Modulation & Coding for the Gaussian Channel

Trivandrum School on Communication, Coding & Networking January 27–30, 2017

Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology Hyderabad lakshminatarajan@iith.ac.in

Digital Communication

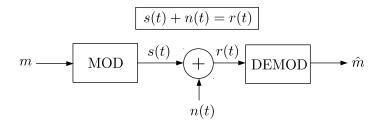
Convey a message from *transmitter* to *receiver* in a finite amount of time, where the message can assume only finitely many values.



• 'time' can be replaced with any resource: space available in a compact disc, number of cells in flash memory

Picture courtesy brigetteheffernan.wordpress.com

The Additive Noise Channel



- Message m
 - ▶ takes finitely many, say M, distinct values
 - ▶ Usually, not always, $M = 2^k$, for some integer k
 - assume m is uniformly distributed over $\{1, \ldots, M\}$
- Time duration T
 - ▶ transmit signal s(t) is restricted to $0 \le t \le T$
- Number of message bits $k = \log_2 M$ (not always an integer)

Modulation Scheme

- The transmitter & receiver agree upon a set of waveforms $\{s_1(t), \ldots, s_M(t)\}$ of duration T.
- The transmitter uses the waveform $s_i(t)$ for the message m = i.
- The receiver must guess the value of m given r(t).
- We say that a decoding error occurs if the guess $\hat{m} \neq m$.

Definition

An *M*-ary modulation scheme is simply a set of *M* waveforms $\{s_1(t), \ldots, s_M(t)\}$ each of duration *T*.

Terminology

- Binary: M = 2, modulation scheme $\{s_1(t), s_2(t)\}$
- Antipodal: M = 2 and $s_2(t) = -s_1(t)$
- Ternary: M = 3, Quaternary: M = 4

Parameters of Interest

• Bit rate $R = \frac{\log_2 M}{T}$ bits/sec

Energy of the i^{th} waveform $E_i = \|s_i(t)\|^2 = \int_{t=0}^T s_i^2(t) \mathrm{d}t$

• Average Energy

$$E = \sum_{i=1}^{M} P(m=i)E_i = \sum_{i=1}^{M} \frac{1}{M} \int_{t=0}^{T} \|s_i(t)\|^2$$

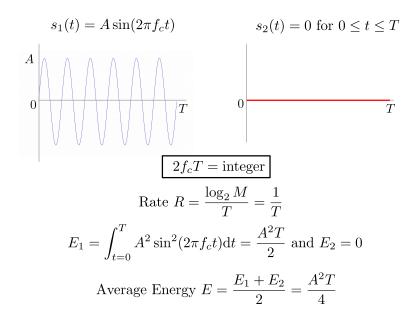
• Energy per message bit
$$E_b = \frac{E}{\log_2 M}$$

• Probability of error $P_e = P(m \neq \hat{m})$

Note

 ${\cal P}_e$ depends on the modulation scheme, noise statistics and the demodulator.

Example: On-Off Keying, M = 2



Objectives

1 Characterize and analyze a modulation scheme in terms of energy, rate and error probability.

- ▶ What is the best/optimal performance that one can expect?
- **2** Design a good modulation scheme that performs close to the theoretical optimum.

Key tool: Signal Space Representation

- Represent waveforms as vectors: 'geometry' of the problem
- Simplifies performance analysis and modulation design
- Leads to efficient modulation/demodulation implementations

1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

6 Probability of Error

References

- I. M. Jacobs and J. M. Wozencraft, Principles of Communication Engineering, Wiley, 1965.
- G. D. Forney and G. Ungerboeck, "Modulation and coding for linear Gaussian channels," in *IEEE Transactions on Information Theory*, vol. 44, no. 6, pp. 2384-2415, Oct 1998.
- D. Slepian and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty I," in *The Bell System Technical Journal*, vol. 40, no. 1, pp. 43-63, Jan. 1961.
- H. J. Landau and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty III: The dimension of the space of essentially time- and band-limited signals," in *The Bell System Technical Journal*, vol. 41, no. 4, pp. 1295-1336, July 1962.

1 Signal Space Representation

2 Vector Gaussian Channel

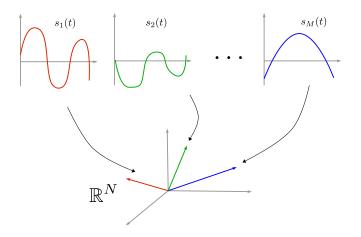
3 Vector Gaussian Channel (contd.)

4 Optimum Detection

6 Probability of Error

Goal

Map waveforms $s_1(t), \ldots, s_M(t)$ to M vectors in a Euclidean space \mathbb{R}^N , so that the map preserves the mathematical structure of the waveforms.



Quick Review of \mathbb{R}^N : N-Dimensional Euclidean Space

$$\mathbb{R}^N = \left\{ (x_1, x_2, \dots, x_N) \mid x_1, \dots, x_N \in \mathbb{R} \right\}$$

Notation: $\boldsymbol{x} = (x_1, x_2, \dots, x_N)$ and $\boldsymbol{0} = (0, 0, \dots, 0)$

Addition Properties:

•
$$x + y = (x_1, \dots, x_N) + (y_1, \dots, y_N) = (x_1 + y_1, \dots, x_N + y_N)$$

•
$$\boldsymbol{x} - \boldsymbol{y} = (x_1, \dots, x_N) - (y_1, \dots, y_N) = (x_1 - y_1, \dots, x_N - y_N)$$

•
$$oldsymbol{x} + oldsymbol{0} = oldsymbol{x}$$
 for every $oldsymbol{x} \in \mathbb{R}^N$

Multiplication Properties:

•
$$a \boldsymbol{x} = a (x_1, \dots, x_N) = (a x_1, \dots, a x_N)$$
, where $a \in \mathbb{R}$

