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Abstract

A simple mathematical model for thermoacoustic instability (TAI) in a Rijke’s tube results in a first-order neutral delay differential

equation (NDDE). In this work, the NDDE governing the TAI is converted to a partial differential equation (PDE) and then into

a system of ordinary differential equations (ODEs) using Galerkin approximations. A new pseudo inverse method, is proposed to

handle the boundary conditions in the Galerkin method. The stability results obtained using our method are validated using the

data from the literature.
c© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

In closed cylindrical combustion chambers, flame dynamics and acoustics interact in a complex manner, and for

certain parameter ranges, this interaction leads to TAI. According to Rayleigh, TAI develops in a combustion chamber

due to the interaction between the acoustic waves generated from the unsteady heat release and the heat source1. When

TAI occurs, the flame inside the combustion chamber oscillates violently and generates a loud noise; this leads to a

sub-optimal performance of the combustion chamber. Also, the resulting high-frequency acoustic waves can cause

fatigue damage to the combustion chamber, leading to its mechanical failure. Therefore, it is very important to design

the combustion chamber in such a way that it will never encounter TAI during its operation. Many times, the existence

of TAI in the combustion chambers is found at the final stages of its development, and therefore leaves a small room

for any design modifications2. Therefore it is important to develop a mathematical model of the combustion chamber

for predicting the TAI. This mathematical model can then be used to design the combustion chambers efficiently.

Due to the multiphysics nature of the problem, developing a mathematical model for TAI is challenging. Over the

years, many researchers have developed and studied simple thermo-acoustic devices like Rijke tube to understand

TAI3,4,5,6. Dowling and Morgans3 presented an exhaustive literature of the TAI and studied the problem from a
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Fig. 1. Schematic representation of the combustion chamber

feedback control perspective. Dowling and Morgans3,7 and Evesque8 developed an analytical model for predicting

TAI. They represented the dynamics of TAI using a delay differential equation (DDE) with rationally independent

delays. It was found that the complex dynamics of the flame and its shape will also play a role in the TAI4,9. It should

be noted that TAI can also occur in combustion chambers with electrical resistance as the heat source5,10,11.

Subramanian et al. 12,13 developed a nonlinear DDE model for predicting the TAI in a Rijke tube. Different bifurca-

tion diagrams were generated for understanding the behavior of the system. Olgac et al. 14,15 used the linearised model

established by Dowling and Morgans3 and developed a simple 1-D mathematical model of the TAI and is a neutral

DDE (NDDE). In NDDEs, the delays exist even in the highest order derivative of the differential equation16. The

delays in the mathematical models3,14,15 appear due to finite propagation times of pressure waves in the upstream and

downstream side of the combustion chamber. Olgac et al. 14,15,17 used a novel tool called “cluster treatment of char-

acteristic roots” (CTCR) for determining the stability of these NDDEs. In this work the same mathematical model

developed by Dowling and Morgans3 and Olgac et al. 14,15 is used. The key scientific contribution of this work is

towards constructing the stability analysis of the TAI in a Rijke’s tube in the presence of multiple delays. Stability

charts are constructed for the resultant DDEs using the pseudo-inverse method combined with Galerkin approxima-

tions. In this work, the NDDE is converted into a PDE along with a linear boundary condition. By using Galerkin

approximation18, the PDE is converted into a system of ODEs. A new pseudo-inverse method is then developed to

handle the boundary condition of the PDE while developing ODE approximations for the NDDE. Once the NDDE is

converted into system of ODEs the stability of the system can be easily studied.

2. Mathematical modelling

For completeness, we re-derive the TAI model developed by Dowling and Morgans3,7 and Olgac et al. 14,15. The

schematic representation of the combustion chamber is shown in Fig. 1. The derivation of the model is divided into

three sub-models, thermo-fluidic structure, acoustic behavior, and thermo-acoustic interface, and later all these sub-

models are unified. The assumptions considered from the previous works3,8 are the air flow is induced by natural

buoyancy and is considered to be laminar along the tube. The ideal gas equations govern air in the tube and heat

release zone is assumed to be infinitesimally thin and small compared to the acoustic wavelength.

