜𝐨𝐬 ѳ𝒊

𝒏𝟏 𝐜𝐨𝐬 ѳ𝒊+𝒏𝟐 𝐜𝐨𝐬 ѳ𝒕
     (3.3) 

For p-polarized light fresnel equations are mentioned in equations 3.4 and 3.5: 

    𝒓𝟏,𝟐
𝒑

=  
𝒏𝟏 𝐜𝐨𝐬 ѳ𝒕− 𝒏𝟐 𝐜𝐨𝐬 ѳ𝒊

𝒏𝟏 𝐜𝐨𝐬 ѳ𝒕+ 𝒏𝟐 𝐜𝐨𝐬 ѳ𝒊
     (3.4) 

    𝒕𝟏,𝟐
𝒑

=  
𝟐𝒏𝟏 𝐜𝐨𝐬 ѳ𝒊

𝒏𝟏 𝐜𝐨𝐬 ѳ𝒕+ 𝒏𝟐 𝐜𝐨𝐬 ѳ𝒊
     (3.5) 

𝒓𝟏,𝟐
𝒔  and 𝒕𝟏,𝟐

𝒔  are reflection and transmission coefficients for a s-polarized wave 

incident of interface of medium 1 and medium 2, respectively. 𝒓𝟏,𝟐
𝒑  and 𝒕𝟏,𝟐

𝒑  are 

reflection and transmission coefficients for a p-polarized wave, respectively. 

 

Figure 3.3: Sketch of n-layer device showing interface of layer i and j for calculation of 

interface matrix 

In the Figure 3.3, E0
+ and E0

- are incident and reflected electric field components of 

the light. Ei
+ and Ei

- indicate the incident and reflected electric field of ith layer 

respectively. En+1
+ is the transmitted component of electric field from the overall 

device. ‘+’ and ‘-’ superscripts demonstrate propagation in the forward and 

backward directions respectively. The backward component is due to reflection at 

the interface between two media. At any point in the device, total electric field is 

due to combination of forward and backward propagating. By considering the 
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interface between layer i and layer j, equation 3.6 can be obtained from transmitted 

component of Ei
+
(x0) and reflected component of Ej

-
(x0). Similarly, equation 3.7 can 

be obtained from reflected component of Ei
+(x0) and transmitted component of Ej

-

(x0) 

                                 𝑬𝒋
+(𝒙𝟎) = 𝒕𝒊,𝒋𝑬𝒊

+(𝒙𝟎) + 𝒓𝒋,𝒊𝑬𝒋
−(𝒙𝟎)                                (3.6) 

                                 𝑬𝒊
−(𝒙𝟎) = 𝒓𝒊,𝒋𝑬𝒊

+(𝒙𝟎) + 𝒕𝒋,𝒊𝑬𝒋
−(𝒙𝟎)                                    (3.7) 

ti,j and ri,j are transmission and reflection coefficients at the interface when light is 

travelling from medium i to medium j. For light traveling from j to i, transmission 

and reflection coefficients are termed as tj,i and rj,i, respectively. Reflection and 

transmission coefficients depend on refractive index and extinction coefficient of the 

medium as explained in equations 3.2 to 3.5. 

By rewriting equations 3.6 and 3.7 and using formulations of rij = -rji and –rijrji+tijtji 

= 1, we can relate the electric fields on the left side of the interface to the fields on 

the right sides as below: 

                                
𝑬𝒊

+(𝒙𝟎)

𝑬𝒊
−(𝒙𝟎)

 =   

𝟏

𝒕𝒊,𝒋

𝒓𝒊,𝒋

𝒕𝒊,𝒋

𝒓𝒊,𝒋

𝒕𝒊,𝒋

1

𝒕𝒊,𝒋

  
𝑬𝒋

+(𝒙𝟎)

𝑬𝒋
−(𝒙𝟎)

                                     (3.8)

   

In the equation 3.8, the matrix is termed as ‘interface’ matrix as it correlates the 

field components on the both sides of the interface of two layers. 

                                     𝑰𝒊,𝒋  =   

𝟏

𝒕𝒊,𝒋

𝒓𝒊,𝒋

𝒕𝒊,𝒋

𝒓𝒊,𝒋

𝒕𝒊,𝒋

1

𝒕𝒊,𝒋

                                      (3.9) 

where 𝒓𝒊,𝒋 =  
𝒏 𝑖−𝒏 𝑗

𝒏 𝑖+𝒏 𝑗
, 𝒕𝒊,𝒋 =  

2𝒏 𝑖
𝒏 𝑖+𝒏 𝑗

. These reflection and transmission coefficients for the 

interface of layer i and j can be obtained from equations 3.2 to 3.5 for normal 

incidence of light. Polarization of electric field doesn’t matter because of normal 

incidence. Complex refractive index mentioned in equation 3.10 is combination of 

refractive index (n) and extinction coefficient (k). 

     𝒏 = 𝒏 + 𝒊𝒌        (3.10) 
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As the wave travels within a layer, there will be phase shift and absorption within 

the material. The phase shift is governed by the refractive index of the medium and 

absorption is governed by extinction coefficient as determined by equation 3.12. 

Layer matrix describes the propagation within the layer [3]. It is used to calculate 

the electric fields at the left side (El
+
, El

-
) of a layer if the fields on the right side 

(Er
+
, Er

-
) of this layer are known. These electric field components are shown in 

Figure 3.4. In layer matrices, off-diagonal elements are zeros as the reflection 

doesn’t occur within a layer. 

 

Figure 3.4: Representation of electric components on left (El
+
, El

-
) and right (Er

+
, Er

-
) ends of 

layer j for formulation of layer matrix 

𝐸𝑟
+ =  𝒆𝒊𝝃𝒋𝒅𝒋  𝐸𝑙

+ 

𝐸𝑙
− =  𝒆𝒊𝝃𝒋𝒅𝒋  𝐸𝑟

− 

where  𝝃
𝒋

= (𝟐ᴨ/𝝀)𝒏𝒋  and dj is the thickness of layer j. 

