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Abstract

A thick-walled circular cylindrical tube made of an incompressible magnetoelastic material is subjected to a finite
static deformation in the presence of an internal pressure, an axial stretch, and an azimuthal or an axial magnetic field.
The dependence of the static magnetoelastic deformation on the intensity of the applied magnetic field is analysed for
two different magnetoelastic energy density functions. Then, superimposed on this static configuration, incremental
axisymmetric motions of the tube and their dependence on the applied magnetic field and deformation parameters are
studied. In particular, we show that magnetoelastic coupled waves exist only for particle motions in the azimuthal
direction. For particle motion in radial and axial directions, only purely mechanical waves are able to propagate when
magnetic field is absent. The wave speeds as well as the stability of the tube can be controlled by changing the internal
pressure, axial stretch, and applied magnetic field that demonstrates the applicability of magneto-elastomers as wave
guides and vibration absorbers.
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1 Introduction

Magnetoelastic solids are smart materials in which the magnetic and the mechanical response have a nonlinear coupling
with each other. This paper deals with the problem of large axisymmetric deformations and propagation of magnetoelastic
waves in such materials.

Most modern magnetoelastic materials are magnetorheological elastomers (MREs) that are composites of an elas-
tomeric matrix filled with ferromagnetic particles (usually micron sized iron particles) embedded in their bulk. Their
manufacturing process and experimental methods to measure changes in overall parameters like stiffness are detailed in
papers, such as those by Jolly et al. [1], Lokander and Stenberg [2], Varga et al. [3], Boczkowska and Awietjan [4], and
Schubert and Harrison [5]. Their applicability in development of sensors, actuators, and vibration control systems have
been demonstrated in some recent papers by Mayer et al. [6], Xin et al. [7], and Ying and Ni [8], among others.

The magnetoelastic behaviour of such materials is analysed using the general theory of electromagnetic interactions
in deformable continua that can be found in texts by Brown [9], Pao [10], Maugin [11], and Eringen and Maugin [12, 13].
These classical works along with the recent advances in development of MREs have inspired a great deal of mathematical
and computational work in this area in recent years. From a pheomenological perspective, Brigadnov and Dorfmann
[14] and Dorfmann and Ogden [15] proposed a constitutive formulation of nonlinear magnetoelasticity based on the
definition of a total energy density function. Kankanala and Triantafyllidis [16] approached this problem through a
variational formulation and arrived at similar equations. Later, based on the micromechanical constitution of the MREs,
formulations for magnetoelastic coupled equations using homogenization techniques were proposed by Castañeda and
Galipeau [17, 18] and Chatzigeorgiou et al. [19]. We note here that a parallel track of research exists in the field
of nonlinear electroelasticity motivated by the development of elctro-active polymers (EAPs) [20]. The mathematical
formulation is quite similar and can be seen in the papers on phenomenological models by Dorfmann and Ogden [21],
McMeeking and Landis [22], and micromechanical models using homogenization technique by Castañeda and Siboni [23],
among others.

Since both EAPs and MREs are polymer based composites, the deformation process is usually dissipative. Effect of
magnetic field on the viscoelasticity has been studied by Bellan and Bossis [24], effect on the Mullin’s effect by Coquelle
and Bossis [25], magneto-viscoelasticity of isotropic and anisotropic MREs by Saxena et al. [26, 27] and Haldar et al.
[28], and a micromechanical approach to study magneto-viscoelasticity has been taken by Ethiraj and Miehe [29]. Similar
case of dissipation in the elctro-viscoelastic case has been studied by Ask et al. [30], Saxena et al. [31], and Denzer and
Menzel [32]. For a more exhaustive survey of the literature on electro- and magnetoelasticity, we refer to the recent books
on the subject by Hutter et al. [33], Ogden and Steigmann [34], and Dorfmann and Ogden [35].

Based on the modelling techniques of electro- and magnetoelasticity mentioned above, Otténio et al. [36] studied the
instabilities on the surface of a finitely deformed magnetoelastic half-space using an incremental formulation, Kankanala
and Triantafyllidis [37] studied the geometric instabilties of a finitely deformed magnetoelastic block, and Rudykh and
Bertoldi [38] studied the stability of anisotropic MREs using a micromechanical approach. Similar studies in the case of
electroelasticity were done by Dorfmann and Ogden [39] who analysed the instabilities of an electroelastic plate, Rudykh
et al. [40] who studied snap-through instabilities of a thick-walled electroactive balloons, and Miehe et al. [41] who did
a computational study of structural and material instabilities in EAPs.

The incremental formulation (small deformations superposed on large deformations) used by Otténio et al. [36]
was further generalised by Ogden [42] to derive the general governing equations for time-dependent incremental elastic
deformation and electromagnetic fields. Using this Dorfmann and Ogden [43] studied waves in a finitely deformed
electroelastic solid, while Destrade and Ogden [44] studied waves in a finitely deformed magnetoelastic bulk under a
quasimagnetostatic approximation. Later Saxena and Ogden [45–47] used the above-mentioned theory to study Rayleigh
type wave propagation on the surface of a homogeneously finitely deformed magnetoelastic half-space, and to consider
Bleustein–Gulyaev type and Love type waves in a homogeneously finitely deformed magnetoelastic layered half-space.
We use the same formulation in the present work to study a boundary value problem in cylindrical geometry concerning
a thick-walled tube made of a magnetoelastic material.

Study of finite deformation and incremental motions of a cylindrically shaped elastic solid has been done by many
researchers, some of which are listed as follows (and references therein). Stability and vibrations of a thick-walled tube
under finite torsion and external pressure have been studied by Ertepinar [48], and Wang and Ertepinar [49]. Static
bifurcation for the axisymmetric case in the presence of an internal pressure and axial stretch has been analysed by
Haughton and Ogden [50, 51], while waves in rotating thick-walled elastic tubes have been studied by Haughton [52]
using the equations derived in [53]. More recently, Akbarov and Guz [54] studied axisymmetric waves in pre-stressed
linear elastic cylinders, El-Raheb [55] studied transient waves in infinite inhomogeneous linearly elastic tubes, Chen and
Lin [56] analysed thick-walled linearly elastic cylinders made of functionally graded materials with an internal pressure,
and Shams [57] studied axisymmetric wave propagation in a residually stressed tube. For magnetoelastic materials, the
problem of static nonlinear deformations in the presence of an underlying magnetic field has been studied briefly by
Dorfmann and Ogden [58], numerical solutions for static deformations of a thick hollow cylinder in the presence of an
axial magnetic field have been obtained by Bustamante et al. [59], and the same for a solid cylinder have been obtained
by Salas and Bustamante [60]. Role of internal pressure in the finite deformations of an electroelastic tube has been
studied by Melnikov and Ogden [61]. In a recent paper, Shmuel and DeBotton [62] have studied waves in a hollow
electroelastic tube with an electric field in the radial direction.

In the first part of the present paper, we study static finite deformations of an incompressible magnetoelastic tube of
finite length in the presence of an azimuthal magnetic field, mechanical internal pressure, and an axial stretch. In the
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second part we consider the effects of these quantities on infinitesimal axisymmetrical motions of the finitely deformed
cylinder. It is shown that for a coupled magneto-mechanical problem, longitudinal motions (in the(r, z) plane) are not
possible and we get waves with particle motion in the azimuthal direction only.

The governing equations for nonlinear magnetoelastic deformations and for the increments in the deformation and
magnetic fields are summarised in Section 2, along with appropriate boundary conditions. Constitutive relations based
on a total energy density function are summarised in Section 3 where we also define the magnetoelastic moduli tensors.

In Section 4, the governing equations are expressed in cylindrical coordinates and finite magnetoelastic deformations
of a thick-walled cylindrical tube are examined. Dependence of the total internal pressure and the axial force in the tube
on the axial stretch and the underlying magnetic field is studied. For the purpose of numerical calculations we use two
forms of the energy density function, one being similar to a Mooney–Rivlin magnetoelastic energy function introduced
by Otténio et al. [36] and the other is an extension of the Ogden energy function to the magnetoelastic context. The
computations show that the presence of an azimuthal magnetic field requires additional internal pressure and compressive
axial force if a given state of deformation has to be maintained. The axial magnetic field is, however, decoupled from the
internal pressure and requires only a change in the axial force in order to maintain a given configuration.

From Section 5 onwards, we consider time-dependent axisymmetric incremental motions superimposed on the finitely
deformed cylinder. For both axial and azimuthal magnetic fields, the equations governing incremental motion in the
azimuthal direction are decoupled from the equations governing incremental motion in the axial and radial directions.
We therefore consider the four cases separately. Considering wave type solutions for displacement and incremental
magnetic field, we obtain high-order ordinary differential equations which are converted to systems of first-order ODEs
for the purpose of obtaining a numerical solution. Wave speeds are computed numerically for the Mooney–Rivlin type
magnetoelastic energy density function.

It is observed that the differential equations governing the displacement in axial and radial directions yield a unique
solution only when the underlying magnetic field is zero, thereby reducing the problem to a pure elastic case. Solutions
do exist for magnetic and mechanical waves in the case of mechanical displacement in azimuthal direction and we
obtain multiple modes of wave propagation. Existence of such waves and dependence of their propagation velocity on
various magnetomechanical loading parameters (axial stretch, internal pressure, applied magnetic field, tube thickness) is
demonstrated graphically. An underlying azimuthal magnetic field always reduces the wave speed while an axial magnetic
field can increase or decrease the wave speed for different conditions. The same procedure also helps to study geometric
instabilities and we observe that increasing of both the axial and azimuthal magnetic field can cause the tube to become
unstable in the long wavelength region.

Finally we report our conclusions in Section 8.

2 Governing equations of finite magnetoelasticity

Consider a continuous solid body made of a magnetoelastic material. We denote its static, stress-free reference (La-
grangian) configuration by Br and the boundary by ∂Br. Under the effects of a time-dependent magnetic field and surface
tractions, the current (Eulerian) configuration of the body at time t is denoted by Bt and its boundary by ∂Bt. Material
points in Br are denoted by X, which becomes x in Bt.

