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Digital Communication

Convey a message from transmitter to receiver in a finite amount of time,
where the message can assume only finitely many values.

e ‘time’ can be replaced with any resource:
space available in a compact disc, number of cells in flash memory

Picture courtesy brigetteheffernan.wordpress.com
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The Additive Noise Channel

m—-— MOD DEMOD—*>m

o Message m

» takes finitely many, say M, distinct values
» Usually, not always, M = 2F, for some integer k
» assume m is uniformly distributed over {1,..., M}

e Time duration T'
» transmit signal s(t) is restricted to 0 <t < T

e Number of message bits k = log, M (not always an integer)
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Modulation Scheme

The transmitter & receiver agree upon a set of waveforms
{s1(t),...,sm(t)} of duration T.

The transmitter uses the waveform s;(t) for the message m = i.

The receiver must guess the value of m given r(¢).

We say that a decoding error occurs if the guess m # m.

Definition
An M-ary modulation scheme is simply a set of M waveforms
{s1(t),...,sm(t)} each of duration T

Terminology
e Binary: M = 2, modulation scheme {s1(t), s2(t)}
e Antipodal: M =2 and sa(t) = —s1(t)
e Ternary: M = 3, Quaternary: M =4
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Parameters of Interest

logy, M
e Bit rate R = % bits/sec

T
Energy of the it waveform E; = ||s;(t)||* = / s2(t)dt
¢

K2

e Average Energy

M M 1 T
E=Y Pm=iEi=3 5 [ Islf
i=1 i=1 t=0
E bit £ £
e Ener er message bi =
gy P g b log, M

e Probability of error P, = P(m # 1)

Note
P, depends on the modulation scheme, noise statistics and the
demodulator.

5/54



Example: On-Off Keying, M = 2

s1(t) = Asin(27 f.t) s2(t) =0for 0<t<T

T 2
AT
E1 = A2 Sin2(2ﬂ'fct)dt = T and E2 =0
t=0

Ei+E, AT
2 4

Average Energy F =
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Objectives

@ Characterize and analyze a modulation scheme in terms of energy,
rate and error probability.

» What is the best/optimal performance that one can expect?

® Design a good modulation scheme that performs close to the
theoretical optimum.

Key tool: Signal Space Representation

e Represent waveforms as vectors: 'geometry’ of the problem
e Simplifies performance analysis and modulation design

e Leads to efficient modulation/demodulation implementations
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@ Signal Space Representation

@ Vector Gaussian Channel

© Vector Gaussian Channel (contd.)

O Optimum Detection

@ Probability of Error
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@ Signal Space Representation
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Goal

Map waveforms s1(t),. .., sa(t) to M vectors in a Euclidean space
RY, so that the map preserves the mathematical structure of the
waveforms.

:
C
C
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Quick Review of RV: N-Dimensional Euclidean Space

RY = {(:cl,xg,...,xN)\xl,...,xN GR}

Notation: & = (x1,22,...,2y) and 0 = (0,0,...,0)

Addition Properties:

(] $+y=($1,...,$N)+(y1,...,yN):(:Z?1+y1,...,1‘N—|—yN)
° m_y:(xlv"me)_(yla"'ayN):(ml_yla"'va_yN)
e x+0=cz for everyx € RV

Multiplication Properties:

e ax =a(xy,...,zN) = (ax1,...,axy), where a € R

a(z +y) =ax +ay
(a+b)x =azx+bx
ar =0ifandonlyifa=0orz =0
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Quick Review of RY: Inner Product and Norm

Inner Product

(z,y) = (y,x) = 2191 + T2y2 + - + TNYN
(,y + 2) = (x,y) + (z,2) (distributive law)
(az,y) = alz,y)

e If (z,y) = 0 we say that = and y are orthogonal

Norm

|z|| = /2% + -+ 2% = \/(z,z) denotes the length of z
|z||> = (x,z) denotes the energy of the vector

|2||? = 0 if and only if z =0

If |lz|| = 1 we say that z is of unit norm

|z — y|| is the distance between two vectors.

Cauchy-Schwarz Inequality

o [(z,y)| < = |yl
(z,y)

< <1
] 1yl

e Or equivalently, —1 <
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Waveforms as Vectors

The set of all finite-energy waveforms of duration 7" and the
Euclidean space RY share many structural properties.