     
𝑬𝒍

+

𝑬𝒍
− =   𝒆

−𝒊𝝃𝒋𝒅𝒋 𝟎

𝟎 𝒆
𝒊𝝃𝒋𝒅𝒋

  
𝑬𝒓

+

𝑬𝑟
−    (3.11) 

                                          𝑳𝒋 =   𝒆
−𝒊𝝃𝒋𝒅𝒋 𝟎
𝟎 𝒆𝒊𝝃𝒋𝒅𝒋

                        (3.12)                

In order to calculate device matrix, first we consider a device with two layers as 

shown in Figure 3.5 and later extended to n-layer device. The electric field 

components of the overall device can be related by multiplying interface and layer 

matrices as shown below: 
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Figure 3.5: Demonstration of two layer device where I0,1, I1,2 and I2,3 are interface matrices 

and L1 and L2 are layer matrices 

 
𝑬𝟎

+

𝑬𝟎
− =  𝑰𝟎,𝟏𝑳𝟏𝑰𝟏,𝟐𝑳𝟐𝑰𝟐,𝟑  

𝑬𝟑
+

𝑬𝟑
−             

E0
+
 and E0

-
 are electric field components on the left side of layer 1 of device shown 

in Figure 3.5. E3
+ and E3

- are electric field components on the right side of final 

layer 2. These components of the device can be related by multiplication of all the 

interface matrices (I0,1, I1,2 and I2,3) and the layer matrices (L1 and L2) of the device. 

Similarly, the device matrix of n-layer device can be obtained by multiplying all 

interface matrices and layer matrices and can be represented as below [4]: 

                         
𝑬𝟎

+

𝑬𝟎
− =  𝑰𝟎,𝟏 𝑳𝒊𝑰𝒊,𝒊+𝟏

𝒊=𝒏
𝒊=𝟏  

𝑬𝒏+𝟏
+

𝑬𝒏+𝟏
−                  (3.13) 

                                 𝑺 =   
𝑺𝟏𝟏 𝑺𝟏𝟐
𝑺𝟐𝟏 𝑺𝟐𝟐

 =  𝑰𝟎,𝟏 𝑳𝒊𝑰𝒊,𝒊+𝟏
𝒊=𝒏
𝒊=𝟏                                  (3.14) 

This device matrix or scattering matrix (S) relates the electric fields left and right 

ends of the entire multi-layer device. From this matrix, reflection and transmission 

coefficients of the device are as below. 

                                         𝒓 =  
𝑬𝟎
−

𝑬𝟎
+  =  

𝑺𝟐𝟏

𝑺𝟏𝟏
                                                   (3.15) 

                                          𝒕 =  
𝑬𝒏+𝟏

+

𝑬𝟎
+  =  

𝟏

𝑺𝟏𝟏
                                                 (3.16) 

r and t are reflection and transmission coefficients of the device. E0
+, E0

- and En+1
+ 

are incident, reflected and transmitted electric field components of the device. 

Equation 3.15 is calculation of reflection coefficient of the device, which is the ratio 
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of the reflected (E0
-
) to the incident (E0

+
) electric field components of the device. 

Equation 3.16 is calculation of transmission coefficient of the device, which is the 

ratio of the transmitted (En+1
+) to the incident (E0

+) electric field components of 

the device. 

3.1.2 Electric field 

Interface matrix, layer matrix, reflection coefficient and transmission coefficient are 

determined according to equations 3.9, 3.11, 3.15 and 3.16, respectively. By using 

these equations, electric field within a layer at a distance x from the interface of 

layer j-1 and j is calculated in the following manner. The layers from 0 to j-1 are 

denoted as stack f and from j+1 to n as stack b. Here tf and rf are transmission and 

reflection coefficients of stack f, respectively. rb is the reflection coefficients of stack 

b.  Ej
+(x) is the forward electric field component at a distance x in the layer j as 

shown in Figure 3.6. It is combination of components Ej1, Ej2, Ej3 and so on as 

shown in equation 3.17: 

𝐸𝑗1 =  𝐸0
+ 𝑡𝑓 𝑒

𝑖𝜉𝑗𝑥  

Ej1 is the transmitted component of E0
+
 through the stack f into the layer j and 

after travelling distance x within the layer j.  

𝐸𝑗2 =  𝐸0
+ 𝑡𝑓 𝑒

𝑖𝜉𝑗𝑥𝑒
𝑖𝜉𝑗(𝑑𝑗−𝑥)

𝑟𝑏𝑒
𝑖𝜉𝑗𝑑𝑗𝑟𝑓𝑒

𝑖𝜉𝑗𝑥  

𝐸𝑗2 =  𝐸0
+ 𝑡𝑓 𝑒

𝑖𝜉𝑗𝑥𝑟𝑏𝑟𝑓𝑒
2𝑖𝜉𝑗𝑑𝑗 

𝐸𝑗2 =  𝐸𝑗1𝑟𝑏𝑟𝑓𝑒
2𝑖𝜉𝑗𝑑𝑗 

Ej2 is the doubly reflected component of Ej1 within the layer j from the stack b (rb) 

and then stack f (rf). 

𝐸𝑗3 =  𝐸0
+ 𝑡𝑓 𝑒

𝑖𝜉𝑗𝑥 (𝑟𝑏𝑟𝑓𝑒
2𝑖𝜉𝑗𝑑𝑗)

2
 

𝐸𝑗3 =  𝐸𝑗2𝑟𝑏𝑟𝑓𝑒
2𝑖𝜉𝑗𝑑𝑗 

Ej3 is the doubly reflected component of Ej2 within the layer j from the stack b (rb) 

and then stack f (rf). 
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Figure 3.6: Exemplification for derivation of electric field distribution within a layer j. All 

layers to the left of layer j is considered as stack f and to the right of layer j as stack b. 

By considering Ej1, Ej2, Ej3 and so on, we can write total Ej
+(x) as below: 

               𝐸𝑗
+ 𝑥 =  𝐸𝑗1 + 𝐸𝑗2 + 𝐸𝑗3 + …           (3.17) 

                                              =  
𝑬𝟎

+ 𝒕𝒇𝒆
𝒊𝝃𝒋𝑥

𝟏− 𝒓𝒃𝒓𝒇𝒆
𝟐𝒊𝝃𝒋𝒅𝒋

                                               (3.18) 

The backward electric field component (Ej
-
(x)) can be obtained from equation 3.18 

by including the reflection from stack b (rb) and the phase change component 

𝒆𝟐𝒊𝝃𝒋(𝒅𝒋−𝑥) which tells about the phase shift and absorption of the electric field 

component for travelling a distance of 2(dj-x) within the layer j: 

                                 𝑬𝒋
− 𝒙 =  𝑬𝒋

+(𝒙) 𝒓𝒃 𝒆𝟐𝒊𝝃𝒋(𝒅𝒋−𝑥)                                          (3.19) 