The motion of the body is described by an invertible function χ such that x = χ(X, t) and it is assumed that χ and
its inverse at each instant t are sufficiently differentiable. The deformation gradient tensor is defined as F = Gradχ and
its determinant by J = det F > 0. The standard differential operators are denoted by grad, div, and curl with respect to
x and by Grad, Div, and Curl with respect to X. For an incompressible material we have the constraint

J = det F ≡ 1. (1)

We first consider a purely magneto-elastostatic finitely deformed configuration, denoted B with boundary ∂B. Subse-
quently, when considering incremental motions, we shall adopt the quasimagnetostatic approximation (see, for example,
[42]), in which the effects of electric fields can be neglected, so that there are no surface or volume electric charges and
no electric currents. We also assume that there are no mechanical body forces. The balance equations to be satisfied in
B are

divτ = 0, τ = τT, curlH = 0, divB = 0, (2)

where τ is the total Cauchy stress tensor, which incorporates the magnetic body forces, τT is its transpose, H is the
magnetic field vector, and B is the magnetic induction vector. Outside the material in vacuum (or a non-conducting,
non-magnetic material), the relevant equations to be satisfied are

curlH∗ = 0, divB∗ = 0, (3)

with the constitutive relation B∗ = µ0H
∗. Here µ0 is the magnetic permeability of vacuum with the numerical value

of 4π × 10−7 N/A2, and here and henceforth we denote the quantities in vacuum by a superscript *. The boundary
conditions are given as

τn = tm + ta, n× JHK = 0, n · JBK = 0, (4)

on ∂B, where n is the unit outward normal to the boundary, tm and ta are the tractions due to magnetic and (applied)
mechanical forces, respectively, and J•K represents jump in a field variable across a boundary.
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The total nominal stress tensor T and the Lagrangian forms of H and B are defined by

T = JF−1τ , Hl = FTH, Bl = JF−1B, (5)

using which we can write the balance equations and boundary conditions in Lagrangian form as

DivT = 0, FT = (FT)T, CurlHl = 0, DivBl = 0 in Br, (6)

TTN = tM + tA, N× JHlK = 0, N · JBlK = 0 on ∂Br, (7)

where N is the unit outward normal to ∂Br, and tM and tA are magnetic and mechanical traction per unit reference area.
In particular, tM is given by tM = τ ∗F−TN on ∂Br, where τ ∗ is the Maxwell stress given by

τ ∗ = B∗ ⊗H∗ − 1

2
(B∗ ·H∗) I, (8)

I being the identity tensor.

2.1 Incremental equations

Superimposed on the underlying deformation and the initial magnetic field, we consider an infinitesimal incremental
motion denoted by

.
χ(X, t) = u(x, t) and an increment in the magnetic field denoted by

.
Hl(X, t)

1. Incremented
quantities referred to B are denoted by the subscript 0 using the relations

.
T0 = J−1F

.
T,

.
Bl0 = J−1F

.
Bl,

.
Hl0 = F−T

.
Hl. (9)

Next, we form the increments of the governing equations (6) and then update them to B to obtain

div
.
T0 = ρu,tt, Lτ +

.
T0 = τLT +

.
TT

0 , curl
.
Hl0 = 0, div

.
Bl0 = 0, (10)

in the first of which the inertia term is now included, where ρ is the mass density and L = gradu is the displacement
gradient. The updated incremented boundary conditions are

.
TT

0 n =
.
τ ∗n− τ ∗LTn, n× (

.
Hl0 − LTH∗ −

.
H∗) = 0, n · (

.
Bl0 −

.
B∗ + LB∗) = 0, (11)

on ∂B, where the increment in the mechanical traction has been set to zero.
In vacuum, the incremented governing equations are

curl
.
H∗ = 0, div

.
B∗ = 0, (12)

with the relation
.
B∗ = µ0

.
H∗. Thus, the increment in the Maxwell stress is given by

.
τ ∗ = µ0

[ .
H∗ ⊗H∗ + H∗ ⊗

.
H∗ − (

.
H∗ ·H∗)I

]
. (13)

3 Constitutive relations

The material is assumed henceforth to be incompressible (J ≡ 1) and is defined by a total energy density function
Ω(F,Hl) as given in [15] which results in the constitutive equations

T =
∂Ω

∂F
− pF−1, Bl = − ∂Ω

∂Hl
, (14)

where p is a Lagrange multiplier associated with the constraint of incompressibility.
For an incompressible isotropic magnetoelastic material, the energy density function can be expressed in terms of five

scalar invariants which we choose to be

I1 = trC, I2 =
1

2
[I21 − tr(C2)],

K4 = Hl ·Hl, K5 = (CHl) ·Hl, K6 = (C2Hl) ·Hl, (15)

where C = FTF is the right Cauchy–Green tensor. We use K4,K5,K6 above instead of I4, I5, I6 to maintain consistency
as the latter are used in literature to define invariants in terms of Bl; see, for example, [15]. Also, I3 = det C is unity
because of incompressibility. Hence, the constitutive relations (14) can be expanded as

T =− pF−1 + 2Ω1F
T + 2Ω2(I1F

T −CFT) + 2Ω5Hl ⊗ FHl

+ 2Ω6(Hl ⊗ FCHl + CHl ⊗ FHl), (16)

1 Note that for the sake of brevity, we depart from the usual convention and use a superposed bold dot to denote increment in a quantity
and not a time derivative that is the usual case. Derivatives with respect to time are denoted using a subscript ‘,t’ as can be seen in equation
(10), for example.
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and
Bl = −2(Ω4Hl + Ω5CHl + Ω6C

2Hl), (17)

where Ωk = ∂Ω/∂Ik for k = 1, 2 and Ωk = ∂Ω/∂Kk for k = 4, 5, 6. In Eulerian form the equations are

τ = −pI + 2Ω1b + 2Ω2(I1b− b2) + 2Ω5bH⊗ bH + 2Ω6(bH⊗ b2H + b2H⊗ bH), (18)

and
B = −2(Ω4bH + Ω5b

2H + Ω6b
3H), (19)

where b = FFT is the left Cauchy–Green tensor.
On incrementing the equations (14), we obtain

.
T =

∂2Ω

∂F∂F

.
F +

∂2Ω

∂F∂Hl

.
Hl − .

pF−1 + pF−1
.
FF−1, (20)

.
Bl = − ∂2Ω

∂Hl∂F

.
F− ∂2Ω

∂Hl∂Hl

.
Hl. (21)

Using the relations in equation (9) with J = 1, we update the above equations to obtain

.
T0 = FA

.
F + FC

.
Hl − .

pI + pL,
.
Bl0 = −FCT

.
F− FK

.
Hl, (22)

where we have used the notations

A =
∂2Ω

∂F∂F
, C =

∂2Ω

∂F∂Hl
, CT =

∂2Ω

∂Hl∂F
, K =

∂2Ω

∂Hl∂Hl
, (23)

which define the magnetoelastic moduli tensors. In component form the updated magnetoelastic tensors, A0,C0 and K0,
respectively, are given by

A0ipjq = A0jqip = FiαFjβAαpβq, (24)

C0ijk = FiαF
−1
βk Cαjβ , (25)

K0ij = K0ji = F−1αi F
−1
βj Kαβ . (26)

It is to be noted here that the first two indices of the tensors C and C0 correspond to the derivative with respect to F
and the third index corresponds to the derivative with respect to H l.

Explicit formulas for these components for an isotropic magnetoelastic material referred to the principal axes of the
left Cauchy–Green tensor b are listed in [45]. These are substituted into the updated incremented constitutive equations
above to give .

T0 = A0L + C0

.
Hl0 − .

pI + pL,
.
Bl0 = −CT

0 L−K0

.
Hl0. (27)

On substituting the above forms of constitutive equations in (10)1,4 (assuming no mechanical body forces) we obtain

div(A0L + C0

.
Hl0 + pL)− grad

.
p = ρu,tt, (28)

div(CT
0 L + K0

.
Hl0) = 0. (29)

Using (27)1, and the symmetry of the total stress tensor in the incremental form (10)2, we obtain the identities

A0ipjq + δiq (τjp + pδjp) = A0pijq + δpq (τij + pδij) , C0ijk = C0jik, (30)

the first of which can be used to obtain the useful relation

p = A01313 −A01331 − τ11 = A01212 −A01221 − τ11. (31)

4 Specialization to a cylindrical geometry

We consider an infinite circular cylindrical tube made of an incompressible non-conducting magnetoelastic material. We
work in terms of cylindrical polar coordinates, which in the reference configuration Br are denoted by (R,Θ, Z) and in
the deformed configuration B by (r, θ, z). In the reference configuration, let the internal and external radii of the tube
be given by A and B, respectively.

The tube is deformed by an internal pressure, stretching in the axial direction, and the application of a magnetic field
in the azimuthal and the axial directions to maintain axisymmetry. One way of applying an azimuthal magnetic field
is by placing a current carrying wire through the axis of the hollow cylinder while a uniform axial magnetic field can be
applied by placing permanent magnets at the two ends of the tube. After the deformation, the new inner and outer
radii are a and b such that a ≤ r ≤ b. The deformation assumes the form

r =

[
a2 +

1

λz

(
R2 −A2

)] 1
2

, z = λzZ, θ = Θ, (32)
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Figure 1: Sketch of the problem statement. A combination of internal pressure (P ), axial force (N), axial magnetic field
(H3), and azimuthal magnetic field (H2) is applied on a thick-walled magnetoelastic cylinder.

where the first relation is due to incompressibility and λz is the (uniform) axial stretch.
From here onwards, we take (1, 2, 3) to correspond to (r, θ, z). Thus λ1, λ2, λ3 correspond to principal stretches in

r, θ, z coordinates and the underlying magnetic field is given as H = (0, H2, H3).
Using the constraint of incompressibility (λ1λ2λ3 = 1), the principal stretches in the azimuthal, axial and radial

directions are given by

λ2 = λ =
r

R
, λ3 = λz, λ1 = λ−1λ−1z , (33)

respectively, wherein the notation λ is introduced.
From Equation (18), we obtain

τ11 = −p+ 2Ω1λ
2
1 + 2Ω2λ

2
1

(
λ22 + λ23

)
,

τ22 = −p+ 2Ω1λ
2
2 + 2Ω2λ

2
2

(
λ21 + λ23

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2 ,

τ33 = −p+ 2Ω1λ
2
3 + 2Ω2λ

2
3

(
λ21 + λ22

)
+ 2Ω5λ

4
3H

2
3 + 4Ω6λ

6
3H

2
3 . (34)

The equilibrium equation divτ = 0 gives
dτ11
dr

=
1

r
(τ22 − τ11), (35)

which on substituting the values for τ11 and τ22 becomes

dτ11
dr

=
1

r

[
2Ω1

(
λ22 − λ21

)
+ 2Ω2λ

2
3

(
λ22 − λ21

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2

]
. (36)

Boundary conditions on the lateral surfaces of the cylinder are given by the balance of traction (4)1 as

τ11 = τ∗11 − Pin on r = a, and τ11 = τ∗11 − Pout on r = b, (37)

where, Pin and Pout are the mechanically applied internal and external pressures, respectively, while τ∗11 obtains the value
−µ0(H2

2 +H2
3 )/2 from Equation (8).

We note here that in the case of a tube of finite length, the magnetic boundary conditions at the two ends of the tube
are easily satisfied if the magnetic field is in azimuthal direction. For an axial magnetic field, a numerical analysis for a
tube of finite length has been done by Bustamante et al. [59].