•
$$a(\boldsymbol{x} + \boldsymbol{y}) = a\boldsymbol{x} + a\boldsymbol{y}$$

•
$$(a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$$

•
$$a \boldsymbol{x} = \boldsymbol{0}$$
 if and only if $a = 0$ or $\boldsymbol{x} = \boldsymbol{0}$

Quick Review of \mathbb{R}^N : Inner Product and Norm

Inner Product

•
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_N y_N$$

•
$$\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z}
angle = \langle \boldsymbol{x}, \boldsymbol{y}
angle + \langle \boldsymbol{x}, \boldsymbol{z}
angle$$
 (distributive law)

•
$$\langle a \boldsymbol{x}, \boldsymbol{y} \rangle = a \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

• If
$$\langle {m x}, {m y}
angle = 0$$
 we say that ${m x}$ and ${m y}$ are orthogonal

Norm

- $\|m{x}\| = \sqrt{x_1^2 + \cdots + x_N^2} = \sqrt{\langle m{x}, m{x}
 angle}$ denotes the length of $m{x}$
- $\|m{x}\|^2 = \langle m{x}, m{x}
 angle$ denotes the energy of the vector $m{x}$

•
$$\| \boldsymbol{x} \|^2 = 0$$
 if and only if $\boldsymbol{x} = \boldsymbol{0}$

- If $\|\boldsymbol{x}\| = 1$ we say that \boldsymbol{x} is of unit norm
- $\|\boldsymbol{x} \boldsymbol{y}\|$ is the distance between two vectors.

Cauchy-Schwarz Inequality

• $|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|$

• Or equivalently,
$$-1 \leq rac{\langle m{x}, m{y}
angle}{\|m{x}\| \|m{y}\|} \leq 1$$

Waveforms as Vectors

The set of all finite-energy waveforms of duration T and the Euclidean space \mathbb{R}^N share *many* structural properties.

Addition Properties

- We can add and subtract two waveforms x(t) + y(t), x(t) y(t)
- The all-zero waveform 0(t) = 0 for $0 \le t \le T$ is the additive identity x(t) + 0(t) = x(t) for any waveform x(t)

Multiplication Properties

• We can scale x(t) using a real number a and obtain a x(t)

•
$$a(x(t) + y(t)) = ax(t) + ay(t)$$

•
$$(a+b)x(t) = ax(t) + bx(t)$$

• ax(t) = 0(t) if and only if a = 0 or x(t) = 0(t)

Inner Product and Norm of Waveforms

Inner Product

•
$$\langle x(t), y(t) \rangle = \langle y(t), x(t) \rangle = \int_{t=0}^{T} x(t)y(t) dt$$

• $\langle x(t), y(t) + z(t) \rangle = \langle x(t), y(t) \rangle + \langle x(t), z(t) \rangle$ (distributive law)

•
$$\langle ax(t), y(t) \rangle = a \langle x(t), y(t) \rangle$$

• If $\langle x(t),y(t)\rangle=0$ we say that x(t) and y(t) are orthogonal

Norm

•
$$||x(t)|| = \sqrt{\langle x(t), x(t) \rangle} = \sqrt{\int_{t=0}^{T} x^2(t) dt}$$
 is the norm of $x(t)$

•
$$||x(t)||^2 = \int_{t=0}^T x^2(t) dt$$
 denotes the energy of $x(t)$

- If ||x(t)|| = 1 we say that x(t) is of unit norm
- $\|x(t) y(t)\|$ is the distance between two waveforms

Cauchy-Schwarz Inequality

• $|\langle x(t),y(t)
angle|\leq \|x(t)\|\,\|y(t)\|$ for any two waveforms $x(t),\,y(t)$

We want to map $s_1(t), \ldots, s_M(t)$ to vectors $s_1, \ldots, s_M \in \mathbb{R}^N$ so that the addition, multiplication, inner product and norm properties are preserved.

Orthonormal Waveforms

Definition

A set of N waveforms $\{\phi_1(t),\ldots,\phi_N(t)\}$ is said to be orthonormal if

1
$$\|\phi_1(t)\| = \|\phi_2(t)\| = \dots = \|\phi_N(t)\| = 1$$
 (unit norm)

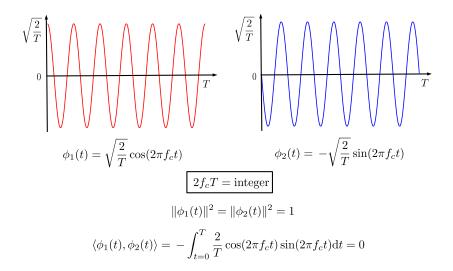
2
$$\langle \phi_i(t), \phi_j(t) \rangle = 0$$
 for all $i \neq j$ (orthogonality)

The role of orthonormal waveforms is similar to that of the standard basis

$$\boldsymbol{e}_1 = (1, 0, 0, \dots, 0), \boldsymbol{e}_2 = (0, 1, 0, \dots, 0), \cdots, \boldsymbol{e}_N = (0, 0, \dots, 0, 1)$$

$\frac{\underline{\text{Remark}}}{\text{Say }x(t) = x_1\phi_1(t) + \dots + x_N\phi_N(t), \ y(t) = y_1\phi_1(t) + \dots + y_N\phi_N(t)$ $\langle x(t), y(t) \rangle = \left\langle \sum_{i=1}^N x_i\phi_i(t), \sum_{j=1}^N y_j\phi_j(t) \right\rangle = \sum_i \sum_j x_iy_j \langle \phi_i(t), \phi_j(t) \rangle$ $= \sum_i \sum_{j=i} x_iy_j = \sum_i x_iy_i$ $= \langle \mathbf{x}, \mathbf{y} \rangle$

Example



Orthonormal Basis

Definition An orthonormal basis for $\{s_1(t), \ldots, s_M(t)\}$ is an orthonormal set $\{\phi_1(t), \ldots, \phi_N(t)\}$ such that $s_i(t) = s_{i,1}\phi_i(t) + s_{i,2}\phi_2(t) + \cdots + s_{i,M}\phi_N(t)$ for some choice of $s_{i,1}, s_{i,2}, \ldots, s_{i,N} \in \mathbb{R}$

- We associate $s_i(t) \rightarrow \boldsymbol{s}_i = (s_{i,1}, s_{i,2}, \dots, s_{i,N})$
- A given modulation scheme can have many orthonormal bases.
- The map $s_1(t) \rightarrow \boldsymbol{s}_1, s_2(t) \rightarrow \boldsymbol{s}_2, \ldots, s_M(t) \rightarrow \boldsymbol{s}_M$ depends on the choice of orthonormal basis.