Electric field within a layer at a distance x (Ej(x)) is obtained by summation of 

equation of 3.18 and equation 3.19: 

            𝑬𝒋 𝒙 =  𝑬𝒋
+  𝒙 +   𝑬𝒋

−  𝒙  =  
𝑬𝟎

+ 𝒕𝒇 

𝟏−  𝒓𝒃 𝒓 𝒇𝒆
𝟐𝒊𝝃𝒋𝒅𝒋

(𝒆
𝒊𝝃𝒋𝒙 +  𝒓𝒃𝒆

𝒊𝝃𝒋(𝟐𝒅𝒋 − 𝒙)
)            (3.20) 

Electric field within the layer at x=0 can be obtained from equation 3.20 by putting 

x =0: 

   𝑬𝒋 𝟎 =
𝑬𝟎

+ 𝒕𝒇 

𝟏−  𝒓𝒃 𝒓 𝒇𝒆
𝟐𝒊𝝃𝒋𝒅𝒋

(𝟏 +  𝒓𝒃𝒆
𝒊𝝃𝒋𝟐𝒅𝒋 )    (3.21) 
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3.1.3 Reflectance 

Reflectance is measured from the reflection coefficient which is the ratio of reflected 

to incident electric field components. Reflectance of the device is defined as square 

of the reflection coefficient [5] as shown in equation 3.22. The reflectance spectrum 

is the plot of the reflectance as a function of wavelength. From the device matrix 

(S), reflection coefficient (r) of the device can be found as shown in equation. 

     𝑹 =  |𝒓|𝟐                   (3.22) 

3.1.4 Optical power dissipation 

It is the time-averaged energy dissipation or absorbed power in different layers of 

the device. The optical power dissipation [6] as a function of distance can be 

calculated using optical electrical field which is obtained from equation 3.20. The 

formulation for optical power dissipation is [7]: 

    𝑸 𝒙 =  
𝟏

𝟐
𝒄є𝟎𝜶𝒏|𝑬(𝒙)𝟐|               (3.23) 

Where c is the speed of light is (3 × 108 m/s), є0 is permittivity of vacuum (8.85 × 

10–12 F/m), n is the real index of refraction, α is the absorption coefficient (α = 

4πk /λ), λ is the vacuum wavelength and E(x) is the total electrical optical field 

at the point x. For a plane electromagnetic wave, intensity and electric field are 

related by: 

𝑰 =  
𝟏

𝟐
𝒄є𝟎𝑬

2 

As the wave travels inside a medium, refractive index of the medium needs to be 

considered for calculation of speed. By considering absorption coefficient (α), 

optical power dissipation in equation 3.23 can be obtained by Q = α I. 

This optical power dissipation can be measured for a particular wavelength or for 

whole spectrum of wavelengths in consideration. In this thesis, we focused on the 

measurement over whole spectrum. 
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3.1.5 Absorptance 

It is the ratio of power absorbed by the device to that incident upon it. The 

absorptance gives wavelength-dependent absorbed power in different layers of the 

device. From the modeling, the absorptance gives absorbed power for each 

wavelength of the wavelength spectrum under consideration [8]. 

    𝑨𝒋 =  
𝟏

𝑺𝟎
 𝑸𝒋(𝒙) 𝒅𝒙
𝒅𝒋

𝒅𝒋−𝟏
               (3.24) 

where S0 is the irradiance from air. Qj(x) is obtained from equation 3.23. 

Power re-distribution model describes the distribution of the optical power 

dissipation, for the different layers as well as for different wavelengths. 

In MATLAB, thickness, refractive index and extinction coefficient are the 

parameters considered for each layer. Interface and layer matrices are calculated for 

each wavelength. Device matrix and electric field within the layer were measured 

using the interface and layer matrices. 

3.2 Device fabrication 

ITO substrates were cleaned in ultrasonic bath in acetone, isopropanol and de-

ionized water sequentially for 5 minutes each [9]. Cleaned ITO substrates were 

treated with UV ozone plasma for 5 minutes. Cleaned ITO substrates were loaded 

in the chamber of thermal evaporator for deposition of layers of organic solar cell. 

For the purpose of anode interfacial layer, vandium oxide (V2O5) or 4,4',4''- Tris[(3-

methylphenyl) -phenylamino]triphenylamine (m-MTDATA) were used in this 

experiment. V2O5 is an inorganic material and m-MTDATA is an organic material. 

As of donor and acceptor layers, copper phthalocyanine (CuPc) and 

buckminsterfullerene (C60) were used, respectively. For the purpose of cathode 

interfacial layer, tris(8-hydroxyquinolinato)aluminium (Alq3) was used. m-

MTDATA, CuPc, C60 and Alq3 are small molecule type organic materials. 

aluminum (Al) was used as cathode for the device. All materials including ITO 

coated glass substrates were purchased from sigma-aldrich. No further purification 
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was performed for any of the materials. For deposition of all these materials 

thermal evaporation method was used. 

3.2.1 Thermal evaporation 

Thermal evaporation is done by resistive heating of materials [10]. A thermal 

evaporator consists of boat, crucible, shutter, substrate holder and thickness 

monitor as shown in Figure 3.7. The source material to be evaporated is placed in 

the crucible or directly in the boat. The substrate holder which holds the substrates 

is placed above the source at fixed distance. The source to substrate distance was 

21 cm in this experiment. Molecules or atoms from source to substrate are 

transformed in a controlled manner by adequate base pressure, voltage and current. 

Roughing pump and diffusion pumps are present along with the thermal evaporator 

for vacuum. The source is heated till the material is sublimed. Quartz crucible was 

used in deposition of all materials. The boat is a wire-basket type and made of 

tungsten. After the loading the substrates and source material, glass jar was used to 

seal the chamber. After adequate vacuum of 4x10-6 mbar was obtained, voltage is 

raised in steps according to sublimation temperature of the source material. By 

application of voltage, electrical energy is converted into heat energy in the boat. 

Upon achieving desired evaporation rate, the substrate shutter will be opened which 

will be closed after deposition of required thickness. Thickness monitor based on 

quartz crystal records the deposited thickness. 

