
Starvation Freedom in Multi-Version Transactional Memory
Systems

Ved Prakash Chaudhary 1, Sandeep Kulkarni2, Sweta Kumari1, Sathya Peri 1

1{cs14mtech11019}@iith.ac.in, 2sandeep@cse.msu.edu,
1{cs15resch01004,sathya p}@iith.ac.in

1Department of Computer Science & Engineering, IIT Hyderabad
2Department of Computer Science, Michigan State University

Abstract

Software Transactional Memory systems (STMs) have garnered significant interest as an elegant alternative
for addressing synchronization and concurrency issues with multi-threaded programming in multi-core systems.

In order for STMs to be efficient, they must guarantee some progress properties. This work explores the
notion of starvation-freedom in Software Transactional Memory Systems (STMs). A STM systems is said to be
starvation-free if every thread invoking a transaction gets opportunity to take a step (due to the presence of a fair
scheduler) then the transaction will eventually commit.

A few starvation-free algorithms have been proposed in the literature in the context of single-version STM
Systems. These algorithm work on the basis of priority. If two transactions conflict, then the transaction with
lower priority will abort. A transaction running for a long time will eventually have the highest priority and
hence commit. But the drawback with this approach is that if a set of high-priority transactions become slow
then they can cause several other transactions to abort. In that case, this approach becomes similar to pessimistic
lock-based approach.

Multi-version STMs maintain multiple-versions for each transactional object or t-object. By storing multiple
versions, these systems can achieve greater concurrency. In this paper, we propose a multi-version starvation
free STM, KSFTM, which as the name suggests achieves starvation freedom while storing K versions of each
t-object. Here K is an input parameter fixed by the application programmer depending on the requirement. Our
algorithm is dynamic which can support different values of K ranging from 1 to infinity . If K is infinity then
there is no limit on the number of versions. But a separate garbage-collection mechanism is required to collect
unwanted versions. On the other hand when K is 1, it becomes same as a single-version STM system.

We prove the correctness and starvation-freedom property of the proposed KSFTM algorithm. To the best of
our knowledge this is the first multi-version STM system that is correct and satisfies starvation-freedom as well.

1 Introduction
In the past few years Big Data Analytics has become a very popular paradigm for solving problems of very diverse
fields from engineering to education. It is clear that to solve challenges of big data analytics, huge processing
power will be required. Multi-core systems which have become prevalent can address the processing needs of
Data Analytics.

Programming multi-core systems is usually performed using multi-threading. But, multi-threading and hence
multi-core programming typically involves synchronization and communication which can be very expensive. The
cost of synchronization can sometime be high that it can negate the programming power of multi-core systems
and thus result in degrading multi-core to single-core systems.

Software Transactional Memory systems (STMs) [12, 21] have garnered significant interest as an elegant al-
ternative for addressing synchronization and concurrency issues in multi-core systems. STMs are a convenient
programming interface for a programmer to access shared memory without worrying about consistency issues
[12, 21]. STM systems uses optimistic approach in which multiple transactions can execute concurrently. On
completion, each transaction has to validate and if any inconsistency is found then it is aborted. Otherwise it

ar
X

iv
:1

70
9.

01
03

3v
1

 [
cs

.D
C

]
 4

 S
ep

 2
01

7

is allowed to commit. A transaction that has begun but has not yet been validated is referred to as live. A typ-
ical TM system is a library which exports the methods: begin which begins a transaction, read which reads a
transaction-object (data-item) or tobj, write which writes to a tobj, tryC which tries to commit.

An important requirement of STM systems is to precisely identify the criterion as to when a transaction should
be aborted/committed referred to as correctness-criterion. Several correctness-criterion have been proposed for
STMs such as opacity [9], virtual world consistency [14], local opacity [16], TMS [1, 5] etc. All these correctness-
criterion require that all the transactions including aborted to appear to execute sequentially in an order that
agrees with the order of non-overlapping transactions. Unlike the correctness criterion for traditional databases
serializability [19], these correctness-criterion ensure that even aborted transactions read consistent values. This
is one of the fundamental requirements of STM systems first observed in [9] which differentiates STMs from
Databases.

Another important requirement of STM system is to ensure that transactions make progress i.e. they do not
abort unnecessarily. It would be ideal to abort a transaction only when it does not violate correctness requirement
(such as opacity). However it was observed in [2] that many STM systems developed so far spuriously abort
transactions even when not required.

Wait-freedom is one of the interesting progress condition for STMs in which every transaction commits re-
gardless of the nature of concurrent processes [11]. But it was shown by Guerraoui and Kapalka [10] that it is not
possible to achieve wait-freedom in dynamic TMs in which data sets of transactions are not known in advance.
So in this paper, we explore a weaker progress condition starvation-freedom [13, chap 2], to ensure that every
transaction that is attempted infinitely often eventually succeeds. Intuitively, it is defined as follows in the context
of TM systems: Suppose a transaction Ti on getting aborted by the TM system is re-executed. Then, the STM
system is said to be starvation-free if it can ensure that Ti will eventually commit if Ti is retried every time it
aborts (and Ti does not invoke tryA). It can be seen that in order to ensure starvation-freedom, the STM system
must store some state information for each aborted transaction.

Algo 1 illustrates starvation-freedom. It shows the overview of insert method which inserts an element e into
a linked-list LL. Insert method is implemented using transactions to ensure correctness in presence of concurrent
threads operating on common data-items. The method has an infinite while loop Line 1 to Line 15. In this while
loop, a new transaction is created to read and write onto the shared memory. This corresponds to creating and
inserting a new node into the shared memory. If the transaction succeeds then the control breaks out of the loop.
Otherwise, this process continues until a transaction is eventually able to succeed. Thus, it can be seen that insert
method can execute forever if transactions created by it never successfully commits. To ensure that insert method
eventually completes, the STM system must guarantee starvation-freedom of transactions.

Gramoli et.al has proposed fair FairCM contention manager that satisfies starvation-freedom for many-core
systems. They have used cumulative time to achive it [7]. In our paper, we explore ideas to achieve starvation-freedom
for STMs. We first present Single-Version Starvation Free STM or SV-SFTM , in which system maintains single
version for each tobj. We believe that SV-SFTM is less expensive [Section 3] than TM2C [7] because we need not
to calculate cumulative time for each successful transaction.

FairCM gurantees Starvation-freedom [7] but they explained only intution but not formally proved it. To the
best of our knowledge, our work is the first that formally proves the Starvation freedom of transactional memory
systems.

SV-SFTM is based on Forward-Oriented Optimistic Concurrency Control Protocol (FOCC), a commonly used
optimistic algorithm in databases [22, Chap 4]. As per this algorithm, when two transactions Ti, Tj conflict, one
of them is aborted. The transaction to be aborted, say Tj , is one which has lower priority in terms of how long
it has executed. When a transaction Ti begins, it is allotted an initial-timestamp or G its. If Ti gets aborted, then
it restarts again with a new identity, say Tp, but retains the original G its. In case of conflict of Tp with Tj , the
conflict is resolved based on G its of Tp (which is same as Ti) and Tj . The transaction with higher G its is
aborted. The details of this algorithm are described in SubSection3.1.

It was observed that more read operations succeed by keeping multiple versions of each object, i.e.multi-
version STMs can ensure that more read operations to return successfully [15, 18].

2

Algorithm 1 Insert(LL, e): Invoked by a thread to insert a value v into a linked-list LL. This method is imple-
mented using transactions.

1: while (true) do
2: id = tbegin ();
3: ...
4: ...
5: v = read(id, x);
6: ...
7: ...
8: write(id, x, v′);
9: ...

10: ...
11: ret = tryC(id);
12: if (ret == success) then
13: break;
14: end if
15: end while

Thus, multi-version STMs (MVSTMs) can achieve greater concurrency and progress. Many STM systems
have been proposed using the idea of multiple versions [15, 18, 6, 4, 20]. All these MVSTMs do not place a limit
on the number of versions created. They have separate thread routines that perform garbage-collection on old and
unwanted versions periodically. In fact, it was shown in [15], greater the number of versions, lesser the number
of aborts. So, we propose K-version Multi-Version STM system that maintains K versions, KSTM, which is
the extention of MV TO [15].It is a precursor to KSFTM as KSTM does not guarantee starvation-freedom, but
provides an insight into how to achieve starvation-freedom with multi-version STMs.

KSTM maintains K versions where K can range from between 1−∞. When K is 1 then this algorithm boils
down to a single-version STM system. If K is∞ then it is similar to existing MVSTMs which do not maintain a
upper bound on the number of version. We show KSTM satisfies opacity.

It can be seen that SFTM does not take advantage of multiple versions. As a result, SFTM can still cause abort
of many transactions (although it ensures that every transaction commits if it is re-executed sufficient number of
times). Consider the case that a transaction Ti with has the lowest G its. Hence, it cannot be aborted as per
SFTM. But if it is slow (for some reason), then it can cause several other conflicting transactions to abort. Hence,
the progress of the entire system can be brought down. We can alleviate this situation by using multiple versions.

Hence, we develop a Multi-Version Starvation Free STM System, KSFTM that guarantees starvation-freedom
of transactions.

To study the efficiency of STMs developed, we will consider a useful metric commit-throughput defined as
the time taken by a transaction to commit which includes the re-execution time caused by aborts. Naturally, this
metric depends on the applications with which the STM system is tested. We plan to measure the performance
commit-throughput of SFTM, KSTM and KSFTM using various benchmarks. The advantage of KSTM is that
one can tune the value of K to obtain the best commit-throughput for a given application. We want to understand
which variant of STM can provide greater commit-throughput: FOCC,SFTM, KSTM, KSFTM. For the latter two,
we have to experiment with a suitably chosen value for K.
Overview of our Contributions and Roadmap. We describe our system model in Section 2. Section 3, Section 4
and Section ?? illustrates Motivation for Starvation Freedom in Multi-Version Systems, Working of KSFTM and
Proof outline of Safety & Liveness of KSFTM respectively. We conclude in Section 7. Finally in appendix, we
describe proofs in details.

2 System Model and Preliminaries
Following [10, 8], we assume a system of n processes, p1, . . . , pn that access a collection of transactional objects
(or tobjs) via atomic transactions. Each transaction has a unique identifier. Within a transaction, a processes can
execute transactional methods/operations or methods: tbegin operation that beings the transaction and returns an
unique transaction identifier to the application; stm-write(x, v) operation that tries to update a t-object xwith value
v; stm-read(x) operation tries to read x; tryC() that tries to commit the transaction and returns C if it succeeds;

3

and tryA() that aborts the transaction and returns A. For the sake of presentation simplicity, we assume that the
values taken by arguments by stm-write operations are unique.

Operations stm-write, stm-read and tryC() may return A, in which case we say that the operations forcefully
abort. Otherwise, we say that the operations have successfully executed. Each operation is equipped with a unique
transaction identifier. A transaction Ti starts with the first operation and completes when any of its operations
returns A or C. We denote any operation that returns A or C as terminal operations or as term-ops. Hence,
operations tryC and tryA are terminal operations. A transaction does not invoke any further operations after
terminal operations.

In this document, we use the terms operations and methods interchangeably. We denote all the operations of a
transaction as stm-methods. For a transaction Tk, we denote all the tobjs accessed by its stm-read operations as
rset(Tk) or rsetk and tobjs accessed by its stm-write operations as wset(Tk) or wsetk.
Events and Executions. Suppose a transaction Ti invokes a stm-method. During the course of the execution of
the method, Ti executes several atomic events one after another. These events are (1) read, write on shared/local
memory objects. Note that these read and write are different from stm-read and stm-write methods; (2) method
invocations or inv event & responses or rsp event on stm-methods. We assume that all events are the atomic and
will be executed in a single clock cycle without any interruption. We denote the execution of a STM system as a
totally ordered collection of events. We formally denote an execution E as the tuple 〈evts,<E〉, where E.evts
denotes the set of all events of E and <E is the total order among these events.
Histories. A history consists only of stm-method inv and rsp events of an execution. In other words, a history
views the methods as black boxes without going inside the internals. Similar to an execution, a history H can be
formally denoted as 〈evts,<H〉where evts are of type inv & rsp and<H defines a total order among these events.
We now define a few notations on histories which can be extended to the corresponding executions. For a history
H , we denote the corresponding execution as H.exec. Similarly for an execution E, we denote the corresponding
history as E.hist.

Let H|T denote the history consisting of events of T in H , and H|pi denote the history consisting of events of
pi in H . We only consider well-formed histories here, i.e., (1) each H|T consists of a read-only prefix (consisting
of read operations only), followed by a write-only part (consisting of write operations only), possibly completed
with a tryC or tryA operationa, and (2) eachH|pi is t-sequential: no transaction begins before the last transaction
completes (commits or a aborts). We also assume that every history has an initial committed transaction T0 that
initializes all the t-objects with value 0.

The set of transactions that appear in H is denoted by H.txns. The set of committed (resp., aborted) transac-
tions in H consists of the transactions that are committed (resp. aborted) after the last event in H and is formally
denoted by all the H.committed (resp., H.aborted). The set of incomplete or live transactions in H is denoted
by H.incomp(= H.live) = {H.txns−H.committed−H.aborted}. It can be seen that a transaction Ti is live
in H if Ti does not execute a terminal operation till the last event of H .

We define a history H1 to be a prefix of H2 if (H1.evts ⊆ H2.evts)∧ (<H1⊆<H2). In this case, we denote
H1 v H2. We say that H1 is a strict prefix of H2 if H1 6= H2. We denote H.prefixes be the set of all prefixes
of H . Analogously, we say that H2 is an extension of H1 if H1 is a prefix of H2. H2 is a strict extension of H1
if H2 6= H1. It can be seen that any transaction Ti that is terminated in H2 is live in a history H1 that is a prefix
of H2.

A history is said to be sequential if the invocation of each transactional operation is immediately followed by
a matching response. Thus in sequential histories, we treat each transactional operation as one atomic event, and
let <H denote the total order on the transactional operations incurred by H . With this assumption, in sequential
histories the only relevant events of a transaction Tk are of the types: rk(x, v), rk(x,A), wk(x, v), wk(x, v,A),
tryCk(C) (or ck for short), tryCk(A), tryAk(A) (or ak for short).

For a history H , we construct the completion of H , denoted H , by inserting tryAk(A) immediately after the
last event of every transaction Tk ∈ H.live.
Transaction orders. For two transactions Tk, Tm ∈ H.txns, we say that Tk precedes Tm in the real-time order of
H , denote Tk ≺RTH Tm, if Tk is complete in H and the last event of Tk precedes the first event of Tm in H . If
neither Tk ≺RTH Tm nor Tm ≺RTH Tk, then Tk and Tm overlap in H .

We define a history H to be serial [19] or t-sequential if it has no overlapping transactions. In other words, in
a serial history, all the transactions are ordered by real-time.
Sub-histories. A sub-history, SH of a history H denoted as the tuple 〈SH.evts, <SH〉 and is defined as: (1)

aIt was shown in [17] that this restriction brings no loss of generality.

4

<SH⊆<H ; (2) SH.evts ⊆ H.evts; (3) If an event of a transaction Tk ∈ H.txns is in SH then all the events of
Tk in H should also be in SH .

For a history H , let R be a subset of H.txns.Then H.subhist(R) denotes the sub-history of H that is formed
from the operations in R.
Valid and legal histories. Consider a sequential history H . A successful read rk(x, v) (i.e., v 6= A) in history H
(i.e., v 6= A), is said to be valid if some there is a transaction Tj that wrote v to x and committed before rk(x, v).
Formally, 〈rk(x, v) is valid⇔ ∃Tj : (cj <H rk(x, v))∧ (wj(x, v) ∈ Tj .evts)∧ (v 6= A)〉. The history H is valid
if all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event ci preceding rk(x, v) in H such that x ∈ Wset(Ti)
(Ti can also be T0). A successful read operation rk(x, v), is said to be legal if the transaction containing rk’s
lastWrite also writes v onto x: 〈rk(x, v) is legal ⇔ (v 6= A) ∧ (H.lastWrite(rk(x, v)) = ci) ∧ (wi(x, v) ∈
Ti.stm-methods)〉. The history H is legal if all its successful read operations are legal. From the definitions we
get that if H is legal then it is also valid.
Strict Serializability and Opacity. We say that two histories H and H ′ are equivalent if they have the same set of
events. Now a sequential history H is said to be opaque [9, 10] it is valid and there exists a serial legal history S
such that (1) S is equivalent to H and (2) S respects ≺RTH , i.e ≺RTH ⊂≺RTS .

Unlike this definition, the original definition of opacitywas not restricted to sequential histories. By requiring S
being equivalent toH , opacity treats all the incomplete transactions as aborted. We call S an (opaque) serialization
of H .

Along the same lines, a valid history H is said to be strictly serializable if H.subhist(H.committed) is
opaque. Thus, unlike opacity, strict serializability does not include aborted or incomplete transactions in the global
serialization order. An opaque history H is also strictly serializable: a serialization of H.subhist(H.committed)
is simply the subsequence of a serialization of H that only contains transactions in H.committed.