Since the independent parameters of the deformation process are λ, λz, Hl2, and Hl3, we can write the energy function
as

Ω(F,Hl) = Ω̂(λ, λz, Hl2, Hl3). (38)

Equation (36) can then be rewritten as

dτ11
dr

=
λ

r

∂Ω̂

∂λ
. (39)

We also mention the easily derived relations (see, for example, [50])

r
dλ

dr
= λ(1− λ2λz), (40)

A−2B2
(
λ2bλz − 1

)
= λ2aλz − 1 = R2A−2(λ2λz − 1),

∂λb
∂λa

=
λaA

2

λbB2
, (41)

for a finitely deformed tube, where we have defined λa = λ|r=a and λb = λ|r=b.
On integrating equation (36) using the boundary conditions (37), we obtain∫ b

a

1

r

[
2Ω1

(
λ22 − λ21

)
+ 2Ω2λ

2
3

(
λ22 − λ21

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2

]
dr

= Pin − Pout +
µ0

2

(
H2

2 |a −H2
2 |b
)
, (42)
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using which, along with (32)1, we can determine the inner and outer radii (a, b) of the tube after deformation for a given
pressure difference and magnetic field. (The contributions due to H3 in the above formula cancel out.) Note that as
we are working with an incompressible material, the terms Pin and Pout always appear together in the form of pressure
difference. For the sake of brevity, we only consider Pin in the equations from here onwards. A negative value of Pin will
correspond to a higher value of external pressure compared to the internal pressure. We now use the above calculated
value of the inner radius a to obtain an expression for τ11 as a function of r by integrating equation (36) as

τ11 = −µ0

2
H2

2a − Pin

+

∫ r

a

1

r

[
2Ω1

(
λ22 − λ21

)
+ 2Ω2λ

2
3

(
λ22 − λ21

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2

]
dr. (43)

The above process can be repeated equivalently by using equation (39) instead of (36) depending on the requirements
of the energy density function used.

In the following subsections we study the pressure and the axial force generated in the tube due to static nonlinear
axisymmetric deformations in the presence of an underlying magnetic field.

4.1 Total internal pressure in the tube

We define the net total internal pressure PT as the difference between the surface traction per unit area on the inside
and on the outside of the tube.

PT = (Pin − τ∗11|a) + τ∗11|b (44)

=
(
Pin +

µ0

2
(H2

2 +H2
3 )|a

)
− µ0

2
(H2

2 +H2
3 )|b. (45)

Consider the case when there is either only a uniform axial magnetic field (H2 = 0). Then H3|a = H3|b and hence
PT = Pin. For the case when there is only an axisymmetric magnetic field in the azimuthal direction (H3 = 0), the
increment in pressure in comparison to a purely mechanical case is

PT − Pin =
µ0

2

[
H2

2 |a −H2
2 |b
]
. (46)

On integrating Equation (39) using the boundary conditions (37), we obtain

PT =

b∫
a

λ

r

∂Ω̂

∂λ
dr. (47)

which is slightly more general than the formula (127) given in [58]. We use Equation (40) to change the variable of
integration from r to λ and hence obtain

PT =

∫ λa

λb

1

(λ2λz − 1)

∂Ω̂

∂λ
dλ. (48)

On differentiating this with respect to λa and using Equation (41)1, we obtain

(λ2aλz − 1)

λa

∂PT
∂λa

=
1

λa

∂

∂λ
Ω̂(λ, λz, Hl2, Hl3)|λ=λa

− 1

λb

∂

∂λ
Ω̂(λ, λz, Hl2, Hl3)|λ=λb

. (49)

This is similar to the formula (15) obtained by Haughton and Ogden [50] in the context of pure elasticity. It is evident
from the above equation that a necessary condition for an extremum to exist is

∂

∂λ

(
1

λ

∂

∂λ
Ω̂(λ, λz, Hl2, Hl3)

)
= 0, for at least one λ ∈ (λb, λa) . (50)

For rubber-like solids it is observed experimentally (at least for thin-walled tubes) that as λ increases, the internal
pressure increases up to a maximum, then decreases until it attains a minimum and then again increases monotonically
until rupture [63]. We can predict a similar behaviour for the total pressure PT if the above condition is satisfied. To
show this we use a generalisation of the Ogden elastic energy density function to the magnetoelastic context. This is
given by

Ω = Ω̂(λ, λz, Hl2) =

3∑
r=1

µr
αr

(
λαr + λαr

z + λ−αrλ−αr
z − 3

)
+ qK5, (51)

where the last term is K5 = (λ2H2
l2 + λ2zH

2
l3). Here, µr are material constants with the dimension of stress, while the αr

are dimensionless constants and q is a magnetoelastic coupling parameter with q/µ0 being dimensionless.
We also analyse the same problem for a generalised Mooney–Rivlin magnetoelastic material defined by

Ω =
µ

4
[(1 + γ)(I1 − 3) + (1− γ)(I2 − 3)] + q̃K5. (52)
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Table 1: List of material parameters for the generalised Ogden magnetoelastic energy density function (51). The me-
chanical parameters are similar to the ones used by Haughton and Ogden [51] for rubber elasticity.

α1 α2 α3 µ µ1 µ2 µ3 q

1.3 5 -2 2.6× 105 N/m2 1.491µ 0.003µ −0.023µ 4π × 10−7 N/A2

Table 2: Numerical values of material parameters for the generalised Mooney–Rivlin magnetoelastic energy density
function (52) as used by Otténio et al. [36].

µ γ q̃

2.6× 105 N/m2 0.3 4π × 10−7 N/A2

Here µ is the shear modulus of the material in the absence of a magnetic field, γ is a dimensionless parameter in the
range −1 ≤ γ ≤ 1, and q̃ is a magnetoelastic coupling constant such that q̃/µ0 is dimensionless. We note in passing that
the energy density functions used here are prototype functions commonly used while solving computational problems
in nonlinear magnetoelasticity [17, 36, 58]. Although they are able to capture the influence of magnetic loading in
nonlinear magnetoelastic materials, they are not suitable to model some effects like magnetic saturation or damage due
to particle motion in MREs. One can also perform the ensuing analysis by using material models that are more grounded
in experimental data, such as those given by Bustamante [64], Danas et al. [65], and Itskov and Khiem [66].

The non-dimensionalised total internal pressure P̂T = PT /µ is plotted against the inflation (λa = final internal
radius/initial internal radius) in Figures 2 and 3 for the numerical values of material parameters listed in Tables 1 and
2. For the purpose of comparison we show the plots for the above two different energy density functions side-by-side.

In order to understand the combined influence of tube thickness B/A, radial stretch λa, and axial stretch λz, we
solve a purely mechanical problem and show the results in Figure 2. Our computations show that for higher values of
inflation, a lower value of axial stretch λz tends to increase the internal pressure but the situation reverses at lower values
of λa where a higher axial stretch requires a higher pressure for the given deformation to be maintained. In a state of
no inflation λa = 1 and axial compression λz < 1, we observe negative values of internal pressure – this corresponds
to nothing but the requirement of an external pressure to obtain this configuration. Thicker the tuber, higher is the
pressure required for the same amount of inflation. In general, the internal pressure required to maintain the geometrical
configuration rises with an increase in the inflation λa. For the Mooney–Rivlin type function, the increase is monotonic
while for the Ogden type function the pressure increases up to a maximum and then falls as discussed previously in
accordance with Equation (50).

The axial magnetic field H3 has no effect on the internal pressure on account of Equation (46). A reference value H0

is taken for the azimuthal magnetic field so that at radius r, H2 is given by H2 = H0B/r. We plot the dependence of the
internal pressure on the magnetic field in Figure 3 for the case of B/A = 1.3 and λz = 0.9. An azimuthal magnetic field
tends to reduce the inflation of the cylindrical tube given constant pressure and constant axial stretch. In other words, if
a given deformation is to be maintained, application of an azimuthal magnetic field leads to a reduction of the required
internal pressure.

4.2 Total axial load on the cylinder

The principal stress in the axial direction is given as

τ33 = λ3
∂Ω

∂λ3
− p, (53)

which on using equations (35) and (38) can be rewritten in terms of principal stretches

τ33 =
1

2

(
2λz

∂Ω̂

∂λz
− λ∂Ω̂

∂λ

)
+

1

2r

d

dr

(
r2τ11

)
, (54)

or the invariants as

τ33 = Ω1(3λ23 − I1) + Ω2(I2 − 3λ21λ
2
2)

+ Ω5

(
2λ43H

2
3 − λ42H2

2

)
+ 2Ω6

(
2λ63H

2
3 − λ62H2

2

)
+

1

2r

d

dr

(
r2τ11

)
. (55)

For detailed derivation of above expression, we refer to Appendix C of [47].
The total axial force on the cylinder is given as

N =

2π∫
0

b∫
a

τ33 r dr dθ, (56)
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Figure 2: Plot of non-dimensionalised internal pressure vs inflation for different values of axial stretch and tube thickness
for purely mechanical deformation. (a) Mooney-Rivlin type magnetoelastic material (b) Ogden type magnetoelastic
material.
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Figure 3: Plot of non-dimensionalised internal pressure vs inflation for different values of underlying azimuthal magnetic
field H2 = H0B/A. B/A = 1.3, λz = 0.9. (a) Mooney-Rivlin type magnetoelastic material (b) Ogden type magnetoelastic
material.
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Figure 4: Plot of non-dimensionalised axial force vs inflation for different values of the underlying azimuthal magnetic field
H2 = H0B/A. B/A = 1.3, λz = 0.9. (a) Mooney–Rivlin type magnetoelastic material (b) Ogden type magnetoelastic
material.

which on using the value of τ33 from Equation (54) can be rewritten as

N = π

b∫
a

(
2λz

∂Ω̂

∂λz
− λ∂Ω̂

∂λ

)
rdr + πa2Pin −

πµ0

2
H2

3

(
b2 − a2

)
, (57)

which is similar to the formula (128) obtained by Dorfmann and Ogden [58]. Using Equation (40), we can change the
variable of integration in the first term from r to λ to get

N = πA2
(
λ2aλz − 1

) λa∫
λb

λ

(λ2λz − 1)2

(
2λz

∂Ω̂

∂λz
− λ∂Ω̂

∂λ

)
dλ

+πa2Pin −
πµ0

2
H2

3

(
b2 − a2

)
. (58)

Similar rearrangements to the invariant based expressions in equations (55) and (56) gives

N =π

b∫
a

[Ω1(3λ23 − I1) + Ω2(I2 − 3λ21λ
2
2) + Ω5

(
2λ43H

2
3 − λ42H2

2

)
+ 2Ω6

(
2λ63H

2
3 − λ62H2

2

)
]r dr + πa2Pin −

πµ0

2
H2

3

(
b2 − a2

)
. (59)