Example: *M*-ary Phase Shift Keying

Modulation Scheme

•
$$s_i(t) = A\cos(2\pi f_c t + \frac{2\pi i}{M}), \ i = 1, \dots, M$$

• Expanding $s_i(t)$ using $\cos(C+D) = \cos C \cos D - \sin C \sin D$

$$s_i(t) = A\cos\left(\frac{2\pi i}{M}\right)\cos(2\pi f_c t) - A\sin\left(\frac{2\pi i}{M}\right)\sin(2\pi f_c t)$$

Orthonormal Basis

• Use $\phi_1(t) = \sqrt{2/T}\cos(2\pi f_c t)$ and $\phi_2(t) = \sqrt{2/T}\sin(2\pi f_c t)$

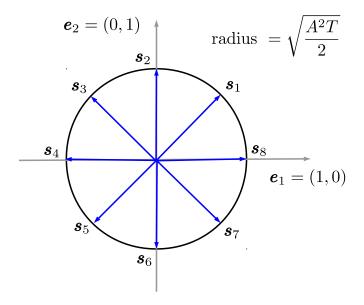
$$s_i(t) = A\sqrt{\frac{T}{2}}\cos\left(\frac{2\pi i}{M}\right)\phi_1(t) + A\sqrt{\frac{T}{2}}\sin\left(\frac{2\pi i}{M}\right)\phi_2(t)$$

• Dimension N=2

Waveform to Vector

$$s_i(t) \to \left(\sqrt{\frac{A^2T}{2}}\cos\left(\frac{2\pi i}{M}\right), \sqrt{\frac{A^2T}{2}}\sin\left(\frac{2\pi i}{M}\right)\right)$$

8-ary Phase Shift Keying



How to find an orthonormal basis

Gram-Schmidt Procedure

Given a modulation scheme $\{s_1(t), \ldots, s_M(t)\}$, constructs an orthonormal basis $\phi_1(t), \ldots, \phi_N(t)$ for the scheme.

Similar to QR factorization of matrices

$$\boldsymbol{A} = [\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \cdots \ \boldsymbol{a}_M] = [\boldsymbol{q}_1 \ \boldsymbol{q}_2 \ \cdots \ \boldsymbol{q}_N] \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & r_{1,M} \\ r_{2,1} & r_{2,2} & \cdots & r_{2,M} \\ \vdots & \vdots & \cdots & \vdots \\ r_{N,1} & r_{N,2} & \cdots & r_{N,M} \end{bmatrix} = \boldsymbol{Q} \boldsymbol{R}$$
$$[s_1(t) \ \cdots \ s_M(t)] = [\phi_1(t) \ \cdots \ \phi_N(t)] \begin{bmatrix} s_{1,1} & s_{2,1} & \cdots & s_{M,1} \\ s_{1,2} & s_{2,2} & \cdots & s_{M,2} \\ \vdots & \vdots & \cdots & \vdots \\ s_{1,N} & s_{2,N} & \cdots & s_{M,N} \end{bmatrix}$$

Waveforms to Vectors, and Back

Say $\{\phi_1(t), \dots, \phi_N(t)\}$ is an orthonormal basis for $\{s_1(t), \dots, s_M(t)\}$. Then, $s_i(t) = \sum_{j=1}^N s_{i,j}\phi_j(t)$ for some choice of $\{s_{i,j}\}$

Waveform to Vector

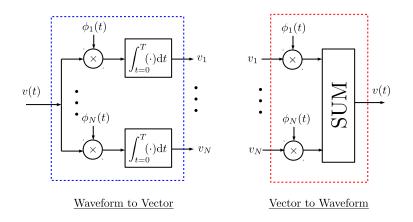
$$\begin{split} \langle s_i(t), \phi_j(t) \rangle &= \langle \sum_k s_{i,k} \phi_k(t), \phi_j(t) \rangle = \sum_k s_{i,k} \langle \phi_k(t), \phi_j(t) \rangle = s_{i,j} \\ s_i(t) &\to (s_{i,1}, s_{i,2}, \dots, s_{i,N}) = \mathbf{s}_i \end{split}$$
 where $s_{i,1} &= \langle s_i(t), \phi_1(t) \rangle, \ s_{i,2} = \langle s_i(t), \phi_2(t) \rangle, \dots, \ s_{i,N} = \langle s_i(t), \phi_N(t) \rangle$

Vector to Waveform

$$\mathbf{s}_i = (s_{i,1}, \dots, s_{i,N}) \to s_{i,1}\phi_1(t) + s_{i,2}\phi_2(t) + \dots + s_{i,N}\phi_N(t)$$

- Every point in \mathbb{R}^N corresponds to a unique waveform.
- · Going back and forth between vectors and waveforms is easy.

