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Abstract
Major focus of software transaction memory systems (STMs) has been to felicitate the multiprocessor
programming and provide parallel programmers an abstraction for speedy and efficient development of
parallel applications. To this end different models for incorporating object/higher level semantics into
STM have recently been proposed in transactional boosting, transactional data structure library, open
nested transactions and abstract nested transactions.

We build an alternative object model STM (OSTM) by adopting the transactional tree model of
Weikum et al. originally given for databases and extend the current work by proposing comprehens-
ive legality definitions and conflict notion which allows efficient composability of OSTM. We first time
show the proposed OSTM to be co-opaque.

We build OSTM using chained hash table data structure. Lazyskip-list is used to implement chaining
using lazy approach. We notice that major concurrency hotspot is the chaining data structure within the
hash table. Lazyskip-list is time efficient compared to lists in terms of traversal overhead by average case
O(log(n)). We optimise lookups as they are validated at the instant they execute and they are not validated
again in commit phase. This allows lookup dominated transactions to be more efficient and at the same
time co-opaque.

Keywords and phrases Software transactional memory, Lazyskip-list, Legality, Conflict-notion, Com-
posability, Co-opacity, Opacity
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1 Introduction

Software Transaction Memory Systems (STMs) are a convenient programming interface for a pro-
grammer to access shared memory without worrying about concurrency issues [9, 18]. Concurrently
executing transactions access shared memory through the interface provided by the STMs. Thus,
the programmer can now focus on harnessing optimum parallelism from the application instead of
worrying about the locking, races and deadlocks.

Most of the STMs proposed in the literature are specifically based on read/write primitive op-
erations (or methods) on memory buffers (or memory registers). These STMs typically export the
following methods: t_begin which begins a transaction, t_read which reads from a buffer, t_write
which writes onto a buffer, tryC which validates the operations of the transaction and tries to commit.
If validation is successful then it returns commit otherwise STMs export tryA which returns abort.
We refer to these as Read-Write STMs or RWSTMs. As a part of the validation, the STMs typically
check for conflicts among the operations. Two operations are said to be conflicting if at least one of
them is a write (or update) operation. Normally, the order of two conflicting operations can not be
commutated. On the other hand, Object-based STM or OSTM operate on higher level objects rather
than read & write operations on memory locations. They include more complicated operations such
as enq/deq on queue objects, push/pop on stack objects etc.

It was shown in databases that object-level systems provide greater concurrency than read-write
systems [21, Chap 6]. Harris et al.[3] adopted this concept in STMs along with Herlihy et al.[16, 10].
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We would like to propose an alternative model to achieve composability with greater concurrency for
STMs by considering higher-level objects which milk the richer semantics of object level operations.
We motivate this with an interesting example.

Consider an OSTM operating on the hash-table object exports the following methods: t_begin
which begins a transaction (same as in RWSTMs), t_insert which inserts a value for a given key,
t_delete which deletes the value associated with the given key, t_lookup which looks up the value
associated with the given key and tryC which validates the operations of the transaction.

A simple way to implement the hash-table object is using a list where each element of the
list stores the 〈key, value〉 pair. The elements of the list are sorted by their keys similar to the set
implementations discussed in [8, Chap 9]. It can be seen that the underlying list is a concurrent
data-structure (DS) manipulated by multiple transactions (and hence threads). So we have adopted
the lazy-list approach [7] to implement the operations of the list denoted as: list_insert, list_del
and list_lookup (referred as contains in [7]). Thus when a transaction invokes t_insert, t_delete
and t_lookup methods, the STM internally invokes the list_insert, list_del and list_lookup methods
respectively.

Consider an instance of list in which the nodes with keys 〈k2 k5 k7 k8〉 are present in the
hash-table as shown in Figure 1(i) and transactions T1 and T2 are concurrently executing
t_lookup1(k5), t_delete2(k7) and t_lookup1(k8) as shown in Figure 1(ii). In our representation, we
abbreviate t_insert as i, t_delete as d and t_lookup as l. For simplicity, we refer to nodes of the list
by their keys. In this setting, suppose a transaction T1 of OSTM invokes methods t_lookup on the
keys k5, k8. This would internally cause the OSTM to invoke list_lookup method on keys 〈k2, k5〉
and 〈k2, k5, k7, k8〉 respectively.

Concurrently, suppose transaction T2 invokes the method t_delete on key k7 between the two
t_lookups of T1. This would cause, OSTM to invoke list_del method of list on k7. Since, we are
using lazy-list approach on the underlying list, list_del involves pointing the next field of element k5
to k8 and marking element k7 as deleted. Thus list_del of k7 would execute the following sequence
of read/write level operations- r(k2)r(k5)r(k7)w(k5)w(k7) where r(k5), w(k5) denote read & write
on the element k5 with some value respectively. The execution of OSTM denoted as a history can be
represented as a transactional forest as shown in Figure 1(ii). Here the execution of each transaction
is a tree.

In this execution, we denote the read-write operations (leaves) as layer-0 and t_lookup, t_-
delete methods as layer-1. Consider the history (execution) at layer-0 (while ignoring higher-level
operations), denoted as H0. It can be verified this history is not opaque[2]. This is because between
the two reads of k5 by T1, T2 writes to k5. It can be seen that if history H0 is input to a RWSTMs one
of the transactions among T1 or T2 would be aborted to ensure correctness(in this case opacity[2]).

(i) Underlying list (ii) H1: Transactional tree history

T1 T2

r2(k2) r2(k5) r2(k7) w2(k5) w2(k7)

d2(k7)

c2

l1(k8)

r1(k5) r1(k8)r1(k2)
r1(k2) r1(k5)

l1(k5)

−∞ k2 k5 k7 k8 +∞

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

Figure 1 Motivational example for OSTMs
On the other hand consider the history H1 at layer-1 consisting of t_lookup, t_delete methods

while ignoring the underlying read/write operations. We ignore the underlying read & write operations
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since they do not overlap (referred to as pruning in [21, Chap 6]). Since these methods operate on
different keys, they are not conflicting and can be re-ordered either way. Thus, we get that H1 is
opaque[2] with T1T2 (or T2T1) being an equivalent serial history.

The important idea in the above argument is ignoring lower-level operations since they do not
overlap. Harris et al. referred to it as benign-conflicts[3]. This history clearly shows the advantage
of considering STMs with higher level operations in this case they are t_insert, t_delete and t_-
lookup. With object level modeling of histories, we get a higher number of acceptable schedules than
read/write model. This is because not all conflicts at the lower level matter at the higher level.

Now consider an application where we have two hash-tables, ht1 and ht2 such that a process
p1 need to delete k5 from ht1 and insert it into ht2 and another process p2 looks up k5. Now if we do
not have any synchronization mechanism for such an application these operations would not compose
and would leave the application in incorrect state (i.e. if p2 sees the intermediate state of the system
where p1 has deleted the k5 from ht1 but has not inserted in the ht2) even though the individual
operations are atomic. Our OSTM ensures that the sequence of operations compose powered by the
legality and conflict notion and the correctness proofs of the histories generated. Following is the
summary of our contribution:

We build an alternative theoretical model for efficiently transactifying the concurrent data struc-
tures using their semantic information such that they are composable [4] too. We call it object
software transactional memory system (OSTM).
We propose legality definitions and the notion of conflicts for object histories generated by OSTM.
We design the OSTM with hash-table where chaining is implemented via lazyskip-list and we
show that the design approach saves traversal overhead for the operations and helps in optimized
meta information management such that executions are guaranteed to be correct.
We provide in-depth proof of correctness starting from layer-0 (operational level) to the layer-1
(transactional level) executions generated by the proposed OSTM. And first time we show that
OSTM is guaranteed to be co-opaque[12].

Roadmap. We narrate our system model and legality of OSTM in Section 2. Section 3 depicts
conflict notion and in Section 4 we present detailed data structure and algorithm design of OSTM. In
Section 5 we outline correctness of OSTM. Section 6 explains related work and finally we conclude
in Section 7.

2 Building System Model

In this paper, we assume that our system consists of finite set of P processors, accessed by a finite
number of n threads that run in a completely asynchronous manner and communicate using shared
objects. The threads communicate with each other by invoking higher-level methods on the shared
objects and getting corresponding responses. Consequently, we make no assumption about the relative
speeds of the threads. We also assume that none of these processors and threads fail or crash abruptly.
Events: We assume that the threads execute atomic events. Similar to Lev-Ari et. al.[14, 15], we
assume that these events by different threads are (1) read/write on shared/local memory objects, (2)
method invocations (or inv) event & responses (or rsp) event on higher level shared-memory objects.
Global States: We define the global state or state of the system as the collection of local and shared
variables across all the threads in the system. The system starts with an initial global state. We assume
that all the events executed by different threads are totally ordered. Each update event transitions the
global state of the system leading to a new global state.
Methods: Within a transaction, a process can invoke layer-1 (transactional) methods on a hash-table
transaction object. A hash-table(ht) consists of multiple key-value pairs of the form 〈k, v〉. The
keys and values are respectively from sets K and V . The methods that a transaction Ti can invoke are:
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(1) initi, (2) t_begini , (3) t_inserti(ht, k, v), (4) t_deletei(ht, k, v), (5) t_lookupi(ht, k, v), (6) tryCi

and (7) tryAi. We assume that each method consists of a inv and rsp event.

Formally, we denote a method m by the tuple 〈evts(m), <m〉. Here, evts(m) are all the events
invoked by m and the <m a total order among these events. We denote t_insert and t_delete as update
methods (or upd_method) since both of these change the underlying data-structure. We denote
t_delete and t_lookup as return-value methods (or rv_method) as these operations return values from
ht. A method may return ok if successful or A(abort) if it sees inconsistent state of ht.
Transactions: Following the notations used in database multi-level transactions [21], we model a
transaction as a two-level tree. The layer-0 consist of read/write events and layer-1 of the tree consists
of methods invoked by transaction. Having informally explained a transaction, we formally define a
transaction T as the tuple 〈evts(T ), <T 〉. Here evts(T ) are all the read/write events at layer-0 of the
transaction. <T is a total order among all the events of the transaction.

We denote the first and last events of a transaction Ti as Ti.firstEvt and Ti.lastEvt. Given
any other read-write event rw in Ti, we assume that Ti.firstEvt <Ti rw <Ti Ti.lastEvt. All
the methods of Ti denoted as methods(Ti). We assume that for any method m in methods(Ti),
evts(m) is a subset of evts(Ti) and <m is a subset of <Ti .
Histories: A history is a sequence of events belonging to different transactions. The collection of
events is denoted as evts(H). Similar to a transaction, we denote a history H as tuple 〈evts(H), <H〉
where all the events are totally ordered by <H . The set of methods that are in H is denoted by
methods(H). A method m is incomplete if inv(m) is in evts(H) but not its corresponding response
event. Otherwise m is complete in H .

Coming to transactions in H , the set of transactions in H as txns(H). The set of committed (resp.,
aborted) transactions in H is denoted by committed(H) (resp., aborted(H)). The set of incomplete
or live transactions in H is denoted by incomp(H) = live(H) = txns(H) − committed(H) −
aborted(H). On the other hand, the set of terminated transactions are those which have either
committed or aborted and is denoted by term(H) = committed(H) ∪ aborted(H).

The relation between the events of transactions & histories is analogous to the relation between
methods & transactions. We assume that for any transaction T in txns(H), evts(T ) is a subset of
evts(H) and <T is a subset of <H . Formally, 〈∀T ∈ txns(H) : (evts(T ) ⊆ evts(H)) ∧(<T⊆<H

)〉. We denote two histories H1, H2 as equivalent if their events are the same, i.e., evts(H1) =
evts(H2). A history H is qualified to be well-formed if: (1) all the methods of a transaction Ti in H

are totally ordered, i.e. a transaction invokes a method only after it receives a response of the previous
method invoked by it (2) Ti does not invoke any other method after it received an A response or after
tryC(ok) method. We only consider well-formed histories for OSTM.
Sequential Histories: A history H is said to be sequential (term used in [12, 13]) or linearized [11]
if all the methods in it are complete and isolated. From now onwards, most of our discussion would
relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each method as whole without
referring to its inv and rsp events. For a sequential history H , we construct the completion of
H , denoted H , by inserting tryAk(A) immediately after the last method of every transaction Tk ∈
incomp(H). Since all the methods in a sequential history are complete, this definition only has to
take care of completing transactions. Consider a sequential history H . Let mij(ht, k, v/nil) be the
first method of Ti in H operating on the key k as H.firstKeyMth(〈ht, k〉, Ti), where mij stands
for jth method of ith transaction. For a method mix(ht, k, v) which is not the first method on 〈ht, k〉
of Ti in H , we denote its previous method on k of Ti as mij(ht, k, v) = H.prevKeyMth(mix, Ti).
Real-time Order & Serial Histories: Given a history H , <H orders all the events in H . For two
complete methods mij , mpq in methods(H), we denote mij ≺MR

H mpq if rsp(mij) <H inv(mpq).
Here MR stands for method real-time order. It must be noted that all the methods of the same
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transaction are ordered.
Similarly, for two transactions Ti, Tp in term(H), we denote (Ti ≺T R

H Tp) if (Ti.lastEvt <H

Tp.firstEvt). Here TR stands for transactional real-time order.
We define a history H as serial [17] or t-sequential [13] if all the transactions in H have terminated

and can be totally ordered w.r.t ≺T R, i.e. all the transactions execute one after the other without
any interleaving. Intuitively, a history H is serial if all its transactions can be isolated. Formally,
〈(H is serial) =⇒ (∀Ti ∈ txns(H) : (Ti ∈ term(H)) ∧ (∀Ti, Tp ∈ txns(H) : (Ti ≺T R

H

Tp) ∨ (Tp ≺T R
H Ti))〉. Since all the methods within a transaction are ordered, a serial history is also

sequential. Refer Figure 15 in Appendix A to shows a serial history.
Legal Histories: We define legality of rv_methods, t_delete & t_lookup on sequential histories.
Consider a sequential history H having a rv_method rvmij(ht, k, v) (with v 6= nil) belonging to
transaction Ti. We define this rvm method to be legal if:

1. If the rvmij is not first method of Ti to operate on 〈ht, k〉 and mix is the previous method of
Ti to operate on 〈ht, k〉. Formally, rvmij 6= H.firstKeyMth(〈ht, k〉, Ti) ∧ (mix(ht, k, v′) =
H.prevKeyMth(〈ht, k〉, Ti)) (where v′ could be nil). Then,

a. if mix(ht, k, v′) is a t_insert method i.e. t_insertix(ht, k, v′) then v = v′.
b. if mix(ht, k, v′) is a t_lookup method i.e. t_lookupix(ht, k, v′) then v = v′.
c. if mix(ht, k, v′) is a t_delete method i.e. t_deleteix(ht, k, v′/nil) then v = nil.

In this case, we denote mix as the last update method of rvmij , i.e., mix(ht, k, v′) =
H.lastUpdt(rvmij(ht, k, v)).

2. If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is not nil. Formally, rvmij(ht, k, v) =
H.firstKeyMth(〈ht, k〉, Ti) ∧ (v 6= nil). Then,

a. There is a t_insert method t_insertpq(ht, k, v) in methods(H) such that Tp committed before
rvmij . Formally, 〈∃t_insertpq(ht, k, v) ∈ methods(H) : tryCp ≺MR

H rvmij〉.
b. There is no other update method upxy of a transaction Tx operating on 〈ht, k〉 in methods(H)

such that Tx committed after Tp but before rvmij . Formally, 〈@upxy(ht, k, v′′) ∈ methods(H) :
tryCp ≺MR

H tryCx ≺MR
H rvmij〉.

In this case, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v) =
H.lastUpdt(rvmij(ht, k, v)).

3. If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is nil. Formally, rvmij(ht, k, v) =
H.firstKeyMth(〈ht, k〉, Ti) ∧ (v = nil). Then,

a. There is t_delete method t_deletepq(ht, k, v′) in methods(H) such that Tp (which could
be T0 as well) committed before rvmij . Formally, 〈∃t_deletepq(ht, k, v′) ∈ methods(H) :
tryCp ≺MR

H rvmij〉. Here v′ could be nil.
b. There is no other update method upxy of a transaction Tx operating on 〈ht, k〉 in methods(H)

such that Tx committed after Tp but before rvmij . Formally, 〈@upxy(ht, k, v′′) ∈ methods(H) :
tryCp ≺MR

H tryCx ≺MR
H rvmij〉.

In this case similar to step 2, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v)
= H.lastUpdt(rvmij(ht, k, v)).

We assume that when a transaction Ti operates on key k of a hash-table ht, the result of this
method is stored in local logs of Ti for later methods to reuse. Thus, only the first rv_method operating
on 〈ht, k〉 of Ti accesses the shared-memory. The other rv_methods of Ti operating on 〈ht, k〉 do
not access the shared-memory and they see the effect of the previous method from the local logs.
This idea is utilized in step 1 of legality. With reference to step 2 and step 3, it is possible that Tx

could have aborted before rvmij . For step 3, since we are assuming that transaction T0 has invoked a
t_delete method on all the keys used of all hash-table objects, there exists at least one t_delete
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method for every rv_method on k of ht. For more details please refer Figure 16, Figure 17, Figure 18
and Figure 19 in Appendix A. We formally prove legality in Lemma 29 in Appendix D and then we
finally show that OSTM histories are co-opaque[12] as defined in Definition 1.

