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Digital Communication

Convey a message from transmitter to receiver in a finite amount of time,
where the message can assume only finitely many values.

� ‘time’ can be replaced with any resource:
space available in a compact disc, number of cells in flash memory

Picture courtesy brigetteheffernan.wordpress.com
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The Additive Noise Channel

� Message m

I takes finitely many, say M , distinct values
I Usually, not always, M = 2k, for some integer k
I assume m is uniformly distributed over {1, . . . ,M}

� Time duration T

I transmit signal s(t) is restricted to 0 ≤ t ≤ T

� Number of message bits k = log2M (not always an integer)
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Modulation Scheme

� The transmitter & receiver agree upon a set of waveforms
{s1(t), . . . , sM (t)} of duration T .

� The transmitter uses the waveform si(t) for the message m = i.

� The receiver must guess the value of m given r(t).

� We say that a decoding error occurs if the guess m̂ 6= m.

Definition
An M -ary modulation scheme is simply a set of M waveforms
{s1(t), . . . , sM (t)} each of duration T .

Terminology
� Binary: M = 2, modulation scheme {s1(t), s2(t)}
� Antipodal: M = 2 and s2(t) = −s1(t)

� Ternary: M = 3, Quaternary: M = 4
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Parameters of Interest

� Bit rate R =
log2M

T
bits/sec

Energy of the ith waveform Ei = ‖si(t)‖2 =

∫ T

t=0

s2i (t)dt

� Average Energy

E =

M∑
i=1

P (m = i)Ei =

M∑
i=1

1

M

∫ T

t=0

‖si(t)‖2

� Energy per message bit Eb =
E

log2M

� Probability of error Pe = P (m 6= m̂)

Note
Pe depends on the modulation scheme, noise statistics and the
demodulator.
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Example: On-Off Keying, M = 2
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Objectives

1 Characterize and analyze a modulation scheme in terms of energy,
rate and error probability.

I What is the best/optimal performance that one can expect?

2 Design a good modulation scheme that performs close to the
theoretical optimum.

Key tool: Signal Space Representation

� Represent waveforms as vectors: ’geometry’ of the problem

� Simplifies performance analysis and modulation design

� Leads to efficient modulation/demodulation implementations
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1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

5 Probability of Error
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Goal

Map waveforms s1(t), . . . , sM (t) to M vectors in a Euclidean space
RN , so that the map preserves the mathematical structure of the
waveforms.
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Quick Review of RN : N -Dimensional Euclidean Space

RN =
{

(x1, x2, . . . , xN ) |x1, . . . , xN ∈ R
}

Notation: xxx = (x1, x2, . . . , xN ) and 000 = (0, 0, . . . , 0)

Addition Properties:

� xxx+ yyy = (x1, . . . , xN ) + (y1, . . . , yN ) = (x1 + y1, . . . , xN + yN )

� xxx− yyy = (x1, . . . , xN )− (y1, . . . , yN ) = (x1 − y1, . . . , xN − yN )

� xxx+ 000 = xxx for every xxx ∈ RN

Multiplication Properties:

� axxx = a (x1, . . . , xN ) = (ax1, . . . , axN ), where a ∈ R
� a(xxx+ yyy) = axxx+ ayyy

� (a+ b)xxx = axxx+ bxxx

� axxx = 000 if and only if a = 0 or xxx = 000
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Quick Review of RN : Inner Product and Norm

Inner Product

� 〈xxx,yyy〉 = 〈yyy,xxx〉 = x1y1 + x2y2 + · · ·+ xNyN

� 〈xxx,yyy + zzz〉 = 〈xxx,yyy〉+ 〈xxx,zzz〉 (distributive law)

� 〈axxx,yyy〉 = a〈xxx,yyy〉
� If 〈xxx,yyy〉 = 0 we say that xxx and yyy are orthogonal

Norm

� ‖xxx‖ =
√
x21 + · · ·+ x2N =

√
〈xxx,xxx〉 denotes the length of xxx

� ‖xxx‖2 = 〈xxx,xxx〉 denotes the energy of the vector xxx

� ‖xxx‖2 = 0 if and only if xxx = 000

� If ‖xxx‖ = 1 we say that xxx is of unit norm

� ‖xxx− yyy‖ is the distance between two vectors.

Cauchy-Schwarz Inequality

� |〈xxx,yyy〉| ≤ ‖xxx‖ ‖yyy‖

� Or equivalently, −1 ≤ 〈xxx,yyy〉
‖xxx‖ ‖yyy‖

≤ 1
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Waveforms as Vectors

The set of all finite-energy waveforms of duration T and the
Euclidean space RN share many structural properties.