Waveforms to Vectors, and Back



Caveat

 $v(t) \rightarrow \text{Waveform to vector} \rightarrow \boldsymbol{v} \quad \boldsymbol{v} \rightarrow \text{Vector to waveform} \rightarrow \hat{v}(t)$ $\hat{v}(t) = v(t) \text{ iff } v(t) \text{ is some linear combination of } \phi_1(t), \dots, \phi_N(t),$ or equivalently, v(t) is some linear combination of $s_1(t), \dots, s_M(t)$

Equivalence Between Waveform and Vector Representations

Say $v(t) = v_1\phi_1(t) + \dots + v_N\phi_N(t)$ and $u(t) = u_1\phi_1(t) + \dots + u_N\phi_N(t)$

Addition	v(t) + u(t)	$oldsymbol{v}+oldsymbol{u}$
Scalar Multiplication	a v(t)	$a \boldsymbol{v}$
Energy	$\ v(t)\ ^2$	$\ oldsymbol{v}\ ^2$
Inner product	$\langle v(t), u(t) \rangle$	$\langle oldsymbol{v},oldsymbol{u} angle$
Distance	$\ v(t) - u(t)\ $	$\ oldsymbol{v}-oldsymbol{u}\ $
Basis	$\phi_i(t)$	$oldsymbol{e}_i$ (Std. basis)

1 Signal Space Representation

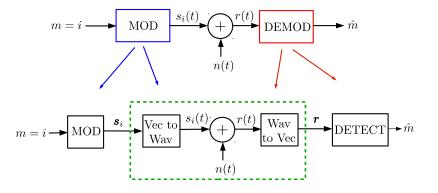
2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

6 Probability of Error

Vector Gaussian Channel



Definition

An *M*-ary modulation scheme of dimension *N* is a set of *M* vectors $\{s_1, \ldots, s_M\}$ in \mathbb{R}^N

• Average energy
$$E = \frac{1}{M} \Big(\| \boldsymbol{s}_1 \|^2 + \dots + \| \boldsymbol{s}_M \|^2 \Big)$$

Vector Gaussian Channel

Relation between received vector \boldsymbol{r} and transmit vector \boldsymbol{s}_i

The j^{th} component of received vector $oldsymbol{r} = (r_1, \ldots, r_N)$

$$r_{j} = \langle r(t), \phi_{i}(t) \rangle = \langle s_{i}(t) + n(t), \phi_{j}(t) \rangle$$
$$= \langle s_{i}(t), \phi_{j}(t) \rangle + \langle n(t), \phi_{j}(t) \rangle$$
$$= s_{i,j} + n_{j}$$

Denoting $\boldsymbol{n} = (n_1, \ldots, n_N)$ we obtain

 $\boldsymbol{r} = \boldsymbol{s}_i + \boldsymbol{n}$

If n(t) is a Gaussian random process, noise vector \boldsymbol{n} follows Gaussian distribution.

Note

Effective noise at the receiver $\hat{n}(t) = n_1\phi_1(t) + \cdots + n_N\phi_N(t)$ In general, n(t) not a linear combination of basis, and $\hat{n}(t) \neq n(t)$,

Designing a Modulation Scheme

1 Choose an orthonormal basis $\phi_1(t), \ldots, \phi_N(t)$

- \blacktriangleright Determines bandwidth of transmit signals, signalling duration T
- **2** Construct a (vector) modulation scheme $\boldsymbol{s}_1, \ldots, \boldsymbol{s}_M \in \mathbb{R}^N$
 - Determines the signal energy, probability of error

An $N\mbox{-}dimensional$ modulation scheme exploits 'N uses' of a scalar Gaussian channel

 $r_j = s_{i,j} + n_j$ where $j = 1, \ldots, N$

With limits on bandwidth and signal duration, how large can N be?

Dimension of Time/Band-limited Signals

Say transmit signals s(t) must be time/band limited

- $\textbf{0} \ s(t) = 0 \ \text{if} \ t < 0 \ \text{or} \ t \geq T, \text{ and (time-limited)}$
- **2** S(f) = 0 if $f < f_c \frac{W}{2}$ or $f > f_c + \frac{W}{2}$ (band-limited)

Uncertainty Principle: No non-zero signal is both time- and band-limited.

 \Rightarrow No signal transmission is possible!

We relax the constraint to approximately band-limited

1
$$s(t) = 0$$
 if $t < 0$ or $t > T$, and (time-limited)
2 $\int_{f=f_c-W/2}^{f_c+W/2} |S(f)|^2 df \ge (1-\delta) \int_0^{+\infty} |S(f)|^2 df$ (approx. band-lim.)

Here $\delta>0$ is the fraction of out-of-band signal energy.

What is the largest dimension N of time-limited/approximately band-limited signals?

Dimension of Time/band-limited Signals

Let T > 0 and W > 0 be given, and consider any $\delta, \epsilon > 0$.

Theorem (Landau, Pollak & Slepian 1961-62)

If TW is sufficiently large, there exists $N=2TW(1-\epsilon)$ orthonormal waveforms $\phi_1(t),\ldots,\phi_N(t)$ such that

$$\begin{aligned} \bullet & \phi_i(t) = 0 \text{ if } t < 0 \text{ or } t > T \text{, and (time-limited)} \\ \bullet & \int_{f=f_c-W/2}^{f_c+W/2} |\Phi_i(f)|^2 \mathrm{d}f \ge (1-\delta) \int_0^{+\infty} |\Phi_i(f)|^2 \mathrm{d}f \text{ (approx. band-lim.)} \end{aligned}$$

In summary

- We can 'pack' $N\approx 2TW$ dimensions if the time-bandwidth product TW is large enough.
- Number of dimensions/channel uses normalized to $1\ {\rm sec}$ of transmit duration and $1\ {\rm Hz}$ of bandwidth

$$\frac{N}{TW}\approx 2~{\rm dim/sec/Hz}$$

Relation between Waveform & Vector Channels

Assume $N = 2TW$				
Signal energy	E_i	$\ s_i(t)\ ^2$	$\ m{s}_i\ ^2$	
Avg. energy	E	$\frac{1}{M}\sum_{i} \ s_i(t)\ ^2$	$rac{1}{M}\sum_{i}\ \pmb{s}_{i}\ ^{2}$	
Transmit Power	S	$rac{E}{T}$	$\frac{E}{N}2W$	
Rate	R	$\frac{\log_2 M}{T}$	$\frac{\log_2 M}{N} 2W$	