History(H’). For each aborted transaction Ti consider all previously committed transactions including Ti while
immediately putting commit after last successful operation of Ti and for last committed transaction Tl consider
all the previously committed transactions including Tl.

Local opacity: A history H is said to be local opaque if all the above History(H’) are opaque.
For the sake of clarity, consider a history H5 with multiple reads and writes on different t-objects: w1(x, 1)C1

r2(x, 1)w3(x, 3)w3(y3)C3r4(y, 3)w4(k, 4)C4r5(k, 4)r5(z, 0)w2(z, 2)C2A5.

T1

T2

T3

T4

T5

C4

A5

w1(x, 1)

r2(x, 1) w2(z, 2)

w3(x, 3) w3(y, 3)

r4(y, 3) w4(k, 4)

r5(k, 4) r5(z, 0)

C3

C2

C1

Figure 1: A locally opaque, but not opaque history H5

3 Motivation for Starvation Freedom in Multi-Version Systems
In this section, first we describe the starvation freedom solution used for single version i.e. SFTM algorithm and
then the drawback of it.

5

3.1 Illustration of SFTM
Forward-oriented optimistic concurrency control protocol (FOCC), is a commonly used optimistic algorithm in
databases [22, Chap 4]. In fact, several STM Systems are also based on this idea. In a typical STM system (also
in database optimistic concurrency control algorithms), a transaction execution is divided can be two phases -
a read/local-write phase and try-Commit phase (also referred to as validation phase in databases). The various
algorithms differ in how the try-Commit phase executes. Let the write-set or wset and read-set or rset of a ti
denotes the set of tobjs written & read by ti. In FOCC a transaction ti in its try-Commit phase is validated against
all live transactions that are in their read/local-write phase as follows: 〈wset(ti) ∩ (∀tj : rsetn(tj)) = Φ〉. This
implies that the wset of ti can not have any conflict with the current rset of any transaction tj in its read/local-write
phase. Here rsetn(tj) implies the rset of tj till the point of validation of ti. If there is a conflict, then either ti
or tj (all transactions conflicting with ti) is aborted. A commonly used approach in databases is to abort ti, the
validating transaction.

In SFTM we use tss which are monotonically in increasing order. We implement the tss using atomic
counters. Each transaction ti has two time-stamps: (i) current time-stamp or CTS: this is a unique ts alloted to
ti when it begins; (ii) initial time-stamp or ITS: this is same as CTS when a transaction ti starts for the first time.
When ti aborts and re-starts later, it gets a new CTS. But it retains its original CTS as ITS. The value of ITS is
retained across aborts. For achieving starvation freedom, SFTM uses ITS with a modification to FOCC as follows:
a transaction ti in try-Commit phase is validated against all other conflicting transactions, say tj which are in their
read/local-write phase. The ITS of ti is compared with the ITS of any such transaction tj . If ITS of ti is smaller
than ITS of all such tj , then all such tj are aborted while ti is committed. Otherwise, ti is aborted. Due to lack of
space, we have showed an example illustrates the working of SFTM in Section ??. We show that SFTM satisfies
opacity and starvation-free.

Theorem 1 Any history generated by SFTM is opaque.

Theorem 2 SFTM ensure starvation-freedom.

We prove the correctness by showing that the conflict graph [22, Chap 3], [16] of any history generated by
SFTM is acyclic. We show starvation-freedom by showing that for each transaction ti there eventually exists a
global state in which it has the smallest ITS.

Figure 2 shows the a sample execution of SFTM. It compares the execution of FOCC with SFTM. The exe-
cution on the left corresponds to FOCC, while the execution one the right is of SFTM for the same input. It can
be seen that each transaction has two tss in SFTM. They correspond to CTS, ITS respectively. Thus, transaction
T1,1 implies that CTS and ITS are 1. In this execution, transaction T3 executes the read operation r3(z) and is
aborted due to conflict with T2. The same happens with T3,3. Transaction T5 is re-execution of T3. With FOCC
T5 again aborts due to conflict with T4. In case of SFTM, T5,3 which is re-execution of T3,3 has the same ITS 3.
Hence, when T4,4 validates in SFTM, it aborts as T5,3 has lower ITS. Later T5,3 commits.

It can be seen that ITSs prioritizes the transactions under conflict and the transaction with lower ITS is given
higher priority.

3.2 drawback of SFTM
Figure 3 is representing history H: r1(x, 0)r1(y, 0)w2(x, 10)w3(y, 15)a2a3c1 It has three transactions T1, T2 and
T3. T1 is having lowest time stamp and after reading it became slow. T2 and T3 wants to write to x and y
respectively but when it came into validation phase, due to r1(x), r1(y) and not committed yet, T2 and T3 gets
aborted. However, when we are using multiple version T2 and T3 both can commit and T1 can also read from T0.
The equivalent serial history is T1T2T3.

T1

w2(x, 10)
T2

T3

A3

A2

C1

w3(y, 15)

r1(x, 0) r1(y, 0)

Figure 3: Pictorial representation of execution under SFTM

6

read/local-write phase

r1(x) w1(x)

read/local-write phase

r2(y) r2(z) w2(z)

r1(y)

r3(z)
T3

w2(z)r2(y)

r3(z)

r1(x) r1(y) w1(x)

r2(z)

abort

w4(z)
T4

w4(z)

T2,2

T3,3

C4

abort

T1

T2

T1,1

T5

r5(z) abort

abort

A3

A4

C5

T4,4

T5,3

Validation

C2

C1

Validation

C1

C2

r5(z)

A3

Figure 2: Sample execution of SFTM

4 Working of KSFTM
This section starts with the brief introduction of MVTO algorithm [15] and proceed to the main idea of KSTM.
After that it describes, how KSTM does not satisfy starvation freedom. Then illustrates the main idea of KSFTM
and ends with the pcode of it.

4.1 Main idea of KSTM
KSTM algorithm is based on MVTO algorithm for STMs [15] which again is similar to the MVTO algorithm
proposed for databases [3]. The proposed MVTO algorithm does not maintain any limit on the number of versions.
As a result it has to execute a separate garbage-collection procedure.

KSTM algorithm as the name suggests maintains k-versions for each tobj and uses tss (like SFTM). Each
tobj maintains all its versions as a linked-list. Each version of a tobj has three fields (1) ts which is the CTS of
the transaction that wrote to it; (2) the value of the version; (3) a list, called read-list, consisting of transactions
CTSs that read from this version.

1. read(x): Transaction ti reads from a version of x with ts j such that j is the largest ts less than i (among
the versions x), i.e. there exists no version k such that j < k < i is true. If no such version exists then ti is
aborted.

2. write(x, v): ti stores this write to value x locally in its wset.

3. tryC: This operation consists of multiple steps:

(a) ti validates each tobj x in its wset as follows:

i. ti finds a version of x with ts j such that j is the largest ts less than i (like in read).
ii. Then, among all the transactions that have read from j if there is any transaction tk such that

j < i < k and tk has already committed then ti is aborted. Otherwise, if tk is still live then tk is
aborted. Transaction ti then proceeds to validate the next tobj in its wset.

iii. If there exists no version of x with ts less than i then ti is aborted

(b) After performing the tests of Step 3(a)i, Step 3(a)ii, Step 3(a)iii over each tobjs x in ti’s wset, if ti has
not yet been aborted, then for each x: among all the versions of x currently present, the oldest version
is over-written with i and i’s value. Transaction ti is then committed.

Further details of KSTM algorithm can found in appendix.

7

Theorem 3 Any history generated by KSTM is opaque.

We prove the correctness of the algorithm by showing that the equivalent serial history, all the transactions are
ordered by their tss. But KSTM does not satisfy starvation-freedom which is illustrated in an example.

KSTM illustration: We now illustrate the working of the algorithm with an example. Figure 4 shows an exe-
cution where K = 3 and the currently considered versions for a tobj x are 5, 15 & 25. Consider version 15. Its
value is 8 and its read-list consists of transactions with tss 17, 22. The C next to id 22 indicates that t22 is already
committed. Transactions t17 is still live. In this setting suppose transaction t23 intends to commit and create a new
version. In this case, 15 < 23 < 24 and t24 is still live. Hence, t24 is aborted and a new version with ts 23 is
allowed to be created. Since 5 is the oldest version, the newly created version 23 overwrites 5. Next, consider the
case that transaction t26 intends to commit and create a new version. Since t29 is already committed, t26 is not
allowed to create a new version.

15 255

TS Val RL TS Val RL

6 9 12 26 29(C) 32

RL RL RL

Val RLTS

TS Val RL

4 8 10

RL31

Φ

23

22(C)17

TS Val RL

RL3926

ΦX

Figure 4: Sample execution of KSTM

In this example suppose t26 has the lowest ITS and let t29 have a higher ITS. But t26 still has to abort due to
commit of t29. This shows the drawback of KSTM w.r.t starvation-freedom.

Thus, although t26 has lowest ITS, it has to abort due to t29 which has higher CTS. Suppose there was no
transaction with higher CTS than t26. Then, it can be seen that t26 can not abort since it has lowest ITS and
highest CTS.

Thus, the key observation here is that a transaction with lowest ITS and highest CTS can not abort. So, we
used this property to build KSFTM.

4.2 drawback of KSTM

TS Val RL

RL3926,26

φ

15,15 25,25

TS Val RL TS Val RL

6 9 12 26 29(C) 32

RL RL RL

Val RLTS

TS Val RL

4 8 10

RL3123,23

22(C)

X φ

5,5

17

TS Val RL

RL3926,33

φ

34(C)

Figure 5: Pictorial representation of execution under KSTM

8

Figure 5 represents the execution under KSTM algorithm, in which transaction T26 is starving. First time T26
is getting aborted due to higher timestamp transaction T29 has been committed in the readlist of T25. After that
T26 retries with same G its 26 but new G cts 33. Lets assume the scenario in which before commit of T26,
transaction T34 has been committed in the readlist of T25 so, T26 returns abort again. If such scenario occurs
again and again then T26 will starve. So, we proposed one more algorithm as KSFTM that ensures starvation-free
STM. We describe a timestamp based algorithm for multi-version STM systems, K-version Starvation Free STM
(KSFTM) algorithm that is locally opaque. As the name suggests the algorithm is starvation-free. We formally
prove that our algorithm satisfies local opacity [16] using the graph characterization and starvation-freedom.

4.3 Outline of KSFTM Algorithm
We assume that in the absence of synchronization conflicts, every transaction will commit. In other words, if a
transaction is executed in a system by itself, it will not self-abort. One way to satisfy starvation freedom in such a
system is to order transactions based on their arrival time and ensure that we first execute the oldest transaction by
itself, then the next oldest and so on. While this approach would provide starvation freedom, it lacks concurrency.
Based on this, we require that

If transaction Ti does not conflict with Transaction Tj (either due to accessing common variables or
due to XXX) then (1) Ti is not aborted due to actions of Tj , and (2) Ti is not delayed due to transaction
Tj .

Our goal in KSFTM was to provide priority for transactions that begin early. However, since conflicts between
transactions is not known and we cannot abort transactions that have committed already, we need to modify this
approach. To illustrate how we can modify KSTM to obtain starvation freedom, consider an example where we
have two transactions, say T50 and T60 with WTS value to be 50 and 60 respectively. Furthermore, assume
that these transactions read and write variable x. Also, assume that the latest version is available at time 40.
We can view the transacitons in terms of two statements where the transcation first reads the value of x. These
statements are marked as r50 and r60 respectively. Likewise, transactions w50 and w60 denote the corresponding
write/tryCommit statement. Given that the reading must occur before writing/committing, there are six possi-
ble permutations of these statements. We identify these statements and the action that should be taken for that
permutation:

1. r50, w50, r60, w60 & T50 reads the version at time 40, T60 reads the version written by T50. No conflict.

2. r50, r60, w50, w60 & Conflict detected at w50. Either abort T50 or T60.

3. r50, r60, w60, w50 & Conflict detected at w50.We must abort T50.

4. r60, r50, w60, w50 & Conflict detected at w60, We must abort T50.

5. r60, r50, w50, w60 & Conflict detected at w50, Either abort T50 or T60.

6. r60, w60, r50, w50 & T50 cannot create the version and, hence, must be aborted.

Observe that in Scenario 1, there is no conflict.
In Scenario 2, we cannot allow w50, as this would create a version with timestamp 50 and T60 should have

read this value instated of the value at time 40. Since both T50 and T60 are both live, we can abort any one of them.

In Scenario 3 and 4, when transaction T60 commits, we are unaware of the intent by T50 to write to x. Hence,
we can allow T60 to commit. However, when transaction T50 tries to write and commit later, we must abort it.
Allowing version 50 to be created would be inconsistent the values read by T60.

In Scenario 5, when transaction T50 tries to commit, we detect a conflict. Hence, we must abort either T50 or
T60.

FInally, in Scenario 6, allowing T50 to write and commit x is not permitted as it would be inconsistent with
values read by T60.

9

This observation is the key to our approach to provide starvation freedom. In particular, if a transaction aborts
and is restarted, we want it to choose a higher WTS value. However, we want the transaction to choose this
value independently, i.e., without coordinating with other transactions. This will be especially useful if we cannot
identify all transactions in the system (e.g., in a distributed system).

We identify the basic structure of the algorithm. Each transaction Ti is associated with three timestamps:
1)An initial timestamp ITSi: when Ti starts for the first time, it gets an ITSi. When Ti aborts and re-starts later,
it retains same ITS.
2)Current timestamp CTSi: This is a unique timestamp alloted to Ti when it begins. It is same as ITS when Ti
starts for the first time. When Ti aborts and re-startslater, it gets a new CTS.
3)Working timestamp WTSi: Anytime, this transaction begins (either initially or after an abort), it selects a
timestamp WTSi. When Ti starts for the first time, WTSi, CTSi and ITSi are same. Goal of Ti is to read the
shared variables at time WTSi as well as create new versions at the same time. In other words, goal of Ti is to
essentially appear as it took 0 time and it executed at time WTSi. To prevent other transactions from reading
values of uncommitted transaction, each transaction performs all writes to local storage. Only when a transaction
enters the tryCommit phase, it can potentially create new versions.
WTSi = CTSi + C ∗ (CTSi − ITSi); Where, C is any constant greater or equal to than 1.
Our algorithm relies on two properties: First, when a new tranasction is initiated WTS and CTS are same. Our
second requirement is that WTS is strictly increasing. This implies that if a transaction is aborted several times
then the difference between WTS and CTS increases. For sake of simplicity, we present correctness of the
algorithm.

We proved that if a transaction has the highestWTS value and the lowest ITS value and this property remains
stable then that transaction is guaranteed to commit. In order to utilize this theorem, we need to guarantee that (1)
transaction with lowest ITS value will eventually have the highest WTS value and (2) no transaction with higher
WTS value will enter the system as long as this transaction is live.

For real time order transactions Ti and Tj , only WTS is not sufficient because it’s not always in increasing
order with respect to other real time transactions. So, we have introduced G tltli & G tutli to ensures real
time order. Figure 6 represents a history H : r1(z, 0)r3(y, 0)w1(z, 1)c1r2(x, 0)w2(x, 2)c2r3(z, 1)c3 with WTS1,
WTS2 and WTS3 as 80, 70 and 100 respectively. According to WTS order the serial schedule will be T2T1T3.
But it’s violating the the real time order between T1 and T2. So, we have used G tltl & G tutl to get the correct
serial schedule T1T3T2.

T1
r1(z, 0) w1(z, 1) C1

T2
r2(x, 0) w2(x, 2) C2

T3
r3(y, 0)

C3

r3(z, 1)

WTS1 = 80

WTS2 = 70

WTS3 = 100

Figure 6: Need of G tltl and G tutl

1. read(i, x): A transaction Ti on invoking read method for t-object x, It will search for the largest available
version but less than itself.

(a) If there exist a transaction Tj such that it successfully created a version of x with (G wtsj < G wtsi)
and j is the largest available timestamp ≤ i then increase G tltli.

i. If there exist a transaction Tk such that it successfully created a version of x with (G wtsi <
G wtsk) and k is the smallest available timestamp ≥ i then G tutli gets decremented.

ii. If G tltli is less than G tutli read(i, x) then returns the value written by Tj .
(b) Otherwise, read(i, x) returns abort.

2. writei(x, val): A Transaction Ti writes into local memory.

10

3. tryC(): On invoke of tryC() method by a transaction Ti for each t-object x, in its Wset:

(a) If there exist a transaction Tj such that it successfully created a version of x with (G wtsj < G wtsi)
and j is the largest available timestamp ≤ i then find the readlist of j and increment G tltli.

i. If Tk is in the readlist of j with (G wtsi < G wtsk) and (Tk is committed or G itsi > G itsk)
then Ti returns abort. Otherwise, Tk returns abort.

ii. If Tk is in the readlist of j with (G wtsi > G wtsk), (G tltlk ≥ G tutli) and (Tk is committed
or G itsi > G itsk) then Ti returns abort. Otherwise, Tk returns abort and G tltli = G tutli.

(b) If there exist a transaction Tj′ such that it successfully created a version of x with G wtsi < G wtsj′

and j’ is the smallest available timestamp ≥ i then G tutli gets decremented. If G tltli is greater than
G tutli then Ti returns abort.