2.1. Thermo-fluidic interface

With the above-mentioned assumptions, the fundamental equations for continuity, conservation of momentum, and

conservation of energy for a thermo-fluidic segment can be written as:

ρ1u1 = ρ2u2, p2 + ρ2u2
2 = p1 + ρ1u2

1, and

(
cpT2 +

1

2
u2

2

)
ρ2u2A =

(
cpT1 +

1

2
u2

1

)
ρ1u1A + Q. (1)
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Here ρ1 and ρ2 are the specific masses at the two cross-sections (see Fig. 1), u1 and u2 are the air speeds, cp is the

isobaric specific heat capacity, p1 and p2 are the pressures, T1 and T2 are the absolute temperatures, A is the cross-

sectional area of the heating zone and Q is the heat release within the control volume (volume enclosed between the

heat release zone). As stated above, the ideal gas relations that govern the dynamics of air are:

p = ρRsT,
cp

cv
= γ, cp − cv = Rs, cp =

γ

γ − 1
Rs. (2)

Where Rs is the specific gas constant, cv is the constant volume specific heat and γ is the heat capacity ratio. Consid-

ering the assumptions stated earlier, important parameters that can be linearized in the current study are p, ρ and u,

given by

pi = p̄i + p̃i, ui = ūi + ũi, ρi = ρ̄i + ρ̃i, i = 1, 2, (3)

where “−” is the average value and “∼” is the variational quantities. Substituting equation (3) in equation (1) and then

linearising the resulting equations, we obtain

(ρ̄1ū2 − 2ρ̄1ū1)ũ1 + (ρ̄1ū1)ũ2 + (ū1ū2 − ū2
1)ρ̃2 + p̃2 − p̃1 = 0, (4a)

γ

γ − 1
ū2 p̃2 − γ

γ − 1
ū1 p̃1 +

γ

γ − 1
p̄2 + ρ̄1ū1ū2 −

(
γ

γ − 1
p̄1 +

3

2
ρ̄1ū2

1 −
1

2
ρ̄1ū2

2

)
ũ1 +

(
1

2
ū1ū2

2 −
1

2
ū3

1

)
ρ̃1 =

Q̃
A
. (4b)

2.2. Acoustic behavior

It is known that the acoustic waves and heat release dynamics mutually interact with each other1. Hence, a distur-

bance in the heat release influences the acoustic waves that are generated in the tube, which means that a disturbance

in Q influences u and p. From the assumptions stated in Olgac et al. 14, it can be deduced that the disturbance in Q
results in local pressure and velocity perturbations. These pressure perturbations travel to both ends of the tube and

reflect back to their starting point and influence the local velocities and pressures. This results in unsteady heat release.

Here, the connection between the unsteady heat release dynamics and the acoustic waves is the pressure fluctuation.

The evolution of sound pressure in the Rijke tube is governed by the following wave equation:

∂2 p̃
∂x2
− 1

c2

∂2 p̃
∂t2
= 0, (5)

where, c is the speed of sound, x is the position and t is the time. Using the d’Alembert’s solution, the pressure

fluctuations can be expressed as:

p̃i(x, t) = f j

{
t − x

c j

}
+ g j

{
t +

x
c j

}
, i = u, d, j = 1, 2, (6)

where f j and g j are any arbitrary functions that satisfy the initial and boundary conditions, u and d denote upstream

(−xu < x < 0) and downstream (0 < x < xd) sides. Since it is assumed that the air flow in the tube is induced by the

natural buoyancy (c̄ >> ū), the density and velocity variations can be written as:

ρ̃i =
1

c̄2
j

[
f j
(
t − x

c̄ j

) − g j
(
t +

x
c̄ j

)]
, ũi(t, x) =

1

ρ̄ic̄ j

[
f j

{
t − x

c j

}
− g j

{
t +

x
c j

}]
, i = u, d, j = 1, 2, (7)

where, c̄u and c̄d are the upstream (−xu < x < 0) and downstream (0 < x < xd) wave speeds respectively. Since, it

is assumed that the fluctuations in absolute temperature are at least an order of magnitude smaller than pressure and

velocity variations, c̄u and c̄d are taken to be constant throughout.

2.3. Thermoacoustic interface

In this segment, the models developed for the thermo-fluidic interface and the acoustic behavior are connected.