 

Figure 3.7: Schematic of thermal evaporator 
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3.2.2 Fabrication procedure 

The devices are made on Indium Tin Oxide (ITO) coated glass substrate. On top of 

cleaned ITO substrate, anode interfacial layer is deposited. For active layer of 

organic solar cell, donor and acceptor layers are deposited sequentially to obtain 

single heterojunction organic solar cells. Later, cathode interfacial layer is deposited 

over the acceptor layer and finally cathode is deposited. For the reference sample, 

AIL is not deposited. 

3.3 Characterization 

3.3.1 Current-voltage characteristics 

The current-voltage characteristics of fabricated solar cells were measured in dark 

and light conditions. The anode of the organic solar cells is connected to positive 

terminal and cathode of the device is connected to negative terminal of DC probe 

station. The voltage is swept from -0.2V to +2V using source meter and 

corresponding current values are recorded. Similar measurement is taken under 

solar simulation using solar simulator for J-V characteristics under light conditions. 

Sol3A Class AAA Solar Simulator was used to obtain light of desired intensities. 

3.3.2 Thickness and refractive index 

Ellipsometry is used to measure the thickness, refractive index and extinction 

coefficient of every material. Reflection or transmission of light from a sample leads 

to change in polarization. 

The primary tools for collecting ellipsometry data include the following: light 

source, polarization generator, sample, polarization analyzer, and detector. 

Polarized light is reflected or transmitted from the sample and the output 

polarization is measured (Figure 3.8). Electric fields parallel and perpendicular to 

the plane of incidence are considered p- and s- polarized, respectively. Ellipsometry 

measures how p- and s- components change upon reflection or transmission. 
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Figure 3.8: A typical ellipsometry configuration, where polarized input wave is reflected from 

the sample surface and change in polarization is measured 

The change in polarization is measured as: 

     ⍴ = 𝐭𝐚𝐧 𝝍 𝒆𝒊𝜟                (3.25) 

Where 𝛙 is the amplitude ratio and 𝝙 is the phase difference. 

We used J.A.Woollam M2000U ellipsometer for measurement of thickness, 

refractive index and extinction coefficient of all the materials of organic solar cell. 

3.3.3 Reflectance measurement 

Spectrophotometry is a method to measure percentage of reflected or transmitted or 

absorbed the light by measuring the intensity of light. Spectrophotometers can be 

classified into two classes based on nature of beam: single beam and double beam. 

In single beam spectrophotometers, entire light without splitting passes through the 

sample. In double beam spectrophotometers the light source is split into two 

separate beams before reaching the sample. One beam passes through the sample 

and the second one through the reference sample. For reflectance measurements, 

spectrophotometer compares the amount of light reflecting from the test and 

reference sample. 

A spectrophotometer consists [11] of a light source, a collimator, a monochromator, 

a wavelength selector, a cuvette for sample and a photoelectric detector as 

illustrated in Figure 3.9. The collimator (lens) transmits a straight beam of light 

that passes through a monochromator (prism) to split it into different wavelengths 
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(spectrum). Then a wavelength selector (slit) transmits only the selected 

wavelengths which travel through the sample and the photometer detects the 

transmitted intensity of light. 

Initially, the measurement of intensity of the light beam, I0, is measured without 

the sample. Then the sample is set in the path of the measurement light beam, and 

the intensity of the light beam after it passes through the sample, It, is measured. 

 

Figure 3.9: Illustration of working principle of a spectrophometer 

The transmittance can be measured by the following equation: 

                               𝑻 =  
𝑰𝒕

𝑰𝟎
             (3.26) 

The absorbance can be measured by the following equation using measured 

transmittance: 

             𝑨 =  𝐥𝐨𝐠𝟏𝟎
𝟏

𝑻
                       (3.27) 

We used Shimadzu MPC3600 UV-VIS-NIR spectrophotometer for measurement of 

reflectance of fabricated organic solar cells. 
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Chapter 4 

 

Anode interfacial layer of small 

molecule organic solar cells 

   

The influence of anode interfacial layer on the performance of a CuPc:C60 based 

small molecule organic solar cell  was analyzed. The procedure of fabricated device 

is explained in section 4.1. The results obtained from the modeling and the 

characterizations are presented in section 4.2. Section 4.3 discusses the conclusions 

from the modeling and characterization results. 

4.1 Devices 

The schematic of device investigated is shown in Figure 4.1. ITO and Al are anode 

and cathode, respectively. Alq3 was used as cathode interfacial layer. For donor and 

acceptor, CuPc and C60 materials were used, respectively. AIL was made either of 

Vanadium oxide (V2O5) and 4,4',4''-Tris[(3-methylphenyl)-

phenylamino]triphenylamine (m-MTDATA). Two thicknesses of AIL were 

considered: 5 nm and 10 nm. The optical electrical field intensity, device 

reflectance, power dissipation, absorptance and power redistribution measurements 

were done using transfer matrix approach as explained in section 3.1.1. Modeling 

and simulation were done using MATLAB. For device fabrication, thermal 

evaporator was used for deposition of all materials such as V2O5, m-MTDATA, 

CuPc, C60, Alq3 and Al. All materials were deposited under pressure conditions of 

4x10-6 mbar and deposition rates of 1-2 Å/s. Thickness was confirmed by 

ellipsometer. For characterization part, current density-voltage (J-V) characteristics 

were measured using solar simulator with source meter, while reflectance was 
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measured using spectrophotometer. Fabrication and characterization was carried 

out in Centre for Nano Science and Engineering (CeNSE), Indian Institute of 

Science (IISc), Bangalore under Indian Nanoelectronics Users Program (INUP). 

 

Figure 4.1: Schematic of the device. Here, anode interfacial layer is V2O5 or m-MTDATA with 

thickness 5 nm or 10 nm 

4.2 Results 

This section presents the results obtained from modeling using transfer matrix 

approach and measurement of fabricated devices. 

4.2.1 Optical electric field 

Refractive index (n) and extinction coefficient (k) were extracted from ellipsometry. 

They were used in calculation of optical electric field intensity, device reflectance, 

power dissipation, absorptance and power redistribution, using transfer matrix 

method. Thickness of layers were: ITO(150 nm)/AIL/CuPc(40 nm)/C60(40 

nm)/Alq3(9 nm)/Al(120 nm). 

Figure 4.2 (a) is the electric field distribution of device with V2O5 of 5 nm thickness. 

