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Abstract. Systems with a bubble rising in a fluid, which has a variation of viscosity in space and time can be

found in various natural phenomena and industrial applications, including food processing, oil extraction, waste

processing and biochemical reactors, to name a few. A review of the aspects studied in the literature on this

phenomenon, the gaps that exist and the direction for further numerical and experimental studies to address these

gaps is presented.
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1. Introduction

The fluid dynamics of a gas bubble rising due to buoyancy

in a surrounding liquid (as shown in figure 1) has been

studied from many centuries ago (the first reference in this

subject goes back to Leonardo Da Vinci in the 1500 s). It

continues to be a problem of interest even today due to its

relevance in many industrial and natural phenomena (see

e.g. [1–3]). They include aerosol transfer from sea, oxygen

dissolution in lakes due to rain and electrification of

atmosphere by sea bubbles, in bubble column reactors, in

microfluidics, in the petroleum industry, for the flow of

foams and suspensions and in carbon sequestration, to name

a few. In many of these processes, viscosity of the fluid

surrounding the bubble is not constant, but varies with

space and time. This viscosity variation in turn greatly

affects the rising dynamics of a gas bubble as compared

with the ideal case of constant viscosity and density of the

surrounding fluid. The latter case (ideal case) has been

frequently studied in the past (see for instance [4]), and we

hereafter term it as the ‘‘standard system’’. However, in real

situations, due to the inherent presence of temperature

variation and/or concentration gradient of species in the

afore-mentioned processes, the viscosity of the surrounding

fluid, as well as the surface tension at the interface sepa-

rating the fluids, can vary drastically in space and time. For

example, in the ice-cream and lotion industries, by the

addition of only 2% carboxymethylcellulose (CMC) the

viscosity of water or milk is made to increase by almost

three orders of magnitude, while keeping the density con-

stant [5]. The presence of temperature and concentration

gradients also creates a variation of the surface tension

normal and tangential to the interface separating the fluids,

which leads to another class of complex flows in the

vicinity of the interface, commonly known as Marangoni

flows [6–8]. Yet another class of fluids are non-Newtonian

fluids, where the viscosity depends on shear rate and/or

yield stress, which in turn can be a function of space and

time in a dynamically changing system [9].

The study of dynamics of an air bubble rising in liquids

is difficult both numerically and experimentally, due to the

high contrasts in fluid properties, dynamically changing

interface between the fluids, presence of interfacial tension,

etc. The time and length scales associated with this com-

plex phenomenon, particularly at the time of topological

change and break-up, are very small. This creates extra

difficulties in numerical simulations and experiments. Thus,

a great variety of numerical methods have been proposed,

which range from boundary-fitted grids [10, 11], to the

level-set method [12, 13], the VOF method [14], diffuse-

interface method [15], coupled level-set and volume-of-

fluid method [16] and hybrid schemes of the lattice-

Boltzmann and the finite-difference method [17]. Also in

the recent years, with the development of powerful high-

speed cameras and sophisticated experimental facilities,

several researchers continue to perform experiments in this

area (see e.g. [18, 19]). The first systematic experiment of a

rising air bubble in liquids was conducted by Bhaga and

Weber [20]. As this review is limited to summarizing the

physical phenomena associated with the rising of an air

bubble in viscosity-stratified fluids, the reader is referred to

the afore-mentioned papers for the details on various

numerical methods and experimental techniques used to

study this complex problem.

In this review, the fluid dynamics of a gaseous bubble

inside viscosity-stratified fluids is discussed. In order to

keep the system simple and isolate the influence of vis-

cosity stratification only, the densities of the fluids are

assumed to be constant and the flow is assumed to be

incompressible. Also this review is limited to the studies of

Sādhanā � Indian Academy of Sciences

DOI 10.1007/s12046-017-0634-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-017-0634-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-017-0634-8&amp;domain=pdf


single bubble and two bubbles only. There are also several

studies in the literature that considered the dynamics of

many bubbles simultaneously (e.g. studies associated with

bubble-column reactors). The studies involving many

bubbles are not discussed in the present review.