Coming to t_insert methods, since a t_insert method always returns ok as they overwrite the node
if already present therefore they always take effect on the ht. Thus, we denote all t_insert methods
as legal. We denote a sequential history H as legal if all its rvm methods are legal. While defining
legality of a history, we are only concerned about rvm (t_lookup and t_delete) methods since all
t_insert methods are by default legal.
Correctness-Criteria & Opacity: A correctness-criterion is a set of histories. A history H satisfying
a correctness-criterion has some desirable properties. A popular correctness-criterion is opacity [2].
A sequential history H is opaque if there exists a serial history S such that: (1) S is equivalent to H ,
i.e. , evts(H) = evts(S) (2) S is legal and (3) S respects the transactional real-time order of H , i.e.,
≺T R

H ⊆≺T R
S .

3 Conflict Notion

Motivation towards new conflict notion: As we discussed in Figure 1(ii), some lower level conflicts
can be ignored at the higher level. So, we defined following conflict notion for proving the correctness
(opacity, to be precise co-opacity[12]) of higher level. We say two transactions Ti, Tj of a sequential
history H are in conflict if atleast one of the following conflicts holds:

u-u conflict:(1) Ti & Tj are committed and (2) Ti & Tj update the same key k of the hash-table,
ht, i.e., (〈ht, k〉 ∈ updtSet(Ti))∧ (〈ht, k〉 ∈ updtSet(Tj)), where updtSet(Ti) is update set of
Ti. (3) Ti’s tryC completed before Tj’s tryC, i.e., tryCi ≺MR

H tryCj .
u-rv conflict:(1) Ti is committed (2) Ti updates the key k of hash-table, ht. Tj invokes
a rv_method rvmjy on the key same k of hash-table ht which is the first method on
〈ht, k〉. Thus, (〈ht, k〉 ∈ updtSet(Ti)) ∧ (rvmjy(ht, k, v) ∈ rvSet(Tj)) ∧ (rvmjy(ht, k, v) =
H.firstKeyMth(〈ht, k〉, Tj)), where rvSet(Tj) is return value set of Tj . (3) Ti’s tryC com-
pleted before Tj’s rvm, i.e., tryCi ≺MR

H rvmjy .
rv-u conflict:(1) Tj is committed (2) Ti invokes a rv_method on the key same k of hash-table
ht which is the first method on 〈ht, k〉. Tj updates the key k of the hash-table, ht. Thus,
(rvmix(ht, k, v) ∈ rvSet(Ti))∧ (rvmix(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti))∧ (〈ht, k〉 ∈
updtSet(Tj)) (3) Ti’s rvm completed before Tj’s tryC, i.e., rvmix ≺MR

H tryCj .

I Definition 1. Co-opacity : A sequential history H is conflict-opaque (or co-opaque) if
there exists a serial history S such that: (1) S is equivalent to H , i.e. , evts(H) = evts(S) (2) S is
legal and (3) S respects the transactional real-time order of H , i.e., ≺T R

H ⊆≺T R
S and (4) S preserves

conflicts (i.e. ≺CO
H ⊆ ≺CO

S ) [12].

A rv_method rvmij conflicts with a tryC method only if rvmij is the first method of Ti that operates
on hash-table with a given key. Thus the conflict notion is defined only by the methods that
access the shared memory. (tryCi, tryCj), (tryCi, t_lookupj), (t_lookupi, tryCj), (tryCi, t_deletej)
and (t_deletei, tryCj) can be the conflicting methods. Based on these conflicts we build a conflict
graph as follows:
Graph Characterization: Let conflict graph (CG) be set of (V, E) pair where V ∈ txns(H) and E can
be of following types:

conflict edges: {(Ti, Tj) : (Ti, Tj) ∈ conflict(H)}. Where, conflict(H) is an ordered pair of
transactions such that the transactions have one of the above pair of conflicts.
real-time edge: {(Ti, Tj) : Ti ≺T R

H Tj}
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The legality and conflict notion established here are used to prove that histories generated by the
OSTM are correct or co-opaque[] in Section 5.

4 OSTMs Design

We design the OSTMs using hash-table where chaining is done using lazyskip-list. Here,
major concurrency hot-spot is the chaining data-structure. Lazyskip-list based chain implementation
assumes that there are head and tail nodes which are immutable. The value of key in head is −∞
and the value of key in tail is +∞. Lazyskip-list have two types of nodes 1) live node: represents the
nodes which are not marked (not deleted) and 2) dead node: represent the nodes which are marked
(i.e. logically deleted). Also, each node in lazyskip-list has two links namely, BL(blue links) and
RL(red links) which can be thought of as it’s two levels. All live nodes are accessed via BL and all
the nodes including dead nodes are accessed via RL from the head. Every node of lazyskip-list is in
increasing order of it key.

We now explain the search mechanism over such a lazyskip-list. A node is always first probed
in BL. If the node is present in BL then it will store location( found over the BL) of the node
corresponding to the key in local log otherwise it will search through RL within the same location
identified by traversing the BL. For example, let say we search k5 in Figure 2. We observe that k5 is
not present in BL and we stop at location (−∞ and k7 the predecessor and successor respectively
for k5), Now we try to search the k5 over the RL between −∞ and k7 (because all nodes are in
increasing order of their keys). This chaining data structure is our design choice because it has
inherent advantage of being search efficient. To illustrate this, consider the example in Figure 2 for
searching key k8 in lazyskip-list. Key k8 is present in BL so we do not need to traverse keys k1, k3
and k6 which saves significant search time. Had it been a simple lazy list (Figure 3) searching k8
would have involved unnecessarily traversal over dead nodes represented by k1, k3 and k6.

k1 k3 k6

+∞−∞ k8k7

Figure 2 Searching k8 over lazyskip-list

k3 k6 k7 k8−∞ +∞k1

Figure 3 Searching k8 over lazylist
In case search is invoked from rv_method, and node corresponding to the key is not present in

BL and RL then the rv_method will create a node and insert it into underlying data structure as
dead node. For example lookup wants to search key k10 in Figure 2, as key k10 is not present in the
BL as well as RL then, lookup method will create a new node corresponding to the key k10 and
insert it into RL (refer the Figure 4).

k1 k3 k6

+∞

k10

−∞ k8k7

Figure 4 Execution under lazyskip-list
Why we need to maintain dead nodes? Dead nodes are either the deleted nodes or the nodes

inserted by the rv_method over the course of their execution. We need the dead nodes to store the
meta information which is used to satisfy opacity[2] of the OSTM execution. We further explain this
using example in Figure 5 and Figure 6.

History H shown in Figure 5 is not opaque because we can’t come up with any serial order between
T1 and T2. In order to make it opaque lu1(ht, k1, Nil) needs to be aborted. And lu1(ht, k1, Nil) can
only be aborted if OSTM scheduler knows that a conflicting operation del2(ht, k1, v0) has already
been scheduled violating the time-order[21]. One way to have this information is that if the node
represented by k1 records the time-stamp of the delete operation, so that the scheduler realizes the
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violation and aborts lu1(ht, k1, Nil) to ensure opacity. Thus with help of information provided by
the dead nodes we can ensure H1: T1 followed by T2 is the opaque history as depicted in the Figure 6.
These dead nodes can always be reused if any insert arrives later in the transaction. Next we discuss
the data structure and algorithm which powers the OSTM.

Lu1(ht, k2, v0)

Ins2(ht, k2, v1)

T1

T2
C2Del2(ht, k1, v0)

Lu1(ht, k1, Nil) A1

Figure 5 History H is not opaque

Lu1(ht, k2, v0)

Ins2(ht, k2, v1)

T1

T2
C2

Lu1(ht, k1, Abort)

Del2(ht, k1, v0)

A1

Figure 6 Opaque History H1

4.1 OSTM data-structure design

In proposed OSTM, we use thread local DS which is private to each thread for logging the local
execution and shared memory DS which is concurrently accessed by multiple transactions to
communicate the meta information logged for validation of the methods.

4.1.1 Thread local DS

Each transaction Ti maintains local log of type txlog, which consists of t_id and tx_status of the
transaction. Transactions can have live, commit or abort as their status signifying that transaction
is executing, has successfully committed or has aborted due to some method failing the validation
respectively.

class txlog{
private :

int t_id; STATUS tx_status;
vector <ll_entry> ll_list;

public :
txlog(); ~txlog(); findInLL();
getLlList(); handleAbort(); };

The local log also maintains a list(ll_list) of meta information of each method a transaction executes
in its life time. Each entry of the ll_list is of type ll_entry which logs 1) key and value a method
operates on, 2)opn: name of the method, 3)op_status: method’s status (OK, FAIL) and 4) preds,
currs: its location over the lazyskip-list.

We say a method identifies its location over the lazyskip-list when it finds the predecessor and
successor nodes over the BL and RL respectively. We represent predecessor as preds〈km, kn〉 (km is
blue node reachable by BL and kn is red node reachable by RL) and successor as currs〈kp, kq〉 (kp

is red node reachable by RL and kq is blue node reachable by blue node) respectively. Here, 〈km, kq〉
are predecessor(pred[0]) and current(curr[0]) node for BL and 〈kn, kp〉 are predecessor(pred[1]) and
current(curr[0]) node for RL. We use word location with preds and currs interchangeably in rest of
the paper.

Class ll_entry also shows the getter and setter methods for each of the member variables which
are self explanatory. Interested reader can find their description at table 1 in appendix.

class ll_entry{
private :

int obj_id, key, value; node* preds, currs;
STATUS op_status; operation_name opn;

public :
getOpn(); getPreds&Currs(); getOpStatus();
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getKey&Objid(); getValue(); getAptCurr();
setValue(); setPreds&Currs(); setOpStatus(); setOpn(); };

enum OPERATION_NAME = {INSERT, DELETE, LOOKUP}
enum STATUS = {ABORT = 0, OK, FAIL, COMMIT}

4.1.2 Shared memory DS:

OSTM shared memory is the chained hash-table where each node of the chain (lazyskip-list) is a
key-value pairs of the form 〈k, v〉. Most of the notations used here are derived from [20]. A node n

when created is initialized as follows: (1) key and val is the key and val of the method that creates the
node (2) rednext and bluenext are set to nil (3) marked is set to false (4) lock is null (5) max_ts

is initialized to 0.

struct node{
int key, value; bool marked; struct max_ts;
lock; node rednext; node bluenext; };

node* shared_ht []; /*Each array index is a lazyskip list chain*/
vector <shared_ht*> object_list; //array index is obj_id

We adapt timestamp validation[21] to ensure schedules generated by proposed OSTM are serial.
Therefore we maintain max_ts_lookup(ht, k), max_ts_insert(ht, k) and max_ts_delete(ht, k) that
represents timestamp of last committed transaction which executed t_lookup(ht, k), t_insert(ht, k)
and t_delete(ht, k) respectively. max_ts, node and ll_entry form the part of the meta information
for the OSTM.

struct max_ts { lookup; insert; delete; };

4.2 Pseudocode

Through out its life an OSTM transaction may execute STM_begin(), STM_insert(), STM_lookup(),
STM_delete() and STM_tryC() methods which are also exported to the user. Each transaction has a 1)
rv_method execution phase: where upd_method & rv_method locally identify and logs the location to
be worked upon and other meta information which would be needed for successful validation. Within
rv_method execution phase rv_methods do lock free traversal and then validate while STM_insert()
merely log their execution to be validated and updated during transaction commit. 2) upd_method
execution phase: where it validates the upd_method executed during its lifetime and validates whether
the transaction will commit and finally make changes in hash-table atomically or it will abort
and flush its log. Figure 7 depicts the transaction life cycle.

{ {Ti

Ci

Validate at instant.
STM_lookup() :

STM_begin() :
Prepare a transaction

STM_insert() :
Execute w/o touching
shared memory.

STM_tryC() :
Validation
* Interference validation
* Time order validation

STM_Delete() :

Modify at commit.
Update txlog.

* Init txlog.
* Unique_id.

Validate at instant.
Update txlog.

Update txlog.

Update method execution phase

Commit into underlying data-structure.

Return value method execution phase

* Lost update validation

Figure 7 Transaction lifecycle of OSTM



XX:10 A Sample LIPIcs Article

Pseudocode convention: In each algorithm ↓ represents the input parameter and ↑ shows the
output parameter (or return value) of the corresponding methods(such in and out variables are
italicized). Instructions in read() and write() with in each method denote that they touch the shared
memory. Color of preds & currs in algorithm depicts the red or blue node which are accessed by red
or blue links respectively.

rv_method execution phase: Initially, in rv_method execution phase each transaction invokes
STM_begin() of Algo 6 (in Appendix C) for getting unique transaction id and local log. Then
transaction may encounter the upd_method or rv_method. STM_insert() of Algo 7 (in Appendix C),
first looks for the node corresponding to the key into the ll_list(Line 2). If key is not found then it
will create the ll_entry and store the value, operation name and status(Line 3 to Line 6) into it which
would be validated and realized in shared memory in STM_tryC().

STM_tryC() and rv_method of OSTM methods use lslSearch() to find the location at the lazyskip-
list(thus the name) in lock free manner. Line 3 to Line 8 and Line 9 to Line 14 of Algo 1 find
the location at lazyskip-list for BL and RL . This is motivated by the search in lazylist [8, chap
9](REF ALGO). The preds and currs thus identified are subjected to interferenceValidation() of
Algo 2 and toValidation() of Algo 12(in Appendix C) after acquiring locks on the preds and currs

(Line 15 to Line 18 of Algo 1). If the validation succeeds lslSearch() returns the correct location to
the operation which invoked it, otherwise lslSearch() retries(if interference detected) or aborts(if time
order violated) post releasing locks(Line 21 to Line 24) before finally returning.

Algorithm 1 lslSearch(obj_id ↓, key ↓, preds[] ↑, currs[] ↑, value ↑, val_type ↓)
1: procedure LSLSEARCH
2: while (op_status = RETRY) do
3: head← getLslHead(obj_id ↓, key ↓);
4: preds[0]← read(head) ;
5: currs[1]← read(preds[0].BL) ;
6: while (read(currs[1].key) < key) do
7: preds[0]← currs[1] ;
8: currs[1]← read(currs[1].BL) ;
9: value← read(currs[1].value) ;

10: preds[1]← preds[0] ;
11: currs[0]← preds[0].RL;
12: while (read(currs[0].key) < key) do
13: preds[1]← currs[0] ;

14: currs[0]← read(currs[0].RL) ;
15: preds[0].lock() ;
16: preds[1].lock();
17: currs[0].lock();
18: currs[1].lock();
19: op_status← validation(key ↓, preds[] ↓, currs[] ↓,

val_type ↓);
20: if (op_status = RETRY) then
21: preds[0].unlock() ;
22: preds[1].unlock() ;
23: currs[0].unlock() ;
24: currs[1].unlock() ;
25: return op_status ;

Algorithm 2 interferenceValidation(preds[] ↓, currs[] ↓)
1: procedure INTERFERENCEVALIDATION
2: if ((read(preds[0].marked)) & (read(currs[1].marked)) & ((read(preds[0].BL) 6= currs[1])) & ((read(preds[1].RL) 6=

currs[0]))) then
3: return RET RY ;
4: else
5: return OK ;

(i)

(ii)

(iii)

−∞

−∞

k3

k1 +∞

+∞

k5

k5

k1

k3

s1

C2

T1

C1

T2

Lu2(k5)

Del1(k5)

s2 {

tryC

s3

Figure 8 Interference Validation for conflicting concurrent methods on key k5

Interference validation helps detecting the execution where underlying data structure has been
changed by second concurrent transaction while first was under execution without it realizing. This
can be illustrated with Figure 8. Consider the history in Figure 8(iii) where two conflicting transactions
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T1 and T2 are trying to access key k5, here s1, s2 and s3 represent the state of the lazyskip-list at that
instant. Let at s1 both the methods record the same preds〈k1, k3〉 and currs〈k5, k5〉 with the help
of lslSearch() for key k5 (refer Figure 8(i)). Now, let Del1(k5) acquire the lock on the preds and
currs before the Lu2(k5) and delete the node corresponding to the key k5 from BL leading to state
s2 (in Figure 8(iii)) and commit. Figure 8(ii) shows the state s2 where key k5 is the part of RL. Now,
interferenceValidation() (in Algo 2) will identify that location of Lu2(k5) is no more valid due to
pred.BL 6= curr at Line 2 of Algo 2. This strategy of validation is similar to [8, chap 9](ALGO REF).
Thus, lslSearch() will retry to find the updated location for Lu2(k5) at state s3 (in Figure 8(iii)) and
eventually T2 will commit.