(c) otherwise, Ti creates a new version and returns commit.

4.4 Execution under KSFTM
Figure 7 represents the execution under KSFTM algorithm which has three versions (K=3) for x t-object. All
versions are connected as linklist in which each version is having three fields: TS as timestamp, Val as value
written by the transaction and RL represents readlist i.e. all the reading transaction that has read from this verion.
TS consists of 3 fieldsG its,G cts andG wts. Whenever any transaction begins first time then all the timestamps
will be same i.e.(G its = G cts = G wts). Every time a transaction gets aborted it gets a new G cts but retains
same G its. For each transaction G wts is calculated as (G wts = 2* G cts -G its).

15,15,15 25,25,25

TS Val RL TS Val RL

6 9 12 26 29(C) 32

RL RL RL

Val RLTS

TS Val RL

4 8 10

RL3123,23,23

22(C)

X φ

5,5,5

17

TS Val RL

RL3926,33,40

φ

34(C)

TS Val RL

RL3926,26,26

φ

Figure 7: Pictorial representation of execution under KSFTM

Initially, Figure 7 is having three versions of x-tobject with timestamp 5, 15 and 25. Transaction T23 creats a
verion successfully and overwrites version with timestamp 5. After that transaction T26 wants to create a version
buts its returning abort because higher timestamp transaction T29 has been committed in the readlist of T25. So,
T26 retries with new G cts and G wts as 33 and 44 respectively and it returns commit.

5 K-Version Starvation Free STM
We describe a timestamp based algorithm for multi-version STM systems, K-version Starvation Free STM (KS-
FTM) algorithm that is locally opaque. As the name suggests the algorithm is starvation-free. We formally prove
that our algorithm satisfies opacity [10, 9] using the graph characterization and starvation-freedom.

11

5.1 Data Structures and Pseudocode
The STM system maintains a set of n transaction objects or tobjs T onto which all the reads & writes are per-
formed by the threads. We assume that all the tobjs are ordered as x1, x2, ...xn.

We start with data-structures that are local to each transaction. For each transaction Ti:

• rseti(read-set): It is a list of data tuples (d tuples) of the form 〈x, val〉, where x is the t-object and v is the
value read by the transaction Ti. We refer to a tuple in Ti’s read-set by rseti[x].

• wseti(write-set): It is a list of (d tuples) of the form 〈x, val〉, where x is the tobj to which transaction Ti
writes the value val. Similarly, we refer to a tuple in Ti’s write-set by wseti[x].

In addition to these local structures, the following shared global structures are maintained that are shared
across transactions (and hence, threads). We name all the shared variable starting with ‘G’.

• G tCntr (counter): This a numerical valued counter that is incremented when a transaction begins

For each transaction Ti we maintain the following shared time-stamps:

• G locki: A lock for accessing all the shared variables of Ti.

• G itsi (initial timestamp): It is a time-stamp assigned to Ti when it was invoked for the first time.

• G ctsi (current timestamp): It is a time-stamp when Ti is invoked again at a later time. When Ti is created
for the first time, then its G cts is same as its ITS.

• G wtsi (working timestamp): It is the time-stamp that Ti works with. It is either greater than or equal to
Ti’s G cts.

• G validi: This is a boolean variable which is initially true. If it becomes false then Ti has to be aborted.

• G statei: This is a variable which states the current value of Ti. It has three states: live, committed or
aborted.

• G tltl (transaction lower time limit): It is G cts of Ti when transaction begins. It increases as the Ti reads
further values.

• G tutl (transaction upper time limit): This field is a reducing value starting with∞ when the Ti is created.
Suppose Ti reads a version of tobj x. Then this field reduces as later versions of x are created.

For each tobj x in T , we maintain:

• x.vl (version list): It is a list consisting of version tuples (v tuple) of the form 〈ts,rl,vrt〉. The details
of the tuple are explained below.

• ts (timestmp): Here ts is the G wtsi of a committed transaction Ti that has created this version.

• val: The value of this version.

• rl (readList): rl is the read list consists of all the transactions that have read this version. Each entry in this
list is of the form 〈rts〉 where rts is the G wtsj of a transaction Tj that read this version.

• vrt (version real-time time-stamp): It is the G tltl value (which is same as G tutl) of the transaction Ti that
created this version at the time of creation of this version.

Figure 8 illustrates the how the version list and read list are managed. For simplicity, we refer to a tuple
〈j, v, rl, vu〉 in x.vl as x[j] and the corresponding elements as x[j].v etc.

The STM system consists of the following methods: init(), tbegin(), read(i, x), writei(i, x, v), tryC(i).

12

X

6 7 8 9 12 13 15111 2 3

0 5 10

VL(Version List)

RL(Read List)

rl rl rlv0 v5 v10

Figure 8: Data Structures for Maintaining Versions

Algorithm 2 STM init(): Invoked at the start of the STM system. Initializes all the tobjs used by the STM System
1: G tCntr = 1;
2: for all x in T do // All the tobjs used by the STM System
3: /* T0 is creating the first version of x: ts = 0, val = 0,rl = nil,vrt = 0 */
4: add 〈0, 0, nil, 0〉 to x.vl;
5: end for;

Algorithm 3 STM tbegin(its): Invoked by a thread to start a new transaction Ti. Thread can pass a parameter
its which is the initial timestamp when this transaction was invoked for the first time. If this is the first invocation
then its is nil. It returns the tuple 〈id,G wts,G cts〉

1: i = unique-id; // An unique id to identify this transaction. It could be same as G cts
2: // Initialize transaction specific local & global variables
3: if (its == nil) then
4: // G tCntr.get&Inc() returns the current value of G tCntr and atomically increments it
5: G itsi = G wtsi = G ctsi = G tCntr.get&Inc();
6: else
7: G itsi = its;
8: G ctsi = G tCntr.get&Inc();
9: G wtsi = G ctsi + C ∗ (G ctsi −G itsi); // C is any constant greater or equal to than 1

10: end if
11: G tltli = G ctsi; G tutli =∞;
12: rseti = wseti = null;
13: G statei = live; G validi = T ;
14: comTimei =∞;
15: return 〈i, G wtsi, G ctsi〉

13

Algorithm 4 STM read(i, x): Invoked by a transaction Ti to read tobj x. It returns either the value of x or A
1: if (x ∈ rseti) then // Check if the tobj x is in rseti
2: return rseti[x].val;
3: else if (x ∈ wseti) then // Check if the tobj x is in wseti
4: return wseti[x].val;
5: else// tobj x is not in rseti and wseti
6: lock x; lock G locki;
7: if (G validi == F) then return abort(i);
8: end if
9: /* findLTS: From x.vl, returns the largest ts value less than G wtsi. If no such version exists, it returns
nil */

10: curV er = findLTS(G wtsi, x);
11: if (curV er == nil) then return abort(i); // Proceed only if curV er is not nil
12: end if
13: /* findSTL: From x.vl, returns the smallest ts value greater than G wtsi. If no such version exists, it

returns nil */
14: nextV er = findSTL(G wtsi, x);
15: if (nextV er 6= nil) then
16: // Ensure that G tutli remains smaller than nextV er’s vrt
17: G tutli = min(G tutli, x[nextV er].vrt− 1);
18: end if
19: // G tltli should be greater than x[curV er].vrt
20: G tltli = max(G tltli, x[curV er].vrt + 1);
21: if (G tltli > G tutli) then // If the limits have crossed each other, then Ti is aborted
22: return abort(i);
23: end if
24: val = x[curV er].v; add 〈x, val〉 to rseti;
25: add Ti to x[curV er].rl;
26: unlock G locki; unlock x;
27: return val;
28: end if

Algorithm 5 STM writei(x, val): A Transaction Ti writes into local memory
1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

14

Algorithm 6 STM tryC(): Returns ok on commit else return Abort
1: // The following check is an optimization which needs to be performed again later
2: lock G locki;
3: if (G validi == F) then return abort(i);
4: end if
5: unlock G locki;
6: // Initialize smaller read list (smallRL), larger read list (largeRL), all read list (allRL) to nil
7: smallRL = largeRL = allRL = nil;
8: // Initialize previous version list (prevVL), next version list (nextVL) to nil
9: prevV L = nextV L = nil;

10: for all x ∈ wseti do
11: lock x in pre-defined order;
12: /* findSTL: returns the version with the largest ts value less than G wtsi. If no such version exists, it

returns nil. */
13: prevV er = findSTL(G wtsi, x); // prevVer: largest version smaller than G wtsi
14: if (prevV er == nil) then // There exists no version with ts value less than G wtsi
15: lock G locki; return abort(i);
16: end if
17: prevV L = prevV L ∪ prevV er; // Store the previous version in prevVL
18: allRL = allRL ∪ x[prevV er].rl; // Store the read-list of the previous version
19: // getLar: obtain the list of reading transactions of x[prevV er].rl whose G wts is greater than G wtsi
20: largeRL = largeRL ∪ getLar(G wtsi, x[prevV er].rl);
21: // getSm: obtain the list of reading transactions of x[prevV er].rl whose G wts is smaller than G wtsi
22: smallRL = smallRL ∪ getSm(G wtsi, x[prevV er].rl);
23: /* findLTS: returns the version with the smallest ts value greater than G wtsi. If no such version exists,

it returns nil. */
24: nextV er = findSTL(G wtsi, x); // prevVer: largest version smaller than G wtsi
25: if (nextV er 6= nil)) then
26: nextV L = nextV L ∪ nextV er; // Store the next version in nextVL
27: end if
28: end for// x ∈ wseti
29: relLL = allRL ∪ Ti; // Initialize relevant Lock List (relLL)
30: for all (Tk ∈ relLL) do
31: lock G lockk in pre-defined order; // Note: Since Ti is also in relLL, G locki is also locked
32: end for
33: // Verify if G validi is false
34: if (G validi == F) then return abort(i);
35: end if
36: abortRL = nil // Initialize abort read list (abortRL)
37: // Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted
38: for all (Tk ∈ largeRL) do
39: if (isAborted(Tk)) then
40: // Transaction Tk can be ignored since it is already aborted or about to be aborted
41: continue;
42: end if
43: if (G itsi < G itsk) ∧ (G statek == live) then
44: // Transaction Tk has lower priority and is not yet committed. So it needs to be aborted
45: abortRL = abortRL ∪ Tk; // Store Tk in abortRL
46: else// Transaction Ti has to be aborted
47: return abort(i);
48: end if
49: end for
50: // Ensure that G tltli is greater than vrt of the versions in prevV L
51: for all (ver ∈ prevV L) do
52: x = tobj of ver;
53: G tltli = max(G tltli, x[ver].vrt + 1);
54: end for

15

Algorithm 7 STM tryC(): Continued
55: // Ensure that vutli is less than vrt of versions in nextV L
56: for all (ver ∈ nextV L) do
57: x = tobj of ver;
58: G tutli = min(G tutli, x[ver].vrt− 1);
59: end for
60: // Store the current value of the global counter as commit time and increment it
61: comTime = G tCntr.add&Get(incrV al); // incrV al can be constant ≥ 2
62: G tutli = min(G tutli, comTime); // Ensure that G tutli is less than or equal to comTime
63: // Abort Ti if its limits have crossed
64: if (G tltli > G tutli) then return abort(i);
65: end if
66: for all (Tk ∈ smallRL) do // Iterate through smallRL to see if Tk or Ti has to aborted
67: if (isAborted(Tk)) then
68: // Transaction Tk can be ignored since it is already aborted or about to be aborted
69: continue;
70: end if
71: if (G tltlk ≥ G tutli) then // Ensure that the limits do not cross for both Ti & Tk
72: if (G statek == live) then // Check if Tk is live
73: if (G itsi < G itsk) then
74: // Transaction Tk has lower priority and is not yet committed. So it needs to be aborted
75: abortRL = abortRL ∪ Tk; // Store Tk in abortRL
76: else// Transaction Ti has to be aborted
77: return abort(i);
78: end if// (G itsi < G itsk)
79: else// (Tk is committed. Hence, Ti has to be aborted)
80: return abort(i);
81: end if// (G statek == live)
82: end if// (G tltlk ≥ G tutli)
83: end for(Tk ∈ smallRL)
84: // After this point Ti can’t abort.
85: G tltli = G tutli;
86: for all Tk ∈ abortRL do // Abort all the transactions in abortRL since Ti can’t abort
87: G validk = F ;
88: end for
89: // Having completed all the checks, Ti can be committed
90: for all (x ∈ wseti) do
91: /* Create new v tuple: G wts, val,rl,vrt for x */
92: newTuple = 〈G wtsi, wseti[x].val, nil, G tltli〉; // vl = G tltli
93: if (|x.vl| > k) then
94: replace the oldest tuple in x.vl with newTuple; // x.vl is ordered by ts
95: else
96: add a newTuple to x.vl in sorted order;
97: end if
98: end for// x ∈ wseti
99: G statei = commit;
100: unlock all variables;
101: return C;

16

Algorithm 8 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set to false implying that Ti
will be aborted soon

1: if (G validk == F) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then
2: return T ;
3: else
4: return F ;
5: end if

Algorithm 9 abort(i): Invoked by various STM methods to abort transaction Ti. It returns A
1: G validi = F ; G statei = abort;
2: unlock all variables locked by Ti;
3: return A;

5.2 Proof of Liveness
Proof Notations: Let gen(KSFTM) consist of all the histories accepted by KSFTM algorithm. In the follow
sub-section, we only consider histories that are generated by KSFTM unless explicitly stated otherwise. For
simplicity, we only consider sequential histories in our discussion below.

Consider a transaction Ti in a history H generated by KSFTM. Once it executes tbegin method, its ITS, CTS,
WTS values do not change. Thus, we denote them as itsi, ctsi, wtsi respectively for Ti. In case the context of the
history H in which the transaction executing is important, we denote these variables as H.itsi, H.ctsi, H.wtsi
respectively.

The other variables that a transaction maintains are: tltl, tutl, lock, valid, state. These values change as the
execution proceeds. Hence, we denote them as: H.tltli, H.tutli, H.locki, H.validi, H.statei. These represent
the values of tltl, tutl, lock, valid, state after the execution of last event in H . Depending on the context, we
sometimes ignore H and denote them only as: locki, validi, statei, tltli, tutli.

We approximate the system time with the value of tCntr. We denote the sys-time of history H as the value of
tCntr immediately after the last event of H . Further, we also assume that the value of C is 1 in our arguments.
But, it can be seen that the proof will work for any value greater than 1 as well.

The application invokes transactions in such a way that if the current Ti transaction aborts, it invokes a new
transaction Tj with the same ITS. We say that Ti is an incarnation of Tj in a history H if H.itsi = H.itsj . Thus
the multiple incarnations of a transaction Ti get invoked by the application until an incarnation finally commits.

To capture this notion of multiple transactions with the same ITS, we define incarSet (incarnation set) of Ti in
H as the set of all the transactions in H which have the same ITS as Ti and includes Ti as well. Formally,

H.incarSet(Ti) = {Tj |(Ti = Tj) ∨ (H.itsi = H.itsj)}

Note that from this definition of incarSet, we implicitly get that Ti and all the transactions in its incarSet of H
also belong to H . Formally, H.incarSet(Ti) ∈ H.txns.

The application invokes different incarnations of a transaction Ti in such a way that as long as an incarnation
is live, it does not invoke the next incarnation. It invokes the next incarnation after the current incarnation has got
aborted. Once an incarnation of Ti has committed, it can’t have any future incarnations. Thus, the application
views all the incarnations of a transaction as a single application-transaction.

We assign incNums to all the transactions that have the same ITS. We say that a transaction Ti starts afresh,
if Ti.incNum is 1. We say that Ti is the nextInc of Ti if Tj and Ti have the same ITS and Ti’s incNum is Tj’s
incNum + 1. Formally, 〈(Ti.nextInc = Tj) ≡ (itsi = itsj) ∧ (Ti.incNum = Tj .incNum+ 1)〉

As mentioned the objective of the application is to ensure that every application-transaction eventually com-
mits. Thus, the applications views the entire incarSet as a single application-transaction (with all the transactions
in the incarSet having the same ITS). We can say that an application-transaction has committed if in the corre-
sponding incarSet a transaction in eventually commits. For Ti in a history H , we denote this by a boolean value
incarCt (incarnation set committed) which implies that either Ti or an incarnation of Ti has committed. Formally,
we define it as H.incarCt(Ti)

H.incarCt(Ti) =

{
True (∃Tj : (Tj ∈ H.incarSet(Ti)) ∧ (Tj ∈ H.committed))

False otherwise

17

From the definition of incarCt we get the following observations & lemmas about a transaction Ti

Observation 4 Consider a transaction Ti in a history H with its incarCt being true in H . Then Ti is terminated
(either committed or aborted) in H . Formally, 〈H,Ti : (Ti ∈ H.txns) ∧ (H.incarCt(Ti)) =⇒ (Ti ∈
H.terminated)〉.

Observation 5 Consider a transaction Ti in a historyH with its incarCt being true inH1. LetH2 be a extension
of H1 with a transaction Tj in it. Suppose Tj is an incarnation of Ti. Then Tj’s incarCt is true in H2. Formally,
〈H1, H2, Ti, Tj : (H1 v H2) ∧ (H1.incarCt(Ti)) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) =⇒
(H2.incarCt(Tj))〉.