Upon changing the variable of integration from r to λ, we obtain

N = πA2
(
λ2aλz − 1

) λa∫
λb

λ

(λ2λz − 1)2
[Ω1(3λ23 − I1) + Ω2(I2 − 3λ21λ

2
2)

+Ω5

(
2λ43H

2
3 − λ42H2

2

)
+ 2Ω6

(
2λ63H

2
3 − λ62H2

2

)
] dλ

+πa2Pin −
πµ0

2
H2

3

(
b2 − a2

)
. (60)

The non-dimensionalised axial force N̂ = N/µ is plotted against the inflation (λa = final internal radius/initial
internal radius) in Figure 4 for the numerical values of material parameters listed in Tables 1 and 2. For the purpose
of comparison we show the plots for the Mooney–Rivlin type and Ogden type magnetoelastic energy density functions
side-by-side. For the Mooney–Rivlin material, axial force increases with a positive upwards curvature while the opposite
is true for an Ogden elastic material. Upon application of an azimuthal magnetic field (H = (0, H2, 0)), axial force is
reduced suggesting that the magnetic field tends to cause an extensional loading in the axial direction. The effect of
magnetic field is more pronounced for the Mooney–Rivlin type magnetoelastic material in the case of smaller values of
inflation λa. Reverse happens in the case of Ogden type magnetoelastic material in which the effect of magnetic field is
more noticeable in the case of higher λa.
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5 Incremental motions

We now consider time-dependent increments in the displacement and the magnetic field superimposed on the underlying
finite static deformation. Consider a small increment u in the deformation such that u = {u1, u2, u3}. The constraint of
incompressibility requires u to satisfy the condition div u = 0. We consider only axisymmetric motions so that there is
no dependence on θ and the components of the displacement gradient and the increment in the deformation gradient are
given in matrix form by

[L] = [grad u] =

 u1,1 −u2/r u1,3
u2,1 u1/r u2,3
u3,1 0 u3,3

 , (61)

[
.
F] = [Grad u] = [LF] =

 λ−1λ−1z u1,1 −λu2/r λzu1,3
λ−1λ−1z u2,1 λu1/r λzu2,3
λ−1λ−1z u3,1 0 λzu3,3

 , (62)

where here and henceforth we use the subscript i followed by a comma to denote a derivative with respect to the ith
coordinate, i ∈ {1, 3}.

The incremental incompressibility constraint trL = 0 is then given as

u1,1 +
u1
r

+ u3,3 = 0. (63)

Turning to the boundary conditions, we consider first the curved faces (n = e1 for the outer surface and n = −e1

for the inner surface) of the tube. Continuity of the underlying magnetic field requires that H2 = H∗2 and H3 = H∗3 on
each of these boundaries. For the incremental traction boundary condition (11) we obtain, after making use of the above
expressions for the Maxwell stress and its increment,

.
T011 =

.
τ∗11 − τ∗11L11,

.
T012 =

.
τ∗12 − τ∗22L12,

.
T013 =

.
τ∗13 − τ∗33L13, (64)

on each face, and for the incremental magnetic boundary conditions

.
Bl01 −

.
B∗1 +B∗2L12 +B∗3L13 = 0, (65)

.
Hl02 −

.
H∗2 −H2L22 = 0, (66)

.
Hl03 −

.
H∗3 −H2L23 −H3L33 = 0. (67)

If one were to study finite geometry, the components of the incremental mechanical traction required on the ends
z = 0, λzL (n = ±e3) of the cylinder to maintain any imposed displacement condition are, from (11)1,

.
T031 + τ∗11L31,

.
T032 − .

τ∗23 + τ∗22L32,
.
T033 − .

τ∗33 + τ∗33L33, (68)

and the incremental magnetic boundary conditions are obtained from equations (11)2,3 as

.
Hl01 −

.
H∗1 −H2L21 = 0,

.
Hl02 −

.
H∗2 −H2L22 = 0,

.
Bl03 −

.
B∗3 = 0. (69)

However, these equations will not be used in this paper since we restrict the analysis to an infinite cylinder.
We now consider the two cases of the underlying magnetic field being in the axial and in the azimuthal directions

separately.

6 Axial magnetic field H = (0, 0, H3)

In this first case, we consider an infinite tube with a uniform initial magnetic field in the axial direction. The Maxwell
stress and its increment are given in component form by

[τ ∗] =
B∗23
2µ0

 −1 0 0
0 −1 0
0 0 1

 , [
.
τ ∗] =

B∗3
µ0

 − .
B∗3 0

.
B∗1

0 −
.
B∗3

.
B∗2.

B∗1
.
B∗2

.
B∗3

 . (70)

In the presence of an axial magnetic field, the non-zero components of the magnetoelastic tensors are A0iiii, A0iijj ,
A0ijij , A0ijji, C0ii3, C0i3i, K0ii for i, j ∈ {1, 2, 3} and i 6= j. Explicit formulas for these components for the generalized
Mooney–Rivlin magnetoelastic material are given in the Appendix. Expanding the incremental governing equations (10)3,
(28), and (29) in component form, we obtain

.
Hl02,3 = 0,

.
Hl02,1 +

.
Hl02

r
= 0, (71)

.
Hl01,3 −

.
Hl03,1 = 0, (72)
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1

r

{
r
(
C0131(u1,3 + u3,1) + K011

.
Hl01

)}
,1

+
(
C0113u1,1 + C0223u1/r + C0333u3,3 + K033

.
Hl03

)
,3

= 0, (73)

1

r

{
r
(

(A01111 + p)u1,1 +A01122u1/r +A01133u3,3 + C0113
.
Hl03

)}
,1

−1

r

(
A01122u1,1 + (A02222 + p)u1/r +A02233u3,3 + C0223

.
Hl03

)
+
(
A03131u1,3 + (A03113 + p)u3,1 + C0131

.
Hl01

)
,3
− .
p,1 = ρu1,tt, (74)

1

r

[{
r
(
A01212u2,1 − (A01221 + p)

u2
r

)}
,1
−A02121u2/r + (A01221 + p)u2,1

]
+
{
A03232u2,3 + C0322

.
Hl02

}
,3

= ρu2,tt, (75)

1

r

{
r
(
A01313u3,1 + (A01331 + p)u1,3 + C0131

.
Hl01

)}
,1

+
{
A01133u1,1 +A02233u1/r + (A03333 + p)u3,3 + C0333

.
Hl03

}
,3
− .
p,3 = ρu3,tt. (76)

In vacuum, equations (12) give

.
H∗1,1 +

.
H∗1
r

+
.
H∗3,3 = 0,

.
H∗1,3 −

.
H∗3,1 = 0,

.
H∗2,3 = 0,

.
H∗2,1 +

.
H∗2
r

= 0. (77)

Note that if we consider the purely elastic case (neglecting
.
Hl0 and C) and only quasi-static bifurcations (no dependence

on time), then the equations (74) and (76) reduce to equations (47) and (48) of Haughton and Ogden [50] after taking
into account the differences in notation. We can eliminate

.
p from equations (74) and (76) to get

−1

r

{
r
(
A01313u3,1 + (A01331 + p)u1,3 + C0131

.
Hl01

)}
,11

+
1

r2
{r (A01313u3,1

+(A01331 + p)u1,3 + C0131
.
Hl01

)}
,1

+
1

r
{r ((A01111 + p)u1,1 +A01122u1/r

+A01133u3,3 + C0113
.
Hl03

)}
,13
− (A01133u1,1 +A02233u1/r + (A03333 + p)u3,3

+C0333
.
Hl03

)
,13

+
{
A03131u1,3 + (A01331 + p)u3,1 + C0311

.
Hl01

}
,33

−1

r

{
A01122u1,1 + (A02222 + p)

u1
r

+A02233u3,3 + C0223
.
Hl03

}
,3

= ρ(u1,3 − u3,1),tt. (78)

It can be seen from the equations above that u2 and
.
Hl02 are coupled with each other and are independent of

u1, u3,
.
Hl01, and

.
Hl03 which are related to each other. We now consider both these cases separately.

6.1 Displacement in the (r, z) plane

In this section, we work only with the equations that have incremental motion in the radial and the axial directions.
Considering that the magnetoelastic moduli tensors are uniform along the z direction, we can rewrite Equation (78) as

A1u1,3 +A2u1,13 +A3u1,113 +A4u3,1 +A5u3,11 +A6u3,111 +A7u3,133 +A8u3,33

A9u1,333 +A10

.
Hl01 +A11

.
Hl01,1 +A12

.
Hl01,11 +A13

.
Hl03,3 +A14

.
Hl03,13

−A12

.
Hl01,33 = ρ (u1,3 − u3,1),tt , (79)

12



where we have used the fact that the magnetoelastic moduli tensors are independent of z, and the coefficients A1, ..., A14

are defined by

A1 = −(A01331 + p),11 +
1

r
(A01122 −A02233 −A01331 − p),1 +

1

r2
(A01331 +A02233

−A02222), A2 = (A01111 − 2A01331 −A01133 − p),1 +
1

r
(A01111 −A01331 −A02233),

A3 = A01111 −A01313 −A01133, A4 = −A01313,11 −
A01313,1

r
+
A01313

r2
,

A5 = −A01313

r
− 2A01313,1, A6 = −A01313, A7 = A01133 −A03333 +A01331,

A8 = (A01133 −A03333 − p),1 +
A01133 −A02233

r
, A9 = A03131,

A10 =
C0131
r2
− C0131,1

r
− C0131,11, A11 = −C0131

r
− 2C0131,1, A12 = −C0131,

A13 = (C0113 − C0333),1 +
C0113 − C0223

r
, A14 = C0113 − C0333. (80)

Equation (73) gives(
C0131,1 +

C0131
r

)
u3,1 +

(
C0131,1 +

C0131 + C0223
r

)
u1,3 + (C0131 + C0113)u1,13

+C0131u3,11 + C0333u3,33 +

(
K011,1 +

K011

r

)
.
Hl01 + K011

.
Hl01,1 + K033

.
Hl03,3 = 0, (81)

while from the boundary conditions (64)1,3, (66), and (67), we get

A01111u1,1 +A01122
u1
r

+A01133u3,3 + C0113
.
Hl03 − .

p+ pu1,1

= −µ0H3

.
H∗3 +

µ0H
2
3

2
u1,1, (82)

A01313u3,1 +A01331u1,3 + C0131
.
Hl01 + pu1,3 = µ0H3

.
H∗1 −

µ0H
2
3

2
u1,3, (83)

− C0131 (u1,3 + u3,1)− K011

.
Hl01 − µ0

.
H∗1 + µ0H3u1,3 = 0, (84)