Boundary conditions for an open-ended Rijke tube are given by:

f1(t) = −Rug1

(
t − 2xu

c̄1

)
g2(t) = −Rd f1

(
t − 2xd

c̄2

)
Ru,Rd < 1. (8)
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Where Ru, Rd are the acoustic pressure reflection coefficients at the upstream and downstream ends respectively. The

variational form of expressions of pi, ui and ρi (i = u, d) are now combined with equations (1)-(3). Then, the boundary

conditions are substituted and the thermo-acoustic coupling is represented in the Laplace domain as follows:

(X + YR)

[
G
H

]
=

Q̃(s)

Ac̃1

[
0

1

]
(9)

where G(s) = L [g1(t)], H(s) = L [ f2(t)], Q̃(s) = L [Q(t) − Q̄], here, L is the Laplace transform, τu = 2xu/c1,

τd = 2xd/c2 are the round-trip travel times of acoustic waves, R = diag.(Rue−τu s,Rde−τd s) and X, Y are given as:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 + M̄1

(
2 − ū2

ū1

) − M̄2
1

(
1 − ū2

ū1

)
1 + M̄1

ρ̄1 c̄1

ρ̄2 c̄2

M̄2
1 −

M̄2
1(1−M̄1)

(
ū2

2

ū2
1

−1
)

2
+

1−γM̄1

γ−1
M̄1M̄2

ρ̄1

ρ2
+ c̄2

c1

1+γM̄2

γ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 + M̄1

(
2 − ū2

ū1

)
+ M̄2

1

(
1 − ū2

ū1

) −1 + M̄1
ρ̄1 c̄1

ρ̄2 c̄2

M̄2
1 −

M̄2
1(1+M̄1)

(
ū2

2

ū2
1

−1
)

2
+

1+γM̄1

γ−1
M̄1M̄2

ρ̄1

ρ2
+ c̄2

c1

1−γM̄2

γ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

The causal relationship between the thermal input Q̃ and the acoustic outputs G and H can be clearly observed in

equation (9).

2.4. Complete TAI model

A definite analytical relation that defines the causal nature between the heat release fluctuation Q̃ and the velocity

fluctuations ũ does not exist11,19. Therefore, the causal nature can be empirically represented by a transfer function

φ(s), given as, φ(s) = Q̃(s)/Ũ1(s) = a/(bs + 1), where, Ũ1(s) = L [u1(t)] is the Laplace transform, a and b are

considered to be the DC gain and the time constant respectively that depend on the physical parameters of the geometry

of the flame, mean heat release (Q̄) and mean flow rate (ū)11,14. The complete TAI dynamics obtained after substituting

for φ(s) in equation (9) can be written as follows:

⎡⎢⎢⎢⎢⎣ X11 + Y11Rue−τu s X12 + Y12Rde−τd s

X21 + Y21Rue−τu s + φ(s) Rue−τu s+1

Aρ̄1 c̄1
2 X22 + Y22Rde−τd s

⎤⎥⎥⎥⎥⎦
[
G
H

]
=M(s)

[
G
H

]
= 0. (11)

Equation (11) clearly indicates that the TAI model in a Rijke tube is a coupled DDE with independent time delays.

The stability of equation (11) can be determined by the roots of the characteristic equation:

det(M) =
((

X11+Y11Rue−τu s)(X22+Y22Rde−τd s))− ((
X21+Y21Rue−τu s+φ(s)

Rue−τu s + 1

Aρ̄1c̄1
2

)(
X12+Y12Rde−τd s)) = 0. (12)

Equation (12) represents the characteristic equation of the following DDE:

a1 ẋ(t) + a2 ẋ(t − τu) + a3 ẋ(t − τd) + a4 ẋ(t − τud) = b1x(t) + b2x(t − τu) + b3x(t − τd) + b4x(t − τud), (13)

where τud = τu + τd, a1 = Aρ̄1c̄1
2b

(
X11X22 − X12X21

)
, a2 = Aρ̄1c̄1

2b
(
X22Y11 − X12Y21

)
Ru, a3 = Aρ̄1c̄1

2b
(
X11Y22 −

X21Y12

)
Rd, a4 = Aρ̄1c̄1

2b
(
Y11Y22 − Y12Y21

)
RuRd, b1 =

(
X11X22Aρ̄1c̄1

2 − X12X21Aρ̄1c̄1
2 − X12a

)
, b2 =

(
X22Y11Aρ̄1c̄1

2 −
X12Y21Aρ̄1c̄1

2 − X12a
)
Ru, b3 =

(
X11Y22Aρ̄1c̄1

2 − X21Y12Aρ̄1c̄1
2 − Y12a

)
Rd, and b4 =

(
Y11Y22Aρ̄1c̄1

2 − Y12Y21Aρ̄1c̄1
2 −

Y12a
)
RuRd. It is easy to see that equation (13) is an NDDE. In this work, to determine the stability of such a class

of equations, a novel pseudo-inverse method is proposed. Without actually constructing the physical model of the

combustion chamber, the influence of geometrical parameters and delays on TAI can be studies using the proposed

technique.