Consider STM_lookupi(ht, k). If this is the subsequent operation by a transaction Ti for a
particular key k on hash-table ht i.e. an operation on k has already been scheduled with in the same
transaction Ti, then this STM_lookup() return the value from the ll_list and does not access shared
memory(Line 3 to Line 10). If the last operation was a STM_insert() (or STM_lookup()) on same
key then the subsequent STM_lookup() of the same transaction returns the previous value(Line 6)
inserted (or observed) without accessing shared memory, and if the last operation was a STM_delete()
then STM_lookup() returns the value NULL (Line 9). We denote this as conflict-inheritance as the
methods within a transaction are bound to behave as per the previous methods on same key. Thus in
this process subsequent methods also have same conflicts as the first method on same key within the
same transaction.
Algorithm 3 STM_lookup(obj_id ↓, key ↓, value ↑, op_status ↑ )

1: procedure STM_LOOKUP
2: op_status← RETRY ;
3: if (txlog.findInLL(obj_id ↓, key ↓)) then
4: opn← ll.getOpn(obj_id ↓, key ↓) ;
5: if ((INSERT = opn )||( LOOKUP = opn)) then
6: value← ll.getValue(obj_id ↓, key ↓) ;
7: op_status← ll.getOpStatus(obj_id ↓, key ↓) ;
8: else if (DELETE = opn) then
9: value← NULL ;

10: op_status← FAIL ;
11: else
12: op_status← lslSearch(obj_id ↓, key ↓, preds[] ↑,

currs[] ↑, valueBL ↑, rv ↓) ;
13: if (op_status = ABORT) then
14: tryAbort(obj_id ↓) ;
15: else
16: if (read(currs[1].key) = key) then
17: op_status← OK ;
18: write(currs[1].max_ts.lookup, TS(ti)) ;
19: value← valueBL ;

20: else if (read(currs[0].key) = key) then
21: op_status← FAIL ;
22: write(currs[0].max_ts.lookup, TS(ti)) ;
23: value← NULL ;
24: else
25: lslIns(preds[] ↓, currs[] ↓, RL ↓) ;
26: op_status← FAIL ;
27: write(node.max_ts.lookup, TS(ti)) ;
28: value← NULL ;
29: new ll_entry; . log entry created if not exists
30: ll.setPreds&Currs(obj_id ↓, key ↓, preds[] ↓,

currs[] ↓) ;
31: ll.setOpn((obj_id ↓, key ↓, LOOKUP ↓) ;
32: preds[0].unlock() ;
33: preds[1].unlock();
34: currs[0].unlock();
35: currs[1].unlock();
36: ll.setOpStatus(obj_id ↓, key ↓, op_status ↓) ;
37: return ;

(i) Invalid schedule of two time validation (iii) Early detection of invalid schedule(ii) Valid schedule of one time validation

tryC{

Lu1(ht, k1, Abort)Lu1(ht, k1, v0)

C2Ins2(ht, k1, v1) C2Ins2(ht, k1, v1)

A1Lu1(ht, k1, Abort)
T1

T2

T1

T2

A1 Lu1(ht, k1, v0)

C2Ins2(ht, k1, v1)

C1
T1

T2

Figure 9 Advantages of lookup validated once

If STM_lookup() is the first operation on a particular key then it has to do a wait free traversal
(Line 12) with the help of lslSearch()(Algo 1) to identify the target node(preds and currs) to be
logged in ll_list for subsequent methods in rv_method execution phase (discussed above for the case
where STM_lookup() is the subsequent method). If the node is present as blue(red) node then it
updates the operation status as OK(FAIL) and returns the value respectively(Line 16 to Line 23). If
node corresponding to the key is not found then it inserts that node(Line 24 to Line 28) corresponding
to the key into RL of lazyskip-list. The inserted node can be accessed only via red links. Hence, it
will not visible to any subsequent STM_lookup(). The node is inserted to take care of situations as
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illustrated in Figure 5 & Figure 6 . Finally, it updates the meta information in ll_list and releases the
locks acquired inside lslSearch()(Line 12).

We prefer STM_lookup() to be validated instantly and is never validated again in STM_tryC() as
the design choice to aid performance. Lets consider OSTM history in Figure 9(i), if we would have
validated Lu(ht, k1, v0) again during tryC, T1 would abort due to time order violation[21], but we
can see that this history is acceptable where T1 can be serialized before T2(Figure 9(ii)). Thus, OSTM
prevents such unnecessary aborts. Another advantage for this design choice is that T1 doesn’t have
to wait for tryC to know that the transaction is bound to abort as can be seen in Figure 9(iii). Here
Lu(ht, k1, Abort) instantly aborts as soon as it realizes that time order is violated and schedule can
no more be ensured to be correct saving significant computations of T1. This gain becomes significant
if the application is lookup intensive where it would be inefficient to wait till STM_tryC() to validate
the STM_lookup() only to know that transaction has to abort.

STM_delete() of Algo 8 (in Appendix C) behaves as STM_lookup()(during local execution) but it is
validated twice. First, in local execution similar to STM_lookup() and secondly in validation-commit
(of STM_tryC()) to ensure opacity[2]. We adopt lazy delete approach for STM_delete() method. Thus,
nodes are marked for deletion and not physically deleted for STM_delete() method. In the current
work we assume that a garbage collection mechanism is present and we donot worry about it.
Algorithm 4 STM_tryC(txstatus ↑)

1: procedure STM_TRYC
2: ti← getTid() ;
3: ll_list← ll.get(t_id ↓) ;
4: ordered_ll_list← ll.sort (ll_list ↓) ;
5: while (ll_entryi ← next(ordered_ll_list)) do
6: (key, obj_id)← ll.getKey&Objid(ll_entryi ↓) ;
7: op_status← lslSearch(obj_id ↓, key ↓, preds[] ↑,

currs[] ↑, valueBL ↑, COMMIT ↓) ;
8: if (op_status = ABORT) then
9: tryAbort(obj_id ↓) ;

10: return ;
11: ll.setPreds&Currs(obj_id ↓, key ↓, preds[] ↓,

currs[] ↓) ;
12: while (ll_entryi ← next(ordered_ll_list)) do
13: (key, obj_id)← ll.getKey&Objid(ll_entryi ↓) ;
14: opn← ll_entryi.opn ;
15: lostUpdateValdation(ll_entryi ↓, preds[] ↑,

currs[] ↑) ;
16: if (INSERT = opn) then
17: if (read(currs[1].key) = key) then
18: value← read(currs[1].value) ;
19: write(currs[1].value, value) ;

20: ll.setOpStatus(obj_id ↓, key ↓, OK ↓) ;
21: write(currs[1].max_ts.insert, TS(ti)) ;
22: else if (read(currs[0].key) = key) then
23: lslIns(preds[] ↓, currs[] ↓, RL_BL ↓) ;
24: ll.setOpStatus(obj_id ↓, key ↓, OK ↓) ;
25: write(currs[1].max_ts.insert, TS(ti)) ;
26: else
27: lslIns(preds[] ↓, currs[] ↓, BL ↓) ;
28: ll.setOpStatus(obj_id ↓, key ↓, OK ↓) ;
29: write(node.max_ts.insert, TS(ti)) ;
30: else if (DELETE = opn) then
31: if (read(currs[1].key) = key) then
32: lslDel(preds[] ↓, currs[] ↓) ;
33: ll.setOpStatus(obj_id ↓, key ↓, OK ↓) ;
34: write(currs[1].max_ts.delete, TS(ti)) ;
35: else
36: ll.setOpStatus(obj_id ↓, key ↓, F AIL ↓) ;
37: write(currs[0].max_ts.delete, TS(ti)) ;
38: releaseOrderedLocks(ordered_ll_list ↓) ;
39: txstatus← OK ;
40: txlog.setStatus(txstatus ↓, OK ↓) ;
41: return ;

upd_method execution phase: Finally a transaction after executing the designated operations
reaches the upd_method execution phase executed by the STM_tryC() method. It starts with modifying
the log to ordered_ll_list which contains the log entries in sorted order of the keys (so that locks can
be acquired in an order, refer Line 4 of Algo 4) and contains only the upd_method (because we do not
validate the lookup again for the reasons explained above). From Line 5 to Line 10 we re-validate the
modified log operation to ensure that the location for the operations has not changed since the point
they were logged during rv_method execution phase. If the location for an operation has changed
this block ensures that they are updated. Now, STM_tryC() enters the phase where it updates the
shared memory using logs from Line 11 to Line 34. Figure 10 & Figure 11 explain the execution of
insert and delete in update phase of STM_tryC() using lslIns() and lslDel() respectively. Figure 10(i)
represents the case when k5 is neither present in BL and nor in RL. It adds k5 to lazyskip-list
at location preds〈k3, k4〉 and currs〈k8, k8〉. Figure 10(i)(a) is lazyskip-list before addition of k5
and Figure 10(i)(b) is lazyskip-list state post addition. Similarly, Figure 10(ii) represents the case
when k5 is present in RL. It adds k5 to lazyskip-list at location pred〈k3, k4〉 and curr〈k5, k8〉.
Figure 10(i)(c) is lazyskip-list before addition of k5 and Figure 10(i)(d) is lazyskip-list state post
addition. In case of del(k5) from lazyskip-list when k5 is present in BL Figure 11(i) represent the
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lazyskip-list state before k5 is deleted at location pred〈k1, k3〉 and curr〈k5, k5〉 and Figure 11(ii)
represents the lazyskip-list state after deletion.

(a)

(b)

(c)

(d)

−∞ k3 k8 +∞
−∞ k8 +∞

−∞
−∞

k4

k3

k4

k3

k4 k5

k5 k8 +∞
k5 k8 +∞

k3

k4

(i) When k5 is not present in BL and RL (ii) When k5 is present in RL

Figure 10 Ins(k5) using lslIns() in STM_tryC()

(i) (ii)−∞ −∞

k3

k1 +∞k5 +∞

k5

k1

k3

Figure 11 Del(k5) using lslDel() in STM_tryC()

While updating the methods of same transaction from its log, the preds and currs might change
for two consecutive updates over the lazyskip-list causing the later update to overwrite the former
(lost update). Figure 12 explains this lucidly. Suppose, T1 is in update phase of STM_tryC() at state
s where ins(k5) and ins(k7) are waiting to take effect over the lazyskip-list. The lazyskip-list at s

is as in Figure 12(i) also ins(k5) and ins(k7) have pred〈k3, k4〉 and curr〈k8, k8〉 as their location.
Now, Lets say ins(k5) adds k5 between k3 and k8 and changes lazyskip-list (as in Figure 12(ii))
at state s1 in Figure 12(iv). But, at s1 BL preds and currs of ins(k7) are still k3 and k8 thus
it wrongly adds k7 between k3 and k8 overwriting ins(k5) as shown in Figure 12(iii) with dotted
links. We correct this through lostUpdateValidation() which is lostUpdateValidation() is invoked
before every upd_method over the lazyskip-list in update phase of STM_tryC()(Line 12 to Line 37
of Algo 4). Figure 12 represents the functionality of lostUpdateValidation() of Algo 5. Here, If
lostUpdateValidation() fails for any upd_method then as a corrective measure the preds and currs of
the upd_method under execution will be updated using the previous upd_method’s preds and currs

with the help of its ll_entry.

(iii)(i)

(ii) (iv)

−∞ k3 k8 +∞

−∞

−∞ k3

k4

k5 k7 k8 +∞

k4

k3

k4

k5 k8 +∞
T1

C1Ins1(k5) Ins1(k7)

tryC

{ s2s1s

Figure 12 Problem in execution without lostUpdateValidation() (ins(k5) and ins(k7)). (i) lazyskip-list at
state s. (ii) lazyskip-list at state s1. (iii)lazyskip-list at state s2 (lost update problem).
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Algorithm 5 lostUpdateValidation(ll_entryi ↓, preds[] ↑, currs[] ↑)
1: procedure LOSTUPDATEVALIDATION
2: ll.getAllPreds&Currs(ll_entryi ↓, preds[] ↑, currs[] ↑) ;
3: if ((read(preds[0].marked))|| (read( preds[0].BL) !=

currs[1])) then
4: if ((ll_entryi−1.opn) = INSERT) then

5: preds[0]← (ll_entryi−1.key) ;
6: else
7: preds[0]← (ll_entryi−1.preds[0]) ;
8: if (read( preds[1].BL) != currs[0]) then
9: preds[1]← (ll_entryi−1.key) ;

5 Correctness of OSTMs

Methods in Read/Write STMs are atomic read/write methods. Proving that such methods can be
partially ordered or linearized is a complex task. In OSTM where methods are intervals which also
overlap with methods of different transactions exacerbates this task. We need to establish that all
methods can be linearized at operational level before arguing about the co-opacity of OSTM history
at transaction level. We present the proof sketch in this section.

OSTM design ensures representational invariants that 1) every node in hash-table repres-
ents an unique key(Corollary 11), 2) head and tail nodes represent minimum and maximum keys and
are immutable, 3) all nodes of lazyskip-list are always in increasing order of their keys(Lemma 14),
4) all updates to shared object are done by acquiring locks. Also, all unmarked nodes are reachable
by BL and every node (marked or unmarked) is reachable by RL. From code it can be observed
lslSearch() is guaranteed to return correct location for a method.

Operational level correctness: Here we establish the above OSTM invariants (using observations
directly from code or formulating them as lemma) and subsequently prove that STM_insert(), STM_-
delete(), STM_lookup() and STM_tryC() ensure that the invariants are adhered and the OSTM history
is equivalent to the execution in which all the methods are linearized. This we achieve by identifying
the linearization points (first unlock point of each successful OSTM method) such that each method
execution leads the object from one correct state to the another (refer Lemma 20, Lemma 21 and
Lemma 22 in appendix) and the 2PL locking mechanism [21] as observed in Observation 26 and
Observation 27. We prove that lost update validation is not violated by subsequent updates in
STM_tryC() in Lemma 18.

Transactional level correctness: Operational level correctness gives us a linearizable history
which needs to be shown co-opaque by obtaining a sequential order of the involved transactions.

We consider sequential (linearized) history generated by the OSTM. We then show that it
is co-opaque[12] by showing its conflict graph is acyclic. Since our algorithm uses time-order
validation[21], we show that conflict graph is acyclic by showing that all the edge follow timestamp
order as proved in Lemma 45, Lemma 46. Finally, using the fact that OSTM generates legal his-
tories whose conflict graph is acyclic. We show that OSTM histories are co-opaque [12] as stated
below(proved in Theorem 48).

I Theorem 2. A legal history H is co-opaque iff CG(H) is acyclic.

Deadlock freedom of OSTM: The algorithm is guaranteed to be deadlock free due to the locking
invariant maintained throughout the transaction life cycle. The locking invariant holds that locks are
always acquired and released in increasing order of the keys.
Safety of OSTM: We formally say that OSTM generates linearizable history at operational level
(Observation 32) and the conflict graph generated by OSTM history is acyclic (Theorem 47). For
complete proof of all the above lemmas and theorem please refer the Appendix D. Above discussion
gives enough intuition to believe that OSTM will indeed be co-opaque[12] hence opaque[2]. Moreover,
depending upon the lock implementation OSTM can be starvation free(if locks provide starvation free
mutual exclusion).
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6 Related Work

Earliest work of using semantics of concurrent data structures or using STMs for object level
granularity include that of open nested transactions [16] and transaction boosting of herlihy et al.[10].
Abstract nested transactions[3] is another STM that is motivated by the need to avoid aborts of
transactions due to conflicts at lower level (Harris refers to them as benign conflicts). Harris et
al.[3] identify the transactions which are victims of benign conflicts and preventing such unnecessary
aborts by re-executing the transaction. Spiegelman et al.[19] try to build a transactional data structure
library from existing concurrent data structure library. Their work is much of a mechanism than a
methodology. Hassan et al.[6] have recently proposed Optimistic Transactional Boosting (OTB) that
extends original transactional boosting methodology by optimizing and making it more adaptable to
STMs. They further have implemented OTB on set data structure using lazylinked list[5].

Hassan[] uses C-SWC model to prove that OTB transactions compose. We on otherhand propose
alternate object model STMs where we laydown a detailed legality definition for the underlying data
structures to be transanctified and build a bottom up correctness proof starting from operational level
to the transactional level showing that OSTM ensures co-opacity[12] thus compose. OTB uses notion
of semantic read set and write set to log the methods locally and their conflicts are based on classic
read-write conflict notion. Given the complexity at object level we believe that the classic conflict
notion alone is not enough to capture the correctness of such STMs. We propose conflicts notion that
helps to prove that OSTM is co-opaque. We also assume that their can be multiple operations on same
shared object and during the execution of a transaction only the last update method which executed
on a shared object needs to be validated. This avoids unnecessary validation time spent in upd_-
method execution phase, we achieve this by notion of conflict inheritance as discussed in Section 4.2.
Moreover unlike OTB, STM_lookup() is validated only once at the instant of their execution and
unlike original boosting OSTM do not need to rollback thus saving considerable logging overhead.