1.1 Brief discussion on ‘‘standard’’ systems

(constant viscosity of the surrounding fluid)

Before discussing what happens in viscosity-stratified

systems, it is useful to understand the bubble rise phe-

nomena in the ‘‘standard’’ systems. Here, we will also

define some dimensionless parameters, which will be used

throughout this review. In the dimensionless formulation,

the rising bubble problem is completely described by four

non-dimensional parameters, namely, the Galilei number

Gað� qBVR=lBÞ, the Eötvös number Eoð� qBgR2=rÞ, the
density ratio qr � qA=qB and the viscosity ratio

lr � lA=lB, wherein r is surface tension, lA, qA and lB, qB

are the viscosity and density of fluids ‘A’ and ‘B’,

respectively (as shown as figure 1). V ¼
ffiffiffiffiffiffi

gR
p

, wherein g is

the acceleration due to gravity and R is the equivalent

radius of the bubble. Another dimensionless number, the

Morton number, Mo � Eo3=Ga4, which depends on fluid

properties only, but not on the radius of the bubble, will

also be used sometime in the following sections.

A number of numerical and experimental studies have

been conducted on single bubble rising in quiescent liquid

in the ‘‘standard’’ systems (see for instance [20, 23–29]).

Most of these earlier studies investigated terminal velocity,

deformation and path instability associated with the rising

bubble inside another fluid. Recently, Tripathi et al [4]

revisited this problem by conducting three-dimensional

numerical simulations, and identified regimes of starkly

distinct behaviours in the Galilei (Ga) and Eötvös (Eo)

numbers plane (as shown in figure 2). They found that for

low Ga and Eo (region I) the bubble maintains azimuthal

symmetry. In region II (low Ga and high Eo), the bubble

forms a skirt, and in region III (for high Ga and low Eo),

the bubble moves in a spiral or a zigzag path. Vortex

shedding is observed in the wake of region III bubbles. For

high values of Ga and Eo, the bubble breaks to form

satellite bubbles (region IV) or undergoes topological

change to form toroidal shape (region V). However, it is to

be noted here that the phase diagram presented by Tripathi

et al [4] (shown in figure 2) corresponds to an initially

spherical gaseous bubble in water, and a different initial

condition may alter the boundaries separating these regions.

It is an important point because creating a spherical shape

bubble initially is a difficult task in experiments, particu-

larly for large bubbles. In another study, Tsamopoulos et al

[22] provided a library of terminal shapes of a bubble rising

in a liquid in the Ga–Eo plane for a ‘‘standard’’ system (see

figure 3) by performing time-independent axisymmetric

numerical simulations.

Another important aspect is the influence of shape

change on the drag and lift forces acting on a rising bubble.

Hadamard [30] reported that the drag forces observed in

spherical bubbles are different from that of solid spheres

due to the internal flow in bubbles. Later, Taylor and

Acrivos [23] analytically derived the first-order correction

to the drag force of a slightly deformed spheroidal bubble

in the creeping flow limit. For bubbles rising non-axisym-

metrically (region III bubbles), a sideways motion can

ensue. The force responsible for this asymmetric motion is

Figure 1. Schematic diagram of a bubble (fluid ‘B’) rising inside

a viscosity stratified medium (fluid ‘A’) under the action of

buoyancy. The gravity is acting in the negative z-direction.

Figure 2. Behaviour of a single bubble rising in quiescent liquid

in a ‘‘standard’’ system. The red dash-dotted line is the Mo ¼ 10�3

line, which separates the regions of skirted bubble (region II) and

oscillatory bubble (region III). This figure is taken from Tripathi

et al [4].
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the lift force. Both the lift and the drag forces are highly

dependent on the shape of the rising bubble. Several

researchers [31, 32] have studied the variations of these

forces as a function of aspect ratio of the bubble.

2. Governing equations

An initially spherical air bubble (designated by fluid ‘B’) of

initial radius R, having constant viscosity lB rising under

the action of buoyancy in another fluid (designated by fluid

‘A’) is considered, as shown in figure 1. Both the fluids are

considered to be incompressible. In the Cartesian coordi-

nates system (x, y, z), the dimensionless governing equa-

tions of mass and momentum conservation are given by

r � u ¼ 0; ð1Þ

q
ou

ot
þ u � ru

� �

¼ �rp þ 1

Ga
r � lðruþruTÞ

� �

þ d
Eo

n̂r � n̂ � qez:

ð2Þ

In the framework of volume-of-fluid (VoF) method, the

equation for the volume fraction, c, of the fluid ‘A’, whose

values are 0 and 1 for the air and liquid phases, respec-

tively, is given by

oc

ot
þ u � rc ¼ 0: ð3Þ

Here uðu; v;wÞ represents velocity field, wherein u, v and w

are the velocity components in the x, y and z directions,

respectively; p denotes the pressure field; d is the Dirac

delta function; j ¼ r � n is the curvature, n is the unit

normal to the interface pointing towards fluid ‘A’, ez rep-

resents the unit vector in the vertically upward direction

and r is the interfacial tension coefficient of the liquid–gas

interface. The above equations are non-dimensionalized by

using the initial radius of bubble, R, and
ffiffiffiffiffiffi

gR
p

as the length

and velocity scales, respectively. The dimensionless density

q is given by

q ¼ ð1� cÞqr þ c; ð4Þ

and the viscosity field is given by

l ¼ ð1� cÞlr þ c: ð5Þ

Although governing equations associated with a VoF

method are given above, there are several other numerical

approaches, such as the level-set method [12, 13], diffuse-

interface method [15], coupled level-set and volume-of-

fluid method [16], hybrid schemes of the lattice-Boltzmann

and the finite difference method [17], etc., which are also

frequently used to study such interfacial problems. Each of

the afore-mentioned method has certain advantages and

disadvantages, and is selected based on parameter range

considered and/or the problem at hand.

3. Discussion

As discussed in the introduction, the objective of this work

is to present the dynamics of a bubble in viscosity-stratified

media. Three situations are considered, namely (i) variation

of viscosity of the surrounding fluid in space due to some

species, (ii) viscosity stratification of the surrounding fluid

due to the presence of temperature gradient and (iii) vis-

cosity variations due the non-Newtonian nature of the fluid

surrounding the bubble. They are discussed one-by-one in

the following subsections.

3.1 Viscosity variation of the surrounding fluid

in space

Temperature and concentration variations lead to continu-

ous viscosity-stratifications. In such systems, the rising

bubble dynamics is not only affected by viscosity stratifi-

cation, but also greatly influenced by the variations of

surface tension across and along the interface separating the

fluids. There are several situations where the viscosity

stratification is inherent, i.e., not due to the presence of

temperature and concentration gradients. In many applica-

tions [9], immiscible fluid layers of almost the same density

but significant viscosity jump are observed. A gaseous

bubble rising through an interface separating two immis-

cible liquids of different viscosities has been studied in the

past by several researchers [33–35]. As the bubble crosses

the interface, the bottom fluid migrates along the wake of

the bubble to the upper fluid, having a different viscosity,

which in turn changes the dynamics of the bubble as

compared with the ‘‘standard’’ system.

0.1

10-5 10-4 10-3 5x10-3 0.01 0.02 0.04 0.05

0.223

0.707

2.236

7.071

Figure 3. The terminal shapes of the bubble obtained from the

present simulations in Ga � Eo space for the ‘‘standard’’ system.

The rest of the parameter values are qr ¼ 103 and l0 ¼ 102. This

figure is taken from Premlata et al [21]. A similar figure was also

given by Tsamopoulos et al [22], who conducted steady-state

simulations.
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We discuss the rising bubble dynamics in a simpler

system, wherein the viscosity of the surrounding fluid

continuously increases in the vertical direction in the

absence of Marangoni stresses, and other complicated

physics discussed earlier. Consider a system where the

viscosity of the surrounding fluid increases linearly in the

vertical direction, z, such that

lA ¼ l0ða1 þ a2zÞ; ð6Þ

where a1 and a2 are constants and l0 is the viscosity of

surrounding fluid at a reference location, z ¼ zi. In this

configuration, as the viscosity of the surrounding fluid is

varying, the viscosity ratio can be defined as lr0 � l0=lB.

Now, let us contrast the dynamics of a bubble in this vis-

cosity stratified medium with that in the ‘‘standard’’ system.

The parameter values considered for this comparison are

lr0 ¼ 10�2, qr ¼ 10�3, Ga ¼ 2:236 and Eo ¼ 0:04. This
set of parameter values corresponds to point A in figure 3,

which is taken from Tsamopoulos et al [22].

In figure 4(a) and (b), the temporal evolution of bubble

shapes is presented for Ga ¼ 2:236 and Eo ¼ 0:04 for the

standard system and a medium with linearly increasing

viscosity, respectively. When we compare the shapes of the

bubble at different dimensionless times, it can be seen that

for the case of the linearly increasing viscosity medium

(figure 4(b)) an elongated skirt (longer than what appears

for the constant viscosity case (figure 4a) is formed. This is

unexpected due to the following reason. As the bubble

migrates in the vertical direction the local Ga decreases due

to an increase in the local viscosity of the surrounding fluid.