Lemma 6 Consider a history H1 with a strict extension H2. Let Ti & Tj be two transactions in H1 & H2
respectively. Let Tj not be in H1. Suppose Ti’s incarCt is true. Then ITS of Ti cannot be the same as ITS of
Tj . Formally, 〈H1, H2, Ti, Tj : (H1 @ H2) ∧ (H1.incarCt(Ti)) ∧ (Tj ∈ H2.txns) ∧ (Tj /∈ H1.txns) =⇒
(H1.itsi 6= H2.itsj)〉.

Proof. Here, we have that Ti’s incarCt is true in H1. Suppose Tj is an incarnation of Ti, i.e., their ITSs are the
same. We are given that Tj is not in H1. This implies that Tj must have started after the last event of H1.

We are also given that Ti’s incarCt is true in H1. This implies that an incarnation of Ti or Ti itself has
committed in H1. After this commit, the application will not invoke another transaction with the same ITS as Ti.
Thus, there cannot be a transaction after the last event of H1 and in any extension of H1 with the same ITS of T1.
Hence, H1.itsi cannot be same as H2.itsj . �

Now we show the liveness with the following observations, lemmas & theorems. We start with two observa-
tions about that histories of which one is an extension of the other. The following states that for any history, there
exists an extension. In other words, we assume that the STM system runs forever and does not terminate. This is
required for showing that every transaction eventually commits.

Observation 7 Consider a history H1 generated by gen(KSFTM). Then there is a history H2 in gen(KSFTM)
such that H2 is a strict extension of H1. Formally, 〈∀H1 : (H1 ∈ gen(ksftm)) =⇒ (∃H2 : (H2 ∈
gen(ksftm)) ∧ (H1 @ H2)〉.

The follow observation is about the transaction in a history and any of its extensions.

Observation 8 Given two histories H1 & H2 such that H2 is an extension of H1. Then, the set of transactions
in H1 are a subset equal to the set of transaction in H2. Formally, 〈∀H1, H2 : (H1 v H2) =⇒ (H1.txns ⊆
H2.txns)〉.

In order for a transaction Ti to commit in a history H , it has to compete with all the live transactions and all
the aborted that can become live again as a different incarnation. Once a transaction Tj aborts, another incarnation
of Tj can start and become live again. Thus Ti will have to compete with this incarnation of Tj later. Thus, we
have the following observation about aborted & committed transactions.

Observation 9 Consider an aborted transaction Ti in a history H1. Then there is an extension of H1, H2 in
which an incarnation of Ti, Tj is live and has ctsj is greater than ctsi. Formally, 〈H1, Ti : (Ti ∈ H1.aborted) =⇒
(∃Tj , H2 : (H1 v H2) ∧ (Tj ∈ H2.live) ∧ (H2.itsi = H2.itsj) ∧ (H2.ctsi < H2.ctsj))〉.

Observation 10 Consider an committed transaction Ti in a history H1. Then there is no extension of H1, in
which an incarnation of Ti, Tj is live. Formally, 〈H1, Ti : (Ti ∈ H1.committed) =⇒ (@Tj , H2 : (H1 v
H2) ∧ (Tj ∈ H2.live) ∧ (H2.itsi = H2.itsj))〉.

Lemma 11 Consider a history H1 and its extension H2. Let Ti, Tj be in H1, H2 respectively such that they are
incarnations of each other. If WTS of Ti is less than WTS of Tj then CTS of Ti is less than CTS Tj . Formally,
〈H1, H2, Ti, Tj : (H1 @ H2) ∧ (Ti ∈ H1.txns) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.wtsi <
H2.wtsj) =⇒ (H1.ctsi < H2.ctsj)〉

Proof. Here we are given that
H1.wtsi < H2.wtsj (1)

The definition of WTS of Ti is: H1.wtsi = H1.ctsi +C ∗ (H1.ctsi−H1.itsi. Substituting for c to be 1, we
get that H1.wtsi = 2 ∗H1.ctsi −H1.itsi. Combining this Eqn(1), we get that

2 ∗H1.ctsi −H1.itsi < 2 ∗H2.ctsj −H2.itsj
Ti∈H2.incarSet(Tj)−−−−−−−−−−−−−→
H1.itsi=H2.itsj

H1.ctsi < H2.ctsj . �

18

Lemma 12 Consider a live transaction Ti in a history H1 with its wtsi less than a constant α. Then there
is a strict extension of H1, H2 in which an incarnation of Ti, Tj is live with WTS greater than α. Formally,
〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.wtsi < α) =⇒ (∃Tj , H2 : (H1 v H2) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ ((Tj ∈
H2.committed) ∨ ((Tj ∈ H2.live) ∧ (H2.wtsj > α))))〉.

Proof. The proof comes the behavior of an application-transaction. The application keeps invoking a transaction
with the same ITS until it commits. Thus the transaction Ti which is live in H1 will eventually terminate with an
abort or commit. If it commits, H2 could be any history after the commit of H2.

On the other hand if Ti is aborted, as seen in Observation 9 it will be invoked again or reincarnated with
another CTS and WTS. It can be seen that CTS is always increasing. As a result, the WTS is also increasing. Thus
eventually the WTS will become greater α. Hence, we have that either an incarnation of Ti will get committed or
will eventually have WTS greater than or equal to α. �

Next we have a lemma about CTS of a transaction and the sys-time of a history.

Lemma 13 Consider a transaction Ti in a history H . Then, we have that CTS of Ti will be less than or equal to
sys-time of H . Formally, 〈Ti, H1 : (Ti ∈ H.txns) =⇒ (H.ctsi ≤ H.sys-time)〉.

Proof. We get this lemma by observing the methods of the STM System that increment the tCntr which are tbegin
and tryC. It can be seen that CTS of Ti gets assigned in the tbegin method. So if the last method of H is the tbegin
of Ti then we get that CTS of Ti is same as sys-time of H . On the other hand if some other method got executed
in H after tbegin of Ti then we have that CTS of Ti is less than sys-time of H . Thus combining both the cases,
we get that CTS of Ti is less than or equal to as sys-time of H , i.e., (H.ctsi ≤ H.sys-time) �

From this lemma, we get the following corollary which is the converse of the lemma statement

Corollary 14 Consider a transaction Ti which is not in a history H1 but in an strict extension of H1, H2.
Then, we have that CTS of Ti is greater than the sys-time of H . Formally, 〈Ti, H1, H2 : (H1 @ H2) ∧ (Ti /∈
H1.txns) ∧ (Ti ∈ H2.txns) =⇒ (H2.ctsi > H1.sys-time)〉.

Now, we have lemma about the methods of KSFTM completing in finite time.

Lemma 15 If all the locks are fair and the underlying system scheduler is fair then all the methods of KSFTM
will eventually complete.

Proof. It can be seen that in any method, whenever a transaction Ti obtains multiple locks, it obtains locks in the
same order: first lock relevant tobjs in a pre-defined order and then lock relevant G locks again in a predefined
order. Since all the locks are obtained in the same order, it can be seen that the methods of KSFTM will not
deadlock.

It can also be seen that none of the methods have any unbounded while loops. All the loops in tryC method
iterate through all the tobjs in the write-set of Ti. Moreover, since we assume that the underlying scheduler is fair,
we can see that no thread gets swapped out infinitely. Finally, since we assume that all the locks are fair, it can be
seen all the methods terminate in finite time. �

Theorem 16 Every transaction either commits or aborts in finite time.

Proof. This theorem comes directly from the Lemma 15. Since every method of KSFTM will eventually complete,
all the transactions will either commit or abort in finite time. �

From this theorem, we get the following corollary which states that the maximum lifetime of any transaction is L.

Corollary 17 Any transaction Ti in a history H will either commit or abort before the sys-time of H crosses
ctsi + L.

The following lemma connects WTS and ITS of two transactions, Ti, Tj .

Lemma 18 Consider a history H1 with two transactions Ti, Tj . Let Ti be in H1.live. Then for Tj , we have that
〈H,Ti, Tj : ({Ti, Tj} ⊆ H.txns) ∧ (Ti ∈ H.live) ∧ (H.wtsj ≥ H.wtsi) =⇒ (H.itsi + 2L ≥ H.itsj)〉.

19

Proof. Since Ti is live in H1, from Corollary 17, we get that it terminates before the system time, tCntr becomes
ctsi + L. Thus, sys-time of history H1 did not progress beyond ctsi + L. Hence, for any other transaction Tj
(which is either live or terminated) in H1, it must have started before sys-time has crossed ctsi + L. Formally
〈ctsj ≤ ctsi + L〉.

Note that we have defined WTS of a transaction Tj as: wtsj = (ctsj +C ∗(ctsj− itsj)). Now, let us consider
the difference of the WTSs of both the transactions.
wtsj − wtsi = (ctsj + C ∗ (ctsj − itsj))− (ctsi + C ∗ (ctsi − itsi))
= (C + 1)(ctsj − ctsi)− C(itsj − itsi)
≤ −(C + 1)L− C(itsi − itsj) [∵ ctsj ≤ ctsi + L]
= C(itsj − itsi)− (C + 1)L
= itsj − itsi − 2L [∵ C = 1]

Thus, we have that: 〈(itsj − itsi − 2L) ≥ (wtsj − wtsi)〉. This gives us that
((wtsj − wtsi) ≥ 0) =⇒ ((itsi + 2L− itsj) ≥ 0).
From the above implication we get that, (wtsj ≥ wtsi) =⇒ (itsi + 2L ≥ itsj).

�

It can be seen that KSFTM algorithm gives preference to transactions with lower ITS to commit. To understand
this notion of preference, we define a few notions of enablement of a transaction Ti in a history H . We start with
the definition of itsEnabled as:

Definition 1 We say Ti is itsEnabled in H if for all transactions Tj with ITS lower than ITS of Ti in H have
incarCt to be true. Formally,

H.itsEnabled(Ti) =

{
True (Ti ∈ H.live) ∧ (∀Tj ∈ H.txns : (H.itsj < H.itsi) =⇒ (H.incarCt(Tj)))

False otherwise

The follow lemma states that once a transaction Ti becomes itsEnabled it continues to remain so until it terminates.

Lemma 19 Consider two histories H1 and H2 with H2 being a extension of H1. Let a transaction Ti being live
in both of them. Suppose Ti is itsEnabled in H1. Then Ti is itsEnabled in H2 as well. Formally, 〈H1, H2, Ti :
(H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Ti ∈ H2.live) ∧ (H1.itsEnabled(Ti)) =⇒ (H2.itsEnabled(Ti))〉.

The following lemma deals with a committed transaction Ti and any transaction Tj that terminates later. In
the following lemma, incrV al is any constant greater than or equal to 2.

Lemma 20 Consider a history H with two transactions Ti, Tj in it. Suppose transaction Ti commits before Tj
terminates (either by commit or abort) in H . Then comTimei is less than comTimej by at least incrV al.
Formally, 〈H, {Ti, Tj} ∈ H.txns : (tryCi <H term-opj) =⇒ (comTimei + incrV al ≤ comTimej)〉.

Proof. When Ti commits, let the value of the global tCntr be α. It can be seen that in tbegin method, comTimej
get initialized to∞. The only place where comTimej gets modified is at Line 61 of tryC. Thus if Tj gets aborted
before executing tryC method or before this line of tryC we have that comTimej remains at ∞. Hence in this
case we have that 〈comTimei + incrV al < comTimej〉.

If Tj terminates after executing Line 61 of tryC method then comTimej is assigned a value, say β. It can
be seen that β will be greater than α by at least incrV al due to the execution of this line. Thus, we have that
〈α+ incrV al ≤ β〉 �

The following lemma connects the G tltl and comTime of a transaction Ti.

Lemma 21 Consider a history H with a transaction Ti in it. Then in H , tltli will be less than or equal to
comTimei. Formally, 〈H, {Ti} ∈ H.txns : (H.tltli ≤ H.comTimei)〉.

Proof. Consider the transaction Ti. In tbegin method, comTimei get initialized to ∞. The only place where
comTimei gets modified is at Line 61 of tryC. Thus if Ti gets aborted before this line or if Ti is live we have that
(tltli ≤ comTimei). On executing Line 61, comTimei gets assigned to some finite value and it does not change
after that.

It can be seen that tltli gets initialized to ctsi in Line 5 of tbegin method. In that line, ctsi reads tCntr and
increments it atomically. Then in Line 61, comTimei gets assigned the value of tCntr after incrementing it.

20

Thus, we clearly get that ctsi(= tltli initially) < comTimei. Then tltli gets updated on Line 20 of read, Line 53
and Line 85 of tryC methods. Let us analyze them case by case assuming that tltli was last updated in each of
these methods before the termination of Ti:

1. Line 20 of read method: Suppose this is the last line where tltli updated. Here tltli gets assigned to 1 +
vrt of the previously committed version which say was created by a transaction Tj . Thus, we have the
following equation,

tltli = 1 + x[j].vrt (2)

It can be seen that x[j].vrt is same as tltlj when Tj executed Line 92 of tryC. Further, tltlj in turn is same
as tutlj due to Line 85 of tryC. From Line 62, it can be seen that tutlj is less than or equal to comTimej
when Tj committed. Thus we have that

x[j].vrt = tltlj = tutlj ≤ comTimej (3)

It is clear that from the above discussion that Tj executed tryC method before Ti terminated (i.e. tryCj <H1

term-opi). From Eqn(2) and Eqn(3), we get

tltli ≤ 1 + comTimej < 2 + comTimej
incrV al≥2−−−−−−−→ tltli < incrV al + comTimej

Lemma 20−−−−−−−→ tltli <
comTimei

2. Line 53 of tryC method: The reasoning in this case is very similar to the above case.

3. Line 85 of tryC method: In this line, tltli is made equal to tutli. Further, in Line 62, tutli is made lesser
than or equal to comTimei. Thus combing these, we get that tltli ≤ comTimei. It can be seen that the
reasoning here is similar in part to Case 1.

Hence, in all the three cases we get that 〈tltli ≤ comTimei〉. �

The following lemma connects the G tutl,comTime of a transaction Ti with WTS of a transaction Tj that has
already committed.

Lemma 22 Consider a history H with a transaction Ti in it. Suppose tutli is less than comTimei. Then, there
is a committed transaction Tj in H such that wtsj is greater than wtsi. Formally, 〈H ∈ gen(KSFTM), {Ti} ∈
H.txns : (H.tutli < H.comTimei) =⇒ (∃Tj ∈ H.committed : H.wtsj > H.wtsi)〉.

Proof. It can be seen that G tutli initialized in tbegin method to∞. tutli is updated in Line 17 of read method,
Line 58 & Line 62 of tryC method. If Ti executes Line 17 of read method and/or Line 58 of tryC method then
tutli gets decremented to some value less than∞, say α. Further, it can be seen that in both these lines the value
of tutli is possibly decremented from∞ because of nextV er (or ver), a version of x whose ts is greater than
Ti’s WTS. This implies that some transaction Tj , which is committed in H , must have created nextV er (or ver)
and wtsj > wtsi.

Next, let us analyze the value of α. It can be seen that α = x[nextV er/ver].vrt−1 where nextV er/ver was
created by Tj . Further, we can see when Tj executed tryC, we have that x[nextV er].vrt = tltlj (from Line 92).
From Lemma 21, we get that tltlj ≤ comTimej . This implies that α < comTimej . Now, we have that Tj has
already committed before the termination of Ti. Thus from Lemma 20, we get that comTimej < comTimei.
Hence, we have that,

α < comTimei (4)

Now let us consider Line 62 executed by Ti which causes tutli to change. This line will get executed only after
both Line 17 of read method, Line 58 of tryC method. This is because every transaction executes tryC method
only after read method. Further within tryC method, Line 62 follows Line 58.

There are two sub-cases depending on the value of tutli before the execution of Line 62: (i) If tutli was∞
and then get decremented to comTimei upon executing this line, then we get comTimei = tutli. Thus, we can
ignore this case. (ii) Suppose the value of tutli before executing Line 62 was α. Then from Eqn(4) we get that
tutli remains at α. This implies that a transaction Tj committed such that wtsj > wtsi. �

The following lemma connects the G tltl of a committed transaction Tj and comTime of a transaction Ti that
commits later.

21

Lemma 23 Consider a history H1 with transactions Ti, Tj in it. Suppose Tj is committed and Ti is live in
H1. Then in any extension of H1, say H2, tltlj is less than or equal to comTimei. Formally, 〈H1, H2 ∈
gen(KSFTM), {Ti, Tj} ⊆ H1, H2.txns : (H1 v H2) ∧ (Tj ∈ H1.committed) ∧ (Ti ∈ H1.live) =⇒
(H2.tltlj < H2.comTimei)〉.

Proof. As observed in the previous proof of Lemma 21, if Ti is live or aborted in H2, then its comTime is∞. In
both these cases, the result follows.

If Ti is committed in H2 then, one can see that comTime of Ti is not ∞. In this case, it can be seen that
Tj committed before Ti. Hence, we have that comTimej < comTimei. From Lemma 21, we get that tltlj ≤
comTimej . This implies that tltlj < comTimei.