3. Characteristic roots using Galerkin approximations

For the ease of understanding and clarity, the current formulation is developed for a first-order NDDE. The pro-

posed methodology can be easily extended to the higher-order NDDEs. As described in section 2, the dynamics of

TAI in a Rijke tube is governed by equation (13). Substituting x(t) = eλt in equation (13), results in the following

transcendental equation

C(λ) = (a1 + a2e−λτu + a3e−λτd + a4e−λτud )λ − b1 − b2e−λτu − b3e−λτd − b4e−λτud = 0. (14)



172   Shanti Swaroop Kandala et al.  /  Procedia IUTAM   22  ( 2017 )  168 – 175 

Equation (14) is a quasi-polynomial and is exactly same as equation (12) and admits infinitely many roots. The system

is stable if all the roots of the characteristic equation lie in the left half of the complex plane. But to verify the location

of all the roots of equation (14) is a tedious task. To overcome this computationally intensive task, the stability of an

approximation of the DDE (13) is considered. First, we introduce the transformation, y(s, t) = x(t + s), where y is a

function of s and t, s ∈ [−τ, 0] and τ = max [τu, τd]. Differentiating y(s, t) = x(t + s) partially with respect to s and t
gives:

∂y(s, t)
∂s

=
∂y(s, t)
∂t
, (15)

Boundary relations are obtained by substituting s = 0 and s = −τ in the transformation y(s, t) = x(t + s), which are

y(0, t) = x(t) and y(−τ, t) = x(t − τ). Substituting these boundary relations in equation (13), we get:

a1

∂y(0, t)
∂t

+ a2

∂y(−τu, t)
∂t

+ a3

∂y(−τd, t)
∂t

+ a2

∂y(−τud, t)
∂t

= b1y(0, t) + b2y(−τu, t) + b3y(−τd, t) + b4y(−τud, t). (16)

Equation (15) is a PDE and we approximate its solution y(s, t) as:

y(s, t) =
N∑

i=1

φi(s)ηi(t) = φT (s)η(t), (17)

where φ(s) = [φ1(s), φ2(s), ..., φN(s)]T are the basis functions and η(t) = [η1(t), η2(t), ..., ηN(t)] are independent co-

ordinates. We can represent the approximate solution using any complete set of basis functions (e.g., Chebyshev,

Lagrange, and Hermite polynomials). Due to better convergence properties, in this study we used shifted Legendre

polynomial as the basis functions20, which is given as:

φ1(s) = 1, φ2(s) = 1 +
2s
τ
, φk(s) =

(2k − 3)φ2(s)φk−1(s) − (k − 2)φk−2(s)

k − 1
, k = 3, 4, ...,N. (18)

Substituting equation (17) into equation (15), we obtain:

φT (s)η̇(t) = φT (s)′η(t), (19)

where φT (s)′ = ∂φT (s)/∂s. Pre-multiplying equation (19) by φ(s) and integrating over s ∈ [−τ, 0], we arrive at the

following set of ODEs:

Cη̇(t) = Dη(t), C =
∫ 0

−τ
φ(s)φ(s)T ds, D =

∫ 0

−τ
φ(s)φ′(s)T ds. (20)

The use of shifted Legendre polynomials as global shape functions allows us to express the entries of C and D in

closed form as follows:

Cii =
τ

2i − 1
, Di j =

⎧⎪⎪⎨⎪⎪⎩
2, if i ≤ j and i + j is odd

0, otherwise
i, j = 1, 2, ...,N; τ = max [τ1, τ1, ..., τq]. (21)

We now use the pseudo-inverse method to incorporate the boundary conditions. Pseudo-inverse method differs from

that of the spectral-tau and spectral least-squares in the way the boundary conditions are incorporated into the formu-

lation. Boundary conditions are obtained by substituting equation (17) in equation (16). The corresponding boundary

conditions are:

cη̇ = dη, (22)

where c = a1φ
T (0) + a2φ

T (−τu) + a3φ
T (−τd) + a4φ

T (−τud) and d = b1φ
T (0) + b2φ

T (−τu) + b3φ
T (−τd) + b4φ

T (−τud).

Combining equation (20) and equation (22), we get,

Mη̇(t) = Kη(t). (23)
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(a) (b)

Fig. 2. For parameters a = 133.25 and b = 0.0003, (a) Characteristic roots for N = 100, (b) No. of converged roots with increasing N.

where M = [C c̄]T and K = [D d̄]T . Equation (23) is an over-deterministic system of N+1 equations in N unknowns

in η̇(t), the least square solution for η̇(t) is given by:

η̇(t) = Aη(t), (24)

where A = M+K and M+ is the Moore-Penrose inverse of M. Equation (24) represents a finite dimensional ODE

approximation for the DDE (equation (13)). The stability of equation (13) can now be studied by using equation (24).