.
Hl03 −H3u3,3 −

.
H∗3 = 0, (85)

at r = a and r = b.
We differentiate Equation (82) with respect to z and replace

.
p,3 using Equation (76) to get

ξ1u1,3 + ξ2u1,13 + ξ3u3,1 + ξ4u3,33 +A6u3,11 + ξ5
.
Hl01 +A12

.
Hl01,1 +A14

.
Hl03,3

+µ0H3

.
H∗3,3 + ρu3,tt = 0, (86)

where the coefficients ξ1, ..., ξ5 are defined by

ξ1 =
1

r
(A01122 −A01331 −A02233 − p)− (A01331 + p),1 ,

ξ2 = A01111 −A01331 −A01133 −
µ0H

2
3

2
, ξ3 = −

(
A01313,1 +

A01313

r

)
,

ξ4 = A01133 −A03333 − p, ξ5 = −
(
C0131,1 +

C0131
r

)
. (87)

Since u1 and u3 satisfy Equation (63),
.
Hl01 and

.
Hl03 satisfy Equation (72), and

.
H∗1 and

.
H∗3 satisfy Equation (77)2,

we can define the potentials φ(r, z, t), ψ(r, z, t), and ψ∗(r, z, t) such that

u1 =
φ,3
r
, u3 =

−φ,1
r

,
.
Hl01 = ψ,1,

.
Hl03 = ψ,3,

.
H∗1 = ψ∗,1,

.
H∗3 = ψ∗,3. (88)

Substituting the potentials and their derivatives in the governing equations (77)1, (79), and (81), we get

φ,1

(
A4

r2
− 2

A5

r3
+ 6

A6

r4

)
+ φ,11

(
−A4

r
+ 2

A5

r2
− 6

A6

r3

)
+ φ,111

(
−A5

r
+ 3

A6

r2

)
−A6

r
φ,1111 + φ,33

(
A1

r
− A2

r2
+ 2

A3

r3

)
+ φ,133

(
A2

r
− 2

A3

r2
− A8

r
+
A7

r2

)
+φ,1133

(
A3

r
− A7

r

)
+
A9

r
φ,3333 +A10ψ,1 +A11ψ,11 +A12ψ,111 +A13ψ,33

+ (A14 −A12)ψ,133 = ρ

(
φ,33
r

+
φ,11
r
− φ,1
r2

)
,tt

, (89)
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φ,1

(C0131,1
r2

− C0131
r3

)
+ φ,11

(
−C0131,1

r
+
C0131
r2

)
− C0131

r
φ,111

+

(C0131,1
r

+
C0223 − C0113

r2

)
φ,33 +

φ,133
r

(C0131 + C0113 − C0333)

+

(
K011,1 +

K011

r

)
ψ,1 + K011ψ,11 + K033ψ,33 = 0, (90)

for a < r < b and

ψ∗,11 +
1

r
ψ∗,1 + ψ∗,33 = 0, (91)

for r < a and r > b.
The boundary conditions become

A01313

r2
φ,1 −

A01313

r
φ,11 + φ,33

(A01331 + p

r
+
µ0H

2
3

2r

)
+ C0131ψ,1 − µ0H3ψ

∗
,1 = 0, (92)

C0131
r2

φ,1 −
C0131
r

φ,11 +

(C0131 − µ0H3

r

)
φ,33 + K011ψ,1 + µ0ψ

∗
,1 = 0, (93)

ψ,3 +
H∗3
r
φ,13 − ψ∗,3 = 0, (94)

φ,1

(
ξ3
r2
− 2

A6

r3

)
+ φ,11

(−ξ3
r

+ 2
A6

r2

)
+

(
− ξ2
r2

+
ξ1
r

)
φ,33 + φ,133

(
ξ2 − ξ4
r

)
−A6

r
φ,111 + ξ5ψ,1 +A12ψ,11 +A14ψ,33 + µ0H3ψ

∗
,33 −

ρ

r
φ,1tt = 0, (95)

at r = a and r = b.

6.1.1 Wave propagation solutions

For the above partial differential equations, by separation of variables we consider wave type solutions of the form

φ = F (r) exp (ikz − iωt) , a < r < b, (96)

ψ = G(r) exp (ikz − iωt) , a < r < b, (97)

ψ∗ = M1(r) exp (ikz − iωt) , r < a, (98)

ψ∗ = M2(r) exp (ikz − iωt) , r > b, (99)

which convert the equations to a system of coupled ODEs as follows{
k4

r
A9 − k2

(
A1

r
− A2

r2
+ 2

A3

r3
+
ρω2

r

)}
F

+

{
A4

r2
− 2

A5

r3
+ 6

A6

r4
− k2

(
A2 −A8

r
+
A7 − 2A3

r2

)
− ρω2

r

}
F ′

+

{
−A4

r
− 2

A5

r2
− 6

A6

r3
− k2A3 −A7

r
+
ρω2

r

}
F ′′ +

(
3
A6

r2
− A5

r

)
F ′′′

−A6

r
F ′′′′ − k2A13G+

{
A10 + k2 (A12 −A14)

}
G′ +A11G

′′ +A12G
′′′ = 0, (100)

−k2
(C0131,1

r
+
C0223 − C0113

r2

)
F +

(
−C0131,1

r
+
C0131
r2

)
F ′′

+

{
−C0131

r3
+
C0131,1
r2

− k2

r
(C0131 + C0113 − C0333)

}
F ′ − C0131

r
F ′′′ − k2K033G

+

(
K011,1 +

K011

r

)
G′ + K011G

′′ = 0, (101)

for a < r < b, and

M ′′1 +
1

r
M ′1 − k2M1 = 0, r < a, M ′′2 +

1

r
M ′2 − k2M2 = 0, r > b. (102)

Here and henceforth, a prime denotes a derivative with respect to r. The boundary conditions reduce to

−k2
(A01331 + p

r
+
µ0H

2
3

2r

)
F +

A01313

r2
F ′ − A01313

r
F ′′

+C0131G′ − µ0H3M
′
1 = 0, (103)
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−k
2

r
(C0131 − µ0H3)F +

C0131
r2

F ′ − C0131
r

F ′′ + K011G
′ + µ0M

′
1 = 0, (104)

G+
H3

r
F ′ −M1 = 0, (105)

−k2
(
− ξ2
r2

+
ξ1
r

)
F +

{
ξ3
r2
− 2

A6

r3
− k2

r
(ξ2 − ξ4) +

ρc2k2

r

}
F ′

+

(
−ξ3
r

+ 2
A6

r2

)
F ′′ − A6

r
F ′′′ − k2A14G+ ξ5G

′ +A12G
′′ − k2µ0H3M1 = 0, (106)

at r = a and

−k2
(A01331 + p

r
+
µ0H

2
3

2r

)
F +

A01313

r2
F ′ − A01313

r
F ′′

+C0131G′ − µ0H3M
′
2 = 0, (107)

−k
2

r
(C0131 − µ0H3)F +

C0131
r2

F ′ − C0131
r

F ′′ + K011G
′ + µ0M

′
2 = 0, (108)

G+
H3

r
F ′ −M2 = 0, (109)

−k2
(
− ξ2
r2

+
ξ1
r

)
F +

{
ξ3
r2
− 2

A6

r3
− k2

r
(ξ2 − ξ4) +

ρc2k2

r

}
F ′

+

(
−ξ3
r

+ 2
A6

r2

)
F ′′ − A6

r
F ′′′ − k2A14G+ ξ5G

′ +A12G
′′ − k2µ0H3M2 = 0, (110)

at r = b.
Let the governing equations be written in the form

p1F + p2F
′ + p3F

′′ + p4F
′′′ + p5F

′′′′ + p6G+ p7G
′ + p8G

′′ + p9G
′′′ = 0, (111)

q1F + q2F
′ + q3F

′′ + q4F
′′′ + q5G+ q6G

′ + q7G
′′ = 0, (112)

p’s and q’s being the coefficients in (100) and (101), and let

y1 = F, y2 = F ′, y3 = F ′′, y4 = F ′′′, y5 = G, y6 = G′, y7 = G′′, (113)

then the above equations can be written as a system of first order ODEs of the form

Πy′ = g. (114)

Here Π,y′, and g are matrices of size 7× 7, 7× 1 and 7× 1, respectively, and are given by

Π =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 p5 0 0 p9
0 0 q4 0 0 q7 0


, y′ =



y′1
y′2
y′3
y′4
y′5
y′6
y′7


, (115)

g =



y2
y3
y4
y6
y7

−p1y1 − p2y2 − p3y3 − p4y4 − p6y5 − p7y6 − p8y7
−q1y1 − q2y2 − q3y3 − q5y5 − q6y6


. (116)

Here we have eight boundary conditions but have to solve for nine variables, viz. y1, ..., y7,M1, and M2. Hence we
have infinitely many solutions to this problem and a unique solution is only possible when H3 = 0. Vanishing of the
underlying magnetic field would cause the increments in magnetic field to be identically zero (G = M1 = M2 ≡ 0) and
only the increments in mechanical displacement F remain. Such purely elastic waves have already been studied in papers,
such as those by, Haughton [52, 53], and Wang and Ertepinar [49].
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6.2 Displacement in the azimuthal direction

Now considering the set of equations that contain only u2 and
.
Hl02, the governing equations (71) and (75) are written in

component form as

−
(A01212,1 − τ11,1

r
+
A02121

r2

)
u2 +

(
A01212,1 +

A01212

r

)
u2,1 +A01212u2,11

+A03232u2,33 = ρu2,tt, (117)

.
Hl02,3 = 0,

.
Hl02,1 +

.
Hl02

r
= 0, (118)

in a < r < b, along with (77)3,4 in vacuum. The boundary conditions (64)2 and (66) give

A01212u2,1 −
(
A01221 + p− µ0H

2
3

2

)
u2
r

= 0, (119)

.
Hl02 −

.
H∗2 = 0, (120)

at r = a and r = b.
Due to (71)1, the governing equations for u2 and

.
Hl02 are decoupled. So, Equation (117) is of the form what one

would normally obtain for a purely mechanical problem except that the coefficients still depend on H3. The governing
equations for

.
Hl02 and

.
H∗2 can be integrated analytically to give

.
Hl02 = c1/r in a < r < b,

.
H∗2 = c2/r in r < a, and.