Several researchers have established that STM makes development of concurrent composabale
applications easier than its lock based counterparts[18, 4], not to be forgotten scalabilty issues in
lock based solutions. Tim Harris et. al.[4] proposed a STM based solution to achieve composability
and at the same time maintain the abstraction, such that internal details of the atomic methods is not
required for the programmer to glue multiple operations together in concurrent Haskell. Zhang et al
[22] identify composability loop holes in implementing optimized transactions which allow direct
access to the shared memory to gain performance. To this end they propose replacing direct read calls
to the shared memory by the encapsulated TxFastRead & TxF lush method which allows efficient
composability. Thus, they achieve optimized transaction such that ensuring composability is easier.
They however leave ensuring correctness to the programmer. We have laid down full theoretical
correctness model for OSTM. Cederman & Tsigas propose a methodology to implement composable
operation in lock free concurrent object. Their approach is restricted in application to the objects
which meet the criterion, named as move candidates [1] and requires mechanical changes in the
candidate data structure by the programmer to implement the composable operations.

7 Conclusion and Future Work

In this paper we build an alternative theoretical model for building highly concurrent and composable
data structures with object level transactions called as OSTM. We show that higher concurrency
can be obtained by using OSTM as compared to traditional RWSTMs by milking richer object-level
semantics. We propose conflict notion and legality semantics for such a system keeping in mind that
multiple operations can be glued together to achieve composability. Finally, using these semantics
we design an efficient & composable closed addressed hash-table where chaining is done via
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lazyskip-list. We prove OSTM to be co-opaque[12] thus composable.
OSTM combines the scalable abstraction and ease of programming from STMs with our efficient

mechanism of achieving composability using object level semantics. Our prototype implementation
of OSTM shows significant performance gain over read/write STM for a simple SET application(in
Appendix E). We tested it only for validating the performance gain of object level transaction over
read/write transactions only. We would implement the OSTM with its full functionality to evaluate
it with several applications(transfer in SET, hash table etc.). We believe that OSTM would be a
significant contribution for achieving the goal of efficienct, scalable and composable concurrent
application.
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A Appendix

Methods: The n processes access a collection of transaction objects via atomic transactions sup-
ported by a OSTMs. Each transaction has a unique identifier typically denoted as Ti. Within a
transaction, a process can invoke transactional methods on a hash-table transaction object. A
hash-table(ht) consists of multiple key-value pairs of the form 〈k, v〉. The keys and values are re-
spectively from setsK and V . The methods that a transaction Ti can invoke are: (1) t_inserti(ht, k, v):
this method inserts the pair 〈k, v〉 into object ht and return ok. If ht already has a pair 〈k, v′〉 then
v′ gets replaced with v. (2) t_deletei(ht, k, v): if ht has a 〈k, v〉 pair then this operation deletes
the pair and returns v. If no such 〈k, v〉 pair is present in ht, then the operation returns nil. (3)
t_lookupi(ht, k, v): if ht has a 〈k, v〉 pair then this operation returns v. If no such 〈k, v〉 pair is
present in ht, then the method returns nil. It can be seen that t_lookup is similar to t_delete.

For simplicity, we assume that all the values inserted by transactions through t_insert method are
unique. We denote t_insert and t_delete as update methods since both these change the underlying
data-structure.We denote t_delete and t_lookup as return-value methods or rv_methods as these return
values which are different from ok.

In addition to these return values, each of these methods can always return an abort valueA which
implies that the transaction Ti is aborted. A method mi returns A if mi along with all the methods of
Ti executed so far are not consistent (w.r.t correctness-criterion which is formally defined later).

The OSTM supports two other methods: (4) tryCi: this method tries to validate all the operations
of the Ti. OSTM returns ok if Ti is successfully committed. Otherwise, OSTM returns A implying
abort. This method is invoked by a process after completing all its transactional operations. (5) tryAi:
this method returns A and OSTM aborts Ti.

When any method of Ti returns A, we denote that method as well as Ti as aborted. We assume
that a process does not invoke any other operations of a transaction Ti, once it has been aborted. We
denote a method which does not return A as unaborted.

Having described about methods of a transaction, we describe about the events invoked by these
methods. We assume that each method consists of a inv and rsp event. Specifically, the inv &
rsp events of the methods of a transaction Ti are: (1) t_inserti(ht, k, v): inv(t_inserti(ht, k, v)) and
rsp(t_inserti(ht, k, v, ok/A)). (2) t_deletei(ht, k, v): inv(t_deletei(ht, k)) and rsp(t_deletei(h, k, v

/nil/A)). (3) t_lookupi(h, k, v): inv(t_lookupi(h, k)) and rsp(t_lookupi(h, k, v/nil/A)). (4) tryCi:
inv(tryCi()) and rsp(tryCi(ok/A)). (5) tryAi: inv(tryAi()) and rsp(tryAi(A)).

For clarity, we have included all the parameters of inv event in rsp event as well. In addition
to these, each method invokes read-write primitives (operations) of Ti are represented as: ri(x, v)
implying that Ti reads value v for x; wi(x, v) implying that Ti writes value v onto x. Depending on
the context, we ignore some of the parameters of the transactional methods and read/write primitives.
We assume that the first event of a method is inv and the last event is rsp.

Formally, we denote a method m by the tuple 〈evts(m), <m〉. Here, evts(m) are all the events
invoked by m and the <m a total order among these events. For instance, the method l11(k5)
of Figure 13 is represented as: inv(l11(h, k5)) r111(k2, o2)r112(k5, o5) rsp(l11(h, k5, o5)). In our
representation, we abbreviate t_insert as i, t_delete as d and t_lookup as l. From our assumption, we
get that for any read-write primitive rw of m, inv(m) <m rw <mrsp(m).
Sequential Histories: A method mij of a transaction Ti in a history H is said to be isolated if for
any other event epqr belonging to some other method mpq (of transaction Tp) either epqr occurs
before inv(mij) or after rsp(mij). Formally, 〈mij ∈ methods(H) : mij is isolated ≡ (∀mpq ∈
methods(H),∀epqr ∈ mpq : epqr <H inv(mij)∨rsp(mij) <H epqr)〉. For instance in H1 shown in
Figure 1(ii), d2(k2) is isolated. In fact all the methods of H1 are isolated.

Consider history H2 shown in Figure 14. It can be seen that the all the three methods in H2,
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(l11, d21, l12) are not isolated.

A history H is said to be sequential (term used in [12, 13]) or linearized [11] if all the methods in
it are complete and isolated. Thus, it can be seen that H1 is sequential whereas H2 is not. From now
onwards, most of our discussion would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each method as whole without
referring to its inv and rsp events. For a sequential history H , we construct the completion of H ,
denoted H , by inserting tryAk(A) immediately after the last method of every transaction Tk ∈
incomp(H). Since all the methods in a sequential history are complete, this definition only has to
take care of completing transactions.

Consider a sequential history H . Let mij(ht, k, v/nil) be the first method of Ti in H operating
on the key k. Since all the methods of a transaction are sequential and ordered, we can clearly identify
the first method of Ti on key k. Then, we denote mij(ht, k, v) as H.firstKeyMth(〈ht, k〉, Ti). For
a method mix(ht, k, v) which is not the first method on 〈ht, k〉 of Ti in H , we denote its previous
method on k of Ti as mij(ht, k, v) = H.prevKeyMth(mix, Ti).
Transactions: Following the notations used in database multi-level transactions [21], we model a
transaction as a two-level tree. Figure 13 shows a tree execution of a transaction T1. The leaves
of the tree denoted as layer-0 consist of read, write primitives on atomic objects. Hence, they are
atomic. For simplicity, we have ignored the inv & rsp events in level-0 of the tree. Level-1 of the tree
consists of methods invoked by transaction. In the transaction shown in Figure 13, level-1 consists of
t_lookup and t_delete methods operating on the lazyskip-list as also shown in Figure 1(i).

T1

Layer-1: t_lookup & t_delete

r111(k2)

d12(k2)

r121(k2) w122(k2) Layer-0: Reads & Writes

l11(k5)

r112(k5)

Figure 13 T1 : A sample transaction on lazyskip-list (of Figure 1(i)) representing a hash-table object.

Thus a transaction is a tree whose nodes are methods and leaves are events. Having inform-
ally explained a transaction, we formally define a transaction T as the tuple 〈evts(T ), <T 〉. Here
evts(T ) are all the read-write events (primitives) at level-0 of the transaction. <T is a total or-
der among all the events of the transaction. For instance, the transaction T1 of Figure 13 is:
inv(l11(ht, k5)) r111(k2, o2)r112(k5, o5) rsp(l11(ht, k5, o5)) inv(d12(ht, k2)) r121(k2, o2) w122(k2, o2)
rsp(d12(ht, k2, o2)). Given all level-0 events, it can be seen that the level-1 methods and the transac-
tion tree can be constructed.

We denote the first and last events of a transaction Ti as Ti.firstEvt and Ti.lastEvt. Given any
other read-write event rw in Ti, we assume that Ti.firstEvt <Ti

rw <Ti
Ti.lastEvt.

All the methods of Ti are denoted as methods(Ti). We assume that for any method m in
methods(Ti), evts(m) is a subset of evts(Ti) and <m is a subset of <Ti

. Formally, 〈∀m ∈
methods(Ti) : evts(m) ⊆ evts(Ti) ∧ <m⊆<Ti〉.

We assume that if a transaction has invoked a method, then it does not invoke a new method until
it gets the response of the previous one. Thus all the methods of a transaction can be ordered by <Ti .
Formally, (∀mp, mq ∈ methods(Ti) : (mp <Ti

mq) ∨ (mq <Ti
mp))〉.
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T1 T2

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

l11(k5) d21(k7) l12(k8)

c22

r111(k2) r211(k2) r112(k5) r212(k5) r213(k7) w214(k5) r121(k2) w215(k7) r122(k5) r123(k8)

Figure 14 H2 : A non-sequential History.

T1
T2

r111(k2) r112(k5)

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

l11(k5) l12(k8)

r122(k5) r123(k8)r121(k2)

c22

w215(k7)r211(k2) r212(k5) r213(k7) w214(k5)

c13

d21(k7)

Figure 15 A serial History

Legal History: If rv_method is not the first method of a transaction on any key then it will
return the same value as the previous method of the same transaction on the same key. In Figure 16(i),
previous method for Luij(ht, k5, v5) of transaction Ti on same key k5 is Insix(ht, k5, v5). So,
Luij(ht, k5, v5) will return the same value which will be inserted by previous method Insix(ht, k5, v5).
Same technique will be follow in Figure 16(ii) and Figure 16(iii).

(ii)

(iii)

(i)

Ci

Ci

Ci

Ti

Ti

Ti

Insix(ht, k5, v5) Luij(ht, k5, v5)

Luix(ht, k5, v5) Luij(ht, k5, v5)

Delix(ht, k5, v5) Luij(ht, k5, Nil)

Figure 16 STM_lookup() is returning the same value as previous method of the same transaction on same
key

If rv_method is the first method of a transaction on any key and value is not null then the previous
closest method of committed transaction should be insert on the same key. In Figure 17, previous
closest method for Luij(ht, k, vp) of transaction Ti on same key k is Inspq(ht, k, vp) of transaction
Tp. So, Luij(ht, k, vp) will return the same value which has been inserted by Inspq(ht, k, vp) and
there can’t be any other transaction upd_method working on the same key between Tp and Ti.
Figure 18 represents, previous closest method of committed transaction Tp is Delpq(ht, k, vp) on key
k so Luij(ht, k, Nil) of transaction Ti returns nil for same key k.
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Tp

Cp

Ti

Ci

{

tryC

tryC

{

Tx

Delxy(ht, k, v) Cx

Inspq(ht, k, vp)

Luij(ht, k, vp)

Figure 17 STM_lookup() is returning the same value as previous closest conflicting method of committed
transaction

Tp

Cp

Ti

Ci

tryC

tryC

{

Tx

Insxy(ht, k, v) Cx

{
Delpq(ht, k, vp)

Luij(ht, k, Nil)

Figure 18 STM_lookup() is returning the same value as previous closest conflicting method of committed
transaction

T1

Ins1(ht, k, v1) Del1(ht, k1, v0)

T2

C1

Lu2(ht, k2, v0)
C2

Lu2(ht, k1, Nil)

Figure 19 Legal History H2

History H2 in Figure 19 is legal because both the lookup of transaction T2 are reading from a
previously closest committed transaction.

Functions Description

setOpn() store method name into ll_list of the txlog

setValue() store value of the key into ll_list of the txlog

setOpStatus() store status of method into ll_list of the txlog

setPreds&Currs()
store location of preds and currs according to the node corresponding to the
key into ll_list of the txlog

getOpn() give operation name from ll_list of the txlog

getValue() give value of the key from ll_list of the txlog

getOpStatus() give status of the method from ll_list of the txlog

getKey&Objid() give key and obj_id corresponding to the method from ll_list of the txlog

getAptCurr() give the red or blue curr node from the log corresponding to the key of the txlog

getPreds&Currs()
give location of preds and currs according to the node corresponding to the
key from ll_list of the txlog

Table 1 User-level functions accessed by methods
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B Optimizations

1. If STM_delete() returns FAIL in rv_method execution phase then no need to validate it in STM_-
tryC() (upd_method execution phase).

2. In case of insert method if node corresponding to the key k is part of BL then no need to identify
the preds and currs for same key into RL. Thus we can reduce the number of locks in the case
of insert method (for increasing the concurrency).

3. If node corresponding to the key is part of underlying data structure and interferenceValidation()
is unsuccessful (return retry) then optimistically we can check toValidation(),

a. If toValidation() is successful then we can retry else

b. No need to find new preds and currs for node corresponding to the key, return Abort.

C Pseudocode

Algorithm 6 STM_begin : Allocates unique transaction ID from global_cntr, initializes transaction
log.

1: procedure STM_BEGIN
2: txlog← new txlog() ;
3: txlog.t_id← global_cntr++ ;

STM_begin is the first function a transaction executes in its life cycle. It initiates the txlog(local log)
for the transaction (Line 2) and provides an unique id to the transaction (Line 3).

Algorithm 7 STM_insert(obj_id ↓, key ↓, value ↓) : Optimistically defers the insert operation till
the tryC(), stores the operational info in local log.

1: procedure STM_INSERT
2: if (!txlog.findInLL(obj_id ↓, key ↓)) then
3: create ll_entry ;
4: ll.setValue(obj_id ↓, key ↓, value ↓) ;
5: ll.setOpn((obj_id ↓, key ↓, INSERT ↓) ;
6: ll.setOpStatus(obj_id ↓, key ↓, OK ↓) ;

STM_insert() method in rv_method execution phase simply checks if their is a previous method
that executed on the same key. If their is already a previous method that has executed within the same
transaction it simply updates the new value, opn as insert and op_status to OK (Line 4, Line 5 and
Line 6). In case the STM_insert() is the first method on key it creates a new log entry for the ll_list of
txlog. Finally the STM_insert() gets to modify the underlying hash-table using lslIns(preds[] ↓,
currs[] ↓, ) at the upd_method execution phase.
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Algorithm 8 STM_delete(obj_id ↓, key ↓, value ↑, op_status ↑ ) : If the transaction has locally
done an operation on the same key then returns apt value and status. Else do the lslSearch() to find
the correct location of the key and validate it after that locally logs the method information to be
revalidated and written in underlying data-structure during tryC().

1: procedure STM_DELETE
2: op_status← RETRY ;
3: if (txlog.findInLL(obj_id ↓, key ↓)) then
4: opn← ll.getOpn(obj_id ↓, key ↓) ;
5: if (INSERT = opn) then
6: value← ll.getValue(obj_id ↓, key ↓) ;
7: ll.setValue(obj_id ↓, key ↓, NULL ↓) ;
8: ll.setOpn((obj_id ↓, key ↓, DELET E ↓) ;
9: op_status← OK ;

10: else if (DELETE = opn) then
11: ll.setValue(obj_id ↓, key ↓, NULL ↓) ;
12: value← NULL ;
13: op_status← FAIL ;
14: else
15: value← ll.getValue(obj_id ↓, key ↓) ;
16: ll.setValue(obj_id ↓, key ↓, NULL ↓) ;
17: ll.setOpn((obj_id ↓, key ↓, DELET E ↓) ;
18: op_status← ll.getOpStatus(obj_id ↓, key ↓) ;
19: else
20: op_status← lslSearch(obj_id ↓, key ↓, preds[] ↑,

currs[] ↑, valueBL ↑, rv ↓) ;
21: if (op_status = ABORT) then
22: tryAbort(obj_id ↓) ;
23: else

24: if (read(currs[1].key) = key) then
25: op_status← OK ;
26: write(currs[1].max_ts.lookup, TS(ti)) ;
27: value← valueBL ;
28: else if (read(currs[0].key) = key) then
29: op_status← FAIL ;
30: write(currs[0].max_ts.lookup, TS(ti)) ;
31: value← NULL ;
32: else
33: lslIns(preds[] ↓, currs[] ↓, RL ↓) ;
34: op_status← FAIL ;
35: write(node.max_ts.lookup, TS(ti)) ;
36: value← NULL ;
37: create ll_entry ;
38: ll.setValue(obj_id ↓, key ↓, NULL ↓) ;
39: ll.setPreds&Currs(obj_id ↓, key ↓, preds[] ↓,

currs[] ↓) ;
40: ll.setOpn((obj_id ↓, key ↓, DELET E ↓) ;
41: preds[0].unlock();
42: preds[1].unlock();
43: currs[0].unlock();
44: currs[1].unlock() ;
45: ll.setOpStatus(obj_id ↓, key ↓, op_status ↓) ;
46: return ;

k1 k3 k6

+∞−∞ k8k7

Figure 20 k10 is not present in BL as well as RL
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k10
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Figure 21 Adding k10 into RL

Algorithm 9 lslIns(preds[] ↓, currs[] ↓, list_type ↓) : Inserts or overwrites a node in underlying
hash table at location corresponding to preds & currs.