Parameters for Vector Gaussian Channel

- Spectral Efficiency $\eta = 2 \log_2 M/N$ (unit: bits/sec/Hz)
 - Allows comparison between schemes with different bandwidths.
 - ▶ Related to rate as $\eta = R/W$
- Power P = E/N (unit: Watt/Hz)

▶ Related to actual transmit power as S = 2WP

1 Signal Space Representation

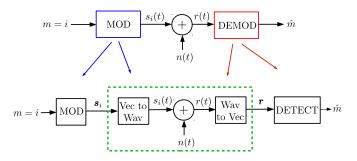
2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

6 Probability of Error

Detection in the Gaussian Channel

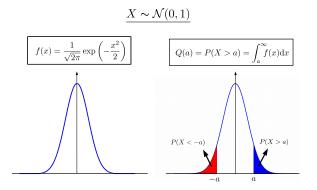


Definition

Detection/Decoding/Demodulation is the process of estimating the message m given the received waveform r(t) and the modulation scheme $\{s_1(t), \ldots, s_M(t)\}$.

Objective: Design the decoder to minimize $P_e = P(\hat{m} \neq m)$.

The Gaussian Random Variable



•
$$P(X < -a) = P(X > a) = Q(a)$$

- $Q(\cdot)$ is a decreasing function
- $Y = \sigma X$ is Gaussian with mean 0 and var σ^2 , i.e., $\mathcal{N}(0, \sigma^2)$
- $P(Y > b) = P(\sigma X > b) = P(X > \frac{b}{\sigma}) = Q\left(\frac{b}{\sigma}\right)$

White Gaussian Noise Process n(t)

Noise waveform n(t) modelled as a white Gaussian random process, i.e., as a a collection of random variables $\{n(\tau) \mid -\infty < \tau < +\infty\}$ such that

- Stationary random process Statistics of the processes n(t) and n(t - constant) are identical
- Gaussian random process

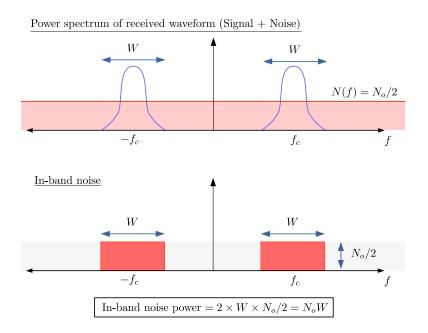
Any linear combination of finitely many samples of n(t) is Gaussian

 $a_1n(t_1) + a_2n(t_2) + \cdots + a_\ell n(t_\ell) \sim \text{Gaussian distributed}$

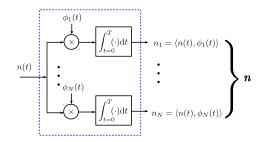
• White random process

The power spectrum N(f) of the noise process is 'flat'

$$N(f) = \frac{N_o}{2} \text{ W/Hz}, \text{ for } -\infty < f < +\infty$$



Noise Process Through Waveform-to-Vector Converter



Properties of the noise vector $\boldsymbol{n} = (n_1, \dots, n_N)$

- n_1, n_2, \dots, n_N are independent $\mathcal{N}(0, N_o/2)$ random variables $f(n_i) = \frac{1}{\sqrt{\pi N_o}} \exp\left(-\frac{n_i^2}{N_o}\right)$
- Noise vector \boldsymbol{n} describes only a part of n(t) $\hat{n}(t) = n_1 \phi_1(t) + \dots + n_N \phi_N(t) \neq n(t)$

The noise component not captured by waveform-to-vector converter:

$$\Delta n(t) = n(t) - \hat{n}(t) \neq 0$$

White Gaussian Noise Vector n

$$\boldsymbol{n}=(n_1,\ldots,n_N)$$

• Probability density of $\boldsymbol{n} = (n_1, \dots, n_N)$ in \mathbb{R}^N

$$f_{\text{noise}}(\boldsymbol{n}) = f(n_1, \dots, n_N) = \prod_{i=1}^N f(n_i) = \frac{1}{(\sqrt{\pi N_o})^N} \exp\left(-\frac{\|\boldsymbol{n}\|^2}{N_o}\right)$$

- ▶ Probability density depends only on ||n||² ⇒ Spherically symmetric: Isotropic distribution
- ▶ Density highest near 0 and decreasing in ||n||² ⇒ noise vector of larger norm less likely than a vector with smaller norm

• For any
$$\pmb{a} \in \mathbb{R}^N$$
, $\langle \pmb{n}, \pmb{a}
angle \sim \mathcal{N}\left(0, \|\pmb{a}\|^2 rac{N_o}{2}
ight)$

• $\boldsymbol{a}_1, \dots, \boldsymbol{a}_K$ are orthonormal $\Rightarrow \langle \boldsymbol{n}, \boldsymbol{a}_1 \rangle, \dots, \langle \boldsymbol{n}, \boldsymbol{a}_K \rangle$ are independent $\mathcal{N}(0, N_o/2)$

$\Delta n(t)$ Carries Irrelevant Information

$$r(t) = s_i(t) + n(t) \longrightarrow \left\{ \begin{array}{c} \text{Waveform} \\ \text{to} \\ \text{Vector} \end{array} \right\} \mathbf{r} = s_{i,1} + n_1 \\ \bullet \\ \mathbf{s} \\ \mathbf{r}_N = s_{i,N} + n_N \end{array} \right\} \mathbf{r} = \mathbf{s}_i + \mathbf{n}$$

• $\boldsymbol{r} = \boldsymbol{s}_i + \boldsymbol{n}$ does not carry all the information in r(t)

$$\hat{r}(t) = r_1 \phi_1(t) + \dots + r_N \phi_N(t) \neq r(t)$$

• The information about r(t) not contained in \boldsymbol{r}

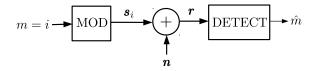
$$r(t) - \sum_{j} r_{j}\phi_{j}(t) = s_{i}(t) + n(t) - \sum_{j} s_{i,j}\phi_{j}(t) - \sum_{j} n_{j}\phi_{j}(t) = \Delta n(t)$$

Theorem

The vector \boldsymbol{r} contains all the information in r(t) that is relevant to the transmitted message.

