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Construction of Structured Incoherent Unit Norm

Tight Frames
Pradip Sasmal, Phanindra Jampana and C. S. Sastry

Abstract—The exact recovery property of Basis pursuit (BP)
and Orthogonal Matching Pursuit (OMP) has a relation with the
coherence of the underlying frame. A frame with low coherence
provides better guarantees for exact recovery. In particular,
Incoherent Unit Norm Tight Frames (IUNTFs) play a significant
role in sparse representations. IUNTFs with special structure, in
particular those given by a union of several orthonormal bases,
are known to satisfy better theoretical guarantees for recovering
sparse signals. In the present work, we propose to construct
structured IUNTFs consisting of large number of orthonormal
bases. For a given r, k,m with k being less than or equal to the
smallest prime power factor of m and r < k, we construct a
CS matrix of size mk × (mk × mr) with coherence at most
r

k
, which consists of mr number of orthonormal bases and

with density 1

m
. We also present numerical results of recovery

performance of union of orthonormal bases as against their
Gaussian counterparts.

I. INTRODUCTION

Frames are overcomplete spanning systems which are a

generalization of bases [17], [20]. A family of vectors {φi}Mi=1

in Cm is called a frame for Rm, if there exist constants

0 < A ≤ B < ∞ such that

A ‖z‖2 ≤
M
∑

i=1

|〈z, φi〉|2 ≤ B ‖z‖2 , ∀z ∈ C
m

where A,B are called the lower and upper frame bounds

respectively [17]. By taking the frame vectors as columns,

a full row rank matrix is obtained. In the rest of the paper,

we do not make any distinction between a frame and its

associated matrix and the use the two terms interchangeably.

The characterization of a few frames is given in the following.

• If A = B, then {φi}Mi=1 is called an A−tight frame or

simply a tight frame.

• If there exists a constant c such that ‖φi‖2 = c for all

i = 1, 2, . . . , n, then {φi}Mi=1 is an equal norm frame. If

c = 1, then it is called a unit norm frame.

• If a frame is both unit norm and tight, it is called a unit

norm tight frame (UNTF).

UNTFs are known to have good conditioning and provide

stable representation. A UNTF exists only for A = M
m

. It can

be noted that a frame which is a concatenation of orthonormal

bases is also a UNTF. The coherence of a frame is defined

as the maximum absolute value of inner-product between
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two distinct normalized frame vectors. A UNTF with small

coherence is termed as an incoherent unit norm tight frame

(IUNTF).

Compressed Sensing (CS) [11], [18] is a relatively new

paradigm in signal processing, which aims at recovering

sparse signals from very few linear measurements. Orthogonal

Matching Pursuit and Basis Pursuit (BP) are two of the most

widely used CS algorithms. The performance of both these

algorithms depends on the coherence of the underlying frame.

In [1], [2], [4], [3], it is shown that frames which are

a concatenation of several orthonormal bases provide better

theoretical recovery guarantees when compared to general

frames. In some applications of image/audio processing [8],

[9], modeling of data as the superposition of several layers

attains importance, which implies the significance of an over-

complete representation in terms of union of orthonormal

bases. Further, the special structure of underlying frames

allows for generating sparse representations through efficient

solvers such as block coordinate relaxation (BCR) [7].

However, it is very difficult to construct a frame with small

coherence which consists of large number of orthonormal

bases in Cm. Most of the existing constructions are dictated by

some particular family of numbers (especially primes or their

powers). In [5], [6], the authors have constructed m+1 number

of orthonormal bases for Rm with coherence 1/
√
m, where m

is a power of two. Some of the well known structured IUNTFs

are mutually unbiased bases (MUBs) ([12], [13], [14], [15],

[16]). Two orthonormal bases B and B′ of an m−dimensional

complex inner-product space are called mutually unbiased if

and only if | 〈b, b′〉 |2 = 1
m

for all b ∈ B and b′ ∈ B′. At

most m+1 mutually unbiased bases of Cm can exist. If m is

a power of a prime, extremal sets containing m+ 1 mutually

unbiased bases are known to exist [12], [13]. However, to the

best of our knowledge there exist no constructions of union

of orthonormal bases with small coherence for more general

sizes.