In figure 3, we can see that for Eo ¼ 0:04, with a decrease

in Ga the bubble changes its shape from a skirted (at

Ga ¼ 2:236) to a dimpled ellipsoidal (at Ga ¼ 0:1). By

lowering the value of Ga further we will get a spherical

shape bubble (not shown). This observation is for the

‘‘standard’’ system. The dynamics is different in the vis-

cosity-stratified system, wherein as the bubble rises in the

upward direction, the less viscous fluid from the bottom

part of the domain advects along with the recirculation

region (inside the skirted region). This leads to a continuous

increase in the viscosity contrast between the inside and

outside regions separated by the skirt. The resultant stresses

due to this differential viscosity on both sides of the skirt

force it to curl inwards. This separation of fluids due to the

skirt allows fast recirculation to occur in the fluid captured

inside the wake of the bubble, while simultaneously

allowing a slow flow outside the skirt. This creates a con-

trast in the inertia across the skirt. The streamlines at t ¼ 40

are plotted in figure 5(a) and (b) for the systems with

constant viscosity and linearly increasing viscosity,

respectively. It can be seen that for the constant viscosity

system there are two recirculation zones in the wake region

of the bubble, whereas only one recirculation zone appears

in the wake region (enclosed by the skirt) of the bubble in

linearly increasing viscosity medium. The appearance of

two recirculation zones in constant viscosity case prevents

the closing of the skirt, which can be seen in the linearly

increasing viscosity medium. It is also to be noted here that

the drag force is more in case of the bubble having a longer

skirt (in case of linearly increasing fluid) as compared with

that observed in the constant viscosity medium. This phe-

nomenon may be beneficial to certain processes where a

Figure 4. Time evolution of bubble shapes for

Ga ¼ 2:236;Eo ¼ 0:04: (a) constant viscosity system ða1 ¼
1; a2 ¼ 0Þ and (b) linearly increasing viscosity

ða1 ¼ 0:2; a2 ¼ 0:2Þ. This figure is taken from Premlata et al [21].

Figure 5. Streamlines at t ¼ 40 for (a) constant viscosity system

and (b) linearly increasing viscosity. The remaining parameter

values are the same as those used to generate figure 4. This

figure is taken from Premlata et al [21].
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less viscosity fluid is required to be carried through a highly

viscous fluid with the help of a carrier bubble. More dis-

cussion on this subject can be found in Premlata et al [21].

3.2 Viscosity variation due to temperature

gradient

The pioneering work of Young et al [6] was the first to

investigate the migration of bubbles due to thermal gradi-

ent. They investigated a system where the temperature of

the surrounding viscous fluid decreases in the vertically

upward direction, and found that small bubbles move in the

downward direction, even though buoyancy acts in the

upward direction. In this situation, the thermocapillary

force and buoyancy force act in the opposite direction. In

case of a small bubble the latter force dominates the former

one, whereas for bigger bubbles, buoyancy wins, which

causes the bubble to migrate in the upward direction. They

also provided a theoretical description assuming spherical

bubble and creeping flow conditions, which predicted the

terminal velocity obtained in their experiment. Since then

several theoretical analyses were performed to study ther-

mocapillary migration of a bubble in the limit of both small

and large Reynolds numbers, but neglecting buoyancy

[36–40]. Later, Merritt et al [41] numerically investigated

the dynamics of a bubble under the combined action of

buoyancy and thermocapillarity forces. Zhang et al [42]

also performed a theoretical analysis of a rising bubble for

small Marangoni numbers under the influence of gravity.

The surface tension of common fluids, such as air, water

and various oils, decreases almost linearly with increase in

temperature. Here, these fluids are referred to as ‘‘linear’’

fluids. All the above-mentioned investigations considered

the bubble dynamics in common/linear fluids. However,

there is another class of fluid that exhibit a non-monotonic

dependence of the surface tension on temperature. These

fluids are known as ‘‘self-rewetting’’ fluids, which are non-

azeotropic high carbon alcohol solutions [43–47]. These

fluids were first studied by Vochten and Petre [43] who

observed the occurrence of a minimum in surface tension

with temperature in high carbon alcohol solutions. Later,

Abe et al [48] named them as ‘‘self-rewetting’’ fluids.

Recently, Tripathi et al [8] studied the buoyancy-driven rise

of a bubble inside a tube imposing a constant temperature

gradient along the wall and containing a liquid, whose

surface tension has a quadratic dependence on temperature

given as

r ¼ r0 1� M1T þ M2T
2

� �

; ð7Þ

where r0 is the reference value of surface tension at the

reference temperature, T0. M1 � 1
r0

dr
dT
jT0

� �

and

M2
1
r0

d2r
dT2 jT0

� �

are Marangoni numbers associated with the

linear and quadratic terms, respectively. For isothermal

systems, M1 ¼ M2 ¼ 0, for common or linear fluids: M1 is

non-zero, but M2 is zero, and for self-rewetting fluids, both

M1 and M2 are non-zero.