1: procedure LSLINS
2: if ((list_type) = (RL_BL)) then
3: write(currs[0].marked, false) ;
4: write(currs[0].BL, currs[1]) ;
5: write(preds[0].BL, currs[0]) ;
6: else if ((list_type) = RL) then
7: node = new node() ;
8: write(node.marked, True) ;

9: write(node.RL, currs[0]) ;
10: write(preds[1].RL, node) ;
11: else
12: node = new node() ;
13: write(node.RL, currs[0]) ;
14: write(node.BL, currs[1]) ;
15: write(preds[1].RL, node ) ;
16: write(preds[0].BL, node) ;
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Figure 22 Execution of lslIns(): (i) key k5 is present in RL and adding it into BL, (ii) key k5 is not present
in RL as well as BL and adding it into RL, (iii) key k5 is not present in RL as well as BL and adding it into

RL as well as BL

lslIns(preds[] ↓, currs[] ↓, ) (Algo 9) adds a new node to the lazyskip-list in the hash-table.
There can be following cases: if node is present in RL and has to be inserted to BL: such a case
implies that the lslIns(preds[] ↓, currs[] ↓, ) is invoked in upd_method execution phase for the
corresponding STM_insert() in local log represented by the block from Line 2 to Line 5. Here we first
reset the currs[0]mark field and update the BL to the currs[1] and preds[0] BL to currs[0]. Thus the
node is now reachable by BL also. if node is meant to be inserted only in RL: This implies that
the node is not present at all in the lazyskip-list and is to be inserted for the first time. Such a case
can be invoked from rv_method of rv_method execution phase, if rv_method is the first method of its
transaction. Line 6 to Line 10 depict such a case where a new node is created and its marked field is
set, depicting that its a dead node meant to be reachable only via RL. In Line 9 and Line 10 the RL
field of the node is updated to currs[0] and RL field of the preds[1] is modified to point to the node

respectively. if node is meant to be inserted in BL: In such a case it may happen that the node is
already present in the RL (already covered by Line 2 to Line 5) or the node is not present at all. The
later case is depicted in Line 11 to Line 16 which creates a new node and add the node in both RL
and BL note that order of insertion is important as the lazyskip-list can be concurrently accessed by
other transactions since traversal is lock free. Figure 22(i), Figure 22(ii) and Figure 22(iii) represent
the cases in order.

Algorithm 10 lslDel(preds[] ↓, currs[] ↓) : Deletes a node from blue link in underlying hash table
at location corresponding to preds & currs.

1: procedure LSLDEL
2: write(currs[1].marked, True) ;
3: write(preds[0].BL, currs[1].BL) ;

(i) (ii)−∞ −∞

k3

k1 +∞k5 +∞

k5

k1

k3

Figure 23 Execution of lslDel(): (i) lazyskip-list before k5 is deleted, (ii) lazyskip-list after k5 is deleted
from BL

lslDel(preds[] ↓, currs[] ↓) removes a node from BL. It can be invoked from upd_method
execution phase for corresponding STM_delete() in txlog. It simply sets the marked field of the node
to be deleted(currs[1]) and changes the BL of preds[1] to currs[0] as shown in Line 2 and Line 3 of
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Algo 10 respectively. Figure 23 shows the deletion of node corresponding to k5.

Algorithm 11 findInLL(obj_id ↓, key ↓) : Checks whether any operation corresponding to
〈obj_id, key〉 is present in ll_list.

1: procedure FINDINLL
2: ti← getTid() ;
3: ll_list← txlog.getLlList(ti ↓) ;
4: while (ll_entryi ← next(ll_list)) do
5: if ((ll_entryi.first.first = obj_id)&(ll_entryi.first.sec = Key)) then
6: return true ;
7: return false ;

findInLL is an utility method that returns true to the method that has invoked it, if the calling
method is not the first method of the transaction on the key. This is done by linearly traversing
the log and finding an entry corresponding to the key. If the calling method is the first method of
the transaction for the key then findInLL return true as it would not find any entry in the log of the
transaction corresponding to the key.

Since we consider that their can be multiple objects (hash-table) so we need to find unique
〈obj_id, key〉 pair(refer Line 5).

Algorithm 12 toValidation(key ↓, currs[] ↓, val_type ↓) : Time-order validation for each transac-
tion.

1: procedure TOVALIDATION
2: ti← getTid() ;
3: op_status← OK ;
4: curr← ll.getAptCurr(currs[] ↓, key ↓) ;
5: if ((curr 6= NULL) ∧ ((curr.key) = key)) then
6: if ((val_type = rv) ∧ (TS(ti) < (read(curr.max_ts.insert(k))) ||
7: (TS(ti) < (read(curr.max_ts.delete(k))))) then
8: op_status← ABORT ;
9: else if ((TS(ti) < (read(curr.max_ts.insert(k))) || TS(ti) < (read(curr.max_ts.delete(k))) ||

10: TS(ti) < (read(curr.max_ts.lookup(k)))) then
11: op_status← ABORT ;
12: return op_status ;

Lu1(ht, k2, v0)

Ins2(ht, k2, v1)

T1

T2
C2Del2(ht, k1, v0)

Lu1(ht, k1, Nil) A1

Figure 24 Not maintaining time-stamp: history H
is not opaque

Lu1(ht, k2, v0)

Ins2(ht, k2, v1)
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T2
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Lu1(ht, k1, Abort)

Del2(ht, k1, v0)

A1

Figure 25 Maintaining time-stamp: opaque
history H1

Algorithm 13 validation(key ↓, preds[] ↓, currs[] ↓, val_type ↓) : Double validation.
1: procedure VALIDATION
2: op_status← (interferenceValidation(preds[] ↓, currs[] ↓));
3: if (RET RY 6= op_status) then
4: op_status← toValidation(key ↓, currs[] ↓, val_type ↓) ;
5: return op_status ;

rv_method and upd_method do the validation in rv_method execution phase and upd_method exe-
cution phase respectively. validation invokes interferenceValidation() and then does the toValidation()
in the mentioned order. interferenceValidation() is the property of the method and toValidation() is
the property of the transaction, thus first validating the method intuitively make sense than validating
the time order of the transaction first.
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Algorithm 14 get_aptcurr(currs[] ↓, key ↓) : Returns a curr node from underlying DS which
corresponds to the key of ll_entryi.

1: procedure GET_APTCURR
2: if (currs[1].key = key) then
3: curr← currs[1] ;

4: else if (currs[0].key = key) then
5: curr← currs[0] ;
6: return curr ;

While executing the toValidation() the time-stamp field of the corresponding node has to be
updated. Such a node can be either the marked(dead or currs[0]) or the unmarked(live currs[1]).
get_aptcurr is the utility method which returns the appropriate node corresponding to the key.

Algorithm 15 release_ordered_locks(ordered_ll_list ↓) : Release all locks taken during
lslSearch().

1: procedure RELEASE_ORDERED_LOCKS
2: while (ll_entryi ← next(ordered_ll_list)) do
3: ll_entryi.preds[0].unlock() ;

4: ll_etryi.preds[1].unlock() ;
5: ll_entryi.currs[0].unlock() ;
6: ll_entryi.currs[1].unlock() ;

release_ordered_locks is an utility method to release the locks in order.

D Proof Sketch of OSTMs

D.1 Operational Level

For a global state, S, we denote evts(S) as all the events that has lead the system to global state S.
We denote a state S′ to be in future of S if evts(S) ⊂ evts(S′). In this case, we denote S @ S′. We
have the following definitions and lemmas:

I Definition 3. PublicNodes: Which is having a incoming RL, except head node.

I Definition 4. Abstract List (Abs): At any global abstract state S, S.Abs can be defined as set of
all public nodes that are accessible from head via red links union of set of all unmarked public nodes
that are accessible from head via blue links. Formally, 〈S.Abs = S.Abs.RL

⋃
S.Abs.BL〉, where,

S.Abs.RL := {∀n|(n ∈ S.PublicNodes) ∧ (S.Head→∗RL S.n)}.
S.Abs.BL = {∀n|(n ∈ S.PublicNodes) ∧ (¬S.n.marked) ∧ (S.Head→∗BL S.n)}

I Observation 5. Consider a global state S which has a node n. Then in any future state S′ of S, n

is a node in S′ as well. Formally, 〈∀S, S′ : (n ∈ S.nodes) ∧ (S @ S′)⇒ (n ∈ S′.nodes)〉.

With Observation 5 , we assume that nodes once created do not get deleted (ignoring garbage
collection for now).

I Observation 6. Consider a global state S which has a node n, initialized with key k. Then in any
future state S′ the key of n does not change. Formally, 〈∀S, S′ : (n ∈ S.nodes) ∧ (S @ S′)⇒ (n ∈
S′.nodes) ∧ (S.n.key = S′.n.key)〉.

I Observation 7. Consider a global state S which is the post-state of return event of the function
lslSearch() invoked in the STM_delete() or STM_tryC() or STM_lookup() methods. Suppose the
lslSearch() method returns (preds[0], preds[1], currs[0], currs[1]). Then in the state S, we have,

7.1 (preds[0] ∧ preds[1] ∧ currs[0] ∧ currs[1]) ∈ S.PublicNodes

7.2 (S.preds[0].locked) ∧ (S.preds[1].locked) ∧ (S.currs[0].locked) ∧ (S.currs[1].locked)
7.3 (¬S.preds[0].marked)∧(¬S.currs[1].marked)∧ (S.preds[0].BL= S.currs[1])∧ (S.preds[1]

.RL= S.currs[0])
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In Observation 7, lslSearch() method returns only if validation succeed at Line 19.

I Lemma 8. Consider a global state S which is the post-state of return event of the function
lslSearch() invoked in the STM_delete() or STM_tryC() or STM_lookup() methods. Suppose the
lslSearch() method returns (preds[0], preds[1], currs[0], currs[1]). Then in the state S, we have,

8.1 ((S.preds[0].key) < key ≤ (S.currs[1].key)).
8.2 ((S.preds[1].key) < key ≤ (S.currs[0].key)).

Proof. 8.1 (S.preds[0].key < key ≤ S.currs[1].key) :
Line 4 of lslSearch() method of Algo 1 initializes S.preds[0] to point head node. Also, (S.currs[1]
= S.preds[0].BL) by line 5. As in penultimate execution of line 6 (S.currs[1].key < key) and
at line 7 (S.preds[0] = S.currs[1]) this implies,

(S.preds[0].key < key) (1)

The node key doesn’t change as known by Observation 6. So, before executing of line 9, we know
that,

(key ≤ S.currs[1].key) (2)

From eq(1) and eq(2), we get,

(S.preds[0].key < key ≤ S.currs[1].key) (3)

From Observation 7.2 and Observation 7.3 we know that these nodes are locked and from
Observation 6, we have that key is not changed for a node, so the lemma holds even when
lslSearch() method of Algo 1 returns.

8.2 (S.preds[1].key < key ≤ S.currs[0].key) :

Line 10 of lslSearch() method of Algo 1 initializes S.preds[1] to point S.preds[0]. Also,
(S.currs[0] = S.preds[0].RL) by line 11. As in penultimate execution of line 12 (S.currs[0].key <

key) and at line 13 (S.preds[1] = S.currs[0]) this implies,

(S.preds[1].key < key) (4)

The node key doesn’t change as known by Observation 6. So, before executing of line 15, we
know that

(key ≤ S.currs[0].key) (5)

From eq(4) and eq(5), we get,

(S.preds[1].key < key ≤ S.currs[0].key) (6)

From Observation 7.2 and Observation 7.3 we know that these nodes are locked and from
Observation 6, we have that key is not changed for a node, so the lemma holds even when
lslSearch() method of Algo 1 returns.

J

I Lemma 9. For a node n in any global state S, we have that,〈∀n ∈ S.nodes : (S.n.key <

S.n.RL.key)〉.
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Proof. We prove by Induction on events that change the RL field of the node (as these affect
reachability), which are Line 9, 10, 13 & 15 of lslIns() method of Algo 9 . It can be seen by observing
the code that lslDel() method of Algo 10 do not have any update events of RL.
Base condition: Initially, before the first event that changes the RL field, we know the underlying
lazyskip-list has immutable S.head and S.tail nodes with (S.head.BL = S.tail) and (S.head.RL =
S.tail). The relation between their keys is (S.head.key < S.tail.key) ∧ (head, tail) ∈ S.nodes.
Induction Hypothesis: Say, upto k events that change the RL field of any node, (∀n ∈ S.nodes :
S.n.key < S.n.RL.key).

Induction Step: So, as seen from the code, the (k + 1)th event which can change the RL field be
only one of the following:

1. Line 9 of lslIns() method: By observing the code, we notice that Line 9 (RL field changing
event) can be executed only after the lslSearch() method of Algo 1 returns. Line 7 of the lslIns()
method creates a new node, node with key and at line 8 set the (S.node.marked = true) (because
inserting the node only into the redlink). Line 9 then sets (S.node.RL = S.currs[0]). Since this
event doest not change the RL field of any node reachable from the head of the list (because
node /∈ S.PublicNodes), the lemma is not violated.

2. Line 10 of lslIns() method: By observing the code, we notice that Line 10 (RL field changing
event) can be executed only after the lslSearch() method of Algo 1 returns. From Lemma 8.2, we
know that when lslSearch() method of Algo 1 returns then,

(S.preds[1].key) < key ≤ (S.currs[0].key) (7)

To reach line 10 of lslIns() method, line 32 of STM_delete() method of Algo 8 or line 24 of
STM_lookup() method of Algo 3 should ensure that,

(S.currs[0].key 6= key) eq(7)===⇒ (S.preds[1].key) < key < (S.currs[0].key) (8)

From Observation 7.3, we know that,

(S.preds[1].RL = S.currs[0]) (9)

Also, the atomic event at line 10 of lslIns() sets,

(S.preds[1].RL = node) eq(8)===⇒ (S.preds[1].key < node.key)
=⇒ (S.preds[1].key < S.preds[1].RL.key) (10)

Where (S.node.key = key). Since (preds[1], node) ∈ S.nodes and hence, (S.preds[1].key <

S.preds[1].RL.key).
3. Line 13 of lslIns() method: By observing the code, we notice that Line 13 (RL field changing

event) can be executed only after the lslSearch() method of Algo 1 returns. Line 12 of the lslIns()
method creates a new node, node with key. Line 13 then sets (S.node.RL = S.currs[0]). Since
this event doest not change the RL field of any node reachable from the head of the list (because
node /∈ S.PublicNodes), the lemma is not violated.

4. Line 15 of lslIns() method: By observing the code, we notice that Line 15 (RL field changing
event) can be executed only after the lslSearch() Algo 1 method returns. From Lemma 8.2, we
know that when lslSearch() method of Algo 1 returns then,

(S.preds[1].key) < key ≤ (S.currs[0].key) (11)
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To reach line 15 of lslIns() method, line 26 of STM_tryC() method of Algo 4 should ensure that,

(S.currs[0].key 6= key) eq(11)===⇒ (S.preds[1].key) < key < (S.currs[0].key) (12)

From Observation 7.3, we know that,

(S.preds[1].RL = S.currs[0]) (13)

Also, the atomic event at line 15 of lslIns() sets,

(S.preds[1].RL = node) eq(12)===⇒ (S.preds[1].key < node.key)
=⇒ (S.preds[1].key < S.preds[1].RL.key) (14)

where (S.node.key = key). Since (preds[1], node) ∈ S.nodes and hence, (S.preds[1].key <

S.preds[1].RL.key).

J

I Lemma 10. In a global state S, any public node n is reachable from Head via red links. Formally,
〈∀S, n : n ∈ S.PublicNodes =⇒ S.Head→∗RL S.n〉.

Proof. We prove by Induction on events that change the RL field of the node (as these affect
reachability), which are Line 9, 10, 13 & 15 of lslIns() method of Algo 9 . It can be seen by observing
the code that lslDel() method of Algo 10 do not have any update events of RL.
Base condition: Initially, before the first event that changes the RL field of any node, we know
that (head, tail) ∈ S.PublicNodes ∧ ¬(S.head.marked) ∧ ¬(S.tail.marked) ∧ (S.head →∗RL

S.tail).
Induction Hypothesis: Say, upto k events that change the next field of any node, (∀n ∈ S.PublicNodes,
(S.head→∗RL S.n)).

Induction Step: So, as seen from the code, the (k + 1)th event which can change the RL field be
only one of the following:

1. Line 9 of lslIns() method: Line 7 of the lslIns() method creates a new node, node with key and
at line 8 set the (S.node.marked = true) (because inserting the node only into the redlink). Line
9 then sets (S.node.RL = S.currs[0]). Since this event doest not change the RL field of any
node reachable from the head of the list (because node /∈ S.PublicNodes), the lemma is not
violated.

