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Abstract

In this work, we present a full-reference stereo image quality assessment algorithm that is based

on the sparse representations of luminance images and depth maps. The primary challenge lies in

dealing with the sparsity of disparity maps in conjunction with the sparsity of luminance images.

Although analysing the sparsity of images is sufficient to bring out the quality of luminance images,

the effectiveness of sparsity in quantifying depth quality is yet to be fully understood. We present

a full reference Sparsity-based Quality Assessment of Stereo Images (SQASI) that is aimed at this

understanding.

I. INTRODUCTION

Stereo images when fused together provides a visual experience of natural 3D perception. This

motivates the use of stereo content in entertainment industry. In the future we expect the parallel

growth of it alongside with 2D, which leads to increase volume of stereo data (both images and

video). Then compression plays an immediate and important role in this volume management

which may reduce the quality of stereo images. Stereo may also find the applications where 2D

images were used such as transmission over noisy channel, watermarking etc., which degrades

the perceptual quality. Hence this necessitates the assessment of stereoscopic image quality. One

way to assess image quality is via subjective assessment, where subjects are asked to rate the

quality of perceived stereo images. However, it is a very time consuming process and hence not

used on large data volumes. Therefore, we need to come up with an objective quality metric

which automatically rates the quality of stereoscopic images.

Objective quality metric can be classified into three types depends on the availability of

reference data. They are (i) Full reference (FR) (ii) Reduced Reference (RR) and (iii) No

reference (RR). In FR we have the reference image and its corresponding distorted image is

assessed with respect to the reference image. In RR we have some attributes of reference image
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based on that the distorted image should be quantified its quality. In NR we don’t have any

reference image. The distorted image is assessed based on a model which is trained to give

a quality score. In this paper we discuss full reference stereoscopic image quality assessment

(FRSIQA) using sparse representations of luminance and disparity maps. First we briefly review

the latest FRSIQA methods.

In [1], Cardoso et al. present a disparity weighting technique for evaluating stereoscopic

image quality evaluation. They consider the absolute difference between left and right images

as disparity map and its pixel value is considered as weights in evaluating weighted difference

between reference and test stereo pairs. Feifei et al. [2] proposed a cyclopean based approach

where they combined three features from binocular disparity, gradient magnitude, and phase

congruency into one quality score. They include both the binocular combination characteristic

and disparity effect in their proposed stereoscopic image quality assessment (SIQA).

Galkandage et al. [3] proposed an FRSIQA method based on HVS modelling and regression

analysis. They have a new definition of complex cells based on additions of complex cells

behaviour to binocular suppression and implementation of recurrent excitation. The outputs

of complex cell models are formed into a number of objective scores based on luminance,

chrominance and decomposed sub bands of spatial frequencies. Then a statistical model is

proposed to find a relationship between objective and subjective scores. In [4] we proposed

a statistical model on natural stereo pairs where we describe about how statistical model brings

out a way to estimate quality of stereo image. Also we studied the statistical relationship between

luminance and disparity subbands which indirectly describes the role of structural content. In

this paper we consider only disparity maps of reference stereo pairs and thus avoid the issues

in estimating disparity maps of impaired stereo pairs. Zhang et al. applied their previous 2D-

MAD [5] model to stereo called 3D-MAD [6] in two stages. Firstly they apply on both left

and right images separately and their quality scores are linearly combined. In the second stage

they compare the cyclopean feature images of reference and test stereo pairs. Final quality is

estimated from the above two stages. In [7] we proposed another FRSIQA in which we concluded

that heavy loss in structural information leads to significant loss in depth perception. With this

structural motivation we use MS-SSIM [8] on both luminance and disparity pairs and pooled

the scores. We surveyed some other methods which is based on sparsity and will be discussed

in the next section.
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II. SPARSE REPRESENTATION OF NATURAL IMAGES

Several experimental studies have shown that neurons encode sensory information using a

small number of active neurons [9], [10], [11]. Sparsity of images arose from the idea that

neurons in the early stages of visual pathway are more active than latter stages. For example,

neurons in retina responds to simple stimulus where as neurons in visual cortex only responds

to certain stimulus like edges [12], [13]. For a given image, its sparsely encoding of neurons

will be different with respect to its distorted image. Hence we opt for sparsity of images, whose

change in sparse level will serve as base for quality assessment of images. Even if we fix the

sparsity of images i.e, the sparsity of reference and distorted image is same, the variation in

coefficients will help us to evaluate the quality of an image. With these principle several 2D

image quality assessment (IQA) were proposed ([14], [15], [16], [17], [18], [19], [20], [21] and

[22]). There are also some sparsity based SIQA methods. Shao et al. proposed FRSIQA [23]

using using binocular receive field properties. They learnt multi-scale dictionaries from where

they compute sparse feature similarity and global luminance similarity for luminance quality.