Addition Properties

e We can add and subtract two waveforms z(t) + y(¢), z(t) — y(¢)

e The all-zero waveform 0(t) = 0 for 0 < t < T is the additive identity

x(t) + 0(t) = x(t) for any waveform z(t)

Multiplication Properties

e We can scale z(t) using a real number a and obtain a z(t)

o a(x(t) +y(t) = ax(t) + ay(t)

* (a+b)z(t) = ax(t) + bx(t)

e ax(t) =0(t) if and only if a = 0 or z(t) = 0(¢)
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Inner Product and Norm of Waveforms

Inner Product

o (2(t),y(t)) = (y(t), (1)) = [,Zy x(t)y(t)dt
o (2(t),y(t) +2(1)) = (w(t),y(t)> + (x(t), 2(t)) (distributive law)
o (ax(t),y(t)) = alx(t),y(t))
o If (x(t),y(t)) = 0 we say that x(¢) and y(¢) are orthogonal
Norm

o |lz(t)|| =/ (x :\/LTOxQ t)dt is the norm of x(t)

o z())?* = ft o T°(t)dt denotes the energy of x(t)

o If [|[z(t)]| =1 we say that x(t) is of unit norm

o ||z(t) — y(t)|| is the distance between two waveforms
Cauchy-Schwarz Inequality

o [(2(®),y(®)] < lz(@)[[ [ly(®)]| for any two waveforms x(t), y(t)

We want to map s1(t),...,sa(t) to vectors sy, ...,8y € RY so
that the addition, multiplication, inner product and norm properties
are preserved.
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Orthonormal Waveforms

Definition
A set of N waveforms {¢1(t),...,dn(t)} is said to be orthonormal if
O o1 = llg2(®)]l = --- = l[on ()] = 1 (unit norm)

@ (¢;(t),¢;(t)) =0 for all i # j (orthogonality)
The role of orthonormal waveforms is similar to that of the standard basis
(3] 22(1,070,...70),62 ::(0,1,0,...,0),---,eN'::(O,O,...,O,l)

Remark
Say x(t) = x1¢1(t) + - -xnon(t), y(t) = 11 (t) + -+ ynon(t)

<sz¢z Zyg% > = ZZ%%(@@)»@@))
=3 ay; = leyl

i j=t
= (z,y)
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Example

LA

(=)

AL

UUUUU

= T cos(2m f.t)

2f.T = integer

ler(®)11* =

T

(61(t), Pa2(t)) = —

I

Pa(t) = —\/fsm 27 ft)

g2 =1

2
— cos(27 fet) sin(27 fot)dt = 0
t=0 T
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Orthonormal Basis

Definition
An orthonormal basis for {s1(t),...,sa(t)} is an orthonormal set

{p1(t),...,én(t)} such that

5i(t) = 84,10:(t) + 5i202(t) + -+ + 55, PN (1)

for some choice of s;1,5;2,...,5, 8 €R

e We associate s;(t) = 8; = (84,1, 8i,2,---5Si,N)
e A given modulation scheme can have many orthonormal bases.

e The map s1(t) — 81,82(t) = Sa,...,sa:(t) — sy depends on the
choice of orthonormal basis.
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Example: M-ary Phase Shift Keying

Modulation Scheme
o 5;(t) = Acos(2nfet +22), i=1,.... M
e Expanding s;(t) using cos(C' + D) = cos C cos D — sin C'sin D

si(t) = Acos (2}\/{71’2) cos(2m f.t) — Asin <2]M7m> sin(2m f.t)

Orthonormal Basis

o Use ¢1(t) = /2/T cos(2mf.t) and ¢o(t) = \/2/T sin(27 f.t)

si(t) = A\/fcos <2Mm> ¢1(t) + A\/Zsin <2Mm> da(t)

e Dimension N =2

Waveform to Vector

()= A os (21 AL G (2
S; 5 cos ) 5 sin 7
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8-ary Phase Shift Keying

€o = (07 ]-) 1 . AQT
radius =4/ —
So 2

83 S1

Sy 88

e = (1, 0)

S6
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Gram-Schmidt Procedure

Given a modulation scheme {s1(¢),...,
orthonormal basis ¢1(t), . ..

Similar to QR factorization of matrices

A=la;ay -

aM]=[¢11 q2 -

1,1 T2
2,1 T22
an] | . .
TN,21 TN,2
S1,1 52,1
S1,2 52,2
- N ()]

S1,N S2,N

How to find an orthonormal basis

sp(t)}, constructs an
, & (t) for the scheme.

T1,M
T2, M

TN,M

SM,1
SM,2

SM,N
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Waveforms to Vectors, and Back
Say {¢1(t),...,¢n(t)} is an orthonormal basis for {s1(¢),...,sam(t)}.