2. Line 10 of lslIns() method: By observing the code, we notice that Line 10 (RL field changing
event) can be executed only after the lslSearch() method of Algo 1 returns. From line 9 &
10 of lslIns() method, (S.node.RL = S.currs[0]) ∧ (S.preds[1].RL = S.node) ∧ (node ∈
S.PublicNodes) ∧ (S.node.marked = true) (because inserting the node only into the redlink).
It is to be noted that (from Observation 7.2), (preds[0], preds[1], currs[0], currs[1]) are locked,
hence no other thread can change marked field of S.preds[1] and S.currs[0] simultaneously.
Also, from Observation 6, a node’s key field does not change after initialization. Before executing
line 10, preds[1] is reachable from head by RL (from induction hypothesis). After line 10,
we know that from preds[1], public marked node, node is also reachable. Thus, we know that
node is also reachable from head. Formally, (S.Head →∗RL S.preds[1]) ∧ (S.preds[1] →∗RL

S.node)⇒ (S.Head→∗RL S.node).
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3. Line 13 of lslIns() method: Line 12 of the lslIns() method creates a new node, node with key.
Line 13 then sets (S.node.RL = S.currs[0]). Since this event doest not change the RL field of
any node reachable from the head of the list (because node /∈ S.PublicNodes), the lemma is not
violated.

4. Line 15 of lslIns() method: By observing the code, we notice that Line 15 (RL field changing
event) can be executed only after the lslSearch() method of Algo 1 returns. From line 13 &
15 of lslIns() method, (S.node.RL = S.currs[0]) ∧ (S.preds[1].RL = S.node) ∧ (node ∈
S.PublicNodes) ∧ (node.marked = false) (because new node is created by default with un-
marked field). It is to be noted that (from Observation 7.2), (preds[0], preds[1], currs[0], currs[1])
are locked, hence no other thread can change marked field of S.preds[1] and S.currs[0] simultan-
eously. Also, from Observation 6, a node’s key field does not change after initialization. Before
executing line 15, preds[1] is reachable from head by RL (from induction hypothesis). After line
15, we know that from preds[1], public unmarked node, node is also reachable. Thus, we know
that node is also reachable from head. Formally, (S.Head→∗RL S.preds[1])∧(S.preds[1]→∗RL

S.node)⇒ (S.Head→∗RL S.node).

J

I Corollary 11. Each node is associated with an unique key, i.e. at any given state S, their cannot
be two nodes with same key.

As every node is reachable by redlinks and has a strict ordering and from Observation 5 and Observa-
tion 6 we get this.

I Corollary 12. Consider the global state S such that for any public node n, if there exists a
key strictly greater than n.key and strictly smaller than n.RL.key, then the node corresponding to
the key does not belong to S.Abs. Formally, 〈∀S, n, key : S.PublicNodes ∧ (S.n.key < key <

S.n.RL.key) =⇒ node(key) /∈ S.Abs〉.

I Observation 13. Consider a global state S which has a node n is reachable from head via RL.
Then in any future state S′ of S, node n is also reachable from head via RL in S′ as well. Formally,
〈∀S, S′ : (n ∈ S.nodes) ∧ (S @ S′) ∧ (S.head→∗RL S.n)⇒ (n ∈ S′.nodes) ∧ (S′.head→∗RL

S′.n)〉.

Proof. From Observation 5, we have that for any node n, n ∈ S.nodes ⇒ n ∈ S′.nodes. Also,
we have that in absence of garbage collection no node is deleted from memory and the redlinks are
preserved during delete update events (refer lslDel() method of Algo 10). J

I Lemma 14. For a node n in any global state S, we have that,〈∀n ∈ S.nodes : (S.n.key <

S.n.BL.key)〉.

Proof. We prove by Induction on events that change the BL field of the node (as these affect
reachability), which are Line 4, 5, 14 & 16 of lslIns() method of Algo 9 and Line 3 of lslDel() method
of Algo 10 .
Base condition: Initially, before the first event that changes the BL field, we know the underlying
lazyskip-list has immutable S.head and S.tail nodes with (S.head.BL = S.tail) and (S.head.RL =
S.tail). The relation between their keys is (S.head.key < S.tail.key) ∧ (head, tail) ∈ S.nodes.
Induction Hypothesis: Say, upto k events that change the BL field of any node, (∀n ∈ S.nodes :
(S.n.key < S.n.BL.key)).
Induction Step: So, as seen from the code, the (k + 1)th event which can change the BL field be
only one of the following:



Sathya Peri, Ajay Singh and Archit Somani XX:31

1. Line 4 & 5 of lslIns() method: By observing the code, we notice that Line 4 & 5 (BL field
changing event) can be executed only after the lslSearch() method of Algo 1 returns. From
Lemma 8.1 and Lemma 8.2, we know that when lslSearch() method of Algo 1 returns then,

((S.preds[0].key) < key ≤ (S.currs[1].key)) ∧ ((S.preds[1].key) < key ≤ (S.currs[0].key))
(15)

To reach line 4 of lslIns() method, line 22 of STM_tryC() method of Algo 4 should ensure that,

(S.currs[1].key 6= key) ∧ (S.currs[0].key = key) eq(15)===⇒
((S.preds[0].key) < key < (S.currs[1].key))
∧((S.preds[1].key) < (key = S.currs[0].key)) (16)

From Observation 7.3, we know that,

(S.preds[0].BL = S.currs[1]) ∧ (S.preds[1].RL = S.currs[0]) (17)

The atomic event at line 4 of lslIns() sets,

(S.currs[0].BL = S.currs[1]) eq(16),Lemma 10===========⇒
Lemma 9

(S.currs[0].key) < (S.currs[1].key) =⇒

(S.currs[0].key) < (S.currs[0].BL.key)
(18)

Also, the atomic event at line 5 of lslIns() sets,

(S.preds[0].BL = S.currs[0]) eq(16)===⇒ (S.preds[0].key) < (S.currs[0].key) =⇒
(S.preds[0].key) < (S.preds[0].BL.key). (19)

Where (S.currs[0].key = key). Since (preds[0], currs[0]) ∈ S.nodes and hence, (S.preds[0].key <

S.preds[0].BL.key).
2. Line 14 of lslIns() method: By observing the code, we notice that Line 14 (BL field changing

event) can be executed only after the lslSearch() method of Algo 1 returns. Line 12 of the lslIns()
method creates a new node, node with key. Line 14 then sets (S.node.BL = S.currs[1]). Since
this event doest not change the BL field of any node reachable from the head of the list (because
node /∈ S.PublicNodes), the lemma is not violated.

3. Line 16 of lslIns() method: By observing the code, we notice that Line 16 (BL field changing
event) can be executed only after the lslSearch() method of Algo 1 returns. From Lemma 8.1 and
Lemma 8.2, we know that when lslSearch() method of Algo 1 returns then,

(S.preds[0].key) < key ≤ (S.currs[1].key) ∧ (S.preds[1].key) < key ≤ (S.currs[0].key)
(20)

To reach line 16 of lslIns() method, line 26 of STM_tryC() method of Algo 4 should ensure that,

(S.currs[0].key 6= key) ∧ (S.currs[1].key 6= key) eq(20)===⇒
(S.preds[0].key) < key < (S.currs[1].key)
∧(S.preds[1].key) < key < (S.currs[0].key) (21)
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From Observation 7.3, we know that,

(S.preds[0].BL = S.currs[1]) (22)

Also, the atomic event at line 16 of lslIns() sets,

(S.preds[0].BL = S.node) eq(21)===⇒ (S.preds[0].key < S.node.key)
=⇒ (S.preds[0].key < S.preds[0].BL.key) (23)

Where (S.node.key = key). Since (preds[0], node) ∈ S.nodes and hence, (S.preds[0].key <

S.preds[0].BL.key).
4. Line 3 of lslDel() method: By observing the code, we notice that Line 3 (BL field changing

event) can be executed only after the lslSearch() method of Algo 1 returns. From Lemma 8.1, we
know that when lslSearch() method of Algo 1 returns then,

(S.preds[0].key) < key ≤ (S.currs[1].key) (24)

To reach line 3 of lslDel() method, line 31 of STM_tryC() method of Algo 4 should ensure that,

(S.currs[1].key = key) eq(24)===⇒ (S.preds[0].key) < (key = S.currs[1].key) (25)

From Observation 7.3, we know that,

(S.preds[0].BL = S.currs[1]) (26)

We know from Induction hypothesis,

(currs[1].key < currs[1].BL.key) (27)

Also, the atomic event at line 3 of lslDel() sets,

(S.preds[0].BL = S.currs[1].BL) eq(25),eq(27)========⇒ (S.preds[0].key < S.currs[1].BL.key)
=⇒ (S.preds[0].key < S.preds[0].BL.key)

(28)

Where (S.currs[1].key = key). Since (preds[0], currs[1]) ∈ S.nodes and hence, (S.preds[0].key <

S.preds[0].BL.key)

J

I Lemma 15. In a global state S, any unmarked public node n is reachable from Head via blue
links. Formally, 〈∀S, n : (S.PublicNodes) ∧ (¬S.n.marked) =⇒ (S.Head→∗BL S.n)〉.

Proof. We prove by Induction on events that change the BL field of the node (as these affect
reachability), which are Line 4, 5, 14 & 16 of lslIns() method of Algo 9 and line 3 of lslDel() method
of Algo 10.
Base condition: Initially, before the first event that changes the BL field of any node, we know
that (head, tail) ∈ S.PublicNodes ∧ ¬(S.head.marked) ∧ ¬(S.tail.marked) ∧ (S.head →∗BL

S.tail).
Induction Hypothesis: Say, upto k events that change the next field of any node, ∀n ∈ S.PublicNodes,
(¬S.n.marked) ∧ (S.head→∗BL S.n).

Induction Step: So, as seen from the code, the (k + 1)th event which can change the BL field be
only one of the following:
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1. Line 4 & 5 of lslIns() method: By observing the code, we notice that Line 4 & 5 (BL field
changing event) can be executed only after the lslSearch() method of Algo 1 returns. It is to
be noted that (from Observation 7.2), (preds[0], preds[1], currs[0], currs[1]) are locked, hence
no other thread can change S.preds[0].marked and S.currs[1].marked simultaneously. Also,
from Observation 6, a node’s key field does not change after initialization. Before executing line
4, from Observation 7.3 ,

(S.preds[0].marked = false) ∧ (S.currs[1].marked = false) (29)

And from Lemma 10 and induction hypothesis,

(S.Head→∗RL S.currs[0]) ∧ (S.Head→∗BL S.currs[1]) (30)

After line 4, we know that from currs[0], public unmarked node, currs[1] is also reachable,
implies that,

(S.currs[0]→∗BL S.currs[1]) (31)

Also, before executing line 5, from induction hypothesis and Lemma 10 ,

(S.Head→∗BL S.preds[0]) ∧ (S.Head→∗RL S.currs[0]) (32)

After line 5, we know that from preds[0], public unmarked node (from line 3 of lslIns() method),
currs[0] is also reachable via BL, implies that,

(S.preds[0]→∗BL S.currs[0]) ∧ (S.currs[0].marked = false) (33)

From eq(31) and eq(33),

(S.preds[0]→∗BL S.currs[0]) ∧ (S.currs[0]→∗BL S.currs[1])∧
(S.currs[0].marked = false) (34)

Since (preds[0], currs[0]) ∈ S.PublicNode and hence, (S.Head→∗BL S.preds[0])∧(S.preds[0]
→∗BL S.currs[0]) ∧ (S.currs[0].marked = false)⇒ (S.Head→∗BL S.currs[0]).

2. Line 14 of lslIns() method: Line 12 of the lslIns() method creates a new node, node with key.
Line 14 then sets (S.node.BL = S.currs[1]). Since this event doest not change the BL field of
any node reachable from the head of the list (because node /∈ S.PublicNodes), the lemma is not
violated.

3. Line 16 of lslIns() method: By observing the code, we notice that Line 16 (BL field changing
event) can be executed only after the lslSearch() method of Algo 1 returns. It is to be noted
that (from Observation 7.2), (preds[0], preds[1], currs[0], currs[1]) are locked, hence no other
thread can change S.preds[0].marked and S.currs[1].marked simultaneously. Also, from
Observation 6, a node’s key field does not change after initialization. Before executing line 14,
from Observation 7.3 ,

(S.preds[0].marked = false) ∧ (S.currs[1].marked = false) (35)

And from induction hypothesis,

(S.Head→∗BL S.currs[1]) (36)

After line 14, we know that from node, public unmarked node, currs[1] is also reachable via BL,
implies that,

(S.node→∗BL S.currs[1]) (37)
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Also, before executing line 16, from induction hypothesis,

(S.Head→∗BL S.preds[0]) (38)

After line 16, we know that from preds[0], public unmarked node (because new node is created
by default with unmarked field), node is also reachable via BL, implies that,

(S.preds[0]→∗BL S.node) ∧ (S.node.marked = false) (39)

From eq(37) and eq(39),

(S.preds[0]→∗BL S.node) ∧ (S.node→∗BL S.currs[1]) ∧ (S.node.marked = false) (40)

Since (preds[0], node) ∈ S.PublicNode and hence, (S.Head→∗BL S.preds[0])∧(S.preds[0]→∗BL

S.node) ∧ (S.node.marked = false)⇒ (S.Head→∗BL S.node).

J

I Corollary 16. All public node n, is reachable from head via bluelist is subset of all public node
n, is reachable from head via redlist. Formally, 〈∀S, n : (n ∈ S.nodes) ∧ (S.head →∗BL S.n) ⊆
(S.head→∗RL S.n)〉.

Proof. From Lemma 10 , we know that all public nodes either marked or unmarked are reachable
from head by RL, also from Lemma 15 we have that all unmarked public nodes are reachable by BL.
Unmarked public nodes are subset of all public nodes thus the corollary.

J

I Lemma 17. Consider a concurrent history, EH , for any successful method which is call by
transaction Ti, after the post-state of LP event of the method, node corresponding to the key should
be part of RL and max_ts of that node should be equal to method transaction time-stamp. Formally,
〈(node(key) ∈ ([EH .Post(mi.LP )].Abs.RL)) ∧ (node.max_ts = TS(Ti))〉.

Proof. 1. For rv_method method: By observing the code, each rv_method first invokes lslSearch()
method of Algo 1 (line 12, line 20 of STM_lookup() method of Algo 3 & STM_delete() method
of Algo 8 respectively). From Lemma 9 & Lemma 14 we have that the nodes in the underlying
data-structure are in increasing order of their keys, thus the key on which the method is working
has a unique location in underlying data-structure from Corollary 11 . So, when the lslSearch()
is invoked from a method, it returns correct location (preds[0], preds[1], currs[0], currs[1]) of
corresponding key as observed from Observation 7 & Lemma 8 and all are locked, hence no other
thread can change simultaneously (from Observation 7.2).
In the pre-state of LP event of rv_method , if (node.key ∈ S.Abs.RL), means key is already
there in RL and time-stamp of that node is less then the rv_method transactions time-stamp, from
toValidation() method of Algo 12 , then in the post-state of LP event of rv_method, node.key

should be the part of RL from Observation 13 and key can’t be change from Observation 6 and it
just update the max_ts field for corresponding node key by method transaction time-stamp else
abort.
In the pre-state of LP event of rv_method , if (node.key /∈ S.Abs.RL), means key is not there
in RL then, in the post-state of LP event of rv_method, insert the node corresponding to the
key into RL by using lslIns() method of Algo 9 and update the max_ts field for corresponding
node key by method transaction time-stamp. Since, node.key should be the part of RL from
Observation 13 and key can’t be change from Observation 6 , in post-state of LP event of
rv_method.
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2. For upd_method method: By observing the code, each upd_method also first invokes lslSearch()
method of Algo 1 (line 7 of STM_tryC() method of Algo 4 ). From Lemma 9 & Lemma 14 we have
that the nodes in the underlying data-structure are in increasing order of their keys, thus the key on
which the method is working has a unique location in underlying data-structure from Corollary 11 .
So, when the lslSearch() is invoked from a method, it returns correct location (preds[0], preds[1],
currs[0], currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all
are locked, hence no other thread can change simultaneously (from Observation 7.2).

a. If upd_method is insert: In the pre-state of LP event of upd_method, if (node.key ∈
S.Abs.RL), means key is already there in RL and time-stamp of that node is less then the
upd_method transactions time-stamp, from toValidation() method of Algo 12 , then in the
post-state of LP event of upd_method, node.key should be the part of RL and it just update
the max_ts field for corresponding node key by method transaction time-stamp else abort.
In the pre-state of LP event of upd_method, if (node.key /∈ S.Abs.RL), means key is
not there in RL then in the post-state of LP event of upd_method, it will insert the node

corresponding to the key into the RL as well as BL, from lslIns() method of Algo 9 at line
30 of STM_tryC() method of Algo 4 and update the max_ts field for corresponding node
key by method transaction time-stamp. Once a node is created it will never get deleted from
Observation 13 and node corresponding to a key can’t be modified from Observation 6.

b. If upd_method is delete: In the pre-state of LP event of upd_method, if (node.key ∈
S.Abs.RL), means key is already there in RL and time-stamp of that node is less then the
upd_method transactions time-stamp, from toValidation() method of Algo 12 , then in the
post-state of LP event of upd_method, node.key should be the part of RL, from lslDel()
method of Algo 10 at line 35 of STM_tryC() method of Algo 4 and it just update the max_ts

field for corresponding node key by method transaction time-stamp else abort.
In the pre-state of LP event of upd_method, (node.key /∈ S.Abs.RL) this should not be
happen because execution of STM_delete() method of Algo 8 must have already inserted a node
in the underlying data-structure prior to STM_tryC() method of Algo 4 . Thus, (node.key ∈
S.Abs.RL) and update the max_ts field for corresponding node key by method transaction
time-stamp else abort.