It was observed the electric field intensity peak lies within the active layer, which is 

a desired requirement for maximizing efficiency of the device. In the case of 10 nm 

thickness, as shown in Figure 4.2 (b), electric field intensity peak lies within the 

active layer but the peak value decrease by 0.6%. 
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Figure 4.2: Optical electric field intensity distribution of device with V2O5 as AIL of (a) 5 nm 

and (b) 10 nm thickness 

 

Figure 4.3: Optical electric field intensity distribution of device with m-MTDATA as AIL of 

(a) 5 nm and (b) 10 nm thickness 

Figure 4.3 (a) and (b) are electric field distribution of device with m-MTDATA of 5 

nm and 10 nm thickness, respectively. For the device with 5 nm thickness of m-

MTDATA as AIL, electric field intensity peak was higher by 0.57% compared to 

device with V2O5 of 5 nm. The peak value with 5 nm and 10 nm of m-MTDATA 

remains the same. The peak value of device with 10 nm thickness of m-MTDATA 

as AIL was higher by 1.17% compared to device with 10 nm V2O5. 

4.2.2 Device reflectance 

Figure 4.4 (a) and (b) are reflectance of the device with V2O5 of 5 nm and 10 nm, 

respectively. In both cases, it was observed that peak reflectance was around 550 

nm. The peak reflectance of device with V2O5 of 10 nm was higher by 2.54% when 

compared with device of V2O5 of 5 nm. 
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Figure 4.4: Reflectance of the device with V2O5 of (a) 5 nm and (b) 10 nm 

  

Figure 4.5: Reflectance of the device with m-MTDATA as AIL of (a) 5 nm and (b) 10 nm 

Figure 4.5 (a) and (b) are reflectance of the device with m-MTDATA of 5 nm and 

10 nm thickness, respectively. It was observed that peak reflectance of device with 

m-MTDATA of 5 nm was lower by 0.93% compared to device with V2O5 of 5 nm. 

For device with m-MTDATA of 10 nm thickness, peak reflectance was lower by 

1.74% compared to device with V2O5 of 10 nm. As reflectance of the device is ratio 

of reflected and incident electric field components, it can be said that the reflected 

electric field component of the device increased with increase in thickness of AIL. 

4.2.3 Power dissipation 

Figure 4.6 (a) and (b) are power dissipation distribution of devices with V2O5 of 5 

nm and 10 nm thickness, respectively. It was observed that maximum power 

dissipation is confined within the active layer materials of CuPc and C60. Peak of 

power dissipation within the CuPc and C60 layers is near to CuPc:C60 interface, 

which is a desired requirement for maximization of efficiency of the device. 
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Figure 4.6: Optical power dissipation of device with V2O5 as AIL of (a) 5 nm and (b) 10 nm 

  

Figure 4.7: Optical power dissipation of the device with m-MTDATA as AIL of (a) 5 nm and 

(b) 10 nm 

Figure 4.7 (a) and (b) are power dissipation distribution of devices with m-

MTDATA of 5 nm and 10 nm thickness, respectively. In case of devices with m-

MTDATA as AIL, higher power dissipation was observed in the active layer 

compared V2O5 as AIL. Power dissipation depends on the absorption coefficient of 

the material. Due to low absorption coefficient of ITO material, lower power 

dissipation was observed in the ITO layer when compared to CuPc and C60 

materials. For aluminum layer, due to high absorption coefficient higher power 

dissipation was observed near the interface of Alq3 and Al layer. 

4.2.4 Absorptance 

Figure 4.8 (a) and (b) are absorptance of all layers of device with V2O5 of 5 nm and 

10 nm thickness as AIL, respectively. Absorptance tells about the power dissipation 

within a layer for each wavelength. From the absorptance curves, it was observed 
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that CuPc material is absorbing wavelengths in the range of 550 to 700 nm and C60 

material is absorbing wavelengths in the range of 400 to 550 nm. 

  

Figure 4.8: Absorptance of various layers of device with V2O5 as AIL of (a) 5 nm and (b) 10 

nm 

 

Figure 4.9: Absorptance of various layers of device with m-MTDATA as AIL of (a) 5 nm and 

(b) 10 nm. 

Figure 4.9 (a) and (b) are absorptance of various layers of device with m-MTDATA 

of 5 nm and 10 nm thickness as AIL. The absorptance of active layers is higher in 

case of devices with m-MTDATA as AIL when compared to devices with V2O5 as 

AIL. It was observed that absorption is higher in aluminum layer for wavelengths 

near 560 nm. 

4.2.5 Power redistribution 

Figure 4.10 (a) and (b) are power redistribution of device with V2O5 of 5 nm and 10 

nm thickness, respectively. Power redistribution curves shows how incoming energy 

is shared across different layers of the device as a function of wavelength. It was 
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observed that CuPc layer is sharing higher wavelengths and C60 layer is sharing the 

lower wavelengths of incoming energy. 

 

Figure 4.10: Power redistribution of device with V2O5 as AIL of (a) 5 nm and (b) 10 nm. 

  
Figure 4.11: Power redistribution of device with m-MTDATA as AIL of (a) 5 nm and (b) 10 

nm. 

Figure 4.11 (a) and (b) are power redistribution of device with m-MTDATA of 5 

nm and 10 nm thickness, respectively. Higher absorption in the active layer 

materials was observed in devices with m-MTDATA as AIL when compared devices 

with V2O5 as AIL. From power re-distribution curves, the remaining part above 

aluminum layer can be considered as reflectance of the device. 

4.2.6 Electrical characterization 

Figure 4.12 (a) and (b) presents J-V characteristics under dark and light conditions 

for the device with V2O5 of 5 nm and 10 nm thickness as AIL. It was observed 

current density was lower for devices with V2O5 of 10 nm thickness compared to 

devices with 5 nm. 
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Figure 4.12: J-V characteristics of device with V2O5 as AIL of (a) 5 nm and (b) 10 nm 

thickness. Dark (blue line) and AM1.5 solar simulation (red line) 

 * 

Figure 4.13: J-V characteristics of device with m-MTDATA as AIL of (a) 5 nm and (b) 10 nm 

thickness. Dark (blue line) and AM1.5 solar simulation (red line) 

Figure 4.13 (a) and (b) shows J-V characteristics of the device under dark and light 

conditions with m-MTDATA of 5 nm and 10 nm thickness as AIL. It was observed 

lower values of current density compared to device with 5 nm V2O5. It was 

observed that current density values were lower for devices with m-MTDATA of 10 

nm thickness but higher than that of device with V2O5 of 10 nm thickness. 