The temporal variations of the centre of gravity, zCG, of a

rising bubble for three different cases: the isothermal case,

and the cases of a simple linear fluid, and a self-rewetting

fluid are shown in figure 6. The temperature of the tube is

maintained with a linear temperature profile of constant

gradient C[ 0. It can be seen that the terminal velocity is

higher for the non-isothermal case as compared with the

isothermal system due to the presence of Marangoni

stresses driving liquid towards the cold region of the tube

and thereby enhancing the upward motion of the bubble.

For the self-rewetting fluid in the non-isothermal case, the

bubble reaches a constant speed for a certain time duration

(rising phase), which is followed by downward motion

(motion reversal). The bubble gets arrested eventually. This

dynamics might be of interest to researchers working in

microfluidics and multiphase microreactors.

3.3 Viscosity variation due to the non-Newtonian

nature of the surrounding fluid

Another instance in which one could experience viscosity

stratification is when the surrounding fluid is a non-New-

tonian fluid. In this situation, viscosity can depend on the

shear and its history [49]. The dynamics of a rising bubble

in surrounding fluids that exhibit a non-Newtonian nature is

important in many engineering applications, including food

processing, oil extraction, waste processing and biochemi-

cal reactors. A range of non-Newtonian fluids can be con-

sidered, such as power-law and Bingham plastic fluids,

0 2 4 6 8 10
t

10

11
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14

15

zCG

Isothermal
Linear
Self-rewetting 

Figure 6. Migration of bubble in a isothermal system, linear

(common) fluid and self-rewetting fluid for Ga ¼ 10, Eo ¼ 10�2,

qr ¼ 10�3, lr ¼ 10�2, the temperature gradient, C ¼ 0:1 and

thermal diffusivity ratio ar ¼ 0:04. For isothermal system M1 ¼ 0

and M2 ¼ 0, for linear, M1 ¼ 0:4 and M2 ¼ 0 and for self-

rewetting fluid, M1 ¼ 0:4 and M2 ¼ 0:2. This figure is taken from

Tripathi et al [8].
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whose behaviour is more complex than those of relatively

simple fluids (such as water, silicone oil, etc.). However,

this review is restricted to only bubble rise inside vis-

coplastic and shear-thinning fluids.

3.3a Viscoplastic fluid: Yield stress fluids or viscoplastic

materials behave like both fluid and solid. If the stress is

beyond a critical value, known as yield stress, these

materials flow like liquids when subjected to stress, but

behave as a solid below this critical level of stress. An

extensive review on yield stress fluids can be found in

[50, 51]. Bingham [52] was the first to propose a consti-

tutive law to describe yield stress fluids. Few years later,

Herschel and Bulkley [53] extended this law to include the

shear-thinning/thickening behaviour. According to this

model, the material can be yielded (unyielded) if the stress

is higher (lower) than the yield stress of the material. It is to

be noted here that at the boundary separating the yielded

and unyielded regions, the model becomes singular, where

the viscosity of the fluid has an extremely sharp jump.

Frigaard and Nouar [54] proposed, a simpler way to over-

come this singularity by introducing a ‘regularization’

parameter. The regularized models were used several

researchers to model the viscosity of non-Newtonian fluids

[22, 55, 56].

The motion of air bubbles in viscoplastic materials has

been studied by many research groups in the past. Astarita

and Apuzzo [57] was the first to conduct an experimental

study on rising bubbles in viscoplastic materials (by con-

sidering Carbopol solutions). By varying the concentration

of Carbopol in the solution (thereby varying the yield stress

of the material), they investigated the shapes and rise

velocities of the bubble. Since then, several researchers

(e.g. [19, 58]) have experimentally investigated the rising

bubble phenomenon in viscoplastic materials.