�

In the following sequence of lemmas, we identify the condition by when a transaction will commit.

Lemma 24 Consider two histories H1, H3 such that H3 is a strict extension of H1. Let Ti be a transaction in
H1.live such that Ti itsEnabled in H1 and G validi flag is true in H1. Suppose Ti is aborted in H3. Then there
is a historyH2 which is an extension of H1 (and could be same asH1) such that (1) Transaction Ti is live inH2;
(2) there is a transaction Tj that is live in H2; (3) H2.wtsj is greater than H2.wtsi; (4) Tj is committed in H3.
Formally, 〈H1, H3, Ti : (H1 @ H3) ∧ (Ti ∈ H1.live) ∧ (H1.validi = True) ∧ (H1.itsEnabled(Ti)) ∧ (Ti ∈
H3.aborted)) =⇒ (∃H2, Tj : (H1 v H2 @ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈ H2.txns) ∧ (H2.wtsi <
H2.wtsj) ∧ (Tj ∈ H3.committed))〉.

Proof. Here Ti is itsEnabled in H1. Since it is live in H2, from Lemma 19, we get that Ti is itsEnabled in H2 as
well. Note that H2 could be same as H1 as well.

To show this lemma, w.l.o.g we assume that Ti on executing either read or tryC in H2 gets aborted resulting
in H3. Let us sequentially consider all the lines where a Ti could abort. In H2, Ti executes one of the following
lines and is aborted in H3. We start with tryC method.

1. STM tryC:

(a) Line 3 : This line invokes abort() method on Ti which releases all the locks and returns A to the
invoking thread. Here Ti is aborted because its valid flag, is set to false by some other transaction,
say Tj , in its tryC algorithm. This can occur in Lines: 45, 75 where Ti is added to Tj’s abortRL set.
Later in Line 87, Ti’s valid flag is set to false. Note that Ti’s valid is true (after the execution of the
last event) in H1. Thus, Ti’s valid flag must have been set to false in an extension of H1, which we
denote as H2.
This can happen only if in both the above cases, Tj is live in H2 and its ITS is less than Ti’s ITS.
But we have that Ti’s itsEnabled in H2. As a result, it has the smallest among all live and aborted
transactions of H2. Hence, there cannot exist such a Tj which is live and H2.itsj < H2.itsi. Thus,
this case is not possible.

(b) Line 15: This line is executed in H2 if there exists no version of x whose ts is less than Ti’s WTS.
This implies that all the versions of x have tss greater than wtsi. Thus the transactions that created
these versions have WTS greater than wtsi and have already committed inH2. Let Tj create one such
version. Hence, we have that 〈(Tj ∈ H2.committed) =⇒ (Tj ∈ H3.committed)〉 since H3 is an
extension of H2.

(c) Line 34 : This case is similar to Case 1a, i.e., Line 3.

(d) Line 47 : In this line, Ti is aborted as some other transaction Tj in Ti’s largeRL has committed. Any
transaction in Ti’s largeRL has WTS greater than Ti’s WTS. This implies that Tj is already committed
in H2 and hence committed in H3 as well.

(e) Line 64 : In this line, Ti is aborted because its lower limit has crossed its upper limit. First, let us
consider tutli. It is initialized in tbegin method to ∞. As long as it is ∞, these limits cannot cross
each other. Later, tutli is updated in Line 17 of read method, Line 58 & Line 62 of tryC method.
Suppose tutli gets decremented to some value α by one of these lines.
Now there are two cases here: (1) Suppose tutli gets decremented to comTimei due to Line 62 of
tryC method. Then from Lemma 21, we have tltli ≤ comTimei = tutli. Thus in this case, Ti will
not abort. (2) tutli gets decremented to α which is less than comTimei. Then from Lemma 22, we

22

get that there is a committed transaction Tj in H2.committed such that wtsj > wtsi. This implies
that Tj is in H3.committed.

(f) Line 77: This case is similar to Case 1a, i.e., Line 3.

(g) Line 80 : In this case, Tk is in Ti’s smallRL and is committed in H1. And, from this we have that

H2.tutli ≤ H2.tltlk (5)

From the assumption of this case, we have that Tk commits before Ti. Thus, from Lemma 23, we
get that comTimek < comTimei. From Lemma 21, we have that tltlk < comTimek. Thus, we
get that tltlk < comTimei. Combining this with the inequality of this case Eqn(5), we get that
tutli < comTimei.
Combining this inequality with Lemma 22, we get that there is a transaction Tj inH2.committed and
H2.wtsj > H2.wtsi. This implies that Tj is in H3.committed as well.

2. STM read:

(a) Line 7: This case is similar to Case 1a, i.e., Line 3

(b) Line 22: The reasoning here is similar to Case 1e, i.e., Line 64.

�

The interesting aspect of the above lemma is that it gives us a insight as to when a Ti will get commit. If
an itsEnabled transaction Ti aborts then it is because of another transaction Tj with WTS higher than Ti has
committed. To precisely capture this, we define two more notions of a transaction being enabled cdsEnabled and
finEnabled. To define these notion, we define a few other auxiliary notions. We start with affectSet,

H.affectSet(Ti) = {Tj |(Tj ∈ H.txns) ∧ (H.itsj < H.itsi + 2 ∗ L)}

From the description of KSFTM algorithm and Lemma 18, it can be seen that a transaction Ti’s commit can
depend on committing of transactions (or their incarnations) which have their ITS less than ITS of Ti + 2 ∗L, Ti’s
affectSet. We capture this notion of dependency for a transaction Ti in a history H as commit dependent set or cds
as: the set of all transactions Tj in Ti’s affectSet that do not have their incarCt as true. Formally,

H.cds(Ti) = {Tj |(Tj ∈ H.affectSet(Ti)) ∧ (¬H.incarCt(Tj))}

Based on this definition of cds, we next define the notion of cdsEnabled.

Definition 2 We say that transaction Ti is cdsEnabled if the following conditions hold true (1) Ti is live in H; (2)
CTS of Ti is greater than or equal to ITS of Ti + 2 ∗ L; (3) cds of Ti is empty, i.e., for all transactions Tj in H
with ITS lower than ITS of Ti + 2 ∗ L in H have their incarCt to be true. Formally,

H.cdsEnabled(Ti) =

{
True (Ti ∈ H.live) ∧ (H.ctsi ≥ H.itsi + 2 ∗ L) ∧ (H.cds(Ti) = φ)

False otherwise

The meaning and usefulness of these definitions will become clear in the course of the proof. In fact, we later
show that once the transaction Ti is cdsEnabled, it will eventually commit. We will start with a few lemmas about
these definitions.

Lemma 25 Consider a transaction Ti in a history H . If Ti is cdsEnabled then Ti is also itsEnabled. Formally,
〈H,Ti : (Ti ∈ H.txns) ∧ (H.cdsEnabled(Ti)) =⇒ (H.itsEnabled(Ti))〉.

Proof. If Ti is cdsEnabled in H then it implies that Ti is live in H . From the definition of cdsEnabled, we get
that H.cds(Ti) is φ implying that any transaction Tj with itsk less than itsi + 2 ∗ L has its incarCt flag as true in
H . Hence, for any transaction Tk having itsk less than itsi, H.incarCt(Tk) is also true. This shows that Ti is
itsEnabled in H . �

23

Lemma 26 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an extension of H1,
H2 with a transaction Tj in it such that Ti is an incarnation of Tj . Let Tk be a transaction in the affectSet
of Tj in H2 Then Tk is also in the set of transaction of H1. Formally, 〈H1, H2, Ti, Tj , Tk : (H1 v H2) ∧
(H1.cdsEnabled(Ti)) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (Tk ∈ H2.affectSet(Tj)) =⇒ (Tk ∈ H1.txns)〉

Proof. Since Ti is cdsEnabled in H1, we get (from the definition of cdsEnabled) that

H1.ctsi ≥ H1.itsi + 2 ∗ L (6)

Here, we have that Tk is in H2.affectSet(Tj). Thus from the definition of affectSet, we get that

H2.itsk < H2.itsj + 2 ∗ L (7)

Since Ti and Tj are incarnations of each other, their ITS are the same. Combining this with Eqn(7), we get
that H2.itsk < H1.itsi + 2 ∗ L.

H2.itsk < H1.itsi + 2 ∗ L (8)

We now show this proof through contradiction. Suppose Tk is not in H1.txns. Then there are two cases:

• No incarnation of Tk is in H1: This implies that Tk starts afresh after H1. Since Tk is not in H1, from
Corollary 14 we get that

H2.ctsk > H1.sys-time Tk starts afresh−−−−−−−−−−−→
H2.ctsk=H2.itsk

H2.itsk > H1.sys-time
(Ti∈H1)∧Lemma 13−−−−−−−−−−−−−−→
H1.sys-time≥H1.ctsi

H2.itsk >

H1.ctsi
Eqn(6)−−−−→ H2.itsk > H1.itsi + 2 ∗ L H1.itsi=H2.itsj−−−−−−−−−−−→ H2.itsk > H2.itsj + 2 ∗ L

But this result contradicts with Eqn(7). Hence, this case is not possible.

• There is an incarnation of Tk, Tl in H1: In this case, we have that

H1.itsl = H2.itsk (9)

Now combing this result with Eqn(8), we get that H1.itsl < H1.itsi + 2 ∗ L. This implies that Tl is in
affectSet of Ti. Since Ti is cdsEnabled, we get that Tl’s incarCt must be true.

We also have that Tk is not in H1 but in H2 where H2 is an extension of H1. Since H2 has some events
more than H1, we get that H2 is a strict extension of H1.

Thus, we have that, (H1 @ H2) ∧ (H1.incarCt(Tl)) ∧ (Tk ∈ H2.txns) ∧ (Tk /∈ H1.txns). Combining
these with Lemma 6, we get that (H1.itsl 6= H2.itsk). But this result contradicts Eqn(9). Hence, this case
is also not possible.

Thus from both the cases we get that Tk should be in H1. Hence proved. �

Lemma 27 Consider two histories H1, H2 H2 is an extension of H1. Let Ti, Tj , Tk be three transactions such
that Ti is inH1.txns while Tj , Tk are inH2.txns. Suppose we have that (1) ctsi is greater than itsi+2∗L inH1;
(2) Ti is an incarnation of Tj; (3) Tk is in affectSet of Tj in H2. Then an incarnation of Tk, say Tl (which could
be same as Tk) is in H1.txns. Formally, 〈H1, H2, Ti, Tj , Tk : (H1 v H2) ∧ (Ti ∈ H1.txns) ∧ ({Tj , Tk} ∈
H2.txns)∧ (H1.ctsi > H1.itsi + 2 ∗L)∧ (Ti ∈ H2.incarSet(Tj))∧ (Tk ∈ H2.affectSet(Tj)) =⇒ (∃Tl :
(Tl ∈ H2.incarSet(Tk)) ∧ (Tl ∈ H1.txns))〉

Proof.
This proof is similar to the proof of Lemma 26. We are given that

H1.ctsi ≥ H1.itsi + 2 ∗ L (10)

We now show this proof through contradiction. Suppose no incarnation of Tk is in H1.txns. This implies that
Tk must have started afresh in some history after H1. Thus, we have that

H3.itsk > H1.sys-time Lemma 13−−−−−−−→ H3.itsk > H1.ctsi
Eqn(10)−−−−−→ H3.itsk > H1.itsi + 2 ∗L H1.itsi=H2.itsj−−−−−−−−−−−→

H3.itsk > H2.itsj + 2 ∗ L affectSet−−−−−−−→
definition

Tk /∈ H2.affectSet(Tj)

But we are given that Tk is in affectSet of Tj in H2. Hence, it is not possible that Tk started afresh after H1.
Thus, Tk must have a incarnation in H1. �

24

Lemma 28 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an extension of H1, H2
with a transaction Tj in it such that Tj is an incarnation of Ti in H2. Then affectSet of Ti in H1 is same as the
affectSet of Tj inH2. Formally, 〈H1, H2, Ti, Tj : (H1 v H2)∧(H1.cdsEnabled(Ti))∧(Tj ∈ H2.txns)∧(Ti ∈
H2.incarSet(Tj)) =⇒ ((H1.affectSet(Ti) = H2.affectSet(Tj)))〉

Proof. From the definition of cdsEnabled, we get that Ti is inH1.txns. Now to prove that affectSets are the same,
we have to show that (H1.affectSet(Ti) ⊆ H2.affectSet(Tj)) and (H1.affectSet(Tj) ⊆ H2.affectSet(Ti)).
We show them one by one:

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk in H1.affectSet(Ti). We have to
show that Tk is also in H2.affectSet(Tj). From the definition of affectSet, we get that

Tk ∈ H1.txns (11)

Combining Eqn(11) with Observation 8, we get that

Tk ∈ H2.txns (12)

From the definition of ITS, we get that
H1.itsk = H2.itsk (13)

Since Ti, Tj are incarnations we have that .

H1.itsi = H2.itsj (14)

From the definition of affectSet, we get that,

H1.itsk < H1.itsi + 2 ∗ L Eqn(13)−−−−−→ H2.itsk < H1.itsi + 2 ∗ L Eqn(14)−−−−−→ H2.itsk < H2.itsj + 2 ∗ L
Combining this result with Eqn(12), we get that Tk ∈ H2.affectSet(Tj).

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk in H2.affectSet(Tj). We have to
show that Tk is also in H1.affectSet(Ti). From the definition of affectSet, we get that Tk ∈ H2.txns.

Here, we have that (H1 v H2)∧(H1.cdsEnabled(Ti))∧(Ti ∈ H2.incarSet(Tj))∧(Tk ∈ H2.affectSet(Tj)).
Thus from Lemma 26, we get that Tk ∈ H1.txns. Now, this case is similar to the above case. It can be seen that
Equations 11, 12, 13, 14 hold good in this case as well.

Since Tk is in H2.affectSet(Tj), we get that

H2.itsk < H2.itsi + 2 ∗ L Eqn(13)−−−−−→ H1.itsk < H2.itsj + 2 ∗ L Eqn(14)−−−−−→ H1.itsk < H1.itsi + 2 ∗ L
Combining this result with Eqn(11), we get that Tk ∈ H1.affectSet(Ti). �

Next we explore how a cdsEnabled transaction remains cdsEnabled in the future histories once it becomes true.

Lemma 29 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two transac-
tions which are live in H1 and H2 respectively. Let Ti be an incarnation of Tj and ctsi is less than ctsj . Suppose
Ti is cdsEnabled in H1. Then Tj is cdsEnabled in H2 as well. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈
H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj) ∧ (H1.cdsEnabled(Ti)) =⇒
(H2.cdsEnabled(Tj))〉.

Proof. We have that Ti is live in H1 and Tj is live in H2. Since Ti is cdsEnabled in H1, we get (from the
definition of cdsEnabled) that

H1.ctsi ≥ H2.itsi + 2 ∗ L (15)

We are given that ctsi is less than ctsj and Ti, Tj are incarnations of each other. Hence, we have that

H2.ctsj > H1.ctsi

> H1.itsi + 2 ∗ L [From Eqn(15)]
> H2.itsj + 2 ∗ L [itsi = itsj]

25

Thus we get that ctsj > itsj + 2 ∗L. We have that Tj is live in H2. In order to show that Tj is cdsEnabled in
H2, it only remains to show that cds of Tj in H2 is empty, i.e., H2.cds(Tj) = φ. The cds becomes empty when
all the transactions of Tj’s affectSet in H2 have their incarCt as true in H2.

Since Tj is live inH2, we get that Tj is inH2.txns. Here, we have that (H1 v H2)∧(Tj ∈ H2.txns)∧(Ti ∈
H2.incarSet(Tj))∧ (H1.cdsEnabled(Ti)). Combining this with Lemma 28, we get that H1.affectSet(Ti) =
H2.affectSet(Tj).

Now, consider a transaction Tk in H2.affectSet(Tj). From the above result, we get that Tk is also in
H1.affectSet(Ti). Since Ti is cdsEnabled in H1, i.e., H1.cds(Ti) is true, we get that H1.incarSet(Tk)
is true. Combining this with Observation 5, we get that Tk must have its incarCt as true in H2 as well, i.e.
H2.incarSet(Tk). This implies that all the transactions in Tj’s affectSet have their incarCt flags as true in H2.
Hence the H2.cds(Tj) is empty. As a result, Tj is cdsEnabled in H2, i.e., H2.cdsEnabled(Tj).

�

Having defined the properties related to cdsEnabled, we start defining notions for finEnabled. Next, we define
maxWTS for a transaction Ti in H which is the transaction Tj with the largest WTS in Ti’s incarSet. Formally,

H.maxWTS(Ti) = max{H.wtsj |(Tj ∈ H.incarSet(Ti))}

From this definition of maxWTS, we get the following simple observation.

Observation 30 For any transaction Ti in H , we have that wtsi is less than or to H.maxWTS(Ti). Formally,
H.wtsi ≤ H.maxWTS(Ti).