Addition Properties

� We can add and subtract two waveforms x(t) + y(t), x(t)− y(t)

� The all-zero waveform 0(t) = 0 for 0 ≤ t ≤ T is the additive identity

x(t) + 0(t) = x(t) for any waveform x(t)

Multiplication Properties

� We can scale x(t) using a real number a and obtain a x(t)

� a(x(t) + y(t)) = ax(t) + ay(t)

� (a+ b)x(t) = ax(t) + bx(t)

� ax(t) = 0(t) if and only if a = 0 or x(t) = 0(t)
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Inner Product and Norm of Waveforms

Inner Product

� 〈x(t), y(t)〉 = 〈y(t), x(t)〉 =
∫ T
t=0

x(t)y(t)dt

� 〈x(t), y(t) + z(t)〉 = 〈x(t), y(t)〉+ 〈x(t), z(t)〉 (distributive law)

� 〈ax(t), y(t)〉 = a〈x(t), y(t)〉
� If 〈x(t), y(t)〉 = 0 we say that x(t) and y(t) are orthogonal

Norm

� ‖x(t)‖ =
√
〈x(t), x(t)〉 =

√∫ T
t=0

x2(t)dt is the norm of x(t)

� ‖x(t)‖2 =
∫ T
t=0

x2(t)dt denotes the energy of x(t)

� If ‖x(t)‖ = 1 we say that x(t) is of unit norm

� ‖x(t)− y(t)‖ is the distance between two waveforms

Cauchy-Schwarz Inequality

� |〈x(t), y(t)〉| ≤ ‖x(t)‖ ‖y(t)‖ for any two waveforms x(t), y(t)

We want to map s1(t), . . . , sM (t) to vectors sss1, . . . , sssM ∈ RN so
that the addition, multiplication, inner product and norm properties

are preserved.
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Orthonormal Waveforms

Definition
A set of N waveforms {φ1(t), . . . , φN (t)} is said to be orthonormal if

1 ‖φ1(t)‖ = ‖φ2(t)‖ = · · · = ‖φN (t)‖ = 1 (unit norm)

2 〈φi(t), φj(t)〉 = 0 for all i 6= j (orthogonality)

The role of orthonormal waveforms is similar to that of the standard basis

eee1 = (1, 0, 0, . . . , 0), eee2 = (0, 1, 0, . . . , 0), · · · , eeeN = (0, 0, . . . , 0, 1)

Remark
Say x(t) = x1φ1(t) + · · ·xNφN (t), y(t) = y1φ1(t) + · · ·+ yNφN (t)

〈x(t), y(t)〉 =

〈
N∑
i=1

xiφi(t),

N∑
j=1

yjφj(t)

〉
=
∑
i

∑
j

xiyj〈φi(t), φj(t)〉

=
∑
i

∑
j=i

xiyj =
∑
i

xiyi

= 〈xxx,yyy〉
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Example
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Orthonormal Basis

Definition
An orthonormal basis for {s1(t), . . . , sM (t)} is an orthonormal set
{φ1(t), . . . , φN (t)} such that

si(t) = si,1φi(t) + si,2φ2(t) + · · ·+ si,MφN (t)

for some choice of si,1, si,2, . . . , si,N ∈ R

� We associate si(t)→ sssi = (si,1, si,2, . . . , si,N )

� A given modulation scheme can have many orthonormal bases.

� The map s1(t)→ sss1, s2(t)→ sss2, . . . , sM (t)→ sssM depends on the
choice of orthonormal basis.
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Example: M -ary Phase Shift Keying

Modulation Scheme

� si(t) = A cos(2πfct+ 2πi
M ), i = 1, . . . ,M

� Expanding si(t) using cos(C +D) = cosC cosD − sinC sinD

si(t) = A cos

(
2πi

M

)
cos(2πfct)−A sin

(
2πi

M

)
sin(2πfct)

Orthonormal Basis

� Use φ1(t) =
√

2/T cos(2πfct) and φ2(t) =
√

2/T sin(2πfct)

si(t) = A

√
T

2
cos

(
2πi

M

)
φ1(t) +A

√
T

2
sin

(
2πi

M

)
φ2(t)

� Dimension N = 2

Waveform to Vector

si(t)→

(√
A2T

2
cos

(
2πi

M

)
,

√
A2T

2
sin

(
2πi

M

))
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8-ary Phase Shift Keying
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How to find an orthonormal basis

Gram-Schmidt Procedure

Given a modulation scheme {s1(t), . . . , sM (t)}, constructs an
orthonormal basis φ1(t), . . . , φN (t) for the scheme.

Similar to QR factorization of matrices

AAA = [aaa1 aaa2 · · · aaaM ] = [qqq1 qqq2 · · · qqqN ]


r1,1 r1,2 · · · r1,M
r2,1 r2,2 · · · r2,M

...
... · · ·

...
rN,1 rN,2 · · · rN,M

 = QRQRQR

[s1(t) · · · sM (t)] = [φ1(t) · · · φN (t)]


s1,1 s2,1 · · · sM,1

s1,2 s2,2 · · · sM,2

...
... · · ·

...
s1,N s2,N · · · sM,N


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Waveforms to Vectors, and Back

Say {φ1(t), . . . , φN (t)} is an orthonormal basis for {s1(t), . . . , sM (t)}.