In this paper, we provide constructions for structured

IUNTFs, more specifically, concatenation of orthonormal

bases with small coherence, first for sizes governed by primes

or their powers and then for composite dimensions using poly-

nomials over finite fields and recently introduced composition

rule for binary matrices [19].

The paper is organized in several sections. In Section II, we

briefly review the basics of compressed sensing. Section III

lists the enhanced recovery properties for frames which are

a union of orthonormal bases. Section IV discusses our

construction for sizes governed by primes or their powers.

In Section V, we describe the construction methodology for
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general sizes using a recently proposed composition rule for

binary matrices [19].

II. BASICS OF COMPRESSED SENSING

A. Compressed Sensing

Compressed Sensing (CS) aims to recover a sparse signal

x ∈ RM from a few of its linear measurements y ∈ Rm. A

vector is called sparse if only a few of its elements are non-

zero. Sparsity is measured using the ‖ · ‖0 norm, ‖x‖0 :=
|{j ∈ {1, 2, . . . ,M} : xj 6= 0}|. A signal x is said to be

s-sparse if ‖x‖0 ≤ s. The measurement vector y is obtained

from the linear system y = Φx, where Φ is an m×M (m <
M) matrix. Sparse solutions can be obtained by the following

minimization problem,

P0(Φ, y) : min
x

‖x‖0 subject to Φx = y.

However, P0(Φ, y) is combinatorial in nature and is known

to be NP-hard [10]. A common way to obtain approximate

solutions for P0 is by using greedy methods [4]. Another

approach is to solve a convex relaxation of P0(Φ, y) ([11]),

P1(Φ, y) : min
x

‖x‖1 subject to Φx = y.

The coherence of the matrix Φ is defined as

µΦ = max
1≤ i,j≤ M, i6=j

| φT
i φj |

‖φi‖2‖φj‖2
,

which gives bounds on the guaranteed recovery of sparse

signals via Orthogonal Matching Pursuit (OMP) and Basis

Pursuit (BP) [4].

Theorem II.1. [18] An arbitrary s−sparse signal x can be

uniquely recovered as a solution to problems P0(Φ, y) (using

OMP and BP) and P1(Φ, y), provided

s <
1

2

(

1 +
1

µΦ

)

. (1)

The density of the frame Φ is key to minimizing the

computational complexity associated with the matrix-vector

multiplication. Here, by density, one refers to the ratio of

number of nonzero entries to the total number of entries of

the matrix. The frames constructed in this paper have small

density, which aids in faster processing.

III. RECOVERY GUARANTEES FOR CONCATENATION OF

ORTHONORMAL BASES

Union of orthonormal bases provides better recovery prop-

erties compared to general frames. The enhanced recovery

properties for both OMP and BP are given below.

Theorem III.1. [3] Suppose a frame Φ is a union of Q
orthonormal bases such that its coherence is µΦ. Let x be

a superposition of si atoms from the i-th basis, i = 1, . . . , Q.
Without loss of generality, assume that 0 < s1 ≤ s2 ≤ · · · ≤
sQ. Then OMP and BP recover the signal x provided

Q
∑

i=2

µΦsi
1 + µΦsi

<
1

2(1 + µΦs1)
.

Corollary III.2. [1] Suppose that Φ is a concatenation of two

orthonormal bases with coherence µΦ, and let x be a signal

consisting of s1 atoms from the first basis and s2 atoms from

the second basis, where s1 ≤ s2. Then the above condition

holds whenever

2µ2
Φs1s2 + µΦs2 < 1.

Theorem III.3. [3] If Φ consists of Q orthonormal bases,

then OMP and BP recover any s−sparse signal provided

s <

[√
2− 1 +

1

2(Q− 1)

]

µ−1
Φ . (2)

For small values of Q the bound in (2) is less restrictive

than the general bound given in (1).

IV. CONSTRUCTION METHOD FOR PRIME AND PRIME

POWER SIZES

In this section, we provide our construction method for a

union of orthonormal bases for the case when m is a prime or

a prime power. Consider the finite field Fp = {f1, f2, . . . , fp}
where p is a prime or a prime power. Let Sp be the collection

of polynomials of degree at most r (where r < p− 1), which

do not contain the constant term. It is easy to check that the

cardinality of Sp is |Sp| = pr. For P ∈ Sp, define the set

Sp
P = {Pj = P +fj : j = 1, . . . , p}. Fix any ordered k−tuple

z ∈ Fk
p with r < k ≤ p. For simplicity, we consider z =

(f1, . . . , fk). An ordered k−tuple is formed after evaluating

Pj at each of the points of z i.e, dPj :=
(

Pj(f1), · · · , Pj(fk)
)

.