They calculate sparse energy and sparse complexity as basis of binocular combination. Finally

Qi et al. proposed a RR-SIQA [24], where they adopted information theory on sparse matrices

of reference and distorted stereo pairs. Neither of these methods have considered disparity maps

for evaluating depth quality.

III. PROPOSED APPROACH

In [4] and [7] we proposed two different approaches for FRSIQA. The key takeaway from

these two works is that both image and depth quality depends on loss in structural informa-

tion. To effectively study the structural content we focused on algorithms that predominantly

work on structures of natural images. In a departure from these methods, we now propose a

sparse representation based approach. Learnt dictionaries will lead to sparse data representation.

Therefore, we choose sparsity of images and disparity maps for SIQA. The proposed approach

is moderately different from [23] and very different from [24]. Our approach is described in the

following stages.

A. Dictionary Learning

For a pristine stereo pair both images perceptually look similar, hence it is enough to consider

a single dictionary for both left and right images. The same dictionary can be used by the
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corresponding distorted stereo pairs. Similarly in the case of disparity maps, left and right pristine

disparity maps and the corresponding distorted disparity maps use a single dictionary. Hence for

each stereo pair we have two dictionaries, one refers to luminance and second refers to disparity.

Fig 1 shows how dictionary is obtained by considering salient patches. Figs 1a and 1b are

reference left image and its corresponding disparity map respectively. We take all possible 8× 8

overlapping patches from image and disparity maps. Each patch is vectorized and concatenated

to form a matrix. Form all the vector patches we consider top 3000 salient patches. Now these

patches were subtracted from its mean value to have zero-mean patches. Now these patches

are considered as inputs for dictionary construction. In Figs. 1c and 1d white pixels indicates

the locations at which salient patches are considered. For images we choose the saliency as

having high entropy value. In Fig. 1c the locations of salient patches are spreading across the

image. It means that it is considering salient patches from different areas of image that are

distinct from each other which is an extreme requirement for dictionary construction. On the

other hand we consider variance as saliency for disparity maps. In Fig. 1d the salient patches

are clustered around the edges of disparity maps. As mentioned in previous para edges and

structural information are important for depth perception, therefore we consider variance as

saliency for disparity maps. Figs 1e and 1f shows the learnt dictionaries for image and disparity

maps respectively.

B. Sparsity

After obtaining the dictionary we then consider non-overlapping distinct patches from ref-

erence and test stereo pairs and vectorized it. These patches again transformed to zero-mean

patches. Using advanced OMP [25] algorithm we obtain the sparse matrices of reference and

test stereo pairs with respect to dictionary learned from patches of left reference image. By a

sparse matrix we mean the ordered collection of sparse vectors each of which correspond to

a non-overlapping image patch. Obtaining sparsity of disparity maps is slightly different. In

image perception we believe that each region of image is important and hence we consider all

non-overlapping distinct patches of images. As we know that disparity maps are representatives

for depth perception and the sense of depth perception is observed at salient regions like edges

and other structural information. The loss of depth perception can be measured if we check

the variation of sparsity of disparity maps at these salient regions. Hence, in reference disparity

pairs (left and right disparity maps) we consider non overlapping patches and vectorize them.
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(a) Reference image. (b) Disparity map.

(c) Patch locations in luminance image. (d) Patch locations in disparity map.

(e) Dictionary for image. (f) Dictionary for disparity map.

Fig. 1: Illustration of dictionary learning.

Then we take the top 3000 salient patches (saliency with respect to variance) and for distorted

disparity pair we consider the same locations where we had taken the patches from reference.

Later these patches are transformed to zero-mean patches. Now with these vector patches and

the dictionary learnt from the patches of left disparity map, we obtain sparsity of reference and

test disparity pairs.