Then, si(t) =

N∑
j=1

si,jφj(t) for some choice of {si,j}

Waveform to Vector

〈si(t), φj(t)〉 = 〈
∑
k

si,kφk(t), φj(t)〉 =
∑
k

si,k〈φk(t), φj(t)〉 = si,j

si(t)→ (si,1, si,2, . . . , si,N ) = sssi

where si,1 = 〈si(t), φ1(t)〉, si,2 = 〈si(t), φ2(t)〉,. . . , si,N = 〈si(t), φN (t)〉

Vector to Waveform

sssi = (si,1, . . . , si,N )→ si,1φ1(t) + si,2φ2(t) + · · ·+ si,NφN (t)

� Every point in RN corresponds to a unique waveform.

� Going back and forth between vectors and waveforms is easy.
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Waveforms to Vectors, and Back

Caveat
v(t)→ Waveform to vector → vvv vvv → Vector to waveform → v̂(t)

v̂(t) = v(t) iff v(t) is some linear combination of φ1(t), . . . , φN (t),
or equivalently, v(t) is some linear combination of s1(t), . . . , sM (t)
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Equivalence Between Waveform and Vector
Representations

Say v(t) = v1φ1(t) + · · ·+ vNφN (t) and u(t) = u1φ1(t) + · · ·+ uNφN (t)

Addition v(t) + u(t) vvv + uuu

Scalar Multiplication a v(t) avvv

Energy ‖v(t)‖2 ‖vvv‖2

Inner product 〈v(t), u(t)〉 〈vvv,uuu〉
Distance ‖v(t)− u(t)‖ ‖vvv − uuu‖
Basis φi(t) eeei (Std. basis)
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1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

5 Probability of Error
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Vector Gaussian Channel

Definition
An M -ary modulation scheme of dimension N is a set of M vectors
{sss1, . . . , sssM} in RN

� Average energy E =
1

M

(
‖sss1‖2 + · · ·+ ‖sssM‖2

)
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Vector Gaussian Channel

Relation between received vector rrr and transmit vector sssi

The jth component of received vector rrr = (r1, . . . , rN )

rj = 〈r(t), φi(t)〉 = 〈si(t) + n(t), φj(t)〉
= 〈si(t), φj(t)〉+ 〈n(t), φj(t)〉
= si,j + nj

Denoting nnn = (n1, . . . , nN ) we obtain

rrr = sssi +nnn

If n(t) is a Gaussian random process, noise vector nnn follows Gaussian
distribution.

Note

Effective noise at the receiver n̂(t) = n1φ1(t) + · · ·+ nNφN (t)

In general, n(t) not a linear combination of basis, and n̂(t) 6= n(t),

24 / 54



Designing a Modulation Scheme

1 Choose an orthonormal basis φ1(t), . . . , φN (t)

I Determines bandwidth of transmit signals, signalling duration T

2 Construct a (vector) modulation scheme sss1, . . . , sssM ∈ RN

I Determines the signal energy, probability of error

An N -dimensional modulation scheme exploits ‘N uses’ of a scalar
Gaussian channel

rj = si,j + nj where j = 1, . . . , N

With limits on bandwidth and signal duration, how large can N be?
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Dimension of Time/Band-limited Signals

Say transmit signals s(t) must be time/band limited

1 s(t) = 0 if t < 0 or t ≥ T , and (time-limited)

2 S(f) = 0 if f < fc − W
2 or f > fc + W

2 (band-limited)

Uncertainty Principle: No non-zero signal is both time- and band-limited.

⇒ No signal transmission is possible!

We relax the constraint to approximately band-limited

1 s(t) = 0 if t < 0 or t > T , and (time-limited)

2

∫ fc+W/2

f=fc−W/2
|S(f)|2df ≥ (1− δ)

∫ +∞

0

|S(f)|2df (approx. band-lim.)

Here δ > 0 is the fraction of out-of-band signal energy.

What is the largest dimension N of time-limited/approximately
band-limited signals?
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Dimension of Time/band-limited Signals

Let T > 0 and W > 0 be given, and consider any δ, ε > 0.

Theorem (Landau, Pollak & Slepian 1961-62)
If TW is sufficiently large, there exists N = 2TW (1− ε) orthonormal
waveforms φ1(t), . . . , φN (t) such that

1 φi(t) = 0 if t < 0 or t > T , and (time-limited)

2

∫ fc+W/2

f=fc−W/2
|Φi(f)|2df ≥ (1− δ)

∫ +∞

0

|Φi(f)|2df (approx. band-lim.)