In fact the eigenvalues of A approximate the characteristic roots of equation (14) and as we increase the number (N)

of approximating ODEs in equation (24), more and more eigenvalues of A converge to the characteristic roots of

equation (14).

4. Results and Discussions

For the first test case, seven different combinations of a and b are considered and are same as those reported by

Olgac et al. 14,15. The numerical values of other parameters are Ru = 0.98, Rd = 0.98, γ = 1.4, A = 0.0028 m2,

ρ̄i = 1.2 kg/m3 and ci = 358 m/s. For the second test case, we select a = 200, b = 0.002, Ru = 0.93, Rd = 0.93,

γ = 1.4, A = 0.00075 m2, ρ̄i = 1.2 kg/m3 and ci = 340 m/s. Figure 2a shows the characteristic roots of the NDDE

given by equation (14) for a = 133.25, b = 0.0003, N = 100, τu = 0.0005 and τd = 0.0005, for which the system

is stable. For N = 100, the size of A is 100 × 100. The eigenvalues λ̂k, k = 1, 2, 3, ...,N of A approximate the

characteristic roots of equation (14). Red dots in Fig. 2a represent the eigenvalues of A, blue circles represent those

eigenvalues of A that converged to the characteristic roots of equation (14). To understand how the eigenvalues of A
converge to the characteristic roots of equation (14), we define the absolute error, εk, as εk =

∣∣∣C(λ̂k)
∣∣∣ , k = 1, 2, ...,N. A

particular eigenvalue of A is considered to be converged to the characteristic root of equation (14) if εk < 10−4. It is

clear from Fig. 2a, that the rightmost roots are the first to converge and this is due to the spectral nature of discretization

used for converting the DDE into a system of ODEs. Fig. 2b shows the number of converged eigenvalues (Nc) of A
as a function of N and we observe that Nc ≈ N/2.

In Figs. [3-5], red color represents the stability region obtained by using the pseudo-inverse method and the blue

borders represent the stability boundaries obtained from the works of Olgac et al. 14,15. Figure 3a shows the stability

diagram in the [τu, τd] space for the first test case with a = 133.25 and b = 0.0003. Figure 3b shows the stability

diagram in the [xu, xd] space for the parameters of second test case with a = 200 and b = 0.02. From Fig. 3 it is clear

that our results are in close agreement to those obtained by Olgac et al. 14,15.

Next, the influence of transfer function parameters, a and b, on the TAI in a Rijke tube is studied. The first study

was to vary a with b = 0.0004. The second study was to vary b with a = 135. Figure 4 shows the influence of

increasing a on the stability of TAI. Figure 5 shows the influence of increasing b on the stability of TAI. All the

stability charts obtained by using the pseudo-inverse method are in very close agreement with those obtained by

Olgac et al. 14. One important observation that can be made from Figs. [4-5] is that the area of stability region of TAI

is inversely proportional to a and directly proportional to b, for a given set of parameters of the Rijke tube.
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(a) (b)

Fig. 3. Stability diagrams for (a) a = 133.25 and b = 0.0003, (b) a = 200, b = 0.002.

(a) (b) (c)

Fig. 4. Influence of the transfer function parameter a with b = 0.0004 on the stability of TAI. (a) a = 110, (b) a = 135, (c) a = 180.

(a) (b) (c)

Fig. 5. Influence of the transfer function parameter b with a = 135 on the stability of TAI. (a) b = 0.0003, (b) b = 0.00045, (c) b = 0.0006.

5. Conclusions and Future work

In this paper, a simple Rijke tube model is used to study the complex dynamics of TAI. From the existing literature,

a linearized NDDE model of TAI is revisited. We converted the NDDE model into a system of ODEs using Galerkin

approximations. A new pseudo-inverse technique for handling the boundary conditions in Galerkin approximations

is proposed. The developed theory is applied to obtain the stability regions for the TAI and are found to be in

good agreement. The stability charts can be used to avoid TAI while designing the combustion chamber. The main

advantage of the proposed method is that the stability theory of ODEs can be directly applied to study the stability of

NDDEs. It was found that approximately N/2 number of rightmost eigenvalues of approximating ODEs (of dimension

N) converged to the characteristic roots of NDDE. Our pseudo-inverse method is easier in formulation compared to

the Lagrange multiplier and spectral-tau methods. The proposed methodology can be easily extended to higher-order

NDDEs.
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