4.2.7 Optical characterization 

Spectrophotometry was done to calculate reflectance of the fabricated devices. The 

results are presented in the following figures. 
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Figure 4.14: Diffuse reflectance (spectrophotometry) of device with V2O5 as AIL of (a) 5 nm 

and (b) 10 nm. 

Figure 4.14 (a) and (b) are the reflectance of device with V2O5 of 5 nm and 10 nm 

thickness as AIL. In both cases, the peak reflectance was around 520 nm. It was 

observed that peak reflectance was higher for device with 10 nm thickness compared 

to device with V2O5 of 5 nm. 

  

Figure 4.15: Diffuse reflectance (spectrophotometry) of device with m-MTDATA as AIL of (a) 

5 nm and (b) 10 nm. 

Figure 4.15 (a) and (b) are the reflectance of device with m-MTDATA of 5 nm and 

10 nm thickness, respectively. In both cases, it was observed that peak reflectance 

was around 530 nm. The peak reflectance of the device with m-MTDATA of 5 nm 

thickness as AIL was lower than the device with V2O5 of 5 nm. The peak 

reflectance of the device with m-MTDATA 10 nm was higher than the device with 

m-MTDATA of 5 nm. 
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4.3 Conclusions 

From the optical electric field intensity measurements, it was observed that peak of 

electric field intensity is decreasing with increase in thickness of AIL of V2O5 or m-

MTDATA. Higher peak electric field intensity was observed in devices with m-

MTDATA as AIL compared to devices with V2O5. From the device reflectance 

measured from modeling, higher peak reflectance was observed with increase in 

thickness of AIL of V2O5 or m-MTDATA. The peak reflectance of the device with 

m-MTDATA as AIL is lower than devices with V2O5 as AIL. This trend of 

reflectance peak of devices measured from modeling was correlated with the 

reflectance measurement of fabricated devices. The peak reflectance of device 

measured from modeling was around 550 nm, whereas peak reflectance of fabricated 

devices was around 520 nm and 530 nm in case in V2O5 and m-MTDATA as AIL 

respectively. From power dissipation measurements, it was known that the 

maximum power dissipation was confined within the active layer. From the 

absorptance measurements, CuPc shown absorptance of higher wavelengths and C60 

shown absorptance of lower wavelengths. 

From the current density-voltage characterization, it was observed that with 

increase in thickness of anode interfacial layer (AIL), lower current density values 

were obtained. This was observed for both V2O5 and m-MTDATA as AIL. For 

devices with 5nm thickness of AIL, higher current density values were obtained 

with V2O5 compared to m-MTDATA. For devices with 10nm thickness of anode 

interfacial layer, higher current values were obtained with m-MTDATA compared 

to V2O5. 

The device area used in this experiment was small (0.4 cm2). The mask used for 

deposition of cathode and other layers was same. Different masks were implemented 

in the next experiment to avoid short circuit between cathode and anode.  
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Chapter 5 

 

Cathode interfacial layer of small 

molecule organic solar cells 

   

In this chapter, the influence of cathode interfacial layer on the performance of a 

small molecule organic solar cell with CuPc and C60 as active layer materials was 

analyzed.  Section 5.1 discusses the fabrication procedure of devices. Section 5.2 

presents the results obtained from the modeling and the characterizations. The 

conclusions from the modeling and characterization are explained in section 5.3. 

5.1 Devices 

The schematic of the device is shown Figure 5.1. ITO and Al are anode and 

cathode, respectively. For donor and acceptor, CuPc and C60 materials were used, 

respectively. Anode interfacial layer (AIL) was made either of Vanadium oxide 

(V2O5) and 4,4',4''-Tris[(3-methylphenyl)-phenylamino]triphenylamine (m-

MTDATA). Based on analysis of influence of anode interfacial layer in the previous 

experiment, 5 nm thickness AIL was considered. Cathode interfacial layer (CIL) is 

made of Alq3 material and two thicknesses were used: 5 nm and 10 nm. The optical 

electrical field intensity, device reflectance, power dissipation, absorptance and 

power redistribution measurements were done using transfer matrix approach as 

explained in section 3.1.1. Modeling and simulation were done using MATLAB. For 

device fabrication, thermal evaporator was used for deposition of all materials such 

as V2O5, m-MTDATA, CuPc, C60, Alq3 and Al. All materials were deposited under 

pressure conditions of 4x10-6 mbar and deposition rates of 1-2 Å/s. Thickness was 

confirmed by ellipsometer. For characterization part, current density-voltage (J-V) 
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characteristics were measured using solar simulator with source meter. Fabrication 

and characterization was carried out in Centre for Nano Science and Engineering 

(CeNSE), Indian Institute of Science (IISc), Bangalore under Indian Nanoelectronics 

Users Program (INUP). 

 

Figure 5.1: Schematic of the device. Here, anode interfacial layer is V2O5 or m-MTDATA 5 

nm thicknesses and cathode interfacial layer is Alq3 thickness is 5 nm or 10 nm 

5.2 Results 

This section presents the results obtained from the modeling using transfer matrix 

approach and the characterization of fabricated devices. 

5.2.1 Optical electric field 

Refractive index (n) and extinction coefficient (k) were extracted from ellipsometry. 

They were used in calculation of optical electric field intensity, device reflectance, 

power dissipation, absorptance and power redistribution. Thickness of layers were: 

ITO(150 nm)/AIL/CuPc(40 nm)/C60(40 nm)/CIL/Al(100 nm). Here AIL is V2O5 

or m-MTDATA of 5 nm thickness and CIL is Alq3 of 5 nm or 10 nm thickness. 