C. Quality Estimation

Prediction of quality depends on the sparse matrices of reference and distorted stereo and

disparity pairs. Let Xr
l , Xr

r, Xt
l , and Xt

r be sparse matrices of reference and test stereo pairs.

The superscript r and t indicates reference and test (distorted) and subscript l and r represents

left and right respectively. Similarly let Dr
l , D

r
r, D

t
land Dt

r be the sparse matrices of reference

and test disparity pairs. We compare the reference and test sparse matrix of image (and disparity
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map) column-wise as described next. The computation of luminance quality is slightly different

from depth quality. In computing luminance quality we consider structural comparison and non

structural comparison as implemented in [20].

Let ai
r and ai

t be the ith column vectors of Xr
l and Xt

l respectively. We compute structural

similarity as given in (1).

ρil(a
i
r, ai

t) =
|ai

r
T
ai
t|+ k

‖ai
r‖2 ‖ai

t‖2 + k
, (1)

where k is a constant to avoid zero-by-zero condition. The non structural similarity can be

obtained from (2).

ηil(a
i
r, ai

t) = 1−
∣∣∣∣‖ai

r‖2 − ‖ai
t‖2 + k

‖ai
r‖2 + ‖ai

t‖2 + k

∣∣∣∣ . (2)

Then the luminance quality of left image is given by

Sl(X
r
l ,X

t
l) =

√√√√ 1

N

N∑
i=1

ρilη
i
l , (3)

where N is the total number of columns of sparse matrix. Similarly we also obtain luminance

quality score for right image. Hence for a test stereo pair we have left and right quality scores

as Sl and Sr respectively.

For computing depth quality scores it is slightly different from luminance score. Consider

left reference and test disparity maps. As we know that edges and structures are responsible

for depth perception, hence structural similarity need to be measured between reference and

test disparity pairs. Therefore we retain (1) for structural similarity calculation. Let ρidl be the

structural similarity obtained from (1). We know that disparity maps are not natural images

hence for measuring non structural information we treat disparity as a normal data matrix. In

[26], Song et al. propose several distance measures for comparing sparse vectors. One method

is using radial basis function kernel defined in (4). This comparison is used for measuring non

structural similarity between disparity maps.

ηidl(a
i
r, ai

t) = exp
(
−‖ai

r − ai
t‖22 + k

‖ai
r‖2 ‖ai

t‖2 + k

)
. (4)

The depth quality with respect to left disparity maps is now estimated as given in (5).

Sdl(D
r
l ,D

t
l) =

√√√√ 1

N

N∑
i=1

ρidlη
i
dl. (5)

Similarly the depth quality with respect to right disparity map is Sdr.
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1) Stereo Quality Score: The left and right luminance and depth scores need to be combined

to have a single luminance and depth scores. We empirically found that using weighted geometric

combination of left and right scores yield better performance. The weights are obtained from

mean square values of sparse matrices. Let ml,mr,mdl and mdr are mean square values of

Xt
l ,X

t
r,D

t
l and Dt

r respectively. The luminance and disparity weights are obtained as shown in

(6) & (7) respectively.

wl =
ml

ml +mr

; wr =
mr

ml +mr

(6)

wdl =
mdl

mdl +mdr

; wdr =
mdr

mdl +mdr

(7)

From (6) & (7) the weighted geometric combination of left and right scores are given in (8).

S = Swl
l .S

wr
r ; Sd = Swdl

dl .S
wdr
dr (8)

The overall quality of stereo image is given in (9)

Q = S.
√
Sd. (9)

2) Settings: We would like to mention the settings we used in computing quality metric. The

number of non zero elements in each patch is made 15 and 5 for image and disparity map

respectively. The size of luminance and disparity map dictionaries are 64×128. The size of data

matrix obtained from salient patches of image and disparity maps is of dimension 64× 3000.

(a) Scatter plot of SQASI versus DMOS over

LIVE-I.

(b) Scatter plot of SQASI versus DMOS over

LIVE-II.