Several researchers also studied this problem by con-

ducting theoretical analysis (see e.g. [59]). Recently, Tsa-

mopoulos et al [22] performed a detailed time-independent

numerical study of a bubble rise phenomena, using the

regularized Papanastasiou [60] model. They presented a

library of bubble and yield surface shapes for a wide range

of dimensionless parameters, taking into account the effects

of inertia, surface tension and gravity. The shapes and

unyielded surfaces of a bubble rising in a Bingham fluid as

a function of Bond ð� qAgR2=rÞ and Archimedes ð�
q2AgR3=l2AÞ numbers are given in figure 7. They found that

when the yield stress of the surrounding Bingham plastic

fluid is large the bubble does not move at all. This work was

followed by the study of Dimakopoulos et al [61], who used

the augmented Lagrangian method to obtain a more accu-

rate estimation of the stopping conditions than that of

Tsamopoulos et al [22]. It is to be noted here that Tsa-

mopoulos et al [22] were not able to calculate steady shapes

for a certain set of parameters, which is probably an indi-

cation that the flow may have become time-dependent in

these conditions. Potapov et al. [62] and Singh and Denn

[63] investigated the bubble dynamics in viscoplastic fluids

through time-dependent simulations in the creeping flow

conditions. Recently, Tripathi et al [56] performed

unsteady simulations in the inertial regime of the buoy-

ancy-driven rise of an air bubble inside an infinitely

extended viscoplastic medium by considering the regular-

ized Herschel–Bulkley model for the surrounding fluid,

which is given by

l ¼ s0
Pþ �

þ l0 Pþ �ð Þn�1; ð8Þ

where s0 and n are the yield stress and flow index,

respectively, � is a small regularization parameter, and l0 is

the fluid consistency; P ¼ EijEij

	 
1=2
is the second invari-

ant of the strain rate tensor, wherein

Eij � 1
2
oui=oxj þ ouj=oxi

	 


. They found that in the presence

of inertia and in the case of weak surface tension the bubble

does not reach a steady state and the dynamics may become

complex for sufficiently high yield stress of the material.

3.3b Shear-thinning fluid: The peculiar physics associated

with rising bubble in shear-thinning fluid due to the vis-

cosity variation near the bubble surface has been a subject

of research of several researchers [64, 65]. An extensive

review on this subject is given by Chhabra [66, 67]. Various
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Figure 7. The steady-state shapes and unyielded surfaces of a

bubble in Bond number and Archimedes number space for

Bingham number Bnð� s=qAgRÞ ¼ 0:19; s is the yield stress of

the material. The black surfaces represents the unyielded regions.

The numbers written below each figures are Reynolds and Weber

numbers, respectively. This figure is taken from Tsamopoulos et al

[22].
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numerical methods, such as volume-of-fluid (VoF) [68, 69],

level set [70] and lattice Boltzmann [71], have been

developed to improve the accuracy of the numerical pro-

cedure to investigate these problems. Recently, Zhang et al

[18] experimentally and numerically investigated the

dynamics of a rising bubble in a quiescent shear-thinning

fluid, such as solutions of CMC, sodium hydroxyl-ethyl

cellulose (HEC) and xanthan gum. They used the Carreau

rheological model to describe the viscosity of the sur-

rounding fluids. They found that the flow patterns around

the bubble in shear-thinning fluids are very different from

the one observed when the surrounding liquid is a Newto-

nian fluid. They also found the viscosity in the wake region

is large as compared with the other part of the surrounding

fluid, which leads to these differences in the flow pattern

and deformation of the bubble as compared with those in

the Newtonian case. The viscosity variation along with the

shape of the bubble showing the afore mentioned features is

presented in figure 8. There are also a few studies (see e.g.

[72, 73]) that investigated the dynamics of a pair of bubbles

aligned in different ways inside non-Newtonian fluids.

They found that the irregularity of the bubble shape (de-

viation from the spherical shape) increases with an increase

in the shear-thinning tendency. This effect was found to be

significant for flow index n\0:5.

4. Concluding remarks

In this review, the dynamics of bubble rise in viscosity-

stratified media is discussed. Many peculiar phenomena

observed in such systems are presented, which are found to

be very different from those observed when the surrounding

fluid has a constant viscosity. Three configurations, wherein

viscosity stratifications are due to the presence of a species,

temperature gradient and non-Newtonian surrounding flu-

ids, are considered. Although, dynamics of rising bubble in

constant viscosity fluids has a long history, the dynamics in

viscosity stratified media has not been investigated to that

detail due to the requirement of powerful computers and

sophisticated experimental techniques. The numerical

simulations of such complex phenomena involving high

density and viscosity ratios along with other physics are

extremely difficult and computationally very expensive.

Due to the improvement of advanced scientific computing

resources and the development of sophisticated experi-

mental techniques, it is possible to study such complex

phenomena to greater depth at present.
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