Next, we combine the notions of affectSet and maxWTS to define affWTS. It is the maximum of maxWTS of
all the transactions in its affectSet. Formally,

H.affWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.affectSet(Ti))}

Having defined the notion of affWTS, we get the following lemma relating the affectSet and affWTS of two
transactions.

Lemma 31 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two transac-
tions which are live inH1 andH2 respectively. Suppose the affectSet of Ti inH1 is same as affectSet of Tj inH2.
Then the affWTS of Ti in H1 is same as affWTS of Tj in H2. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈
H1.txns) ∧ (Tj ∈ H2.txns) ∧ (H1.affectSet(Ti) = H2.affectSet(Tj)) =⇒ (H1.affWTS(Ti) =
H2.affWTS(Tj))〉.

Proof.
From the definition of affWTS, we get the following equations

H.affWTS(Ti) = max{H.maxWTS(Tk)|(Tk ∈ H1.affectSet(Ti))} (16)

H.affWTS(Tj) = max{H.maxWTS(Tl)|(Tl ∈ H2.affectSet(Tj))} (17)

From these definitions, let us suppose that H1.affWTS(Ti) is H1.maxWTS(Tp) for some transaction Tp
in H1.affectSet(Ti). Similarly, suppose that H2.affWTS(Tj) is H2.maxWTS(Tq) for some transaction Tq
in H2.affectSet(Tj).

Here, we are given thatH1.affectSet(Ti) = H2.affectSet(Tj)). Hence, we get that Tp is also inH1.affectSet(Ti).
Similarly, Tq is in H2.affectSet(Tj) as well. Thus from Equations (16) & (17), we get that

H1.maxWTS(Tp) ≥ H2.maxWTS(Tq) (18)

H2.maxWTS(Tq) ≥ H1.maxWTS(Tp) (19)

Combining these both equations, we get thatH1.maxWTS(Tp) = H2.maxWTS(Tq) which in turn implies
that H1.affWTS(Ti) = H2.affWTS(Tj).

�

Finally, using the notion of affWTS and cdsEnabled, we define the notion of finEnabled

26

Definition 3 We say that transaction Ti is finEnabled if the following conditions hold true (1) Ti is live in H; (2)
Ti is cdsEnabled is H; (3) H.wtsj is greater than H.affWTS(Ti). Formally,

H.finEnabled(Ti) =

{
True (Ti ∈ H.live) ∧ (H.cdsEnabled(Ti)) ∧ (H.wtsj > H.affWTS(Ti))

False otherwise

It can be seen from this definition, a transaction that is finEnabled is also cdsEnabled. We now show that just
like itsEnabled and cdsEnabled, once a transaction is finEnabled, it remains finEnabled until it terminates. The
following lemma captures it.

Lemma 32 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two transac-
tions which are live in H1 and H2 respectively. Suppose Ti is finEnabled in H1. Let Ti be an incarnation of Tj
and ctsi is less than ctsj . Then Tj is finEnabled in H2 as well. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈
H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj) ∧ (H1.finEnabled(Ti)) =⇒
(H2.finEnabled(Tj))〉.

Proof. Here we are given that Tj is live in H2. Since Ti is finEnabled in H1, we get that it is cdsEnabled in H1
as well. Combining this with the conditions given in the lemma statement, we have that,

〈(H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj)

∧(H1.cdsEnabled(Ti))〉
(20)

Combining Eqn(20) with Lemma 29, we get that Tj is cdsEnabled in H2, i.e., H2.cdsEnabled(Tj). Now, in
order to show that Tj is finEnabled in H2 it remains for us to show that H2.wtsj > H2.affWTS(Tj).

We are given that Ti is live in H2 which in turn implies that Ti is in H1.txns. Thus changing this in Eqn(20),
we get the following

〈(H1 v H2) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj)

∧(H1.cdsEnabled(Ti))〉
(21)

Combining Eqn(21) with Lemma 28 we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (22)

We are given that H1.ctsi < H2.ctsj . Combining this with the definition of WTS, we get

H1.wtsi < H2.wtsj (23)

Since Ti is finEnabled in H1, we have that

H1.wtsi > H1.affWTS(Ti)
Eqn(23)−−−−−→ H2.wtsj > H1.affWTS(Ti)

Eqn(22)−−−−−→ H2.wtsj >
H2.affWTS(Tj)

�

Now, we show that a transaction that is finEnabled will eventually commit.

Lemma 33 Consider a live transaction Ti in a history H1. Suppose Ti is finEnabled in H1 and validi is true in
H1. Then there exists an extension of H1, H3 in which Ti is committed. Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧
(H1.validi) ∧ (H1.finEnabled(Ti)) =⇒ (∃H3 : (H1 @ H3) ∧ (Ti ∈ H3.committed))〉.

Proof. Consider a history H3 such that its sys-time being greater than ctsi + L. We will prove this lemma using
contradiction. Suppose Ti is aborted in H3.

Now consider Ti in H1: Ti is live; its valid flag is true; and is finEnabled. From the definition of finEnabled,
we get that it is also cdsEnabled. From Lemma 25, we get that Ti is itsEnabled in H1. Thus from Lemma 24, we
get that there exists an extension of H1, H2 such that (1) Transaction Ti is live in H2; (2) there is a transaction
Tj in H2; (3) H2.wtsj is greater than H2.wtsi; (4) Tj is committed in H3. Formally,

27

〈(∃H2, Tj : (H1 v H2 @ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈ H2.txns) ∧ (H2.wtsi < H2.wtsj)

∧(Tj ∈ H3.committed))〉
(24)

Here, we have that H2 is an extension of H1 with Ti being live in both of them and Ti is finEnabled in H1.
Thus from Lemma 32, we get that Ti is finEnabled in H2 as well. Now, let us consider Tj in H2. From Eqn(24),
we get that (H2.wtsi < H2.wtsj). Combining this with the observation that Ti being live in H2, Lemma 18 we
get that (H2.itsj ≤ H2.itsi + 2 ∗ L).

This implies that Tj is in affectSet of Ti in H2, i.e., (Tj ∈ H2.affectSet(Ti)). From the definition of
affWTS, we get that

(H2.affWTS(Ti) ≥ H2.maxWTS(Tj)) (25)

Since Ti is finEnabled in H2, we get that wtsi is greater than affWTS of Ti in H2.

(H2.wtsi > H2.affWTS(Ti)) (26)

Now combining Equations 25, 26 we get,

H2.wtsi > H2.affWTS(Ti) ≥ H2.maxWTS(Tj)

> H2.affWTS(Ti) ≥ H2.maxWTS(Tj) ≥ H2.wtsj [From Observation 30]

> H2.wtsj

But this equation contradicts with Eqn(24). Hence our assumption that Ti will get aborted in H3 after getting
finEnabled is not possible. Thus Ti has to commit in H3. �

Next we show that once a transaction Ti becomes itsEnabled, it will eventually become finEnabled as well and
then committed. We show this change happens in a sequence of steps. We first show that Transaction Ti which
is itsEnabled first becomes cdsEnabled (or gets committed). We next show that Ti which is cdsEnabled becomes
finEnabled or get committed. On becoming finEnabled, we have already shown that Ti will eventually commit.

Now, we show that a transaction that is itsEnabled will become cdsEnabled or committed. To show this, we
introduce a few more notations and definitions. We start with the notion of depIts (dependent-its) which is the
set of ITSs that a transaction Ti depends on to commit. It is the set of ITS of all the transactions in Ti’s cds in a
history H . Formally,

H.depIts(Ti) = {H.itsj |Tj ∈ H.cds(Ti)}

We have the following lemma on the depIts of a transaction Ti and its future incarnation Tj which states that
depIts of a Ti either reduces or remains the same.

Lemma 34 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two trans-
actions which are live in H1 and H2 respectively and Ti is an incarnation of Tj . In addition, we also have that
ctsi is greater than itsi + 2 ∗L in H1. Then, we get that H2.depIts(Tj) is a subset of H1.depIts(Ti). Formally,
〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi ≥
H1.itsi + 2 ∗ L) =⇒ (H2.depIts(Tj) ⊆ H1.depIts(Ti))〉.

Proof. Suppose H2.depIts(Tj) is not a subset of H1.depIts(Ti). This implies that there is a transaction Tk such
that H2.itsk ∈ H2.depIts(Tj) but H1.itsk /∈ H1.depIts(Tj). This implies that Tk starts afresh after H1 in
some history say H3 such that H1 @ H3 v H2. Hence, from Corollary 14 we get the following

H3.itsk > H1.sys-time Lemma 13−−−−−−−→ H3.itsk > H1.ctsi =⇒ H3.itsk > H1.itsi + 2 ∗ L H1.itsi=H2.itsj−−−−−−−−−−−→
H3.itsk > H2.itsj + 2 ∗ L affectSet,depIts−−−−−−−−−−−→

definitions
H2.itsk /∈ H2.depIts(Tj)

We started with itsk in H2.depIts(Tj) and ended with itsk not in H2.depIts(Tj). Thus, we have a contra-
diction. Hence, the lemma follows. �

Next we denote the set of committed transactions in Ti’s affectSet inH as cis (commit independent set). Formally,

H.cis(Ti) = {Tj |(Tj ∈ H.affectSet(Ti)) ∧ (H.incarCt(Tj))}

28

In other words, we have that H.cis(Ti) = H.affectSet(Ti) − H.cds(Ti). Finally, using the notion of cis we
denote the maximum of maxWTS of all the transactions in Ti’s cis as partAffWTS (partly affecting WTS). It turns
out that the value of partAffWTS affects the commit of Ti which we show in the course of the proof. Formally,
partAffWTS is defined as

H.partAffWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.cis(Ti))}

Having defined the required notations, we are now ready to show that a itsEnabled transaction will eventually
become cdsEnabled.

Lemma 35 Consider a transaction Ti which is live in a historyH1 and ctsi is greater than or equal to itsi+2∗L.
If Ti is itsEnabled inH1 then there is an extension ofH1,H2 in which an incarnation Ti, Tj (which could be same
as Ti), is either committed or cdsEnabled. Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) ∧
(H1.itsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed) ∨
(H2.cdsEnabled(Tj))))〉.

Proof. We prove this by inducting on the size of H1.depIts(Ti), n. For showing this, we define a boolean
function P (k) as follows:

P (k) =


True 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) ∧ (H1.itsEnabled(Ti))∧

(k ≥ |H1.depIts(Ti)|) =⇒ (∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti))∧
((Tj ∈ H2.committed) ∨ (H2.cdsEnabled(Tj))))〉

False otherwise
As can be seen, here P (k) means that if (1) Ti is itsEnabled in H1; (2) ctsi is greater than or equal to

itsi + 2 ∗L; (3) Ti is itsEnabled in H1 (4) the size of H1.depIts(Ti) is less than or equal to k; then there exists a
history H2 with a transaction Tj in it which is an incarnation of Ti such that Tj is either committed or cdsEnabled
in H2. We show P (k) is true for all (integer) values of k using induction.
Base Case - P (0): Here, from the definition of P (0), we get that |H1.depIts(Ti)| = 0. This in turn implies that
H1.cds(Ti) is null. Further, we are already given that Ti is live in H1 and H1.ctsi ≥ H1.itsi + 2 ∗L. Hence, all
these imply that Ti is cdsEnabled in H1.
Induction case - To prove P (k + 1) given that P (k) is true: If |H1.depIts(Ti)| ≤ k, from the induction
hypothesis P (k), we get that Tj is either committed or cdsEnabled in H2. Hence, we consider the case when

|H1.depIts(Ti)| = k + 1 (27)

Let α be H1.partAffWTS(Ti). Suppose H1.wtsi < α. Then from Lemma 12, we get that there is an
extension of H1, say H3 in which an incarnation of Ti, Tl (which could be same as Ti) is committed or is live in
H3 and has WTS greater than α. If Tl is committed then P (k + 1) is trivially true. So we consider the latter case
in which Tl is live in H3. In case H1.wtsi ≥ α, then in the analysis below follow where we can replace Tl with
Ti.

Next, suppose Tl is aborted in an extension of H3, H5. Then from Lemma 24, we get that there exists an
extension of H3, H4 in which (1) Tl is live; (2) there is a transaction Tm in H4.txns; (3) H4.wtsm > H4.wtsl
(4) Tm is committed in H5.

Combining the above derived conditions (1), (2), (3) with Lemma 21 we get that in H4,

H4.itsm ≤ H4.itsl + 2 ∗ L (28)

Eqn(28) implies that Tm is in Tl’s affectSet. Here, we have that Tl is an incarnation of Ti and we are given
that H1.ctsi ≥ H1.itsi + 2 ∗ L. Thus from Lemma 27, we get that there exists an incarnation of Tm, Tn in H1.

Combining Eqn(28) with the observations (a) Tn, Tm are incarnations; (b) Tl, Ti are incarnations; (c) Ti, Tn
are in H1.txns, we get that H1.itsn ≤ H1.itsi + 2 ∗ L. This implies that Tn is in H1.affectSet(Ti). Since
Tn is not committed in H1 (otherwise, it is not possible for Tm to be an incarnation of Tn), we get that Tn is in
H1.cds(Ti). Hence, we get that H4.itsm = H1.itsn is in H1.depIts(Ti).

From Eqn(27), we have thatH1.depIts(Ti) is k+1. From Lemma 34, we get thatH4.depIts(Ti) is a subset of
H1.depIts(Ti). Further, we have that transaction Tm has committed. ThusH4.itsm which was inH1.depIts(Ti)
is no longer in H4.depIts(Ti). This implies that H4.depIts(Ti) is a strict subset of H1.depIts(Ti) and hence
|H4.depIts(Ti)| ≤ k.

29

Since Ti and Tl are incarnations, we get that H4.depIts(Ti) = H1.depIts(Tl). Thus, we get that

|H4.depIts(Ti)| ≤ k =⇒ |H4.depIts(Tl)| ≤ k (29)

Further, we have that Tl is a later incarnation of Ti. So, we get that

H4.ctsl > H4.ctsi
given−−−→ H4.ctsl > H4.itsi + 2 ∗ L H4.itsi=H4.itsl−−−−−−−−−−→ H4.ctsl > H4.itsl + 2 ∗ L (30)

We also have that Tl is live in H4. Combining this with Equations 29, 30 and given the induction hypothesis
that P (k) is true, we get that there exists a history extension of H4, H6 in which an incarnation of Tl (also Ti),
Tp is either committed or cdsEnabled. This proves the lemma. �

Lemma 36 Consider a transaction Ti in a history H1. If Ti is cdsEnabled in H1 then there is an extension of
H1, H2 in which an incarnation Ti, Tj (which could be same as Ti), is either committed or finEnabled. Formally,
〈H1, Ti : (Ti ∈ H.live) ∧ (H1.cdsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧
((Tj ∈ H2.committed) ∨ (H2.finEnabled(Tj)))〉.

Proof. In H1, suppose H1.affWTS(Ti) is α. From Lemma 12, we get that there is a extension of H1, H2 with
a transaction Tj which is an incarnation of Ti. Here there are two cases: (1) Either Tj is committed in H2. This
trivially proves the lemma; (2) Otherwise, wtsj is greater than α.
In the second case, we get that

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H.cdsEnabled(Ti)) ∧ (Tj ∈ H2.incarSet(Ti))∧
(H1.wtsi < H2.wtsj)

(31)

Combining the above result with Lemma 11, we get that H1.ctsi < H2.ctsj . Thus the modified equation is

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H1.cdsEnabled(Ti)) ∧ (Tj ∈ H2.incarSet(Ti))∧
(H1.ctsi < H2.ctsj)

(32)

Next combining Eqn(32) with Lemma 28, we get that

H1.affectSet(Ti) = H2.affectSet(Tj) (33)

Similarly, combining Eqn(32) with Lemma 29 we get that Tj is cdsEnabled in H2 as well. Formally,

H2.cdsEnabled(Tj) (34)

Now combining Eqn(33) with Lemma 31, we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (35)

From our initial assumption we have thatH1.affWTS(Ti) isα. From Eqn(35), we get thatH2.affWTS(Tj) =
α. Further, we had earlier also seen thatH2.wtsj is greater thanα. Hence, we have thatH2.wtsj > H2.affWTS(Tj).
Combining the above result with Eqn(34),H2.cdsEnabled(Tj), we get that Tj is finEnabled, i.e.,H2.finEnabled(Tj).

�

Next, we show that every live transaction eventually become itsEnabled.

Lemma 37 Consider a history H1 with Ti be a transaction in H1.live. Then there is an extension of H1, H2
in which an incarnation of Ti, Tj (which could be same as Ti) is either committed or is itsEnabled. Formally,
〈H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj , H2 : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed) ∨
(H.itsEnabled(Ti)))〉.

30

Proof. There are two cases: (1) Either incarnation Ti, Tj is committed in H2. This trivially proves the lemma; (2)
Otherwise, Tj is itsEnabled.
Induction on ITS: There are n live transactions in H1 then either Ti or incarnation Ti, Tj is itsEnabled in H2.
Base case: Consider only one live transaction Ti in H1. So from the definition of itsEnabled, either Ti or incar-
nation Ti, Tj is itsEnabled in H2.

Induction hypothesis: The induction statement holds n transactions.