J

In OSTM we have a upd_method execution phase where all buffered upd_method take effect together
after successful validation of each of them. Following problem may arise if two upd_method within
same transaction have at least one shared node amongst its recorded (preds[0], preds[1], currs[0], currs[1]),
in this case the previous upd_method effect might be overwritten if the next upd_method preds and
currs are not updated according to the updates done by the previous upd_method. Thus program
order might get violated. Thus to solve this we have lost update validation after each upd_method in
STM_tryC(), during upd_method execution phase.

I Lemma 18. lostUpdateValidation() preserve the program order within a transaction.

Proof. We are taking contradiction that lostUpdateValidation() is not preserving program order
means two consecutive upd_method of same transaction which are having at least one shared node
amongst its recorded(preds[0], preds[1], currs[0], currs[1]) then effect of first upd_method will be
overwritten by the next upd_method.

By observing the code at line 15 of STM_tryC() method of Algo 4, current upd_method will
go for lostUpdateValidation() and at line 3 of lostUpdateValidation() method of Algo 5 , current
upd_method will validate its (preds[0].marked) and (preds[0].BL! = currs[1]). If any con-
dition is true then, at line 4 of lostUpdateValidation() method of Algo 5, will check for previous
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upd_method. If the previous upd_method is insert then the current upd_method update its preds[0]
to previous upd_method, node.key else set current upd_method preds[0] to previous upd_method

preds[0].
After that at line 8 of lostUpdateValidation() method of Algo 5 , current upd_method validate

its (preds[1].RL! = currs[0]). If condition is true then current upd_method set its preds[1] to
previous upd_method, node.key.

If we will not update the current method preds and currs using lostUpdateValidation() then effect
of first upd_method will be overwritten by the next upd_method.

J

I Observation 19. For any global state S, the lostUpdateValidation() in STM_tryC() preserves the
properties of lslSearch() as proved in Observation 7 & Lemma 8 .

I Lemma 20. Consider a concurrent history, EH , after the post-state of LP event of successful
STM_tryC() method, where each key belonging to the last upd_method of that transaction, then,

20.1 If upd_method is insert, then node corresponding to the key should be part of BL and node.val
should be equal to v. Formally, 〈(node(key) ∈ ([EH .Post(mi.LP )].Abs.BL) ∧ (node.val =
v)〉.

20.2 If upd_method is delete, then node corresponding to the key should not be part of BL. Formally,
〈(node(key) /∈ ([EH .Post(mi.LP )].Abs.BL)〉.

Proof. By observing the code, each upd_method also first invokes lslSearch() method of Algo 1
(line 7 of STM_tryC() method of Algo 4 ). From Lemma 9 & Lemma 14 we have that the nodes
in the underlying data-structure are in increasing order of their keys, thus the key on which the
method is working has a unique location in underlying data-structure from Corollary 11 . So,
when the lslSearch() is invoked from a method, it returns correct location (preds[0], preds[1],
currs[0], currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all are
locked, hence no other thread can change simultaneously (from Observation 7.2).

20.1 If upd_method is insert: In the pre-state of LP event of upd_method at Line 17, 22 of
STM_tryC() method of Algo 4, if (node.key ∈ S.Abs.RL), means key is already there in
RL and time-stamp of that node is less then the upd_method transactions time-stamp, from
toValidation() method of Algo 12, then in the post-state of LP event of upd_method, node.key

should be the part of BL and it will update the value as v.
In the pre-state of LP event of upd_method at Line 26 of STM_tryC() method of Algo 4 , if
(node.key /∈ S.Abs.RL), means key is not there in RL then in the post-state of LP event of
upd_method, it will insert the node corresponding to the key into the BL, from lslIns() method
of Algo 9 at line 27 of STM_tryC() method of Algo 4 and update the value as v. Once a node is
created it will never get deleted from Observation 13 and node corresponding to a key can’t be
modified from Observation 6.

20.2 If upd_method is delete: In the pre-state of LP event of upd_method at Line 31 of STM_tryC()
method of Algo 4 , if (node.key ∈ S.Abs.RL), means key is already there in RL and time-stamp
of that node is less then the upd_method transactions time-stamp, from toValidation() method of
Algo 12 , then in the post-state of LP event of upd_method, node.key should not be the part of
BL, from lslDel() method of Algo 10 at line 31 of STM_tryC() method of Algo 4 .
In the pre-state of LP event of upd_method, (node.key /∈ S.Abs.RL) this should not be happen
because execution of STM_delete() method of Algo 8 must have already inserted a node in the
underlying data-structure prior to STM_tryC() method of Algo 4 .

J
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I Lemma 21. Consider a concurrent history, EH , where S be the pre-state of LP event of successful
rvm method, in that, if node corresponding to the key is the part of BL and node.val is equal to v then,
rv_method return OK and value v. Formally, 〈(node(key) ∈ ([EH .P re(mi.LP )].Abs.BL)) ∧
(S.node.val = v) =⇒ rvm(key, OK, v)〉.

Proof. Let the rv_method is STM_lookup() method of Algo 3 and it is the first key method of the
transaction, we ignore the abort case for simplicity.
From line 12 of STM_lookup() method of Algo 3 , when lslSearch() method of Algo 1 returns we have
(preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes) and are locked(from Observation 7.1 &
Observation 7.2) until STM_lookup() method of Algo 3 return. Also, from Lemma 8.1 ,

(S.preds[0].key < key ≤ S.currs[1].key) (41)

To return OK, S.currs[1] should be reachable from the head via bluelist from Definition 4 , in the
pre-state of LP of rv_method. And after observing code, at line 16 of STM_lookup() method of
Algo 3,

(S.currs[1].key = key) eq(41)===⇒ (S.preds[0].key < (key = S.currs[1].key)) (42)

Also, from Observation 7.3 ,

(S.preds[0].BL = S.currs[1]) (43)

And (currs[1] ∈ S.nodes), we know (currs[1] ∈ S.Abs.BL) where S is the pre-state of the LP
event of the method. From Lemma 20.1 , there should be a prior upd_method which have to be
insert and currs[1].val is equal to v. Since Observation 6 tells, no node changes its key value after
initialization. Hence (node(key) ∈ ([EH .P re(mi.LP )].Abs.BL) ∧ (S.node.val = v)).

*Same argument can be extended to STM_delete() method.
J

I Lemma 22. Consider a concurrent history, EH , where S be the pre-state of LP event of successful
rv_method, in that, if node corresponding to the key is not the part of BL then, rv_method return
FAIL. Formally, 〈(node(key) /∈ ([EH .P re(mi.LP )].Abs.BL)) =⇒ rvm(key, FAIL)〉.

Proof. Let the rv_method is STM_lookup() method of Algo 3 and it is the first key method of the
transaction, we ignore the abort case for simplicity.

1. From line 12 of STM_lookup() method of Algo 3 , when lslSearch() method of Algo 1 returns we
have (preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes) and are locked(from Observa-
tion 7.1 & Observation 7.2) until STM_lookup() method of Algo 3 return. Also, from Lemma 8.2 ,

(S.preds[1].key < key ≤ S.currs[0].key) (44)

To return FAIL, S.currs[0] should not be reachable from the head via bluelist from Definition 4
, in the pre-state of LP of rv_method. And after observing code, at line 20 of STM_lookup()
method of Algo 3 ,

(S.currs[0].key = key) eq(44)===⇒ (S.preds[1].key < (key = S.currs[0].key)) (45)

Also, from Observation 7.3 ,

(S.preds[1].RL = S.currs[0]) (46)
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And (currs[0] ∈ S.nodes), we know (currs[0] ∈ S.Abs.RL) where S is the pre-state of the
LP event of the method and (S.currs[0].marked = true). Thus, (currs[0] /∈ S.Abs.BL) from
Definition 4 . Hence (node(key) /∈ ([EH .P re(mi.LP )].Abs.BL)

2. From line 12 of STM_lookup() method of Algo 3, when lslSearch() method of Algo 1 returns we
have (preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes) and are locked(from Observa-
tion 7.1 & Observation 7.2) until STM_lookup() method of Algo 3 return. Also, from Lemma 8.2 ,

(S.preds[1].key < key ≤ S.currs[0].key) (47)

And after observing code, at line 24 of STM_lookup() method of Algo 3 ,

(S.currs[1].key 6= key) ∧ (S.currs[0].key 6= key) eq(47)===⇒
(S.preds[1].key < key < S.currs[0].key) (48)

Also, from Observation 7.3 ,

(S.preds[1].RL = S.currs[0]) (49)

From eq(48), we can say that, (node(key) /∈ S.Abs) and from Corollary 12, we conclude that
node(key) not in the state after lslSearch() returns. Since Observation 6 tells, no node changes
its key value after initialization. Hence (node(key) /∈ ([EH .P re(mi.LP )].Abs.BL)).

*Same argument can be extended to STM_delete() method.

J

I Observation 23. Only the successful STM_tryC() method working on the key k can update the
Abs.BL.

By observing the code, only the successful STM_tryC() method of Algo 4 is changing the BL. There
is no line which is changing the BL in STM_delete() method of Algo 8 and STM_lookup() method
of Algo 3 . Such that rv_method is not changing the BL.

I Observation 24. If STM_tryC() and rv_method wants to update Abs on the key k, then first it
has to acquire the lock on the node corresponding to the key k.

If node corresponding to the key k is not the part of Abs then STM_tryC() and rv_method have
to create the node corresponding to the key k and before adding it into the shared memory(Abs), it
has to acquire the lock on the particular node corresponding to the key k.

I Definition 25. First unlocking point of each successful method is the LP .

I Observation 26. Two concurrent conflicting methods of different transaction can’t acquire the
lock on the same node corresponding to the key k simultaneously.

I Observation 27. Consider two concurrent conflicting method of different transactions say mi

of Ti and mj of Tj working on the same key k, then, if ul(mi(k)) happen before the l(mj(k)) then
LP (mi) happen before LP (mj). Formally, 〈(ul(mi(k)) ≺ l(mj(k)))⇒ (LP (mi) ≺ LP (mj))〉

If two concurrent conflicting methods are working on the same key k and want to update Abs

then they have to acquire the lock on the node corresponding to the key k from Observation 24 and
one of them succeed from Observation 26 . If ul(mi(k)) happen before the l(mj(k)) then from
Definition 25 , LP (mi) happen before the LP (mj).
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I Lemma 28. Consider two state, S1, S2 s.t. S1 @ S2 and S1.BL.value(k) 6= S2.BL.value(k)
then there exist S′ s.t. S′ @ S2 and S′ contain the STM_tryC() method on the same key k. Formally,
〈(S1.BL.value(k) 6= (S2.BL.value(k)) ⇒ ∃(S′s.t., S1.BL ≺ S′.LP (tryC) ≺ S2.BL)〉. Where
S1 is the post-state of LP event of STM_tryC() method and S2 is the pre-state of LP event of
rv_method.

Proof. In the state S1 and S2, if the value corresponding to the key k is not same then from
Observation 23 , we know that only the successful STM_tryC() method working on the same key k

can update the Abs.BL. For updating the Abs on the key k it has to acquire the lock on the node
corresponding to the key k from Observation 24. Such that, l(tryC(k)) happen before the l(S2(k))
from Observation 26 , then, ul(tryC(k)) happen before the l(S2(k)) then LP (tryC) happen before
the LP (S2) from Observation 27 . J

I Lemma 29. Consider a successful STM_tryC() method of a transaction Ti, which is performing
last upd_method on a key k and a successful rv_method of a transaction Tj , which is also working
on the same key k, then,

29.1 If the pre-state of rv_method, node corresponding to the key k is the part of BL and value as v

then previous closest successful tryC method should having the last upd_method as insert on the
same key k and value as v.

29.2 If the pre-state of rv_method, node corresponding to the key k is not the part of BL then previous
closest successful tryC method should having the last upd_method as delete on the same key k.

Proof.29.1 For proving this we are taking a contradiction that in the pre-state of rv_method, node
corresponding to the key k is the part of BL and value as v, for that, there exist a previous closest
successful tryC method should having the last upd_method as insert on the same key k from
Corollary 11 , node corresponding to the key k is unique and value is v′. If the value of the node
corresponding to the key k is different for both the methods then from Lemma 28 , there should be
some other transaction tryC method working on the same key k and its LP should lies in between
these two methods LP . Therefore that intermediate tryC should be the previous closest method
for the rv_method and it will return the same value as previous closest method inserted.

29.2 For proving this we are taking contradiction that previous closest successful tryC method should
having the last upd_method as insert on the same key k. If the last upd_method is insert on the
same key k then after the post-state of successful tryC method, node corresponding to the key k

should be the part of BL from Lemma 20.1 . But we know that in the pre-state of rv_method,
node corresponding to the key k is not the part of BL. Such that previous closest successful tryC
method should not having last upd_method as insert on the same key k. Hence contradiction.

J

Construction of sequential history based on the LP of concurrent methods of a concurrent
history, EH , and execute them in their LP order for returning the same return value.

I Lemma 30. Consider a sequential history, ES , for any successful method which is call by
transaction Ti, after the post-state of the method, node corresponding to the key should be part
of RL and max_ts of that node should be equal to method transaction time-stamp. Formally,
〈(node(key) ∈ (P.Abs.RL)) ∧ (P.node.max_ts = TS(Ti))〉. Where P is the post-state of the
method.

Proof. 1. For rv_method method: By observing the code, each rv_method first invokes lslSearch()
method of Algo 1 (line 12, line 20 of STM_lookup() method of Algo 3 & STM_delete() method
of Algo 8 respectively). From Lemma 9 & Lemma 14 we have that the nodes in the underlying
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data-structure are in increasing order of their keys, thus the key on which the method is working
has a unique location in underlying data-structure from Corollary 11 . So, when the lslSearch()
is invoked from a method, it returns correct location (preds[0], preds[1], currs[0], currs[1]) of
corresponding key as observed from Observation 7 & Lemma 8 and all are locked, hence no other
thread can change simultaneously (from Observation 7.2).
In the pre-state of rv_method , if (node.key ∈ S.Abs.RL), means key is already there in
RL and time-stamp of that node is less then the rv_method transactions time-stamp, from
toValidation() method of Algo 12 , then in the post-state of rv_method, node.key should be the
part of RL from Observation 13 and key can’t be change from Observation 6 and it just update
the max_ts field for corresponding node key by method transaction time-stamp else abort.
In the pre-state of rv_method , if (node.key /∈ S.Abs.RL), means key is not there in RL then,
in the post-state of rv_method, insert the node corresponding to the key into RL by using lslIns()
method of Algo 9 and update the max_ts field for corresponding node key by method transaction
time-stamp. Since, node.key should be the part of RL from Observation 13 and key can’t be
change from Observation 6 , in post-state of rv_method.

2. For upd_method method: By observing the code, each upd_method also first invokes lslSearch()
method of Algo 1 (line 7 of STM_tryC() method of Algo 4 ). From Lemma 9 & Lemma 14 we have
that the nodes in the underlying data-structure are in increasing order of their keys, thus the key on
which the method is working has a unique location in underlying data-structure from Corollary 11 .
So, when the lslSearch() is invoked from a method, it returns correct location (preds[0], preds[1],
currs[0], currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all
are locked, hence no other thread can change simultaneously (from Observation 7.2).

a. If upd_method is insert: In the pre-state of upd_method, if (node.key ∈ S.Abs.RL),
means key is already there in RL and time-stamp of that node is less then the upd_method

transactions time-stamp, from toValidation() method of Algo 12 , then in the post-state of
upd_method, node.key should be the part of RL and it just update the max_ts field for
corresponding node key by method transaction time-stamp else abort.
In the pre-state of upd_method, if (node.key /∈ S.Abs.RL), means key is not there in RL

then in the post-state of upd_method, it will insert the node corresponding to the key into the
RL as well as BL, from lslIns() method of Algo 9 at line 29 of STM_tryC() method of Algo 4
and update the max_ts field for corresponding node key by method transaction time-stamp.
Once a node is created it will never get deleted from Observation 13 and node corresponding
to a key can’t be modified from Observation 6.

b. If upd_method is delete: In the pre-state of upd_method, if (node.key ∈ S.Abs.RL),
means key is already there in RL and time-stamp of that node is less then the upd_method

transactions time-stamp, from toValidation() method of Algo 12 , then in the post-state of
upd_method, node.key should be the part of RL, from lslDel() method of Algo 10 at line 34
of STM_tryC() method of Algo 4 and it just update the max_ts field for corresponding node
key by method transaction time-stamp else abort.
In the pre-state of upd_method, (node.key /∈ S.Abs.RL) this should not be happen because
execution of STM_delete() method of Algo 8 must have already inserted a node in the under-
lying data-structure prior to STM_tryC() method of Algo 4 . Thus, (node.key ∈ S.Abs.RL)
and update the max_ts field for corresponding node key by method transaction time-stamp
else abort.