From the k−tuple dPj we form a binary vector vPj of length

pk using

vPj (p(m− 1) + n) =

{

1, if Pj(fm) = fn

0, otherwise

where 1 ≤ m ≤ k, 1 ≤ n ≤ p. Form a binary matrix V P of

size pk × p by taking vPj , as columns for j = 1, . . . , p.
It can be verified that the matrix V P satisfies the following

properties.

1) V P has k number of row-blocks with each row-block

being of size p. Each column vPj of V P has exactly

k number of ones and contains a single 1-valued entry

in each block. Also, due to the construction, it is easy

to see that every row of V P contains a single 1-valued

entry. Therefore, each row-block is a column (or row)

permutation of an identity matrix.

2) The density of V P is 1
p
.

3) For i 6= j, there are no common points between any two

distinct k−tuples dPi and dPj . This is true because P+fi
and P + fj have no common root. As a result there is

no overlap (i.e., no two columns contain 1 at the same

position) between any two distinct columns of V P .

We now discuss the construction procedure to produce a

unitary matrix from V P . Let UP be a k × k unitary matrix.

A new matrix ΦP is obtained by replacing, in each column

of VP , every 1-valued entry with a distinct row of UP . The

0-valued entries are replaced by a row of zeros. It is clear that

the size of the matrix ΦP is pk × pk. The orthonormality of

the rows of ΦP follows from the fact that UP is unitary.
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A new matrix Φ is constructed by concatenating ΦP for

P ∈ Sp. The size of Φ is pk × (pk × pr). Let α =
maxP,i,j |uP (i, j)|, where uk,P (i, j) denotes the (i, j)−th

entry of UP . The following theorem bounds the coherence

of Φ

Theorem IV.1. The coherence µΦ of Φ is at most min(rα2, 1)

Proof : The proof follows from the definition of α and

from the fact that any two distinct polynomials P 1 and P 2

belonging to Sp can have at most r number of common roots.

Theorem IV.2. For r < k ≤ p, where p is a prime or a prime

power, if there is a k× k unitary matrix such that the largest

of the absolute values of its entries (α) satisfies rα2 < 1,

then there exists a CS matrix which is a union of pr number

of orthonormal bases, with coherence being at most rα2 and

with density 1
p

.

Remark IV.3. One can take DCT (Discrete Cosine Transform)

and DFT (Discrete Fourier Transform) matrices in the real

and complex cases respectively. The DCT matrix is defined

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1 as

U(i, j) =

{

√

1/k cos((π/k)(j + 0.5)i) for i = 0
√

2/k cos((π/k)(j + 0.5)i) otherwise

For the DCT matrix α ≤
√

2/k and therefore the coherence

is at most 2r/k. In the complex case, it can be seen that the

coherence is at most r/k, when the DFT matrix is used.

A. A special case

In this section we discuss a special case with r = 1, k = p.
Observe that for r = 1, any two distinct polynomials, P (1)

and P (2) belonging to Sp have exactly one common root (i.e.,

0). Therefore, the intersection between, vP
(1)

j (j−th column

of V P (1)

) and vP
(2)

i (i−th column of V P (2)

) is exactly one.

Let Hp×p be an orthogonal matrix whose entries are uni-

modular (i. e., |h(i, j)| = 1). In the real case, one can take

H as the Hadamard matrix of order p. For p = 2i : i ≥ 2
Hadamard matrices of order p are known to exist. In the

complex case, H can be chosen as the discrete Fourier trans-

form matrix (DFT). In the construction process, we replace

the unitary matrix UP with 1√
p
H . Then the following hold,

1) The inner-product between two columns of Φ corre-

sponding to the same polynomial is zero.

2) The absolute value of the inner product between two

columns of Φ corresponding to two different polynomi-

als is 1
p

.