Then, s;(¢ Zsmqu ) for some choice of {s; ;}

Waveform to Vector

(i(t), 8;(t)) = O sindnlt = sinl i (1) = si

K k
si(t) = (8i1,8i2,-- -, Si,N) = 8;

where s;1 = (si(t), 91(t)), si2 = (s:(t), P2(t)),. .., siv = (s:(t), dn (t))

Vector to Waveform

8i = (8i1,-,8i,N) = 8i101(t) + 5i202(t) + -+ + 55, NON (1)

e Every point in RY corresponds to a unique waveform.

e Going back and forth between vectors and waveforms is easy.
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Waveforms to Vectors, and Back

on(t)

UN:

Waveform to Vector Vector to Waveform

Caveat
v(t) — Waveform to vector - v v — Vector to waveform — 0(t)

0(t) = v(t) iff v(t) is some linear combination of ¢1(t),...,¢n(t),

or equivalently, v(t) is some linear combination of s1(t),...,sa(t)
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Equivalence Between Waveform and Vector
Representations

Say v(t) = v1¢1(t) +- - +undn(t) and u(t) = w11 (t) +- - +undn(t)

Addition v(t) + u(t) v+u
Scalar Multiplication av(t) av
Energy v (t)]I? lv]|?
Inner product (v(t),u(t)) (v, u)

Distance lo(t) —u®)] v —ul
Basis ¢i(t) e; (Std. basis)
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@ Vector Gaussian Channel
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Vector Gaussian Channel

) si(t) r(t) .
m=1— MOD DEMOD—> m

8

m = i —»| MOD DETECT [

=5
]
< g
¥
:
B
N
2
o~
E
8§
53
¢)
;
\
>

Definition
An M-ary modulation scheme of dimension N is a set of M vectors
{81,... ,Sa4} in RV

1
e Average energy E = i (||~':71||2 +- 4 ||3M||2)
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Vector Gaussian Channel

Relation between received vector r and transmit vector s;

The j*" component of received vector r = (r1,...,7x)

ri = (r(t), ¢i(t)) = (si(t) + n(t), ;(1))
= (si(t), @5 (1)) + (n(t), 95 (1))

= Sij T 1y
Denoting n = (nq,...,ny) we obtain
r=8;+n

If n(t) is a Gaussian random process, noise vector n follows Gaussian
distribution.

Note
Effective noise at the receiver 7(t) = n1d1(t) + - - + nyon(t)

In general, n(t) not a linear combination of basis, and 7(t) # n(t),
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Designing a Modulation Scheme

@ Choose an orthonormal basis ¢1(t), ..., ¢n(t)

» Determines bandwidth of transmit signals, signalling duration T’

@® Construct a (vector) modulation scheme s1,...,s3 € RY

» Determines the signal energy, probability of error

An N-dimensional modulation scheme exploits ‘N uses’ of a scalar
Gaussian channel

r; =58;;+njwherej=1... N

With limits on bandwidth and signal duration, how large can N be?
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Dimension of Time/Band-limited Signals

Say transmit signals s(¢) must be time/band limited
® s(t)=0ift<0ort>T, and (time-limited)
8 S(f)=0if f<f.—%orf>f.+% (band-limited)

Uncertainty Principle: No non-zero signal is both time- and band-limited.

= No signal transmission is possible!

We relax the constraint to approximately band-limited
® s(t)=0ift<0ort>T, and (time-limited)
fetW/2

—+oo

o SUIPAF 2 (1-8) [ IS(PAS (appros. bancHiim)
f=fe—W/2 0

Here § > 0 is the fraction of out-of-band signal energy.

What is the largest dimension N of time-limited/approximately
band-limited signals?
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Dimension of Time/band-limited Signals

Let 7> 0 and W > 0 be given, and consider any §,¢ > 0.