H∗2 = c3/r in r > b. The boundary conditions (120) at r = a, b require that c1 = c2 = c3.
For the mechanical displacement, if we consider propagating wave type solution of the form

u2 = F (r) exp (ikz − iωt) , (121)

the governing equations and boundary conditions are transformed to(−A01212,1 + τ11,1
r

− A02121

r2
− k2A03232 + ρω2

)
F +

(
A01212,1 +

A01212

r

)
F ′

+A01212F
′′ = 0, (122)

for a < r < b, and

A01212F
′ −
(
A01212 − τ11 −

µ0H
2
3

2

)
F

r
= 0, (123)

at r = a, b.
The above set of equations can be non-dimensionalised by defining

ζ =
ρω2

k2µ
, r̂ =

r

A
, k̂ = Ak, F̂ (r̂) =

F (r)

A
Â =

A
µ
, τ̂ =

τ

µ
, (124)

and are rewritten as{
1

r̂k̂2

(
τ̂ ′11 − Â′01212

)
− Â02121

r̂2k̂2
− Â03232 + ζ

}
F̂ +

(
Â′01212 +

Â01212

r̂

)
F̂ ′

k̂2

+
Â01212

k̂2
F̂ ′′ = 0, (125)

for â < r̂ < b̂, and

Â01212F̂
′ −
(
Â01212 − τ̂11 −

µ0H
2
3

2µ

)
F̂

r̂
= 0, (126)

at r̂ = â, b̂.

6.2.1 Numerical results

The above equations are converted to a system of two first order ODEs and solved numerically using the algorithm

described in Section 7.1.2. Variation of non-dimensionalised squared wave speed (ζ = ρω2

k2µ from Equation (124))

with various deformation parameters is illustrated in the following plots. The tube becomes unstable (onset of non-
homogeneity of magnetoelastic field variables in the axial direction) when ζ → 0 as discussed for the purely mechanical
case by Haughton and Ogden [50]. We observe existence of more than one mode of wave propagation due to presence of
a finite length scale (B−A) in the problem. These are illustrated in Figure 5 for the Mooney–Rivlin type magnetoelastic
material of Equation (52) and the material parameters listed in Table 2. The first mode for small magnetic fields (Figure
5(a), H3 = 800 A/m) has qualitatively very different dispersion curve in comparison to all other cases. The cylindrical

tube becomes unstable for very small wave numbers (for the given loading conditions, k̂ ≈ 0.5 in Figure 5(a)) and upon
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Figure 5: First few modes of wave propagation for λz = 1.5, Pin = 0.1µ,B/A = 1.3. (a) H3 = 800 A/m, (b) H3 = 1× 104

A/m. Note that here n corresponds to the mode of wave propagation and is different from the unit outward normal n
as discussed in Equation (4).
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Figure 6: Variation of wave speed with wave number for different values of the axial stretch λz. Pin = 0.1µ,B/A = 1.3.
(a) H3 = 0, (b) H3 = 5× 105 A/m.

increasing the value of magnetic field (Figure 8). The wave speed increases from zero to reach an asymptotic value with
an increasing wave number. In general, for all other modes and conditions, wave speeds decrease with an increase in the
wave number. Increasing the mode number results in a significantly higher wave speed in comparison to the first mode.
For higher magnetic field (Figure 5(b)), modes corresponding to very low speeds do not exist as is also shown later in
Figure 9.

Dispersion relations for different values of the underlying axial stretch are plotted in Figures 6(a,b). It is seen that
stretching the tube in the axial direction, results in an increase in the speed of wave propagation. For the case of large
magnetic field as shown in Figure 6(b), lower modes cease to exist and we obtain higher modes with larger wave velocities,
although with the similar shape of the dispersion curve. This is in accordance with the observations in Figure 9.

Effect of tube thickness on the wave speed and the dispersion relations is demonstrated in Figure 7. An increase in
the tube thickness results in a significant decrease in the corresponding wave speed. The changes in wave speed due to
wall thickness are very significant in the range of low wave numbers. For higher wave numbers, the effect of wall thickness
is diminished.

Next, we consider the effect of an axial magnetic field on the wave speed. As observed from Figure 8, for very small
magnetic fields (H3 = 100 A/m), the dispersion curve follows a decreasing wave speed with an increasing wave number.
As the underlying magnetic field is increased further (H3 > 600 A/m), the shape of the dispersion curve is inverted and
the wave speeds tend to increase with an increasing wave number eventually reaching an asymptotic value. For very small
wave numbers, the given configuration tends to become unstable for the first mode in the case of moderate to high axial
magnetic fields (H3 ≥ 800 A/m). Essentially this means that upon an increased magnetic loading, waves with longer
wavelength cannot propagate in the tube.

It is seen that for low and moderate magnetic fields (H3 < 1× 104 A/m), the wave speed tends to decrease with an
increase in the magnetic field. As shown in Figure 9(a), wave speed eventually reaches a value of zero that corresponds to
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Figure 7: Variation of wave speed with wave number for different values of the tube thickness B/A. Pin = 0.1µ, λz =
1.5, H3 = 5× 105 A/m.
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Figure 9: Variation of wave speed with the axial magnetic field for different values of the axial stretch λz. Pin = 0.1µ, k̂ =
0.8, B/A = 1.3.

onset of instability. Note the nonlinear coupling between the critical magnetic field and the axial stretch λz at the point
of instability (ζ → 0). Wave speed consistently decrease with the decrease in λz except for the case of large magnetic
fields close to the point of instability, at which point the behaviour is uncertain. When the magnetic field is increased
even further (Figure 9(b)), no waves are observed from the first mode and we have waves only for higher modes. The
wave speeds are almost two orders of magnitude higher in this case and the speed increases with a rise in magnetic field
eventually reaching an asymptotic value.

7 Azimuthal magnetic field H = (0, H2, 0)

We now consider an initial magnetic field in the azimuthal direction. Such a field can be generated by a long current
carrying wire placed on the axis of the hollow tube so that H2 has dependence only on r. For this specialisation, the
Maxwell stress and its increment are given in the component form by

[τ ∗] =
B∗22
2µ0

 −1 0 0
0 1 0
0 0 −1

 , [
.
τ ∗] =

B∗2
µ0

 − .
B∗2

.
B∗1 0.

B∗1
.
B∗2

.
B∗3

0
.
B∗3 −

.
B∗2

 . (127)

To work with the governing equations (29) and (28) in the presence of an azimuthal magnetic field, the non-zero
components of the magnetoelastic tensors are A0iiii, A0iijj , A0ijij , A0ijji, C0ii2, C0i2i, K0ii for i, j ∈ {1, 2, 3} and i 6= j.
Explicit formulas for these components for the Mooney–Rivlin magnetoelastic material are given in the Appendix.

Expanding the incremental governing equations (10)3, (28), and (29) in component form, we obtain (71), (72), and

1

r

[
r
{
C0121

(
u2,1 −

u2
r

)
+ K011

.
Hl01

}]
,1

+
(
C0323u2,3 + K033

.
Hl03

)
,3

= 0, (128)

1

r

[{
r
(

(A01111 + p)u1,1 +A01122
u1
r

+A01133u3,3 + C0112
.
Hl02

)}
,1

−
{

(A02222 + p)
u1
r

+A01122u1,1 +A02233u3,3 + C0222
.
Hl02

}]
+ {A03131u1,3 + (A01331 + p)u3,1},3 −

.
p,1 = ρu1,tt, (129)

1

r

[{
r
(
A01212u2,1 − (A01221 + p)

u2
r

+ C0121
.
Hl01

)}
,1

+ (A01221 + p)u2,1

−A02121
u2
r

+ C0121
.
Hl01

]
+
(
A03232u2,3 + C0323

.
Hl03

)
,3

= ρu2,tt, (130)

(
A01133u1,1 +A02233

u1
r

+ (A03333 + p)u3,3 + C0332
.
Hl02

)
,3

1

r
[r {A01313u3,1 + (A01331 + p)u1,3}],1 −

.
p,3 = ρu3,tt, (131)
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in the material along with the equations (77) in vacuum and the constraint of incompressibility (63). We can eliminate
.
p from equations (129) and (131) and use (71)1 to get

A1u1,3 +A2u1,13 +A3u1,113 +A4u3,1 +A5u3,11 +A6u3,111

+A7u3,133 +A8u3,33 +A9u1,333 = ρ(u1,3 − u3,1),tt, (132)

where we have assumed that the magnetoelastic moduli tensors are uniform along the axial z direction and A1, ..., A9 are
defined in (80).

From the above governing equations, we observe that u2,
.
Hl01, and

.
Hl03 are related to each other and independent of

u1, u3, and
.
Hl02. Hence we analyse these two cases separately.

7.1 Displacement in the azimuthal direction

We now consider the set of equations with u2,
.
Hl01,

.
Hl03,

.
H∗1 , and

.
H∗3 . Since

.
Hl01 and

.
Hl03 satisfy Equation (72) while.

H∗1 and
.
H∗3 satisfy equation (77)2, we can define the potential functions ψ and ψ∗ that satisfy equations (88)3,4,5,6. On

substituting them in to the governing equations (128) and (130), we obtain

C0121,1
(
u2,1 −

u2
r

)
+ C0121u2,11 + C0323u2,33 +

(
K011

r
+ K011,1

)
ψ,1

+K011ψ,11 + K033ψ,33 = 0, (133)

−
(A02121

r2
+

(A01221 + p),1
r

)
u2 +

(A01212

r
+A01212,1

)
u2,1 +A01212u2,11

+A03232u2,33 +

(
2
C0121
r

+ C0121,1
)
ψ,1 + C0121ψ,11 + C0323ψ,33 = ρu2,tt, (134)

for a < r < b along with equations (91) in vacuum. Boundary conditions are given by the equations (64)2, (65), and (67)
as

−
(
A01221 + p+

µ0H
2
2

2

)
u2
r

+A01212u2,1 + C0121ψ,1 − µ0H
∗
2ψ
∗
,1 = 0, (135)

(C0121 − µ0H2)
u2
r
− C0121u2,1 − K011ψ,1 − µ0ψ

∗
,1 = 0, (136)

ψ,3 − ψ∗,3 −H2u2,3 = 0, (137)

at r = a and r = b.

7.1.1 Wave propagation solutions

Using separation of variables we assume solutions of the form

u2 = F (r) exp (ikz − iωt) for a < r < b, (138)

ψ = G(r) exp (ikz − iωt) for a < r < b, (139)

ψ∗ = M1(r) exp (ikz − iωt) for r < a, (140)

ψ∗ = M2(r) exp (ikz − iωt) for r > b, (141)

with i =
√
−1, k being the wave number, and ω being the frequency.