Figure 5.2 (a) is the electric field distribution of device with V2O5 of 5 nm thickness 

as AIL and Alq3 of 5 nm as CIL. For this device, electric field intensity peak lies 

within the active layer which is a desired requirement for maximizing efficiency of 

the device. In case of 10 nm thickness of Alq3 electric field intensity peak, as shown 

in Figure 5.2 (b), lies within the active layer and the peak value higher by 0.23%. 
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Figure 5.2: Optical electric field intensity distribution of device with V2O5 of 5 nm as AIL and 

Alq3 as CIL of (a) 5 nm and (b) 10 nm thickness 

  

Figure 5.3: Optical electric field intensity distribution of device with m-MTDATA of 5 nm as 

AIL and Alq3 as CIL of (a) 5 nm and (b) 10 nm thickness 

Figure 5.3 (a) is electric field distribution of device with m-MTDATA of 5 nm as 

AIL and Alq3 of 5 nm thickness as CIL. In case of 5 nm thickness of Alq3 as CIL, 

electric field peak was higher by 0.54% for device with m-MTDATA as AIL 

compared to device with V2O5 as AIL. Figure 5.3 (b) is electric field distribution of 

device under m-MTDATA of 5 nm and Alq3 of 10 nm thickness. In both cases, 

electric field intensity peak lies within the active layer and the peak value is higher 

by 0.27% compared to V2O5 of 5 nm. In case of 10 nm thickness Alq3 as CIL, 

electric field peak was higher by 0.58% for device with m-MTDATA as AIL 

compared to devices with V2O5 as AIL. A shift in electric field intensity peak 

towards the left side of the interface between donor and acceptor was observed in 

case of devices with 5 nm thickness of Alq3 compared to devices with 10 nm Alq3. 
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5.2.2 Device reflectance 

 

Figure 5.4: Reflectance of device with V2O5 of 5 nm as AIL and Alq3 as CIL of (a) 5 nm and 

(b) 10 nm thickness. 

Figure 5.4 (a) is reflectance of device with V2O5 of 5 nm thickness as AIL and Alq3 

of 5 nm thickness as CIL. The peak reflectance was observed near 550 nm 

wavelength. Figure 5.4 (b) is reflectance of device with V2O5 of 5 nm and Alq3 of 

10nm thickness. It was also observed that peak reflectance value was observed to be 

same in both cases. 

 

Figure 5.5: Reflectance of device with m-MTDATA of 5 nm as AIL and Alq3 as CIL of (a) 5 

nm and (b) 10 nm thickness.  

Figure 5.5 (a) is reflectance of device with m-MTDATA of 5 nm thickness and Alq3 

of 5 nm thickness. The peak reflectance is lower for device with m-MTDATA as 

AIL compared device with V2O5 as AIL. Figure 5.5 (b) is reflectance of device with 

m-MTDATA of 5 nm thickness and Alq3 10 nm. In both cases, peak reflectance was 
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observed to be same. The peak reflectance in these devices was observed around 550 

nm wavelength. 

5.2.3 Power dissipation 

 

Figure 5.6: Power dissipation of device with V2O5 of 5 nm as AIL and Alq3 of (a) 5 nm and 

(b) 10 nm thickness 

Figure 5.6 (a) is power dissipation of device with V2O5 of 5 nm as AIL and Alq3 of 5 

nm thickness as CIL. It was observed maximum power dissipation is confined 

within the active layer materials of CuPc and C60. Figure 5.6 (b) is power 

dissipation of device with V2O5 of 5 nm and Alq3 of 10 nm thickness. Peak of power 

dissipation within the CuPc and C60 layers is near to CuPc:C60 interface, which is a 

desired requirement for maximization of efficiency of the device. 

 

Figure 5.7: Power dissipation of device with m-MTDATA of 5 nm as AIL and Alq3 as CIL of 

(a) 5 nm and (b) 10 nm thickness 

Figure 5.7 (a) is power dissipation of device with m-MTDATA of 5 nm and Alq3 of 

5 nm thickness, measured using transfer matrix approach. In case of devices with 



51 

m-MTDATA as AIL, higher power dissipation in the active layer was observed 

compared to devices with V2O5 as AIL. Figure 5.7 (b) is power dissipation of device 

with m-MTDATA of 5 nm and Alq3 of 10 nm thickness. Low power dissipation was 

observed in the interfacial layers which is a desired factor for consideration of 

interfacial layers. 

5.2.4 Absorptance 

  

Figure 5.8: Absorptance of various layers of device with V2O5 of 5 nm as AIL and Alq3 as CIL 

of (a) 5 nm and (b) 10 nm thickness 

Figure 5.8 (a) is absorptance of various layers of device with V2O5 of 5 nm and Alq3 

of 5 nm thickness. From the absorptance curves, it was observed that CuPc 

material is absorbing higher wavelengths and C60 material is absorbing lower 

wavelengths. Figure 5.8 (b) is absorptance of various layers of device with V2O5 of 5 

nm and Alq3 of 10 nm thickness. With increase in thickness of Alq3 absorptance 

increased in C60 layer and decreased in CuPc layer. 

  

Figure 5.9: Absorptance of various layers of device with m-MTDATA of 5 nm as AIL and 

Alq3 as CIL of (a) 5 nm and (b) 10 nm thickness 
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Figure 5.9 (a) is absorptance of various layers of device with m-MTDATA of 5 nm 

and Alq3 of 5 nm thickness, measured using transfer matrix approach. Higher 

absorptance was observed in active layer materials of CuPc and C60 in case of 

devices with m-MTDATA as AIL compared to devices with V2O5 as AIL. Figure 

5.9 (b) is absorptance of various layers of device with m-MTDATA of 5 nm and 

Alq3 of 10 nm thickness. With increase in thickness of Alq3 absorptance increased in 

C60 layer and decreased in CuPc layer. 

5.2.5 Power redistribution 

  

Figure 5.10: Power redistribution of device with V2O5 of 5 nm as AIL and Alq3 as CIL of (a) 

5 nm and (b) 10 nm thickness 

Figure 5.10 (a) is power redistribution of device with V2O5 of 5 nm and Alq3 of 5 

nm thickness, measured using transfer matrix approach. Power redistribution curves 

shows how incoming energy is shared across different layers of the device as a 

function of wavelength. It can observed that share of energy within the interfacial 

layers is low. Figure 5.10 (b) is power redistribution of various layers of device with 

V2O5 of 5 nm and Alq3 of 10 nm thickness. It was observed that with increase in 

thickness, the share of energy within the Alq3 increased. It was also evident that 

CuPc layer is sharing higher wavelengths and C60 layer is sharing the lower 

wavelengths of incoming energy. 
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Figure 5.11: Power redistribution of device with m-MTDATA of 5 nm as AIL and Alq3 as CIL 

of (a) 5 nm and (b) 10 nm thickness 

Figure 5.11 (a) is power redistribution of device with m-MTDATA of 5 nm and 

Alq3 of 5 nm thickness. Higher absorption in the active layer materials was observed 

in devices with m-MTDATA as AIL when compared devices with V2O5 as AIL. 