• $\Delta n(t)$ is irrelevant for the optimum detection of transmit message.

The (Effective) Vector Gaussian Channel



- Modulation Scheme/Code is a set $\{s_1, \ldots, s_M\}$ of M vectors in \mathbb{R}^N
- Power $P = \frac{1}{N} \cdot \frac{\|\boldsymbol{s}_1\|^2 + \dots + \|\boldsymbol{s}_M\|^2}{M}$
- Noise variance $\sigma^2 = \frac{N_o}{2}$ (per dimension)
- Signal to noise ratio SNR = $\frac{P}{\sigma^2} = \frac{2P}{N_o}$
- Spectral Efficiency $\eta = \frac{2 \log_2 M}{N}$ bits/s/Hz (assuming N = 2TW)

1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

Optimum Detection

6 Probability of Error

Optimum Detection Rule

Objective Given $\{s_1, \ldots, s_M\}$ & r, provide an estimate \hat{m} of the transmit message m, so that $P_e = P(\hat{m} \neq m)$ is as small as possible.

Optimal Detection: Maximum a posteriori (MAP) detector Given received vector r, choose the vector s_j that has the highest probability of being transmitted

$$\hat{m} = \arg \max_{k \in \{1,...,M\}} P(\mathbf{s}_k \text{ transmitted} \,|\, \mathbf{r} \text{ received}\,)$$

In other words, choose $\hat{m}=k$ if

 $P(\boldsymbol{s}_k \text{ transmitted} | \boldsymbol{r} \text{ received}) > P(\boldsymbol{s}_j \text{ transmitted} | \boldsymbol{r} \text{ received}) \text{ for every } j \neq k$

• In case of a tie, can choose one of the indices arbitrarily. This does not increase P_e .

Optimum Detection Rule

Use Bayes' rule $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$

$$\hat{m} = \arg\max_{k} P(\boldsymbol{s}_{j} | \boldsymbol{r}) = \arg\max_{k} \frac{P(\boldsymbol{s}_{k}) f(\boldsymbol{r} | \boldsymbol{s}_{k})}{f(\boldsymbol{r})}$$

 $P(\mathbf{s}_j) = \text{Probability of transmitting } \mathbf{s}_j = 1/M$ (equally likely messages) $f(\mathbf{r}|\mathbf{s}_k) = \text{Probability density of } \mathbf{r}$ when \mathbf{s}_k is transmitted $f(\mathbf{r}) = \text{Probability density of } \mathbf{r}$ averaged over all possible transmissions

$$\hat{m} = \arg\max_{k} \frac{1/M \cdot f(\boldsymbol{r}|\boldsymbol{s}_{k})}{f(\boldsymbol{r})} = \arg\max_{k} f(\boldsymbol{r}|\boldsymbol{s}_{k})$$

Likelihood function $f(\mathbf{r}|\mathbf{s}_k)$, Max. likelihood rule $\hat{m} = \arg \max_k f(\mathbf{r}|\mathbf{s}_k)$

If all the M messages are equally likely Max. a posteriori detection = Max. likelihood (ML) detection

Maximum Likelihood Detection in Vector Gaussian Channel

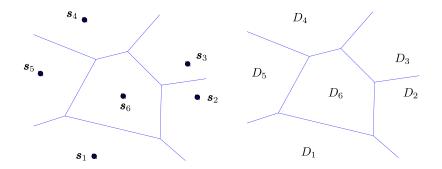
Use the model $\boldsymbol{r} = \boldsymbol{s}_i + \boldsymbol{n}$ and the assumption \boldsymbol{n} is independent of \boldsymbol{s}_i

$$\begin{split} \hat{m} &= \arg\max_{k} f(\boldsymbol{r}|\boldsymbol{s}_{k}) = \arg\max_{k} f_{\text{noise}}(\boldsymbol{r} - \boldsymbol{s}_{k}|\boldsymbol{s}_{k}) \\ &= \arg\max_{k} f_{\text{noise}}(\boldsymbol{r} - \boldsymbol{s}_{k}) \\ &= \arg\max_{k} \frac{1}{(\sqrt{\pi N_{o}})^{N}} \exp\left(-\frac{\|\boldsymbol{r} - \boldsymbol{s}_{k}\|^{2}}{N_{o}}\right) \\ &= \arg\min_{k} \|\boldsymbol{r} - \boldsymbol{s}_{k}\|^{2} \end{split}$$

ML Detection Rule for Vector Gaussian Channel Choose $\hat{m} = k$ if $||\mathbf{r} - \mathbf{s}_k|| < ||\mathbf{r} - \mathbf{s}_j||$ for every $j \neq k$

- Also called minimum distance/nearest neighbor decoding
- In case of a tie, choose one of the contenders arbitrarily.

Example: M = 6 vectors in \mathbb{R}^2

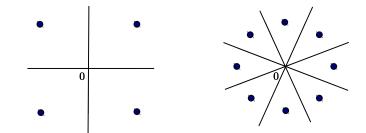


The k^{th} Decision region D_k

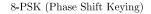
 $D_k = \text{set of all points closer to } \boldsymbol{s}_k \text{ than any other } \boldsymbol{s}_j$ $= \left\{ \boldsymbol{r} \in \mathbb{R}^N \, | \, \| \boldsymbol{r} - \boldsymbol{s}_k \| < \| \boldsymbol{r} - \boldsymbol{s}_j \| \text{ for all } j \neq k \right\}$

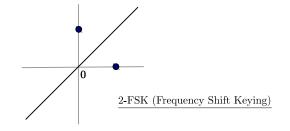
The ML detector outputs $\hat{m} = k$ if $\boldsymbol{r} \in D_k$.