Theorem (Landau, Pollak & Slepian 1961-62)

If TW is sufficiently large, there exists N = 2T W (1 — ¢€) orthonormal
waveforms ¢1(t),...,dn(t) such that

@ ¢;(t)=0ift <0ort>T, and (time-limited)

fet+W/2 +oo
(2] | (f)Pdf > (1 — 6)/ |®;(f)]*df (approx. band-lim.)
f=fe—W/2 0

In summary
e We can ‘pack’ N =~ 2TW dimensions if the time-bandwidth product
TW is large enough.
e Number of dimensions/channel uses normalized to 1 sec of transmit
duration and 1 Hz of bandwidth

% ~ 2 dim/sec/Hz
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Relation between Waveform & Vector Channels

‘ Assume N = ZTW‘

Signal energy  E; Iss ()] 531
Avg. energy E 5 ilsi®I? 57 3 lsll?
E E
T it P S = —2W
ransmit Power T N
logy M logy M
Rat R 2w
e T N

Parameters for Vector Gaussian Channel
e Spectral Efficiency n = 2log, M/N  (unit: bits/sec/Hz)

» Allows comparison between schemes with different bandwidths.
» Related to rate as n = R/W

e Power P=FE/N (unit: Watt/Hz)

» Related to actual transmit power as S = 2W P
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© Vector Gaussian Channel (contd.)
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Detection in the Gaussian Channel

m=i—m MOD |— DEMOD — i

. ; &E‘Wmm si(t) () WM’ET; i
m = i —»| MOD ™ Way H@—» o Vee! DETECT

Definition
Detection/Decoding/Demodulation is the process of estimating the
message m given the received waveform r(¢) and the modulation scheme

{s1(t), ..., sm(t)}.

Objective: Design the decoder to minimize P, = P(1 # m).
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The Gaussian Random Variable

X ~ N (0,1)
2 00
o) = \/%exp (—%) Q) = P(X > a) = / Fla)de
P(X < —a) P(X > a)

P(X < —a)=P(X >a)=Q(a)

Q(+) is a decreasing function

Y = 0 X is Gaussian with mean 0 and var o2, i.e., N'(0,02)
P(Y >b)=PcX >b)=P(X >L)=0Q (%)
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White Gaussian Noise Process n(t)

Noise waveform n(t) modelled as a white Gaussian random process, i.e.,
as a a collection of random variables {n(7)| — 0o < 7 < 400} such that

e Stationary random process
Statistics of the processes n(t) and n(t — constant) are identical

e Gaussian random process
Any linear combination of finitely many samples of n(t) is Gaussian

ain(t1) + agan(ts) + - - + aen(ty) ~ Gaussian distributed

e White random process
The power spectrum N(f) of the noise process is ‘flat’

N,
N(f):fW/Hz, for —oo < f < 400
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Power spectrum of received waveform (Signal + Noise)

[

3

T ﬁ» N(f) = No/2
) /—fc \ / f. \ f

In-band noise

In-band noise power = 2 x W x N,/2 = N,W |
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Noise Process Through Waveform-to-Vector Converter

a» = (n(t), é1 (1))

—' ny = (n(t), on(t))

Properties of the noise vector n = (n1,...,nN)
® ny,n2,...,ny are independent A/(0, N,/2) random variables

f(ni) =

1 2
e (-5
¢ Noise vector n describes only a part of n(t)
n(t) =n1¢1(t) + -+ + nnén(t) # n(t)
The noise component not captured by waveform-to-vector converter:

An(t) = n(t) — A(t) £ 0
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White Gaussian Noise Vector n

‘n: (nlv"'7nN)‘
e Probability density of n = (ny,...,ny) in RY
N
1 In |
fnoise(n) = f(nla s 7nN) = Hf(nz) = T~ &XP <
i=1 (VAN )Y No

» Probability density depends only on ||n|* =
Spherically symmetric: Isotropic distribution

» Density highest near 0 and decreasing in |n||? =
noise vector of larger norm less likely than a vector with smaller norm

N,
+ Foranya €&, (n.a) ~ N (0.1}

® aj,...,ax are orthonormal = (n,a;),...,(n,ak) are independent

N(0,N,/2)

34/54



An(t) Carries Irrelevant Information

Waveform T = siatm
r(t) = si(t) + n(t) —— to . r=s8,+n
Vector STN =8N+ NN

e r =s; +n does not carry all the information in r(t)

F(1) = 11 () + -+ rwow(t) £ ()

e The information about r(¢) not contained in 7

_er(bj(t): Zslj(ﬁ] an¢] An(t)

Theorem
The vector r contains all the information in r(¢) that is relevant to the
transmitted message.

e An(t) is irrelevant for the optimum detection of transmit message.
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The (Effective) Vector Gaussian Channel

Modulation Scheme/Code is a set {s1, ..

DETECT

—» 1

L lsull® + -+ llsal?