On substituting these solutions in the governing equations we obtain

−
(C0121,1

r
+ k2C0323

)
F + C0121,1F ′ + C0121F ′′ − k2K033G

+

(
K011,1 +

K011

r

)
G′ + K011G

′′ = 0, (142)

(
−A02121

k2r2
−

(A01221 + p),1
k2r

−A03232 + ρv2
)
F +

1

k2

(A01212

r
+A01212,1

)
F ′

+
1

k2
A01212F

′′ − C0323G+
1

k2

(
2
C0121
r

+
C0121,1
k2

)
G′ + C0121G′′ = 0, (143)

for a < r < b, and

M ′′1 +
M ′1
r
− k2M1 = 0 for r < a, M ′′2 +

M ′2
r
− k2M2 = 0 for r > b, (144)
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where we have taken a prime to denote a derivative with respect to r and v = ω/k is the wave speed. The boundary
conditions are

−
(
A01221 + p+

µ0H
2
2

2

)
F

r
+A01212F

′ + C0121G′ − µ0H
∗
2M

′ = 0, (145)

(C0121 − µ0H2)
F

r
− C0121F ′ − K011G

′ − µ0M
′ = 0, (146)

G−H2F −M1 = 0, (147)

at r = a, and

−
(
A01221 + p+

µ0H
2
2

2

)
F

r
+A01212F

′ + C0121G′ − µ0H
∗
2M

′ = 0, (148)

(C0121 − µ0H2)
F

r
− C0121F ′ − K011G

′ − µ0M
′ = 0, (149)

G−H2F −M2 = 0, (150)

at r = b.
To obtain numerical solutions, we non-dimensionalise the above governing equations and boundary conditions. For

this purpose we define H2a = H2|r=a and define the following non-dimensional quantities (with a superposed hat) in
addition to those in Equation (124)

Ĉ =
C

H2aµ0
, K̂ =

K

µ0
, Ĝ(r̂) =

G(r)

H2aA
, M̂(r̂) =

M(r)

H2aA
,

M̂1(r̂) =
M1(r)

H2aA
, M̂2(r̂) =

M2(r)

H2aA
. (151)

On non-dimensionalisation, the governing equations become

−
(
Ĉ′0121
r̂

+ k̂2Ĉ0323
)
F̂ + Ĉ′0121F̂ ′ + Ĉ0121F̂ ′′ − k̂2K̂033Ĝ

+

(
K̂′011 +

K̂011

r̂

)
Ĝ′ + K̂011Ĝ

′′ = 0, (152)

−
(
Â02121

k̂2r̂2
+
Â′01221 + p̂′

k̂2r̂
+ Â03232 − ζ

)
F̂ +

1

k̂2

(
Â01212

r̂
+ Â′01212

)
F̂ ′

+
Â01212

k̂2
F̂ ′′ +

µ0H
2
2b

k̂2µ

{
−k̂2Ĉ0323Ĝ+

(
2
Ĉ0121
r̂

+ Ĉ′0121

)
Ĝ′ + Ĉ0121Ĝ′′

}
= 0, (153)

for â ≤ r̂ ≤ b̂ and

M̂ ′′1 +
M̂ ′1
r̂
− k̂2M̂1 = 0 for r̂ < â, M̂ ′′2 +

M̂ ′2
r̂
− k̂2M̂2 = 0 for r̂ > b̂, (154)

where a prime now denotes a derivative with respect to r̂. The boundary conditions are

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
F̂

r̂
+ Â01212F̂

′ +
µ0H

2
2a

µ

(
Ĉ0121Ĝ′ − M̂ ′1

)
= 0, (155)

(
Ĉ0121 − 1

) F̂
r̂
− Ĉ0121F̂ ′ − K̂011Ĝ

′ − M̂ ′1 = 0, (156)

Ĝ− F̂ − M̂1 = 0, (157)

at r̂ = â, and

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
F̂

r̂
+ Â01212F̂

′ +
µ0H

2
2a

µ

(
Ĉ0121Ĝ′ −

H2

H2a
M̂ ′2

)
= 0, (158)(

Ĉ0121 −
H2

H2a

)
F̂

r̂
− Ĉ0121F̂ ′ − K̂011Ĝ

′ − M̂ ′2 = 0, (159)

Ĝ− H2

H2a
F̂ − M̂2 = 0, (160)

at r̂ = b̂.
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7.1.2 Numerical solution procedure

Equations (154) are modified Bessel’s equations and the solution not diverging at r̂ = 0 and r̂ =∞ are M̂1 = e5J0(ir̂/k̂),

M̂2 = e6J0(ir̂/k̂), where J0 is the Bessel’s function of first kind and order zero, and e5 and e6 are scaling parameters.
To obtain a numerical solution of the system of coupled ODEs, we convert them into a system of first order ODEs by
defining

y1 = F̂, y2 = F̂ ′, y3 = Ĝ, y4 = Ĝ′. (161)

Let the ODEs be then given by

p1y1 + p2y2 + p3y
′
2 + p4y3 + p5y4 + p6y

′
4 = 0, (162)

q1y1 + q2y2 + q3y
′
2 + q4y3 + q5y4 + q6y

′
4 = 0, (163)

where pis and qis (i = 1, ..., 6) correspond to the coefficients in the equations (152) and (153) respectively.
Hence, we obtain the following system of first order ODEs

Πy′ = g, (164)

to be solved for â < r̂ < b̂ where the matrices Π,y′, and g are given by

Π =


1 0 0 0
0 0 1 0
0 p3 0 p6
0 q3 0 q6

 , y′ =


y′1
y′2
y′3
y′4

 , (165)

g =


y2
y4

−p1y1 − p2y2 − p4y3 − p5y4
−q1y1 − q2y2 − q4y3 − q5y4

 . (166)

Given the internal pressure, the underlying magnetic field, and the axial stretch, we first evaluate a using Equation
(42) and then consider the initial value problem defined by

yi(a) = δik, i = 1, ..., 4 (167)

for each of k = 1, ..., 4, δik being the Kronecker delta. Subject to these initial conditions, we solve the differential equation
described by Equation (164) using the ‘ode15s’ solver in Matlab R2015b. The four solutions thus generated are denoted
by yk (k = 1, ..., 4) and a general solution to the problem is expressed as

y =

4∑
k=1

eky
k, M̂1 = e5J0(ir̂/k̂), M̂2 = e6J0(ir̂/k̂), (168)

where ek (k = 1, ..., 6) are constants. For the solutions to exist, there should be a set of non-trivial constants {ek}6k=1

such that the general solution (168) satisfies the following boundary conditions.

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
y1
r̂

+ Â01212y2 +
µ0H

2
2a

µ

(
Ĉ0121y4 − M̂ ′1

)
= 0, (169)

(
Ĉ0121 − 1

) y1
r̂
− Ĉ0121y2 − K̂011y4 − M̂ ′1 = 0, (170)

y3 − y1 − M̂1 = 0, (171)

at r̂ = â, and

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
y1
r̂

+ Â01212y2 +
µ0H

2
2a

µ

(
Ĉ0121y4 −

H2

H2a
M̂ ′2

)
= 0, (172)(

Ĉ0121 −
H2

H2a

)
y1
r̂
− Ĉ0121y2 − K̂011y4 − M̂ ′2 = 0, (173)

y3 −
H2

H2a
y1 − M̂2 = 0, (174)

at r̂ = b̂.
This results in six linear equations in ek that can be written in the form Zjkek = 0, Zjk being a 6 × 6 matrix. For

a non-trivial solution to exist, we require the condition det(Zjk) = 0, which gives the relationship between ζ and other
parameters. This solution process is similar to the numerical routine described by Haughton and Ogden [50].
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Figure 10: First three modes of wave propagation for λz = 1.3, Pin = 0.1µ, B/A = 1.3, H0 = 800 A/m
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Figure 11: First four modes of wave propagation for λz = 1.3, Pin = 0.1µ, B/A = 1.3, H0 = 1× 104 A/m.

7.1.3 Numerical results

We solve the above equations numerically for the Mooney–Rivlin type magnetoelastic material defined in Equation (52)

and plot the non-dimensionalised squared wave speed (ζ = ρω2

k2µ as discussed in Equation (124)). Numerical values of

the ratio of radii (B/A), the internal pressure Pin, the axial stretch λz and the magnetic field H0 are specified along with
the calculations in each graph. Numerical values of the material parameters are taken from the Table 2.

Multiple modes of wave propagation are obtained as shown in Figures 10 and 11, a case similar to the previous section
because of the existence of a finite length scale. The first mode for small magnetic fields (Figure 10(a), H0 = 800 A/m)
has qualitatively very different dispersion curve in comparison to all other cases. The configuration seems to be unstable
(ζ < 0) for very small wave numbers and the wave speed increases from zero to reach an asymptotic value with an
increasing wave number. For all other modes as well as for higher values of magnetic field (H0 = 1× 104 A/m), the wave
speed decreases with an increase in the wave number. For a given set of conditions, wave of a higher mode propagate
with a higher speed. In the figures to follow, we plot only the first modes. When the first or other lower modes cease to
exist, we proceed to plot the next lowest mode.

Effect of the underlying magnetic field H0 and the underlying axial stretch on the speed of wave propagation is
demonstrated through the Figures 12, 13, and 14. For the smaller values of magnetic field (H0 < 1000 A/m), we observe
a similar behaviour of dispersion curves as has been shown in the previous section of axial magnetic field. For very small
magnetic fields (H0 = 150 A/m), the dispersion curve follows a decreasing wave speed with an increasing wave number.
As the underlying magnetic field is increased further (H0 > 600 A/m), the shape of the dispersion curve is inverted and
the wave speeds tend to increase with an increasing wave number eventually reaching an asymptotic value. For very
small wave numbers, the given material configuration tends to become unstable for the first mode hinting that large
wavelengths cannot be accommodated in the tube when the magnetic loading crosses a certain threshold.

It can also be observed from the graphs in all the three figures that the wave speed tends to decrease as the azimuthal
magnetic field is increased. For the case of smaller magnetic fields (H0 < 1200 A/m), the wave speed decreases rapidly
with an increase in the magnetic field and approaches the point of the onset of instability (ζ → 0) for the first mode.
Upon a further increase in the underlying magnetic field, only the second and higher modes are observed. For the second
mode of wave propagation, the wave speed again decreases with an increase in the magnetic field, but with a decreasing
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Figure 13: Wave speeds for different values of the underlying azimuthal magnetic field H2 = H0B/r for various values of
the axial stretch λz.Pin = 0.1µ,B/A = 1.3.

slope in an asymptotic manner.
As can be seen from Figures 12–14, barring a few exceptions, an increase in the axial stretch λz results in an increase

in the wave speed. However, an increased axial stretch also results in an early onset of instability for lower wave
numbers (Figure 14(a)). Similarly, it is observed from Figure 13(a) that a higher axial stretch results in an early onset of
instability at even lower values of the underlying magnetic field. In the case of high magnetic fields (Figures 13(b) and
14(b), H0 > 1×104 A/m), an increased axial stretch uniformly increases the value of wave speed. However, the influence
of axial stretch is considerable only for lower wave numbers and it becomes minimal at higher wave numbers.

Effect of tube thickness on the wave speed and dispersion relations is shown in Figure 15. For both cases of higher and
lower magnetic fields, a thicker tube tends to have smaller wave speed in comparison to a thinner tube. The difference
in wave speeds is more prominent for lower wave numbers and tends to be minimal for higher wave numbers.