Inductive step: Now, we need to prove that The induction statement holds for (n+1) transactions.
In order to prove this, we need to show when the live transaction Tn will commit. From induction hypothesis, Tn
is itsEnabled in H2. From Lemma 35,
H1, Tn : (Tn ∈ H1.live)∧(H1.itsEnabled(Tn)) =⇒ (∃H2, Tn′ : (H1 @ H2)∧(Tn′ ∈ H2.incarSet(Tn))∧
((Tn′ ∈ H2.committed) ∨ (H2.cdsEnabled(T ′n)))).
Now, from Lemma 36,
H1, Tn : (Tn ∈ H1.live)∧(H1.cdsEnabled(Tn)) =⇒ (∃H2, Tn′ : (H1 @ H2)∧(Tn′ ∈ H2.incarSet(Tn))∧
((Tn′ ∈ H2.committed) ∨ (H2.finEnabled(T ′n))).
From Lemma 33,
H1, Tn : (Tn ∈ H1.live) ∧ (H1.validn) ∧ (H1.finEnabled(Tn)) =⇒ (∃H2 : (H1 @ H2) ∧ (Tn ∈
H2.committed)). Hence, Tn returns commit in H2. Therefore, Tn+1 is becomes itsEnabled in H2.

So, Tj is either committed or itsEnabled in H2.
Combining these lemmas gives us the result that for every live transaction Ti there is an incarnation Tj (which

could be the same as Ti) that will commit. This implies that every application-transaction eventually commits.
The follow lemma captures this notion.

Theorem 38 Consider a history H1 with Ti be a transaction in H1.live. Then there is an extension of H1, H2
in which an incarnation of Ti, Tj is committed. Formally, 〈H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj , H2 : (H1 @
H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed))〉.

Proof. As transaction Ti is live in H1. So from Lemma ??,
H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj , H2 : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed) ∨
(H.itsEnabled(Ti))).
i.e. Either Ti or incarnation Ti, Tj is either committed or itsEnabled in H2.

Now from Lemma 35, H1, Ti : (Ti ∈ H.live) ∧ (H.itsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 @ H2) ∧ (Tj ∈
H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed) ∨ (H2.cdsEnabled(Tj)))).
i.e. Either Ti or incarnation Ti, Tj is either committed or cdsEnabled in H2.
So from Lemma 36,
H1, Ti : (Ti ∈ H.live) ∧ (H1.cdsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧
((Tj ∈ H2.committed) ∨ (H2.finEnabled(Tj))).
i.e. Either Ti or incarnation Ti, Tj is either committed or finEnabled in H2.
Now from Lemma 33,
H1, Ti : (Ti ∈ H1.live) ∧ (H1.validi) ∧ (H1.finEnabled(Ti)) =⇒ (∃H3 : (H1 @ H3) ∧ (Ti ∈
H3.committed)).

Hence, incarnation of Ti, Tj is committed in H2.

6 Proof of safety
Lemma 39 Consider a historyH in gen(KSFTM) with two transactions Ti and Tj such that both their G valid
flags are true. there is an edge from Ti → Tj then G tltli < G tltlj .

Proof. There are three types of possible edges in MVSG.

1. Real-time edge: Since, transaction Ti and Tj are in real time order so comTimei < G ctsj . As we know
from Lemma 21 (G tltli ≤ comTimei). So, (G tltli ≤ CTSj).

31

We know from STM tbegin(its) method, G tltlj = G ctsj .
Eventually, G tltli < G tltlj .

2. Read-from edge: Since, transaction Ti has been committed and Tj is reading from Ti so, from Line 92
tryC(Ti), G tltli = vrti.
and from Line 20 STM read(j, x), G tltlj = max(G tltlj ,
x[curV er].vrt + 1)⇒ (G tltlj > vrti)⇒ (G tltlj > G tltli)
Hence, G tltli < G tltlj .

3. Version-order edge: Consider a triplet wj(xj)rk(xj)wi(xi) in which there are two possibilities of version
order:

(a) i� j =⇒ G wtsi < G wtsj
There are two possibilities of commit order:

i. comTimei <H comTimej : Since, Ti has been committed before Tj so G tltli = vrti. From
Line 53 of tryC(Tj), vrti < G tltl(j).
Hence, G tltli < G tltlj .

ii. comTimej <H comTimei: Since, Tj has been committed before Ti so G tltlj = vrtj . From
Line 58 of tryC(Ti), G tutli < vrtj . As we have assumed G validi is true so definitely it will
execute the Line 85 tryC(Ti) i.e. G tltli = G tutli.
Hence, G tltli < G tltlj .

(b) j� i =⇒ G wtsj < G wtsi
Again, there are two possibilities of commit order:

i. comTimej <H comTimei: Since, Tj has been committed before Ti and Tk read from Tj . There
can be two possibilities G wtsk.
A. G wtsk > G wtsi: That means Tk is in largeRL of Ti. From Line ?? of tryC(Ti), either

transaction Ti or Tk G valid flag is set to be false. If Ti returns abort then this case will not
be considered in Lemma 39. Otherwise, as Tj has already been committed and later Ti will
execute the Line 92 tryC(Ti), Hence, G tltlj < G tltli.

B. G wtsk < G wtsi: That means Tk is in smallRL of Ti. From Line 17 of read(k, x),
G tutlk < vrti and from Line 20 of read(k, x), G tltlk > vrtj . Here, Tj has already
been committed so, G tltlj = vrtj . As we have assumed G validi is true so definitely it
will execute the Line 92 tryC(Ti), G tltli = vrti.
So, G tutlk < G tltli and G tltlk > G tltlj . While considering G validk flag is true →
G tltlk < G tutlk.
Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli.

ii. comTimei <H comTimej : Since, Ti has been committed before Tj so, G tltli = vrti. From
Line 58 of tryC(Tj), G tutlj < vrti i.e. G tutlj < G tltli. Here, Tk read from Tj . So,
From Line 17 of read(k, x), G tutlk < vrti → G tutlk < G tltli from Line 20 of read(k, x),
G tltlk > vrtj . As we have assumed G validj is true so definitely it will execute the Line 92
tryC(Tj), G tltlj = vrtj .
Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli.

Lemma 40 Consider a transaction Ti in history H gen(KSFTM), if all the methods of Ti returns successful
then the G validi will definitely be true.

Proof. There are two method w.r.t. transaction Ti return successful:

1. read(i,x): Here again there are two possibilities for G validi set to be false:

(a) G validi set to be false by other transactions: Due to this Ti will terminate at Line 7 of read(i,x)
method so, Ti will never execute Line ?? of read(i,x) method. hence, read(i,x) method of Ti returns
successful then the G validi will definitely be true.

32

(b) G validi set to be false by itself: Due to this Ti will terminate at Line ?? and Line 22 of read(i,x)
method so, Ti will never execute Line ?? of read(i,x) method. hence, read(i,x) method of Ti returns
successful then the G validi will definitely be true.

2. tryC(): Here again there are two possibilities for G validi set to be false:

(a) G validi set to be false by other transactions: Due to this Ti will terminate at Line 3 and Line 34 of
tryC() method so, Ti will never execute Line ?? of tryC() method. hence, tryC() method of Ti returns
successful then the G validi will definitely be true.

(b) G validi set to be false by itself: Due to this Ti will terminate at Line 15, Line 47 and Line 80 of
tryC() method so, Ti will never execute Line ?? of read(i,x) method. hence, tryC() method of Ti
returns successful then the G validi will definitely be true.

Theorem 41 Any history H gen(KSFTM) is local opaque iff for a given version order � H, MVSG(H,�) is
acyclic.

Proof. We are proving it by contradiction, so Assuming MVSG(H,�) has cycle. From Lemma 39, For any two
transactions Ti and Tj such that both their G valid flags are true and if there is an edge from Ti→ Tj then G tltli
< G tltlj . While considering transitive case for k transactions T1, T2, T3...Tk such that G valid flags of all the
transactions are true. if there is an edge from T1→ T2→ T3→....→ Tk then G tltl1 < G tltl2 < G tltl3 <<
G tltlk.
Now, considering our assumption, MVSG(H,�) has cycle so, T1 → T2 → T3 →....→ Tk → T1 that implies
G tltl1 < G tltl2 < G tltl3 << G tltlk < G tltl1.
Hence from above assumption, G tltl1 < G tltl1 but this is impossible. So, our assumption is wrong.
Therefore, MVSG(H,�) produced by KSFTM is acyclic.

M OrderH : It stands for method order of history H in which methods of transactions are interval (consists of
invocation and response of a method) instead of dot (atomic). Because of having method as an interval, methods
of different transactions can overlap. To prove the correctness (local opacity) of our algorithm, we need to order
the overlapping methods.

Let say, there are two transactions Ti and Tj either accessing common (t-objects/G lock) or G tCntr through
operations opi and opj respectively. If res(opi) <H inv(opj) then opi and opj are in real-time order in H. So, the
M OrderH is opi → opj .

If operations are overlapping and either accessing common t-objects or sharing G lock:

1. readi(x) and readj(x): If readi(x) acquires the lock on x before readj(x) then the M OrderH is opi →
opj .

2. readi(x) and tryCj(): If they are accessing common t-objects then, let say readi(x) acquires the lock on
x before tryCj() then the M OrderH is opi → opj . Now if they are not accessing common t-objects but
sharing G lock then, let say readi(x) acquires the lock on G locki before tryCj() acquires the lock on
relLL (which consists of G locki and G lockj) then the M OrderH is opi → opj .

3. tryCi() and tryCj(): If they are accessing common t-objects then, let say tryCi() acquires the lock on
x before tryCj() then the M OrderH is opi → opj . Now if they are not accessing common t-objects but
sharing G lock then, let say tryCi() acquires the lock on relLLi before tryCj() then the M OrderH is
opi → opj .

If operations are overlapping and accessing different t-objects but sharing G tCntr counter:

1. tbegini and tbeginj : Both the tbegin are accessing shared counter variable G tCntr. If tbegini executes
G tCntr.get&Inc() before tbeginj then the M OrderH is opi → opj .

2. tbegini and tryC(j): If tbegini executesG tCntr.get&Inc() before tryC(j) then the M OrderH is opi →
opj .

Linearization: The history generated by STMs are generally not sequintial because operations of the transac-
tions are overlapping. The correctness of STMs is defined on sequintial history, inorder to show history generated
by our algorithm is correct we have to consider sequintial history. We have enough information to order the
overlapping methods, after ordering the operations will have equivalent sequintial history, the total order of the

33

operation is called linearization of the history.

Operation graph (OPG): Consider each operation as a vertex and edges as below:

1. Real time edge: If response of operation opi happen before the invocation of operation opj i.e. rsp(opi) <H
inv(opj) then there exist real time edge between opi → opj .

2. Conflict edge: It is based on L OrderH which depends on three conflicts:

(a) Common t-object: If two operations opi and opj are overlapping and accessing common t-object x.
Let say opi acquire lock first on x then L Order.opi(x) <H L Order.opj(x) so, conflict edge is opi
→ opj .

(b) Common G valid flag: If two operation opi and opj are overlapping but accessing common G valid
flag instead of t-object. Let say opi acquire lock first onG validi thenL Order.opi(x)<H L Order.opj(x)
so, conflict edge is opi→ opj .

3. Common G tCntr counter: If two operation opi and opj are overlapping but accessing common G tCntr
counter instead of t-object. Let say opi access G tCntr counter before opj then L Order.opi(x) <H
L Order.opj(x) so, conflict edge is opi → opj .

Lemma 42 All the locks in history H (L OrderH) gen(KSFTM) follows strict partial order. So, operation graph
(OPG(H)) is acyclic. If (opi→opj) in OPG, then atleast one of them will definitely true: (Fpui(α) < Lpl opj(α))
∪ (access.G tCntri <access.G tCntrj)∪ (Fpu opi(α)<access.G tCntrj)∪ (access.G tCntri <Lpl opj(α)).
Here, α can either be t-object or G valid.

Proof. we consider proof by induction, So we assummed there exist a path from op1 to opn and there is an edge
between opn to opn+1. As we described, while constructing OPG(H) we need to consider three types of edges.
We are considering one by one:

1. Real time edge between opn to opn+1:

(a) opn+1 is a locking method: In this we are considering all the possible path between op1 to opn:

i. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α))
Hence, (Fu op1(α) < Ll opn+1(α))

ii. (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn < Ll opn+1(α)). As we know if any
method is locking as well as accessing common counter then locking tobject first then access-
ing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < Ll opn+1(α))

iii. (access.G tCntr1) < (access.G tCntrn): Here, (access.G tCntrn) < Ll opn+1(α)).
So, (access.G tCntr1) < (access.G tCntrn) < Ll opn+1(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

iv. (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < Ll opn+1(α)).
So, (Fu op1(α) < (access.G tCntrn) < Ll opn+1(α)).
Hence, (Fu op1(α) < Ll opn+1(α))

v. (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
So, (access.G tCntr1) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

vi. (access.G tCntr1)<Ll opn(α)): Here, (access.G tCntrn <Ll opn+1(α)). As we know if any
method is locking as well as accessing common counter then locking tobject first then accessing
the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

(b) opn+1 is a non-locking method: Again, we are considering all the possible path between op1 to opn:

34

i. (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1).
As we know if any method is locking as well as accessing common counter then locking tobject
first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < (access.G tCntrn+1)

ii. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < (access.G tCntrn+1).
So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < (access.G tCntrn+1)
Hence, (Fu op1(α) < (access.G tCntrn+1))

iii. (access.G tCntr1) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1).
So, (access.G tCntr1) < (access.G tCntrn) < (access.G tCntrn+1).
Hence, (access.G tCntr1) < (access.G tCntrn+1).

iv. (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1).
So, (Fu op1(α) < (access.G tCntrn) < (access.G tCntrn+1).
Hence, (Fu op1(α) < (access.G tCntrn+1)

v. (access.G tCntr1) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1).
As we know if any method is locking as well as accessing common counter then locking tobject
first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (access.G tCntr1) < (access.G tCntrn+1).

vi. (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < (access.G tCntrn+1).
So, (access.G tCntr1) < Ll opn(α)) < (Fu opn(α) < (access.G tCntrn+1).
Hence, (access.G tCntr1) < (access.G tCntrn+1).

2. Conflict edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)). Ref 1.(a).i.

(b) (access.G tCntr1) < (access.G tCntrn): Here, (Fu opn(α) < Ll opn+1(α)). As we know if any
method is locking as well as accessing common counter then locking tobject first then accessing the
counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

(c) (Fu op1(α) < (access.G tCntrn): Here, (Fu opn(α) < Ll opn+1(α)). As we know if any method
is locking as well as accessing common counter then locking tobject first then accessing the counter
after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < Ll opn+1(α)).

(d) (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
Ref 1.(a).v.

3. Common counter edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1). As we know if any
method is locking as well as accessing common counter then locking tobject first then accessing the
counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < (access.G tCntrn+1).

(b) (access.G tCntr1) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1). Ref
1.(b).iii.

(c) (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).iv.

(d) (access.G tCntr1) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).v

Therefore, OPG(H, M Order) produced by KSFTM is acyclic.

Lemma 43 Any history H gen(KSFTM) with α linearization such that it respectsM OrderH then (H, α) is valid.

35

Proof. From the definition of valid history: If all the read operations of H is reading from the previously committed
transaction Tj then H is valid.
In order to prove H is valid, we are analyzing the read(i,x). so, from Line ??, it returns the largest ts value less
than G wtsi that has already been committed and return the value successfully from Line ??. If such version
created by transaction Tj found then Ti read from Tj . Otherwise, if there is no version whose WTS is less than
Ti’s WTS, then Ti returns abort.
Now, consider the base case read(i,x) is the first transaction T1 and none of the transactions has been created a
version then as we have assummed, there always exist T0 by default that has been created a version for all t-objects.
Hence, T1 reads from committed transaction T0.
So, all the reads are reading from largest ts value less than G wtsi that has already been committed. Hence, (H,
α) is valid.

Lemma 44 Any history H gen(KSFTM) with α and β linearization such that both respects M OrderH i.e.
M OrderH ⊆ α and M OrderH ⊆ β then ≺RT(H,α)= ≺

RT
(H,β).

Proof. Consider a history H gen(KSFTM) such that two transactions Ti and Tj are in real time order which
respects M OrderH i.e. tryCi < tbeginj . As α and β are linearizations of H so, tryCi <(H,α) tbeginj and
tryCi <(H,β) tbeginj . Hence in both the cases of linearizations, Ti committed before begin of Tj . So, ≺RT(H,α)=
≺RT(H,β).

Lemma 45 Any history H gen(KSFTM) with α and β linearization such that both respects M OrderH i.e.
M OrderH ⊆ α and M OrderH ⊆ β then (H,α) is local opaque iff (H,β) is local opaque.

Proof. As α and β are linearizations of history H gen(KSFTM) so, from Lemma 43 (H, α) and (H, β) are valid
histories.