J

I Corollary 31. After the post-state of any successful method on a key ensures that underlying RL
contains a unique node corresponding to the key and max_ts field is updated by methods transactions
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time-stamp.

D.2 Transactional Level

From Section D.1 we are guaranteed to have a sequential history or in other terms we have a
linearizable history. Now we shall prove that such linearizable history obtained from OSTM is
opaque.

I Observation 32. H is a sequential history obtained from OSTM, as shown at operational level
using LP.

I Definition 33. CG(H) is a conflict graph of H.

I Lemma 34. Conflict graph of a serial history is acyclic.

Proof. If conflict graph of serial history contains an conflict edge ( T1, T2 ), then T1.lastEvt ≺H

T2.firstEvt. Now, assume that conflict graph of a serial history is cyclic, then their exist a cycle
path in the form (T1, T2 · · · Tk, T1), (k ≥ 1). So, transitively,

((T1.lastEvt ≺H Tk.firstEvt) ∧ (Tk.lastEvt ≺H T1.firstEvt))⇒
(T1.lastEvt ≺H T1.firstEvt) (50)

This contradict our assumption as eq(50) is impossible, from definition of program order of a
transaction. Thus, cycle is not possible in serial history.

J

I Observation 35. H2 is an history generated by applying topological sort on CG(H1).

I Observation 36. Topological sort maintains conflict-order and real-time order of the original
history H1.

I Definition 37. conflict(H) is a set of ordered pair (Ti, Tj), such that their exists conflicting
methods mi, mj in Ti & Tj respectively, such that mi ≺MR

H mj . And it is represented as ≺CO
H .

I Lemma 38. H1 is legal & CG(H1) is acyclic. then,

38.1 H1 is equivalent to H2 ⇒ (methods(H1) = methods(H2)).
38.2 ≺CO

H1 ⊆ ≺CO
H2 . i.e. H1 preserves the conflicts of H2

Proof. Lemma 38.2
We should show that ∀( Ti, Tj ), such that ( ( Ti, Tj ) ∈ ≺CO

H1 ⇒ ( ( Ti, Tj ) ∈ ≺CO
H2 ).

Lets assume that their exists a conflict (Ti, Tj) in ≺CO
H1 but not in ≺CO

H2 . But, from Observation 35 &
Observation 36 we know that (Ti, Tj) ∈ ≺CO

H2 . Thus, ≺CO
H1 ⊆ ≺CO

H2 .

The relation is of improper subset because topological sort may introduce new real-time orders
in H2 which might not be present in H1. J

I Lemma 39. Let H1 and H2 be equivalent histories such that ≺CO
H1
⊆ ≺CO

H2
. Then, H1 is legal

=⇒ H2 is legal.

Proof. We know H1 is legal, wlog let us say (rvj(ht, k, v)∈methods(H1)), such that (upp(ht, k, vp) =
H1.lastUpdt(rvj(ht, k, v))) where, (v = vp 6= nill), if (upp(ht, k, vp) = t_insertp(ht, k, vp)) or
(v = nill), if (upp(ht, k, vp) = t_deletep(ht, k, vp)). From the conflict-notion conflict(H1) has,

upp(ht, k, vp) ≺MR
H1

rvj(ht, k, v) (51)
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Let us assume H2 is not legal. Since, H1 is equivalent to H2 from Lemma 38.1 such that (rvj(ht, k, v)
∈ methods(H2)). Since H2 is not legal, there exist a (upr(ht, k, vr) ∈ methods(H2)) such that
(upr(ht, k, vr) = H2.lastUpdt(rvj(ht, k, v))). So conflict(H2) has,

upr(ht, k, vr) ≺MR
H2

rvj(ht, k, v) (52)

We know, (≺CO
H1
⊆ ≺CO

H2
) so,

upp(ht, k, vp) ≺MR
H2

rvj(ht, k, v) (53)

From Lemma 38.1 (upr(ht, k, vr) ∈ methods(H1)). Since H1 is legal upr(ht, k, vr) can occur only
in one of following conflicts,

upr(ht, k, vr) ≺MR
H1

upp(ht, k, vp) (54)

or

rvj(ht, k, v) ≺MR
H1

upr(ht, k, vr) (55)

In H1 eq(55) is not possible, because if (eq(55) ∈ conflict(H1)) implies (eq(55) ∈ conflict(H2))
from (≺CO

H1
⊆ ≺CO

H2
) and in H2 eq(52) and eq(55) cannot occur together. Thus only possible way

upr(ht, k, vr) can occur in H1 is via eq(54). From eq(54) we have,

upr(ht, k, vr) ≺MR
H2

upp(ht, k, vp) (56)

From eq(52), eq(53) and eq(56) we have,

upr(ht, k, vr) ≺MR
H2

upp(ht, k, vp) ≺MR
H2

rvj(ht, k, v)

This contradicts that H2 is not legal. Thus if H1 is legal −→ H2 is legal. J

I Observation 40. Each transaction is assigned a unique time-stamp in STM_begin() method using
a shared counter which always increases atomically.

I Observation 41. Each successful method of a transaction is assigned the time-stamp of its own
transaction.

I Lemma 42. Consider a global state S which has a node n, initialized with max_ts. Then in
any future state S′ the max_ts of n should be greater then or equal to S. Formally, 〈∀S, S′ : (n ∈
S.Abs) ∧ (S @ S′)⇒ (n ∈ S′.Abs) ∧ (S.n.max_ts ≤ S′.n.max_ts)〉.

Proof. We prove by Induction on events that change the max_ts field of a node associated with a
key, which are Line 26, 30 & 35 of STM_delete() method of Algo 8, Line 18, 22 & 27 of STM_lookup()
method of Algo 3 and Line 21, 25, 29, 34 & 37 of STM_tryC() method of Algo 4.
Base condition: Initially, before the first event that changes the max_ts field of a node associated
with a key, we know the underlying lazyskip-list has immutable S.head and S.tail nodes with
(S.head.BL = S.tail) and (S.head.RL = S.tail).

Lets assume, a node corresponding to the key is already the part of underlying RL which is having
a time-stamp of m1 as T1 from Observation 41 . Let say m2 of T2 wants to perform on that node,
by observing the code at line 6 of toValidation() method of Algo 12 , if TS(T2) < curr.max_ts.m1(),
T2 will return abort, else to succeed, TS(T2) > curr.max_ts.m1() should evaluate to true. Thus,
for successful completion of m2 of T2, TS(T2) should be greater then the TS(T1). Hence, node
corresponding to the key, max_ts field should be updated in increasing order of TS values.
Induction Hypothesis: Say, upto k events that change the max_ts field of a node associated with a
key always in increasing TS value.
Induction Step: So, as seen from the code, the (k + 1)th event which can change the max_ts field
be only one of the following:
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1. Line 26, 30 & 35 of STM_delete() method of Algo 8 : By observing the code, line 18 of
STM_delete() method of Algo 8 first invokes lslSearch() method of Algo 1 for finding the node
corresponding to the key. Inside the lslSearch() method of Algo 1 , it will do the toValidation()
method of Algo 12 , if (curr.key = key).
From induction hypothesis, node corresponding to the key is already the part of underlying RL

which is having a time-stamp of mk of Tk from Observation 41. Let say mk+1 of Tk+1 wants
to perform on that node, by observing the code at line 6 of toValidation() method of Algo 12 , if
TS(Tk+1) < curr.max_ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max_-
ts.mk() should evaluate to true. Thus, for successful completion of mk+1 of Tk+1, TS(Tk+1)
should be greater then the TS(Tk). Hence, node corresponding to the key, max_ts field should be
updated in increasing order of TS values.

2. Line 18, 22 & 27 of STM_lookup() method of Algo 3 : By observing the code, line 12 of
STM_lookup() method of Algo 3 first invokes lslSearch() method of Algo 1 for finding the node
corresponding to the key. Inside the lslSearch() method of Algo 1 , it will do the toValidation()
method of Algo 12 , if (curr.key = key).
From induction hypothesis, node corresponding to the key is already the part of underlying RL

which is having a time-stamp of mk as Tk from Observation 41 . Let say mk+1 of Tk+1 wants
to perform on that node, by observing the code at line 6 of toValidation() method of Algo 12 , if
TS(Tk+1) < curr.max_ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max_-
ts.mk() should evaluate to true. Thus, for successful completion of mk+1 of Tk+1, TS(Tk+1)
should be greater then the TS(Tk). Hence, node corresponding to the key, max_ts field should be
updated in increasing order of TS values.

3. Line 21, 25, 29, 34 & 37 of STM_tryC() method of Algo 4 : By observing the code, line 7 of
STM_tryC() method of Algo 4 first invokes lslSearch() method of Algo 1 for finding the node
corresponding to the key. Inside the lslSearch() method of Algo 1 , it will do the toValidation()
method of Algo 12 , if (curr.key = key).
From induction hypothesis, node corresponding to the key is already the part of underlying RL

which is having a time-stamp of mk as Tk from Observation 41 . Let say mk+1 of Tk+1 wants
to perform on that node, by observing the code at line 6 of toValidation() method of Algo 12 , if
TS(Tk+1) < curr.max_ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max_-
ts.mk() should evaluate to true. Thus, for successful completion of mk+1 of Tk+1, TS(Tk+1)
should be greater then the TS(Tk). Hence, node corresponding to the key, max_ts field should be
updated in increasing order of TS values.

J

I Corollary 43. Every successful methods update the max_ts field of a node associated with a
key always in increasing TS values.

I Lemma 44. If STM_begin(Ti) occurs before STM_begin(Tj) then TS(Ti) preceds TS(Tj).
Formally, 〈∀T ∈ H : (STM_begin(Ti) ≺ STM_begin(Tj))⇔ (TS(Ti) < TS(Tj))〉.

Proof. (Only if) If (STM_begin(Ti) ≺ STM_begin(Tj)) then (TS(Ti) < TS(Tj)). Lets assume
(TS(Tj) < TS(Ti). From Observation 40 ,

STM_begin(Tj) ≺H STM_begin(Ti) (57)

but we know that,

STM_begin(Tj) �H STM_begin(Ti) (58)
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Which is a contradiction thus, (TS(Ti) < TS(Tj)).

(if) If (TS(Ti) < TS(Tj)) then (STM_begin(Ti) ≺ STM_begin(Tj)). Let us assume (STM_begin(Tj) ≺
STM_begin(Ti)). From Observation 40 ,

TS(Tj) < TS(Ti) (59)

but we know that,

TS(Tj) > TS(Ti) (60)

Again, a contradiction. J

I Lemma 45. If (Ti, Tj) ∈ conflict(H)⇒ TS(Ti) < TS(Tj).

Proof. (Ti, Tj) can have two kinds of conflicts from our conflict notion.

1. If (Ti, Tj) is an real-time edge: Since, Ti & Tj are real time ordered. Therefore,

Ti.lastEvt ≺H Tj .firstEvt (61)

And from program order of Ti,

Ti.firstEvt ≺H Ti.lastEvt⇒ STM_begin(Ti) ≺H Ti.lastEvt (62)

From eq(61) and eq(62) implies that,

Ti.firstEvt ≺H Tj .firstEvt⇒ STM_begin(Ti) ≺H STM_begin(Tj)
Lemma 44======⇒ TS(Ti) < TS(Tj) (63)

2. If (Ti, Tj) is a conflict edge: We prove this case by contradiction, lets assume (Ti, Tj) ∈
conflict(H) & TS(Tj) < TS(Ti). Given that (Ti, Tj) ∈ conflict(H) and from Definition 37 we get,
mi ≺MR

H mj .
mi can be rv_methods or upd_methods (which are taking the effects in STM_tryC() method of
Algo 4 ) and we know that after the LP of mi of Ti, node corresponding to the key should be
there in RL (from Corollary 31 & Definition 4 ) and the time-stamp of that node corresponding
to key should be equal to time-stamp of this method transaction time-stamp from Corollary 31 &
Observation 41 .
From Lemma 9 & Lemma 14 we have that the nodes in the underlying data-structure are in
increasing order of their keys, thus the key on which the operation is working has a unique
location in underlying data-structure from Corollary 11 . So, when the lslSearch() is invoked
from a method mj of Tj , it returns correct location (preds[0], preds[1], currs[0], currs[1]) of
corresponding key as observed from Observation 7 & Lemma 8 .
Now, mj similar to mi take effect on the same node represented by key k (from Observation 6 &
Corollary 11 ) & from Observation 13 we know that the node corresponding to the key k is still
reachable via RL. Thus, we know that Ti & Tj will work on same node with key k.
By observing the code at line 6 & 9 of toValidation() method of Algo 12 , we know since, TS(Tj)
< curr.max_ts.mi(), Tj will return abort from Corollary 43 . In Algo 12 for toValidation() to
succeed, TS(Tj) > curr.max_ts.mi() should evaluate to true from Corollary 43 . Thus, TS(Tj) <

TS(Ti), a contradiction. Hence, If (Ti, Tj) ∈ conflict(H)⇒ TS(Ti) < TS(Tj).

J
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I Lemma 46. If ( T1, T2 · · · Tn ) is a path in CG(H), this implies that (TS(T1) < TS(T2) < · · ·
< TS(Tn)).

Proof. The proof goes by induction on length of a path in CG(H).

Base Step: Assume ( T1, T2 ) be a path of length 1. Then, from Lemma 45 (TS(T1) < TS(T2)).

Induction Hypothesis: The claim holds for a path of length (n− 1). That is,

TS(T1) < TS(T2) < · · · < TS(Tn−1) (64)

Induction Step: Let Tn is a transaction in a path of length n. Then, (Tn−1, Tn) is path in CG(H).
Thus, it follows from Lemma 45 that,

TS(Tn−1) < TS(Tn) eq(64)===⇒ (TS(T1) < TS(T2) < · · · < TS(Tn)) (65)

Hence, the lemma. J

I Theorem 47. CG(H) is acyclic.

Proof. Assume that CG(H) is cyclic, then their exist a cycle say of form ( T1, T2 · · · Tn, T1 ), for
all (n ≥ 1). From Lemma 46 ,

TS(T1) < TS(T2) · · · < TS(Tn) < TS(T1) =⇒ TS(T1) < TS(T1) (66)

But, this is impossible as each transaction has unique time-stamp, refer Observation 40 . Hence
the theorem. J

I Theorem 48. A legal history H is co-opaque iff CG(H) is acyclic.

Proof. (Only if) If H is co-opaque and legal, then CG(H) is acyclic: Since H is co-opaque, there
exists a legal t-sequential history S equivalent to H̄ and S respects ≺RT

H and ≺CO
H (from Definition 1).

Thus from the conflict graph construction we have that (CG(H̄)=CG(H)) is a sub graph of CG(S).
Since S is sequential, it can be inferred that CG(S) is acyclic using Lemma 34. Any sub graph of an
acyclic graph is also acyclic. Hence CG(H) is also acyclic.

(if) If H is legal and CG(H) is acyclic then H is co-opaque: Suppose that CG(H) = CG(H̄) is
acyclic. Thus we can perform a topological sort on the vertices of the graph and obtain a sequential
order. Using this order, we can obtain a sequential schedule S that is equivalent to H̄ . Moreover, by
construction, S respects ≺RT

H = ≺RT
H̄

and ≺CO
H = ≺CO

H̄
.

Since every two operations related by the conflict relation in S are also related by ≺CO
H̄

, we obtain
≺CO

H̄
⊆ ≺CO

S . Since H is legal, H̄ is also legal. Combining this with Lemma 39, We get that S is also
legal. This satisfies all the conditions necessary for H to be co-opaque. J

E Preliminary results of OSTM

We build initial version of OSTM where each method STM_insert(), STM_delete() and STM_lookup()
is a single transaction. And to compare against we take a read/write STM with its two implementations
one with Basic time stamp protocol and another with Serialization graph testing. We evaluate the
SET application which has add, remove and find methods. The evaluation is done with a setup where
40% of the operations are find, 40% are remove and 20% are add.

setup: ram cpu blah blah..... The evaluation is done on following two criteria:

1. Average time taken per execution (Figure 26).
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2. Average number aborts per execution (Figure 27).

As evident from the plots OSTM takes lesser time also the number of aborts are reduced in
comparison to the average time and aborts for read/write STM with underlying BTO and SGT
protocols.

Figure 26 Average time taken by RWSTMs v/s
OSTM

Figure 27 Average aborts per transaction by
RWSTMs v/s OSTM
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