7.2 Displacement in the (r, z) plane

We now consider the incremental displacements in the radial and axial directions and hence deal with the equations
involving u1, u3, and

.
Hl02. Since u1 and u3 satisfy Equation (63), we can define a potential φ that satisfy equations

(88)1,2 and substitute in the governing equation (132) to get

φ,1

(
A4

r2
− 2

A5

r3
+ 6

A6

r4

)
+ φ,11

(
−A4

r
+ 2

A5

r2
− 6

A6

r3

)
+ φ,111

(
−A5

r
+ 3

A6

r2

)
−A6

r
φ,1111 + φ,33

(
A1

r
− A2

r2
+ 2

A3

r3

)
+ φ,133

(
A2 −A8

r
+
A7 − 2A3

r2

)
+φ,1133

A3 −A7

r
+
A9

r
φ,3333 = ρ

(
φ,11 + φ,33

r
− φ,1
r2

)
,tt

. (175)
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Figure 14: Wave speeds for different values of the underlying axial stretch λz for Pin = 0.1µ, B/A = 1.3. (a) H0 = 800
A/m, (b) H0 = 1× 104 A/m.
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Figure 15: Wave speeds for different values of the tube wall thickness B/A for λz = 1.5, Pin = 0.1µ. (a) H0 = 800 A/m,
(b) H0 = 1× 104 A/m.
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Equations (71) govern
.
Hl02 while

.
H∗2 satisfies (77)3,4. The boundary conditions (64)1,3 and (66) give(

A01111 + p− µ0H
∗2
2

2

)
u1,1 +A01122

u1
r

+A01133u3,3

+C0112
.
Hl02 + µ0H2

.
H∗2 −

.
p = 0, (176)(

A01331 + p− µ0H
2
2

2

)
u1,3 +A01331u3,1 = 0, (177)

.
Hl02 −H2

u1
r
−

.
H∗2 = 0, (178)

at r = a and r = b. We differentiate Equation (176) with respect to z and substitute
.
p,3 from Equation (131) to get

u1,3

(
1

r
(A01122 −A02233 −A01331 − p)− (A01331 + p),1

)
−A01313u3,11

−u3,1
(A01313

r
+A01313,1

)
+ u1,13

(
A01111 −A01133 −A01331 −

µ0H
∗2
2

2

)
+ (A01133 −A03333 − p)u3,33 + ρu3,tt = 0. (179)

Using the definition of φ from Equation (88)1,2 in the above boundary conditions, we get

φ,1

(A01313

r3
− A01313,1

r2

)
+ φ,11

(A01313,1

r
− A01313

r2

)
+
A01313

r
φ,111

+φ,33

{
−

(A01331 + p),1
r

+
1

r2

(
µ0H

2
2

2
+A01122 −A02233 −A01111 +A01133

−p)}+
φ,133
r

(
A01111 +A03333 − 2A01133 −A01331 + p− µ0H

2
2

2

)
−ρ
r
φ,1tt = 0, (180)

A01313

(
−φ,11

r
+
φ,1
r2

)
+

(
A01331 + p− µ0H

2
2

2

)
φ,33
r

= 0, (181)

.
Hl02 −H2

φ,3
r2
−

.
H∗2 = 0, (182)

at r = a and r = b.

7.2.1 Wave propagation solutions

We consider the solutions of the above mentioned differential equations of the form

φ = F (r) exp (ikz − iωt) , a < r < b, (183)
.
Hl02 = G(r) e−iωt, a < r < b, (184)

.
H∗2 = M1(r)e−iωt for r < a,

.
H∗2 = M2(r)e−iωt for r > b. (185)

Substituting these solutions in the governing equations (71), (77)4, and (175) gives(
−k2b4 + b7k

4 − ρω2 k
2

r

)
F +

(
b1 − k2b5 −

ρω2

r2

)
F ′

−
(
rb1 + k2b6 −

ρω2

r

)
F ′′ + b2F

′′′ + b3F
′′′′ = 0, a < r < b, (186)

G′ +
G

r
= 0, a < r < b, (187)

M ′1 +
M1

r
= 0, r < a, M ′2 +

M2

r
= 0, r > b, (188)

where prime denotes a derivative with respect to r and we have defined

b1 =
A4

r2
− 2

A5

r3
+ 6

A6

r4
, b2 =

−A5

r
+ 3

A6

r2
, b3 = −A6

r
, b7 =

A9

r
,

b4 =
A1

r
− A2

r2
+ 2

A3

r3
, b5 =

A2 −A8

r
+
A7 − 2A3

r2
, b6 =

A3 −A7

r
,

C1 = { 1

r2

(
−A01111 +A01122 +A01133 −A02233 − p+

µ0H
2
2

2

)
−1

r
(A01331,1 + p,1)}, C2 =

(A01313

r3
− A01313,1

r2

)
, C4 =

A01313

r
,

C3 =
1

r

(
A01111 −A01331 − 2A01133 +A03333 + p− µ0H

2
2

2

)
. (189)
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The boundary conditions (180)–(182) become

− k2C1F +

(
C2 − k2C3 +

ρω2

r

)
F ′ − rC2F

′′ + C4F
′′′ = 0 at r = a, r = b, (190)

− k2
(
C4 +

p

r
− µ0H

2
2

2r

)
F +

C4

r
F ′ − C4F

′′ = 0, at r = a, r = b, (191)

G− 1

r2
ikH2F eikz −M1 = 0 at r = a, (192)

G− 1

r2
ikH2F eikz −M2 = 0 at r = b. (193)

Since the last two boundary conditions apply for all z and considering the fact that G,M1, and M2 do not depend
on z, they can be split into

G = M1 at r = a, G = M2 at r = b, (194)

H2F = 0 at r = a, b. (195)

The governing equations for G,M1 and M2 can be integrated analytically to get G = c1/r in a < r < b, M1 = c2/r
in r < a, and M2 = c3/r in r > b. The boundary conditions (194), however, require that c1 = c2 = c3.

To solve a fourth order ODE (186), we have six boundary conditions (190), (191), and (195) which makes the
system overdetermined and therefore a solution is only possible when H2 = 0. This would lead to a purely elastic wave
propagation problem as discussed at the end of Section 6.1.1. A non-trivial solution (for incremental magnetic field)
can be obtained only in a very special case when the parameters C1, ..., C4 obtain values such that two of the boundary
conditions become linearly dependent.

8 Concluding remarks

In this paper, we have studied finite deformation and propagation of axisymmetric waves in a long, thick magnetoelastic
tube governed by Ogden type and Mooney–Rivlin type incompressible magnetoelastic energy density functions. The
mathematical procedure for computing internal pressure and axial force on the tube are demonstrated and the influence
of magnetomechanical loading parameters is studied. An underlying azimuthal magnetic field results in a deflation
(reduction of radius) and reduction in the axial force for a given geometry.

We analyse axisymmetric motions superimposed on a finitely deformed configuration and show that for a magne-
toelastic coupled problem, waves with particle motion in (r, z) direction are not possible. They exist only for a purely
mechanical problem in the absence of magnetic field. We solve the governing equations numerically to study wave
propagation with particle motion in the azimuthal direction. Due to the presence of a length scale (tube thickness) in
the problem, several modes of wave propagation are obtained and we analyse the influence of various parameters by
computing how they effect the relationship between wave speed and wavenumber.

We observe that the first mode for small magnetic fields usually has a different qualitative behaviour in comparison to
all other modes and conditions. An underlying azimuthal magnetic field tends to reduce the speed of wave propagation.
In the case of an axial magnetic field, the wave speed is reduced by the magnetic field if the magnetic field is of low
magnitude; but for high magnetic fields (H3 > 1× 104 A/m), the wave speed is enhanced by the magnetic field. Waves
in a thicker tube travel slower in comparison to those in a thinner tube and in most cases, application of an axial
stretch results in a higher wave speed. It is demonstrated that in many cases, increasing the underlying magnetic field
can result in vanishing of the wave velocity for large wavelengths suggesting that those waves cannot propagate in the
magnetomechanically loaded tube.

Vanishing wave speeds ζ → 0 correspond to onset of geometric instability and it is shown that the first mode becomes
quickly unstable upon increasing the magnetic field (Figures 9(a) and 13). A nonlinear relation exists between the critical
magnetic field that leads to instability and the underlying axial stretch λz.

Thus, we have demonstrated the ability to control the internal pressure, axial force, stability conditions, and wave
speeds in a magnetomechanically loaded tube. The results and analysis presented in this paper should be applicable
while designing waveguides and vibration controllers from magnetoelastic polymers.

Appendix. Magnetoelastic moduli tensors

Here we list some components of the magnetoelastic moduli tensors for a generalised Mooney–Rivlin material given by
Equation (52) which are useful in this paper. For this material the only non-zero derivatives of the energy function are

Ω1 = (1 + γ)
µ

4
, Ω2 = (1− γ)

µ

4
, Ω5 = q̃.
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In the presence of an axial or azimuthal magnetic field {H = (0, H2, 0) or H = (0, 0, H3)}, the non-zero components
of the magnetoelastic moduli tensors in terms of derivatives defined above are

A01111 = 2λ21
{

Ω1 + (λ22 + λ23)Ω2

}
,

A02222 = 2λ22
{

Ω1 + (λ21 + λ23)Ω2 + λ22H
2
2Ω5

}
,

A03333 = 2λ23
{

Ω1 + (λ21 + λ22)Ω2 + λ23H
2
3Ω5

}
,

A01122 = 4λ21λ
2
2Ω2, A01133 = 4λ21λ

2
3Ω2, A02233 = 4λ22λ

2
3Ω2,

A01212 = 2λ21
(
Ω1 + λ23Ω2

)
, A02121 = 2λ22

(
Ω1 + λ23Ω2

)
+ 2λ42H

2
2Ω5,

A01313 = 2λ21
(
Ω1 + λ22Ω2

)
, A03131 = 2λ23

(
Ω1 + λ21Ω2

)
+ 2λ43H

2
3Ω5,

A02323 = 2λ22
(
Ω1 + λ21Ω2

)
+ 2λ42H

2
2Ω5, A03232 = 2λ23

(
Ω1 + λ21Ω2

)
+ 2λ43H

2
3Ω5,

A01221 = −2λ21λ
2
2Ω2, A01331 = −2λ21λ

2
3Ω2, A02332 = −2λ22λ

2
3Ω2,

C0112 = 0 = C0332, C0222 = 4λ22H2Ω5 = 2C0121 = 2C0323,
C0113 = 0 = C0223, C0333 = 4λ23H3Ω5 = 2C0131 = 2C0232,

K011 = 2λ−21 Ω4 + 2Ω5, K022 = 2λ−22 Ω4 + 2Ω5, K033 = 2λ−23 Ω4 + 2Ω5.
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