As a result Φ becomes a union of p mutually unbiased bases

with coherence µΦ = 1
p

.

V. CONSTRUCTION FOR THE COMPOSITE CASE

For the composite case, we use the following composition

rule given in [19] for combining binary matrices. The follow-

ing result has been proved there.

Lemma V.1 (Lemma 4 in [19]). For i = 1, 2, let Ψi be a

binary (containing 0, 1) matrix of size mi × Mi consisting

of ki number of row blocks each having a size ni so that the

intersection between any two columns is at most ri and assume

that r = max{r1, r2} < k ≤ min{k1, k2} ≤ min{n1, n2}.

Then, the composition rule, denoted by ∗, produces a matrix

Ψ = Ψ1 ∗ Ψ2 of size n1n2k × M1M2 containing k number

of row blocks each having size n1n2 with the intersection

between any two columns being at most r and density of Ψ
being 1

n1n2
.

Let p and q be two distinct primes or prime powers. With

r < k ≤ min{p, q}, P ∈ Sp and Q ∈ Sq, we apply the

composition rule on the matrices V P and V Q to obtain a new

binary matrix V P,Q = V P ∗ V Q. It is easy to see that V P,Q

satisfies the following properties,

1) The size of V P,Q is pqk × pq.
2) V P,Q has k number of row-blocks and each block is of

size pq
3) There is no overlap between any two distinct columns

of V P,Q.
4) The density of V P,Q is 1

pq
.

Let U be a k× k unitary matrix. For each column of V P,Q

we replace each of its 1-valued entries with a distinct row of

U to obtain a new unitary matrix ΨP,Q of size pqk × pqk.

The matrix Ψ is constructed by concatenating ΨP,Q for P ∈
Sp and Q ∈ Sq. Let α = maxi,j |ui,j | where ui,j is the (i, j)th
element in U . The following properties of Ψ can be easily

established.

1) The size of Ψ is pqk × (pqk × (pq)r).
2) Ψ is a union of (pq)r number of orthonormal bases.

We show next that the coherence µΨ of Ψ is at most

min(rα2, 1). For the proof of this result, we first give the

concatenation property of the composition rule.

Lemma V.2. Let V ∗W be the result of composition of the

matrices V and W using the rule given in [19]. Then [V1, V2]∗
[W1,W2] = [V1 ∗W1, V1 ∗W2, V2 ∗W1, V2 ∗W2] where [V,W ]
denotes the column-wise concatenation of the two matrices V
and W .

Proof. The composition rule given in [19] is a column-wise

operation. For constructing V ∗W the support of each column

of V is combined in an appropriate manner with the support

of each column of W . Therefore, the procedure maintains the

concatenation property.

Theorem V.3. The coherence µΨ of Ψ is at most min(rα2, 1).

Proof. Let P (1), P (2) ∈ Sp and Q(1), Q(2) ∈ Sq, such

that P (1) 6= P (2) or Q(1) 6= Q(2). Consider the compo-

sition of the column concatenated matrices, [V P (1)

, V P (1)

]

[V Q(1)

, V Q(2)

]. Note that V P (1)

and V P (2)

have at most r-

intersections among any pairs of their columns. Similarly

V Q(1)

and V Q(2)

also have at most r-intersections among

their columns. Therefore, from Lemma V.1, the resultant

matrix after composition [V P (1)

, V P (2)

] ∗ [V Q(1)

, V Q(2)

], has

at most r-intersections among its columns. However, from

Lemma V.2, we have [V P (1)

, V P (1)

] ∗ [V Q(1)

, V Q(2)

] =

[V P (1) ∗ V Q(1)

, V P (1) ∗ V Q(2)

, V P (2) ∗ V Q(1)

, V P (2) ∗ V Q(2)

].

This proves that V P (1) ∗V Q(1)

and V P (2) ∗V Q(2)

have at most

r-intersections among any pair of their columns.
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Using the above result recursively, we have the following

result for general m.

Theorem V.4. Let m = p1 . . . pt, where p1, . . . , pt are primes

or prime powers and r < k ≤ min{p1, . . . , pt} and U be a

k×k unitary matrix with largest absolute entry α. Then, there

exists a CS matrix of size mk× (mk×mr), which is a union

of mr number of orthonormal bases, with coherence being at

most min(rα2, 1) and density being 1
m
.