Figure 5.11 (b) is power redistribution of various layers of device with m-MTDATA 

of 5 nm and Alq3 of 10 nm thickness. From power re-distribution curves, the 

remaining part above aluminum layer can be considered as reflectance of the device. 

5.2.6 Electrical characterization 

 

Figure 5.12: J-V characteristics of device with V2O5 of 5 nm as AIL and Alq3 as CIL of (a) 5 

nm and (b) 10 nm thickness under dark (blue line) and AM 1.5 solar simulation (red line) 

conditions 

Figure 5.12 (a) is J-V characteristics of the device with V2O5 of 5 nm thickness as 

AIL and Alq3 of 5 nm thickness as CIL under dark and light conditions. Open 

circuit voltage (VOC) of 5.12 mV and short circuit current density (JSC) of 5.524 
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μA/cm
2
 was obtained in this case. The values of JSC and VOC are tabulated in 

Table 5.1 for comparative analysis of influence of CIL. Figure 5.12 (b) is J-V 

characteristics of the device with V2O5 of 5 nm thickness as AIL and Alq3 of 10 nm 

thickness as CIL under dark and light conditions. VOC of 9.74 mV and JSC of 2.261 

μA/cm
2
 was obtained in this case. Lower JSC and higher VOC were obtained in 

device with Alq3 of 10 nm thickness compared device with 5 nm Alq3. 

 

Figure 5.13: J-V characteristics of device with m-MTDATA of 5 nm as AIL and Alq3 as CIL 

of (a) 5 nm and (b) 10 nm thickness under dark (blue line) and AM 1.5 solar simulation (red 

line) conditions 

Figure 5.13 (a) is J-V characteristics of the device with m-MTDATA of 5 nm 

thickness as AIL and Alq3 of 5 nm thickness as CIL under dark and light 

conditions. VOC of 12.05 mV and JSC of 10.48 μA/cm2 were obtained. In case of 

devices with Alq3 of 5nm thickness as CIL, higher JSC and higher VOC was obtained 

from devices with m-MTDATA as AIL compared to devices with V2O5 as AIL. 

Figure 5.13 (b) is J-V characteristics of the device with m-MTDATA of 5 nm 

thickness as AIL and Alq3 of 10 nm thickness as CIL under dark and light 

conditions. VOC of 6.15 mV and JSC of 7.967 μA/cm
2
 were obtained in this case. 

Lower VOC and lower JSC was observed in devices with 10 nm Alq3 compared to 

devices with 5 nm Alq3. 
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Device  JSC (μA/cm
2
)  VOC (mV)  

VA5  5.524 5.12 

VA10  2.2609 9.74 

MA5  10.483 12.05 

MA10  7.967 6.15 

Table 5.1: Open circuit voltage and short circuit density values measured from analysis of 

cathode interfacial layer. V denotes V2O5 of 5 nm, M denotes m-MTDATA of 5 nm and A5 

denotes Alq3 of 5 nm. 

5.3 Conclusions 

From the modeling results, it was observed that devices with m-MTDATA as AIL 

showed higher electric field intensity peak compared with devices with V2O5 as AIL 

for both thicknesses of 5 nm and 10 nm of Alq3. A shift in electric field intensity 

peak towards the left of interface of CuPc and C60 was observed in case of devices 

with 5 nm thickness of Alq3. The reflectance peak is lower for devices with m-

MTDATA as AIL compared to devices with V2O5 as AIL for both thicknesses of 5 

nm and 10 nm of Alq3. The peak reflectance remained the same with increase in 

thickness of Alq3 and it was around 550 nm wavelength. The observations of higher 

electric field intensity peak and lower reflectance for devices with m-MTDATA as 

AIL can be correlated with higher short circuit current density for devices with m-

MTDATA compared to devices with V2O5 as AIL. From the power dissipation 

measurements, it was known that maximum power dissipation is confined within 

the active layer materials of CuPc and C60. From the absorptance measurements, 

CuPc had shown absorptance of higher wavelengths and C60 had shown absorptance 

of lower wavelengths. 

From the current density-voltage characterization, it was observed devices with 5 

nm thickness of Alq3 as CIL resulted in higher JSC compared to devices with 10 nm 
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Alq3, whether the AIL is V2O5 or m-MTDATA. Devices with m-MTDATA as AIL 

showed higher JSC and higher VOC compared to devices with V2O5 as AIL for the 

devices with Alq3 of 5 nm thickness. 
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Chapter 6 

 

Conclusions and Future Work 

   

6.1 Conclusions 

The main focus of this thesis is to analyze the influence of interfacial layers in small 

molecule organic solar cells in order to improve efficiency and stability of the 

devices. Optical electric field, reflectance, power dissipation, absorptance and power 

re-distribution were determined using transfer matrix modeling. Fabrication of 

devices was done using thermal evaporation process. Electrical characterization was 

done for measurement of current density-voltage characteristics. Optical 

characterization was done to measure reflectance, thickness, reflection coefficient 

and extinction coefficient. The device schematic considered for the experiments is 

Anode(ITO)/Anode interfacial layer (V2O5, m-MTDATA)/Donor (CuPc)/Acceptor 

(C60)/Cathode interfacial layer (Alq3)/Cathode (Al). Two materials, Vanadium 

oxide (V2O5) and 4,4',4''-Tris[(3-methylphenyl)-phenylamino]triphenylamine (m-

MTDATA) were considered for analysis of influence of AIL and two thicknesses of 

5nm and 10nm were considered in this experiment. Alq3 material was considered for 

analysis of influence of cathode interfacial layer and two thicknesses of 5nm and 

10nm were considered. 

From the modeling and characterization, it was observed that devices with 5 nm 

thickness of anode and cathode interfacial layer showed better performance than 

devices with 10 nm thickness at. Devices with m-MTDATA as anode interfacial 

layer performed better than devices with V2O5 as anode interfacial layer. 
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6.2 Future work 

In the present thesis, optical modeling was done for analyzing the influence of anode 

and cathode interfacial layers in small molecule organic solar cells based on CuPc 

and C60 materials. Optical electric field, reflectance, power dissipation, absorptance 

and power redistribution were measured by using transfer matrix approach. 

Electrical modeling can be done to analyze the influence of interfacial layers in 

small molecule organic solar cells. 

For the present work, single material of V2O5 or m-MTDATA and Alq3 was used as 

anode and cathode interfacial layer respectively. This work can be extended by 

using double and composite layers with two or more materials as interfacial layer in 

bulk heterojunction devices. 

 