Now assuming (H, α) is local opaque so we need to show (H, β) is also local opaque. Since (H, α) is local
opaque so there exists legal t-sequential history S (with respect to each aborted transactions and last committed
transaction while considering only committed transactions) which is equivalent to (H , α). As we know β is a
linearization of H so (H , β) is equivalent to some legal t-sequential history S. From the definition of local opacity
≺RT(H,α)⊆≺

RT
S . From Lemma 44, ≺RT(H,α)= ≺

RT
(H,β) that implies ≺RT(H,β)⊆≺

RT
S . Hence, (H,β) is local opaque.

Now consider the other way in which (H, β) is local opaque and we need to show (H, α) is also local opaque.
We can prove it while giving the same argument as above, by exchanging α and β.

Hence, (H,α) is local opaque iff (H,β) is local opaque.

Lemma 46 Any history H gen(KSFTM) is deadlock-free.

Proof. In our algorithm, each transaction Ti is following lock order in every method (read(x, i) and tryc()) that
are locking t-object first then G lock.

Since transaction Ti is acquiring locks on t-objects in predefined order at Line ?? of tryC() and it is also
following predefined locking order of all conflicting G lock including itself at Line ?? of tryC().

Hence, history H gen(KSFTM) is deadlock-free.

7 Discussion and Conclusion
Software Transactional Memory systems (STMs) have garnered significant interest as an elegant alternative for
addressing synchronization and concurrency issues in multi-core systems. In order to be efficient, STMs must
guarantee some progress properties. In this paper, we explored the notion of starvation-freedom [13, chap 2]
for TM systems. Gramoli et.al has proposed starvation-freedom for TM2C systems by implementing FairCM
contention manager [7].

We presented a starvation-free STM system, SV-SFTM using single versions. It is based on FOCC, a popular
algorithm in databases. SV-SFTM satisfies opacity and ensures starvation-freedom. It assures any transaction with
lowest G its will definitely commit and abort all conflicting transactions.

It was observed that more read operations succeed by keeping multiple versions of each object [15, 18].
Since SV-SFTM does not consider multiple versions, we observed that it is possible that a slow running old

36

transaction can cause several newer transactions to abort while ensuring starvation-freedom. To address this issue,
we proposed KSTM, a MVSTM that maintains fixed number of versions.

But, KSTM does not guarantee starvation-freedom. By understanding the cases where KSTM fails to pro-
vide starvation-freedom, So, we develop a Multi-Version Starvation Free STM System, KSFTM that guarantees
starvation-freedom of transactions. The key observation in working of KSFTM is that a transaction with lowest
G its and highest G wts will definitely commit.

References
[1] Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. Safety of Live Transactions in Transac-

tional Memory: TMS is Necessary and Sufficient. In Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 376–390, 2014.

[2] Hagit Attiya and Eshcar Hillel. A Single-Version STM that is Multi-Versioned Permissive. Theory Comput.
Syst., 51(4):425–446, 2012.

[3] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency Control: Theory and Algorithms.
ACM Trans. Database Syst., 8(4):465–483, December 1983.

[4] Joao Cachopo and Antonio Rito-Silva. Versioned boxes as the basis for memory transactions. In OOPSLA
2005 Workshop on Synchronization and Concurrency in Object-Oriented Languages (SCOOL), oct 2005.

[5] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards Formally Specifying and
Verifying Transactional Memory. In REFINE, 2009.

[6] Sérgio Miguel Fernandes and Joao Cachopo. Lock-free and Scalable Multi-version Software Transactional
Memory. In Proceedings of the 16th ACM symposium on Principles and practice of parallel programming,
PPoPP ’11, pages 179–188, New York, NY, USA, 2011. ACM.

[7] Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. Tm2c: A software transactional memory
for many-cores. In Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys ’12,
pages 351–364, New York, NY, USA, 2012. ACM.

[8] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Permissiveness in Transactional Memories. In
DISC ’08: Proc. 22nd International Symposium on Distributed Computing, pages 305–319, sep 2008.
Springer-Verlag Lecture Notes in Computer Science volume 5218.

[9] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transactional Memory. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,
pages 175–184, New York, NY, USA, 2008. ACM.

[10] Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory, Synthesis Lectures on Dis-
tributed Computing Theory. Morgan and Claypool, 2010.

[11] Maurice Herlihy. Wait-free Synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, January
1991.

[12] Maurice Herlihy and J. Eliot B.Moss. Transactional memory: Architectural Support for Lock-Free Data
Structures. SIGARCH Comput. Archit. News, 21(2):289–300, 1993.

[13] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[14] Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Brief announcement: virtual world consistency:
a new condition for STM systems. In PODC ’09: Proceedings of the 28th ACM symposium on Principles of
distributed computing, pages 280–281, New York, NY, USA, 2009. ACM.

[15] Priyanka Kumar, Sathya Peri, and K. Vidyasankar. A TimeStamp Based Multi-version STM Algorithm. In
ICDCN, pages 212–226, 2014.

37

[16] Petr Kuznetsov and Sathya Peri. Non-interference and Local Correctness in Transactional Memory. In
ICDCN, pages 197–211, 2014.

[17] Petr Kuznetsov and Srivatsan Ravi. On the cost of concurrency in transactional memory. In OPODIS, pages
112–127, 2011.

[18] Li Lu and Michael L. Scott. Generic multiversion STM. In Distributed Computing - 27th International
Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, pages 134–148, 2013.

[19] Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–653, 1979.

[20] Dmitri Perelman, Anton Byshevsky, Oleg Litmanovich, and Idit Keidar. SMV: Selective Multi-Versioning
STM. In DISC, pages 125–140, 2011.

[21] Nir Shavit and Dan Touitou. Software Transactional Memory. In PODC ’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing, pages 204–213, New York, NY, USA, 1995.
ACM.

[22] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

38

Appendices
A PCode of SFTM
Data Structure: We start with data-structures that are local to each transaction. For each transaction Ti:

• rseti(read-set): It is a list of data tuples (d tuples) of the form 〈x, val〉, where x is the t-object and v is the
value read by the transaction Ti. We refer to a tuple in Ti’s read-set by rseti[x].

• wseti(write-set): It is a list of (d tuples) of the form 〈x, val〉, where x is the tobj to which transaction Ti
writes the value val. Similarly, we refer to a tuple in Ti’s write-set by wseti[x].

In addition to these local structures, the following shared global structures are maintained that are shared
across transactions (and hence, threads). We name all the shared variable starting with ‘G’.

• G tCntr (counter): This a numerical valued counter that is incremented when a transaction begins

For each transaction Ti we maintain the following shared time-stamps:

• G locki: A lock for accessing all the shared variables of Ti.

• G itsi (initial timestamp): It is a time-stamp assigned to Ti when it was invoked for the first time.

• G ctsi (current timestamp): It is a time-stamp when Ti is invoked again at a later time. When Ti is created
for the first time, then its G cts is same as its ITS.

• G validi: This is a boolean variable which is initially true. If it becomes false then Ti has to be aborted.

• G statei: This is a variable which states the current value of Ti. It has three states: live, committed or
aborted.

For each data item x in history H , we maintain:

• x.val (value): It is the successful previous closest value written by any transaction.

• rl (readList): rl is the read list consists of all the transactions that have read it.

Algorithm 10 STM init(): Invoked at the start of the STM system. Initializes all the data items used by the STM
System

1: G tCntr = 1;
2: for all data item x used by the STM System do
3: add 〈0, nil〉 to x.val;// T0 is initializing x
4: end for;

Algorithm 11 STM tbegin(its): Invoked by a thread to start a new transaction Ti. Thread can pass a parameter
its which is the initial timestamp when this transaction was invoked for the first time. If this is the first invocation
then its is nil. It returns the tuple 〈id,G cts〉

1: i = unique-id; // An unique id to identify this transaction. It could be same as G cts
2: if (its == nil) then
3: G itsi = G ctsi = G tCntr.get&Inc();
4: // G tCntr.get&Inc() returns the current value of G tCntr and atomically increments it
5: else
6: G itsi = its;
7: G ctsi = G tCntr.get&Inc();
8: end if
9: rseti = wseti = null;

10: G statei = live;
11: G validi = T ;
12: return 〈i, G ctsi〉

39

Algorithm 12 STM read(i, x): Invoked by a transaction Ti to read x. It returns either the value of x or A
1: if (x ∈ rseti) then // Check if x is in rseti
2: return rseti[x].val;
3: else if (x ∈ wseti) then // Check if x is in wseti
4: return wseti[x].val;
5: else// x is not in rseti and wseti
6: lock x; lock G locki;
7: if (G validi == F) then
8: return abort(i);
9: end if

10: // Find available value from x.val, returns the value
11: curV er = findavilval(G ctsi, x);
12: val = x[curV er].v; add 〈x, val〉 to rseti;
13: add Ti to x[curV er].rl;
14: unlock G locki;
15: unlock x;
16: return val;
17: end if

Algorithm 13 STM writei(x, val): A Transaction Ti writes into local memory
1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

Algorithm 14 STM tryC(): Returns ok on commit else return Abort
1: // The following check is an optimization which needs to be performed again later
2: Set<int> TSet← φ // TSet storing transaction Ids
3: for all x ∈ wseti do
4: lock x in pre-defined order;
5: for <each transaction tj of [x].rl> do
6: TSet = [x].rl
7: end for
8: TSet = TSet ∪ {ti}
9: end for// x ∈ wseti

10: lock G locki;
11: if (G validi == F) then return abort(i);
12: else
13: Find LTS in TSet // lowest time stamp
14: if (TS(ti) == LTS) then
15: for <each transaction tj of [x].rl> do
16: G validj ← false
17: unlock G lockj ;
18: end for
19: else
20: return abort(i);
21: end if
22: end if
23: // Store the current value of the global counter as commit time and increment it
24: comTime = G tCntr.get&Inc();

40

25: for all x ∈ wseti do
26: replace the old value in x.vl with newV alue;
27: end for
28: G statei = commit;
29: unlock all variables;
30: return C;

Algorithm 15 abort(i): Invoked by various STM methods to abort transaction Ti. It returns A
1: G validi = F ; G statei = abort;
2: unlock all variables locked by Ti;
3: return A;

B Pcode of KSTM

Algorithm 16 STM init(): Invoked at the start of the STM system. Initializes all the tobjs used by the STM
System

1: G tCntr = 1;
2: for all x in T do // All the tobjs used by the STM System
3: add 〈0, 0, nil〉 to x.vl; // T0 is initializing x
4: end for;

Algorithm 17 STM tbegin(its): Invoked by a thread to start a new transaction Ti. Thread can pass a parameter
its which is the initial timestamp when this transaction was invoked for the first time. If this is the first invocation
then its is nil. It returns the tuple 〈id,G cts〉

1: i = unique-id; // An unique id to identify this transaction. It could be same as G cts
2: // Initialize transaction specific local & global variables
3: if (its == nil) then
4: // G tCntr.get&Inc() returns the current value of G tCntr and atomically increments it
5: G itsi = G ctsi = G tCntr.get&Inc();
6: else
7: G itsi = its;
8: G ctsi = G tCntr.get&Inc();
9: end if

10: rseti = wseti = null;
11: G statei = live;
12: G validi = T ;
13: return 〈i, G ctsi〉

41

Algorithm 18 STM read(i, x): Invoked by a transaction Ti to read tobj x. It returns either the value of x or A
1: if (x ∈ rseti) then // Check if the tobj x is in rseti
2: return rseti[x].val;
3: else if (x ∈ wseti) then // Check if the tobj x is in wseti
4: return wseti[x].val;
5: else// tobj x is not in rseti and wseti
6: lock x; lock G locki;
7: if (G validi == F) then return abort(i);
8: end if
9: // findLTS: From x.vl, returns the largest ts value less than G ctsi. If no such version exists, it returns
nil

10: curV er = findLTS(G ctsi, x);
11: if (curV er == nil) then return abort(i); // Proceed only if curV er is not nil
12: end if
13: val = x[curV er].v; add 〈x, val〉 to rseti;
14: add Ti to x[curV er].rl;
15: unlock G locki; unlock x;
16: return val;
17: end if

Algorithm 19 STM writei(x, val): A Transaction Ti writes into local memory
1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

Algorithm 20 STM tryC(): Returns ok on commit else return Abort
1: // The following check is an optimization which needs to be performed again later
2: lock G locki;
3: if (G validi == F) then
4: return abort(i);
5: end if
6: unlock G locki;
7: largeRL = allRL = nil; // Initialize larger read list (largeRL), all read list (allRL) to nil
8: for all x ∈ wseti do
9: lock x in pre-defined order;

10: // findLTS: returns the version with the largest ts value less than G ctsi. If no such version exists, it
returns nil.

11: prevV er = findLTS(G ctsi, x); // prevVer: largest version smaller than G ctsi
12: if (prevV er == nil) then // There exists no version with ts value less than G ctsi
13: lock G locki; return abort(i);
14: end if
15: // getLar: obtain the list of reading transactions of x[prevV er].rl whose G cts is greater than G ctsi
16: largeRL = largeRL ∪ getLar(G ctsi, x[prevV er].rl);
17: end for// x ∈ wseti
18: relLL = largeRL ∪ Ti; // Initialize relevant Lock List (relLL)
19: for all (Tk ∈ relLL) do
20: lock G lockk in pre-defined order; // Note: Since Ti is also in relLL, G locki is also locked
21: end for
22: // Verify if G validi is false

42

23: if (G validi == F) then
24: return abort(i);
25: end if
26: abortRL = nil // Initialize abort read list (abortRL)
27: // Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted
28: for all (Tk ∈ largeRL) do
29: if (isAborted(Tk)) then // Transaction Tk can be ignored since it is already aborted or about to be

aborted
30: continue;
31: end if
32: if (G ctsi < G ctsk) ∧ (G statek == live) then
33: // Transaction Tk has lower priority and is not yet committed. So it needs to be aborted
34: abortRL = abortRL ∪ Tk; // Store Tk in abortRL
35: else// Transaction Ti has to be aborted
36: return abort(i);
37: end if
38: end for
39: // Store the current value of the global counter as commit time and increment it
40: comTime = G tCntr.get&Inc();
41: for all Tk ∈ abortRL do // Abort all the transactions in abortRL
42: G validk = F ;
43: end for
44: // Having completed all the checks, Ti can be committed
45: for all (x ∈ wseti) do
46: newTuple = 〈G ctsi, wseti[x].val, nil〉; // Create new v tuple: G cts, val, rl for x
47: if (|x.vl| > k) then
48: replace the oldest tuple in x.vl with newTuple; // x.vl is ordered by time stamp
49: else
50: add a newTuple to x.vl in sorted order;
51: end if
52: end for// x ∈ wseti
53: G statei = commit;
54: unlock all variables;
55: return C;

43

Algorithm 21 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set to false implying that Ti
will be aborted soon

1: if (G validk == F) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then
2: return T ;
3: else
4: return F ;
5: end if

Algorithm 22 abort(i): Invoked by various STM methods to abort transaction Ti. It returns A
1: G validi = F ; G statei = abort;
2: unlock all variables locked by Ti;
3: return A;

C Some Preliminary Results
The below graphs have been produced by using a linked list application to compare the performance of KSTM
with different values of k. In the application chosen below, there were 90% lookups and remaining were 9:1
ratio of inserts and deletes. Varying number of threads were generated and each thread in turn generated 100
transactions.

5000 7500 10000

2

4

Number of Transactions

O
pe

ra
tio

ns
/s

ec

k=1
k=10
k=20

As per the results obtained, multiversion performs better than single version STM. This is because the mul-
tiple versions used in KSTM decreases the number of aborts per transaction, thereby effectively increasing the
operations/sec performed.

5000 7500 10000

2

4

6

8

·105

Number of Transactions

C
om

m
it

Ti
m

e(
m

ic
ro

se
co

nd
s) k=1

k=10
k=20

44

The commit time (time taken per transaction to commit) observed during KSTM (k = 10 here) is the least
since is inversely proportional to the operations/sec. As the number of transactions are increasing, they need more
versions to read from, to attain higher concurrency leading to lesser abort counts.

In the application chosen below, there were 50% lookups and remaining were 9:1 ratio of inserts and deletes
into the linked list. This kind of setup will have more read-write conflicts between the transactions involved when
compared to the previous setup.

5000 7500 10000
0.5

1

1.5

2

Number of Transactions

O
pe

ra
tio

ns
/s

ec

k=1
k=10
k=20

5000 7500 10000
0.5

1

1.5

2

·106

Number of Transactions

C
om

m
it

Ti
m

e(
m

ic
ro

se
co

nd
s) k=1

k=10
k=20

As per the graph, k = 20 gives the best operations/sec and the least commit time. Hence, having multiple
versions(KSTM) performs better than single version STM in this setup too.

45

	1 Introduction
	2 System Model and Preliminaries
	3 Motivation for Starvation Freedom in Multi-Version Systems
	3.1 Illustration of SFTM
	3.2 drawback of SFTM

	4 Working of KSFTM
	4.1 Main idea of KSTM
	4.2 drawback of KSTM
	4.3 Outline of KSFTM Algorithm
	4.4 Execution under KSFTM

	5 K-Version Starvation Free STM
	5.1 Data Structures and Pseudocode
	5.2 Proof of Liveness

	6 Proof of safety
	7 Discussion and Conclusion
	A PCode of SFTM
	B Pcode of KSTM
	C Some Preliminary Results