Examples in \mathbb{R}^2



4-QAM (Quadrature Amplitude Modulation)





1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

6 Probability of Error

Error Probability when M = 2

Scenario

Let $\{s_1, s_2\} \subset \mathbb{R}^N$ be a binary modulation scheme with

- $P(s_1) = P(s_2) = 1/2$, and
- · detected using the nearest neighbor decoder

- Error \mathcal{E} occurs if $(\mathbf{s}_1 \text{ tx}, \hat{m} = 2)$ or $(\mathbf{s}_2 \text{ tx}, \hat{m} = 1)$
- Conditional error probability

$$P(\mathcal{E}|\boldsymbol{s}_{1}) = P\left(\hat{m} = 2|\boldsymbol{s}_{1}\right) = P\left(\|\boldsymbol{r} - \boldsymbol{s}_{2}\| < \|\boldsymbol{r} - \boldsymbol{s}_{1}\| \,|\, \boldsymbol{s}_{1}\right)$$

Note that

$$P(\mathcal{E}) = P(\boldsymbol{s}_1)P(\mathcal{E}|\boldsymbol{s}_1) + P(\boldsymbol{s}_2)P(\mathcal{E}|\boldsymbol{s}_2) = \frac{P(\mathcal{E}|\boldsymbol{s}_1) + P(\mathcal{E}|\boldsymbol{s}_2)}{2}$$

• $P(\mathcal{E}|\boldsymbol{s}_i)$ can be easy to analyse

Conditional Error Probability when ${\cal M}=2$

$$\mathcal{E}|m{s}_1:m{s}_1$$
 is transmitted $m{r}=m{s}_1+m{n}$, and $\|m{r}-m{s}_1\|^2>\|m{r}-m{s}_2\|^2$

$$\begin{split} (\mathcal{E}|\mathbf{s}_{1}) &: \|\mathbf{s}_{1} + \mathbf{n} - \mathbf{s}_{1}\|^{2} > \|\mathbf{s}_{1} + \mathbf{n} - \mathbf{s}_{2}\|^{2} \\ \Leftrightarrow \|\mathbf{n}\|^{2} > \langle \mathbf{s}_{1} - \mathbf{s}_{2} + \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} + \mathbf{n} \rangle \\ \Leftrightarrow \|\mathbf{n}\|^{2} > \langle \mathbf{s}_{1} - \mathbf{s}_{2}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle + \langle \mathbf{s}_{1} - \mathbf{s}_{2}, \mathbf{n} \rangle + \langle \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle + \langle \mathbf{n}, \mathbf{n} \rangle \\ \Leftrightarrow \|\mathbf{n}\|^{2} > \|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2} + 2\langle \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle + \|\mathbf{n}\|^{2} \\ \Leftrightarrow \langle \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle < -\frac{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2}}{2} \\ \Leftrightarrow \left\langle \mathbf{n}, \frac{\mathbf{s}_{1} - \mathbf{s}_{2}}{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|} \cdot \sqrt{\frac{2}{N_{o}}} \right\rangle < -\frac{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2}}{2} \cdot \frac{1}{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|} \cdot \sqrt{\frac{2}{N_{o}}} \\ \Leftrightarrow \left\langle \mathbf{n}, \frac{\mathbf{s}_{1} - \mathbf{s}_{2}}{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|} \cdot \sqrt{\frac{2}{N_{o}}} \right\rangle < -\frac{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|}{\sqrt{2N_{o}}} \end{split}$$

Error Probability when M = 2

• $Z = \left\langle \boldsymbol{n}, \frac{\boldsymbol{s}_1 - \boldsymbol{s}_2}{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|} \cdot \sqrt{\frac{2}{N_o}} \right\rangle$ is Gaussian with zero mean and variance $\frac{N_o}{2} \left\| \frac{\boldsymbol{s}_1 - \boldsymbol{s}_2}{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|} \cdot \sqrt{\frac{2}{N_o}} \right\|^2 = \frac{N_o}{2} \cdot \frac{2}{N_o} \left\| \frac{\boldsymbol{s}_1 - \boldsymbol{s}_2}{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|} \right\|^2 = 1$ • $P(\mathcal{E}|\boldsymbol{s}_1) = P\left(Z < -\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right) = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right)$ • $P(\mathcal{E}|\boldsymbol{s}_2) = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right)$

$$P(\mathcal{E}) = \frac{P(\mathcal{E}|\boldsymbol{s}_1) + P(\mathcal{E}|\boldsymbol{s}_2)}{2} = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right)$$

• Error probability decreasing function of distance $\|m{s}_1 - m{s}_2\|$

Bound on Error Probability when M>2

Scenario Let $\mathscr{C} = \{s_1, \dots, s_M\} \subset \mathbb{R}^N$ be a modulation/coding scheme with • $P(s_1) = \dots = P(s_M) = 1/M$, and • detected using the nearest neighbor decoder

• Minimum distance

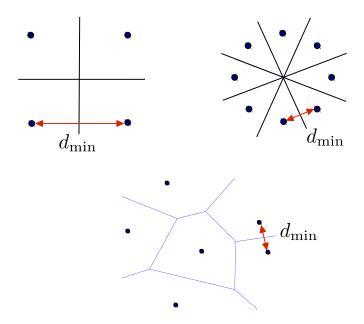
 $\mathit{d}_{\min} = \mathsf{smallest}$ Euclidean distance between any pair of vectors in $\mathscr C$

$$d_{\min} = \min_{i \neq j} \| \boldsymbol{s}_i - \boldsymbol{s}_j \|$$

- Observe that $\| {m s}_i {m s}_j \| \geq d_{\min}$ for any i
 eq j
- Since $Q(\cdot)$ is a decreasing function

$$Q\left(\frac{\|\boldsymbol{s}_i - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right) \leq Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right) \text{ for any } i \neq j$$