Fig. 2: Scatter plots over the LIVE-I and LIVE-II databases.
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TABLE I: DMOS vs SQASI

LIVE Phase-I LIVE Phase-II

Distortion LCC SROCC LCC SROCC

WN 0.9250 0.9225 0.9277 0.9228

JP2K 0.9415 0.9067 0.8222 0.8025

JPEG 0.7444 0.6963 0.7978 0.7735

BLUR 0.9497 0.9184 0.9781 0.9431

FF 0.8502 0.7732 0.9415 0.9285

OVERALL 0.9230 0.9238 0.8990 0.8898

ASYMM — — 0.8693 0.8499

SYMM — — 0.9384 0.9346

TABLE II: DMOS vs SQASI

Database LCC SROCC RMSE

IRCCYN 0.7224 0.6505 15.25

MICT 0.7358 0.7412 15.75

MICT Asym 0.7236 0.7262 15.91

MICT Sym 0.8929 0.8754 11.08

IV. RESULTS AND DISCUSSION

The proposed method is implemented on four databases namely LIVE Phase-I (LIVE-I) [27],

LIVE Phase-II (LIVE-II) [28], IRCCYN [29] and MICT [30]. LIVE-I database consists of 20

pristine stereo pairs and 365 distorted stereo pairs. For each pristine stereo pair it has five different

types of distortions namely White Noise (WN), JPEG2000 (JP2K), JPEG, Blur, Fast Fading (FF).

Each distortion type has at most four different strengths of distortion levels. LIVE-II database

consists of 8 pristine stereo pairs and 360 distorted stereo pairs. Like LIVE-I it also have the

same five types of distortions and each distortion has nine different strengths of distortion levels.

Out of 360 distorted stereo pairs in LIVE-II, 120 pairs are symmetrically distorted and 240 are

asymmetric. IRCCYN has six pristine stereo pairs and for each pair it has 15 different types

of distortions namely Gaussian blur, JPEG compression and downscale-upscale. Totally it has

90 distorted stereo pairs. MICT database consists of 10 pristine stereo pairs and a total of 480

JPEG compressed stereo pairs where each left and right image had 7 compression level and

totally each pristine stereo pair had 48 impaired stereo pairs. Out of 480 stereo pairs 60 were
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TABLE III: Comparison With Recent FRSIQA

(a) LCC Comparison

Database

Algorithm LIVE-I LIVE-II IRCCYN MICT

Khan [4] 0.9275 0.9019 0.8504 —

Khan [7] 0.9318 0.9313 0.8143 0.7725

Shao [23] 0.9350 0.8628 — 0.9355

Qi [24] — 0.9150 — —

Proposed 0.9230 0.8990 0.7224 0.7358

(b) SROCC Comparison

Database

Algorithm LIVE-I LIVE-II IRCCYN MICT

Khan [4] 0.0.9223 0.8920 0.8413 —

Khan [7] 0.9254 0.9323 0.7893 0.7681

Shao [23] 0.9251 0.8494 — 0.9391

Qi [24] — 0.8670 — —

Proposed 0.9238 0.8898 0.6505 0.7412

symmetrically compressed and 420 were asymmetrically compressed.

The performance analysis was carried out using standard measures namely Pearson linear

correlation coefficient (LCC), Spearman rank order correlation coefficient (SROCC) and Root

mean square error (RMSE). For better performance LCC and SROCC should be high (close to

unity) and RMSE should be low. All scores are reported post logistic fitting. The performance

of SQASI over LIVE-I and LIVE-II are shown in Table I. For IRCCYN and MICT database

the performance of SQASI is shown in Table II. From Table I & II it proves that weighted

geometric combination of left and right scores provides better efficiency especially in the case

of asymmetric distortions. Figs 2a & 2b shows the scatter plot of SQASI over LIVE-I and

LIVE-II database respectively.

Table IIIa & IIIb shows the comparison of SQASI with some of latest FRSIQA methods.

We compare our algorithm with our previous work in FRSIQA i.e., [4], [7] and with already

existing sparse based methods on FRSIQA i.e [23], [24]. Form tables IIIa & IIIb, we see that

the proposed algorithm is competitive on the LIVE-I & LIVE-II databases. The performance on

the MICT and IRCCYN databases however is sub-par.

V. CONCLUSION

In this paper we presented our preliminary work on sparsity based stereo image quality

assessment. We built two dictionaries per stereo pair, one with respect to the luminance image

and the other with respect to the disparity map. These dictionaries serve as representatives for

that particular stereo pair and disparity pair, and also its distorted versions. We quantify the

loss in luminance and depth quality by measuring the structural and non structural difference
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between sparse matrices of image and disparity maps. The results are promising and we plan to

explore this approach in greater depth in the future.
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