Power P = — -
ower I i
. . 2 No . .
Noise variance 0“ = — (per dimension)
P 2P
Signal to noi tio SNR= — = —
ignal to noise ratio i
2logy M

Spectral Efficiency n =

.8} of M vectors in RY

bits/s/Hz (assuming N = 2T'W)
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O Optimum Detection
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Optimum Detection Rule

Objective
Given {s1,...,8p} & 7, provide an estimate 7 of the transmit
message m, so that P, = P(riv £ m) is as small as possible.

Optimal Detection: Maximum a posteriori (MAP) detector
Given received vector 7, choose the vector s; that has the highest
probability of being transmitted

m =arg max _P(sj transmitted |r received )
ke{1, }

In other words, choose m = k if

P(sy, transmitted | r received ) > P(s; transmitted | r received ) for every j # k

e In case of a tie, can choose one of the indices arbitrarily. This does
not increase P,.
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Optimum Detection Rule

Use Bayes' rule P(A|B) = P(A])DJ(DI(??W
f(r)

P(s;) = Probability of transmitting s; = 1/M (equally likely messages)
f(r|si) = Probability density of  when sy, is transmitted
f(r) = Probability density of r averaged over all possible transmissions

. 1/M - f(r|sk)
M = argmax W

Likelihood function f(r|sy), Max. likelihood rule m = arg maxy, f(r|sk)

m = arg max P(sjlr) = arg max

= argmax f(r|sy)

If all the M messages are equally likely
Max. a posteriori detection = Max. likelihood (ML) detection
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Maximum Likelihood Detection in Vector Gaussian Channel

’ Use the model » = s; +n and the assumption n is independent of s;

m = arg max f(r|sg) = arg max froise (T — Sk|Sk)

= arg m]?X fnoise ("' - Sk)

= argmin [ —

= argmax

ML Detection Rule for Vector Gaussian Channel
Choose m =k if ||r — si|| < |Ir — s;|| for every j # k
e Also called minimum distance/nearest neighbor decoding

e In case of a tie, choose one of the contenders arbitrarily.
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Example: M = 6 vectors in R?

Dy

S1 e

The £kt Decision region Dj,

Dy, = set of all points closer to s;, than any other s;

={r e RN ||lr — s|| < ||r — s;]| for all j # k}

‘ The ML detector outputs m = k if r € Dy. ‘
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Examples in R?

[ J [ J
0
[ J [ J
4-QAM (Quadrature Amplitude Modulation) 8-PSK (Phase Shift Keying)

2-FSK (Frequency Shift Keying)
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@ Probability of Error
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Error Probability when M = 2

Scenario

Let {s1,82} C RY be a binary modulation scheme with
e P(s1) = P(s2) =1/2, and

e detected using the nearest neighbor decoder

e Error £ occurs if (s1 tx, 7 = 2) or (s2 tx,m = 1)

e Conditional error probability
P(&ls1) = P (= 2[s1) = P (|lr — s2f| < [Ir —s1][|51)

e Note that
P(&) = P(s1)P(E|s1) + P(s2)P(&|s2) =

e P(&]s;) can be easy to analyse

P(&|s1) + P(Els2)
2
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Conditional Error Probability when M = 2

’ E|s1: 81 is transmitted r = 81 +n, and ||r — 51| > ||r — s2]? ‘

(Els1) : ||s1 +n —s1])* > ||s1 +n — 52|
&|n||? > (81 — 89 +n,8 — 83 +n)
<:>Hn||2 > (81 — 82,81 — 82) + (81 — 82,m) + (N, 81 — 82) + (n,n)

o|n||? > ||s1 — s2]|? + 2(n, 81 — 82) + ||n||?

2
8 — 8
&(n, 81 — 82) < s = 57 5 el
81 — 82 2 > ||$1 782”2 1 2
<:> n,————. —_ < J— . . —_
< st —s2f VN, 2 [s1 —s2l VN,
81 — 82 2 > lls1 — sl
e{n, — [ ) <
< ’ ||81 — 82” NO \/2No

43/54



Error Probability when M = 2

> 81 —s2]|

Z = <n =t . ,/Nl> is Gaussian with zero mean and variance
o

2_& 9
2

N,

]Vb 81 — 82 2

81 — 82 H
[ls1 — 8|

P(5|81)P(Z< '3182H) <||8132||>
Pt —o (1 2=2l)

ple) = P+ P _ (nsl 2—;02|)

s —sof VN,

Error probability decreasing function of distance ||s; — 85|
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Bound on Error Probability when M > 2