Proof: For P1 ∈ Sp1 , using the construction procedure

described in section IV, a binary matrix V P1 is obtained.

Now, applying the composition rule in [19] on binary matrices

V Pi successively for i = 1, . . . , t, we obtain a new binary

matrix V P1,...,Pt = V P1 ∗ V P2 · · · ∗ V Pt of size mk ×m. By

construction, every column of V P1,...,Pt contains k number

of 1-valued entries and there is no intersection between any

two columns of V P1,...,Pt . Let P
(1)
i , P

(2)
i ∈ Spi such that

P
(1)
i 6= P

(2)
i for at least one i ∈ {1, . . . , t}, then by composi-

tion rule the intersection between any column of V P
(1)
1 ,...,P

(1)
t

and any column of V P
(2)
1 ,...,P

(2)
t is at most r. This can be

seen by iteratively applying the concatenation Lemma V.2 to

expand [V P
(1)
1 , V P

(2)
1 ]∗[V P

(1)
2 , V P

(2)
2 ]∗· · ·∗[V P

(1)
t , V P

(2)
t ] into

individual composited matrices. Now, as described previously,

embedding a unitary matrix Uk×k into V P1,...,Pt , we can

construct a unitary matrix ΨP1,...,Pt

U of size mk × mk. The

matrix Ψr
m,k is constructed by concatenating ΨP1,...,Pt

U by

taking Pi ∈ Spi . Therefore, Ψr
m,k is a union of mr number of

orthonormal bases, with coherence being at most min(rα2, 1)
and density being 1

m
.

VI. NUMERICAL SIMULATIONS

This section presents the numerical results for demon-

strating the recovery performance of frames constructed via

embedding DCT matrix. The column size of the constructed

matrix is mk ∗ mr and the coherence is at most 2r
k

. For

obtaining small coherence, it is necessary to consider r ≪ k.

Since k is the smallest prime factor in m, for large values of k,

m is also proportionately large. For example, if m = k = 17
and r = 1, the column size is in the order of 103, whereas

if r = 2, the column size is in the order of 104. In the

results shown here, as an example, it is assumed that r = 1
and m = k ≤ 17 to ease the computational demand. The

comparison is performed with respect to Gaussian random

matrices. A total of 1000 different signals are considered

for each sparsity level and the reconstruction performance is

measured. The reconstruction is considered good if the SNR

(defined below) is greater than 100dB. If x is the original

signal and x̂ is the estimated signal, then

SNR = 10 log10
‖x‖

‖x̂− x‖ .

The solutions are computed using the orthogonal matching

pursuit (OMP) algorithm. The stopping criterion is considered

to be the actual sparsity of the signal. Fig. 1 provides compar-

ison of the success rates of reconstructions between structured

frames and their Gaussian counterparts. For a given sparsity

level, if 90 percent of the signals are reconstructed accurately
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Fig. 1. Comparison of reconstruction performance of unions of orthonormal
bases for different m and Gaussian random matrices of the same size. UOB
stands for Union of Orthonormal Bases. The sizes of the matrices are given by
mk×(mk∗mr) where k = m and r = 1. The results are reported for m =
5, 7, 11, 15, 17. UOB17, for e.g., represents the results for the matrix with
m = k = 17 and r = 1. The x and y axes in this plot respectively represent
the sparsity (that is, zero norm of solution to be recovered) of solution and
success rate. The performance is only shown for sparsity levels for which at
least 90% of the signals have been accurately reconstructed.

(i.e., their SNR values are above the threshold of 100 dB)

then we consider that the performance is good for that sparsity

level. In the above figure, only the performance for sparsity

levels satisfying the aforementioned condition is shown. It can

be seen from this plot that the constructed structured frames

show superior performance compared to Gaussian random

matrices.

VII. CONCLUSION

In the present work, we have constructed union of or-

thonormal bases for general sizes. The matrices for sizes

governed by primes and their powers are constructed using

polynomials over finite fields. For constructing frames of

general sizes, a recently proposed composition rule has been

used. Construction of mutually unbiased bases has also been

given for the prime power cases. Numerical results show that

the constructed structured frames show superior performance

when compared to Gaussian Random matrices of the same

sizes.
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