- Bound based only on $d_{\min} \Rightarrow$ Simple calculations, not tight, intuitive



Union Bound on Conditional Error Probability

Assume that \boldsymbol{s}_1 is transmitted, i.e., $\boldsymbol{r} = \boldsymbol{s}_1 + \boldsymbol{n}$. We know that

$$P(\|\boldsymbol{r} - \boldsymbol{s}_j\| < \|\boldsymbol{r} - \boldsymbol{s}_j\| \mid \boldsymbol{s}_1) = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right)$$

Decoding error occurs if \boldsymbol{r} is closer some \boldsymbol{s}_j than \boldsymbol{s}_1 , $j=2,3,\ldots,M$

$$P(\mathcal{E}|\boldsymbol{s}_1) = P(\boldsymbol{r} \notin D_1 | \boldsymbol{s}_1) = P\left(\bigcup_{j=2}^M \|\boldsymbol{r} - \boldsymbol{s}_j\| < \|\boldsymbol{r} - \boldsymbol{s}_1\| | \boldsymbol{s}_1\right)$$

From union bound $P(A_2 \cup \cdots \cup A_M) \leq P(A_2) + \cdots + P(A_M)$

$$P(\mathcal{E}|\boldsymbol{s}_1) \leq \sum_{j=2}^{M} P(\|\boldsymbol{r} - \boldsymbol{s}_j\| < \|\boldsymbol{r} - \boldsymbol{s}_j\| \mid \boldsymbol{s}_1) = \sum_{j=2}^{M} Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right)$$

Union Bound on Error Probability

Since $Q(\cdot)$ is a decreasing function and $\| \boldsymbol{s}_1 - \boldsymbol{s}_j \| \geq d_{\min}$

$$P(\mathcal{E}|\boldsymbol{s}_1) \le \sum_{j=2}^{M} Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right) \le \sum_{j=2}^{M} Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right)$$

$$P(\mathcal{E}|\boldsymbol{s}_1) \le (M-1)Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right)$$

Upper bound on average error probability $P(\mathcal{E}) = \sum_{i=1}^{M} P(\boldsymbol{s}_i) P(\mathcal{E}|\boldsymbol{s}_i)$

$$P(\mathcal{E}) \le (M-1)Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right)$$

Note

- Exact P_e (or good approximations better than the union bound) can be derived for several constellations, for example PAM, QAM and PSK.
- Chernoff bound can be useful: $Q(a) \leq \frac{1}{2} \exp(-a^2/2)$ for $a \geq 0$
- Union bound, in general, is loose.



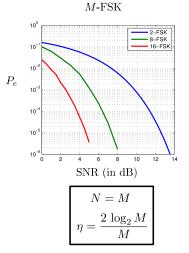
• Abscissa is $[SNR]_{dB} = 10 \log_{10} SNR$

• The union bound is a reasonable approximation for large values of SNR

Performance of QAM and FSK

10⁰ 4-QAM 16-QAM 10 10-2 P_e 10 10 10 10-6 0 5 10 15 20 SNR (in dB) N=2 $\eta = \log_2 M$

M-QAM



$$\eta = \frac{2\log_2 M}{N}$$

Performance of QAM and FSK

Probability of Error $P_e = 10^{-5}$

Modulation/Code	$\frac{\text{Spectral Efficiency}}{\eta \text{ (bits/sec/Hz)}}$	Signal-to-Noise Ratio SNR (dB)
16-QAM	4	20
4-QAM	2	13
2-FSK	1	12.6
8-FSK	$^{3/4}$	7.5
16-FSK	$^{1}/_{2}$	4.6

How good are these modulation schemes ? What is the best trade-off between $\rm SNR$ and η ?

Capacity of the (Vector) Gaussian Channel

Let the maximum allowable power be P and noise variance be $N_o/2$.

$$SNR = \frac{P}{N_o/2} = \frac{2P}{N_o}$$

What is the highest η achievable while ensuring that P_e is small?

Theorem

Given an $\epsilon > 0$ and any constant η such that $\eta < \log_2 (1 + \text{SNR})$, there exists a coding scheme with $P_e \le \epsilon$ and spectral efficiency at least η .

Conversely, for any coding scheme with $\eta > \log_2(1 + \text{SNR})$ and M sufficiently large, P_e is close to 1.

 $C(SNR) = \log_2(1 + SNR)$ is the **capacity** of the Gaussian channel.

How Good/Bad are QAM and FSK?

Least ${\rm SNR}$ required to communicate reliably with spectral efficiency η is ${\rm SNR}^*(\eta)=2^\eta-1$

Probability of Error $P_e = 10^{-5}$

Modulation/Code	η	SNR (dB)	$\mathrm{SNR}^*(\eta)$
16-QAM	4	20	11.7
4-QAM	2	13	4.7
2-FSK	1	12.6	0
8-FSK	$^{3/4}$	7.5	-1.7
16-FSK	$^{1/2}$	4.6	-3.8

How to Perform Close to Capacity?

- We need P_e to be small at a fixed finite SNR
 - d_{\min} must be large to ensure that P_e is small
- It is necessary to use coding schemes in high dimensions $N\gg 1$
 - Can ensure that $d_{\min} \approx \text{constant} \times \sqrt{N}$
- If N is large it is possible to 'pack' vectors $\{m{s}_i\}$ in \mathbb{R}^N such that
 - Average power is at the most P
 - \blacktriangleright d_{\min} is large
 - ▶ η is close to $\log_2(1 + SNR)$
 - ▶ P_e is small
- A large N implies that $M = 2^{\eta N/2}$ is also large.
 - We must ensure that such a large code can be encoded/decoded with practical complexity

Several known coding techniques

 $\eta>1:$ Trellis coded modulation, multilevel codes, lattice codes, bit-interleaved coded modulation, etc.

 $\eta < 1:$ Low-density parity-check codes, turbo codes, polar codes, etc.

Thank You!