Scenario
Let € = {s1,...,80} C RY be a modulation/coding scheme with
e P(s;)=---=P(spy)=1/M, and

e detected using the nearest neighbor decoder

Minimum distance
dmin = smallest Euclidean distance between any pair of vectors in ¥

d. — minlls; — s

min Igél]n Hsz 8 ||
Observe that ||s; — 8;|| > dmin for any ¢ # j
Since Q(+) is a decreasing function

i — 8 dmin ; ;
o(5) <o) e

Bound based only on d,i, = Simple calculations, not tight, intuitive
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Union Bound on Conditional Error Probability

Assume that 87 is transmitted, i.e., r = 81 +n. We know that
|81 — sl
P(llr —s;|| <|lr —s5l| | 81) = —
(sl < I syl 1s) =@ (1222

Decoding error occurs if r is closer some s; than sy, j =2,3,..., M

M
P(Els1) = P(r ¢ Di|s1) =P | [JlIr—s;ll <llr —s1] | 81
j=2
From union bound P(AxU---UApr) < P(Ag) +---+ P(Anm)

M

M

lsr — 5,1

P(Els)) < S P(Ir — sl < Ir — ;1| | 51) ZQ( SE
Jj=2

Jj=2

)
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Union Bound on Error Probability

Since Q(+) is a decreasing function and ||s1 — 8| > dmin

o< S0 52) < Sl )

P(Els;) < (M - 1)Q ( j% >

Upper bound on average error probability P(£) = ZAil P(s;)P(E|si)

K3

Pe) = 0 - @ (2 )

Note
e Exact P, (or good approximations better than the union bound) can
be derived for several constellations, for example PAM, QAM and
PSK.
e Chernoff bound can be useful: Q(a) < 1 exp(—a?/2) for a >0
e Union bound, in general, is loose.
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4-QAM

Exact
U

SNR (in dB)

e Abscissa is [SNR]4p = 10log;, SNR

e The union bound is a reasonable approximation for large values of

SNR

[ —Exact
——— Upper bound

16-QAM

12 14 16 18 20 22

SNR (in dB)
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Performance of QAM and FSK

M-QAM M-FSK
10°
—— 4-QAM ——2-FSK
=
107" ——— 16-FSK
107
P,
10°
107
10°
10 15 20 10-50 2 4 6 8 10 12 14
SNR (in dB) SNR (in dB)
N=2 N=M
2 log, M
n =logy, M —Z2e20r
? M
~ 2logy M
N

50 /54



Performance of QAM and FSK

| Probability of Error P, =107 |

Modulation/Code  Spectral Efficiency  Signal-to-Noise Ratio

7 (bits/sec/Hz) SNR (dB)
16-QAM 4 20
4-QAM 2 13
2-FSK 1 12.6
8-FSK 3/4 7.5
16-FSK s 46

How good are these modulation schemes ?
What is the best trade-off between SNR and 7 ?
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Capacity of the (Vector) Gaussian Channel

Let the maximum allowable power be P and noise variance be N, /2.

P 2P

SNR:m:E

What is the highest 77 achievable while ensuring that P, is small?

Theorem
Given an € > 0 and any constant 7 such that 1 < log, (1 + SNR), there
exists a coding scheme with P. < € and spectral efficiency at least 7.

Conversely, for any coding scheme with 7 > log,(1 + SNR) and M
sufficiently large, P, is close to 1.

C(SNR) = log,(1 4+ SNR) is the capacity of the Gaussian channel.
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How Good/Bad are QAM and FSK?

Least SNR required to communicate reliably with spectral efficiency 7 is
SNR*(n) =2" -1

| Probability of Error P, = 107

Modulation/Code 7 SNR (dB) SNR*(n)
16-QAM 4 20 11.7
4-QAM 2 13 4.7
2-FSK 1 12.6 0
8-FSK 3/ 7.5 —1.7

16-FSK 1/2 46 ~3.8
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How to Perform Close to Capacity?

We need P, to be small at a fixed finite SNR

» dmin Must be large to ensure that P. is small

It is necessary to use coding schemes in high dimensions N > 1
» Can ensure that dmin & constant X vV N

If N is large it is possible to ‘pack’ vectors {s;} in RY such that
» Average power is at the most P
» dmin is large
» 7 is close to log,(1 + SNR)
» P, is small

A large N implies that M = 27V/2 is also large.
» We must ensure that such a large code can be encoded/decoded
with practical complexity

Several known coding techniques

n > 1: Trellis coded modulation, multilevel codes, lattice codes,
bit-interleaved coded modulation, etc.

1 < 1: Low-density parity-check codes, turbo codes, polar codes, etc.

Thank You!
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