In summary

� We can ‘pack’ N ≈ 2TW dimensions if the time-bandwidth product
TW is large enough.

� Number of dimensions/channel uses normalized to 1 sec of transmit
duration and 1 Hz of bandwidth

N

TW
≈ 2 dim/sec/Hz
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Relation between Waveform & Vector Channels

Assume N = 2TW

Signal energy Ei ‖si(t)‖2 ‖sssi‖2

Avg. energy E 1
M

∑
i ‖si(t)‖2

1
M

∑
i ‖sssi‖2

Transmit Power S
E

T

E

N
2W

Rate R
log2M

T

log2M

N
2W

Parameters for Vector Gaussian Channel
� Spectral Efficiency η = 2 log2M/N (unit: bits/sec/Hz)

I Allows comparison between schemes with different bandwidths.
I Related to rate as η = R/W

� Power P = E/N (unit: Watt/Hz)

I Related to actual transmit power as S = 2WP
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1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

5 Probability of Error
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Detection in the Gaussian Channel

Definition
Detection/Decoding/Demodulation is the process of estimating the
message m given the received waveform r(t) and the modulation scheme
{s1(t), . . . , sM (t)}.

Objective: Design the decoder to minimize Pe = P (m̂ 6= m).
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The Gaussian Random Variable

� P (X < −a) = P (X > a) = Q(a)

� Q(·) is a decreasing function

� Y = σX is Gaussian with mean 0 and var σ2, i.e., N (0, σ2)

� P (Y > b) = P (σX > b) = P (X > b
σ ) = Q

(
b
σ

)
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White Gaussian Noise Process n(t)

Noise waveform n(t) modelled as a white Gaussian random process, i.e.,
as a a collection of random variables {n(τ) | −∞ < τ < +∞} such that

� Stationary random process
Statistics of the processes n(t) and n(t− constant) are identical

� Gaussian random process
Any linear combination of finitely many samples of n(t) is Gaussian

a1n(t1) + a2n(t2) + · · ·+ a`n(t`) ∼ Gaussian distributed

� White random process
The power spectrum N(f) of the noise process is ‘flat’

N(f) =
No
2

W/Hz, for −∞ < f < +∞
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Noise Process Through Waveform-to-Vector Converter

Properties of the noise vector nnn = (n1, . . . , nN )

� n1, n2, . . . , nN are independent N (0, No/2) random variables

f(ni) =
1√
πNo

exp

(
− n

2
i

No

)
� Noise vector nnn describes only a part of n(t)

n̂(t) = n1φ1(t) + · · ·+ nNφN (t) 6= n(t)

The noise component not captured by waveform-to-vector converter:

∆n(t) = n(t)− n̂(t) 6= 0
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White Gaussian Noise Vector nnn

nnn = (n1, . . . , nN )

� Probability density of nnn = (n1, . . . , nN ) in RN

fnoise(nnn) = f(n1, . . . , nN ) =

N∏
i=1

f(ni) =
1

(
√
πNo)N

exp

(
−‖n

nn‖2

No

)

I Probability density depends only on ‖nnn‖2 ⇒
Spherically symmetric: Isotropic distribution

I Density highest near 000 and decreasing in ‖nnn‖2 ⇒
noise vector of larger norm less likely than a vector with smaller norm

� For any aaa ∈ RN , 〈nnn,aaa〉 ∼ N
(

0, ‖aaa‖2No
2

)
� aaa1, . . . , aaaK are orthonormal ⇒ 〈nnn,aaa1〉, . . . , 〈nnn,aaaK〉 are independent
N (0, No/2)
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∆n(t) Carries Irrelevant Information

� rrr = sssi +nnn does not carry all the information in r(t)

r̂(t) = r1φ1(t) + · · ·+ rNφN (t) 6= r(t)

� The information about r(t) not contained in rrr

r(t)−
∑
j

rjφj(t) = si(t) + n(t)−
∑
j

si,jφj(t)−
∑
j

njφj(t) = ∆n(t)

Theorem
The vector rrr contains all the information in r(t) that is relevant to the
transmitted message.

� ∆n(t) is irrelevant for the optimum detection of transmit message.
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The (Effective) Vector Gaussian Channel

� Modulation Scheme/Code is a set {sss1, . . . , sssM} of M vectors in RN

� Power P =
1

N
· ‖s
ss1‖2 + · · ·+ ‖sssM‖2

M

� Noise variance σ2 =
No
2

(per dimension)

� Signal to noise ratio SNR =
P

σ2
=

2P

No

� Spectral Efficiency η =
2 log2M

N
bits/s/Hz (assuming N = 2TW )
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1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

5 Probability of Error
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Optimum Detection Rule

Objective
Given {sss1, . . . , sssM} & rrr, provide an estimate m̂ of the transmit
message m, so that Pe = P (m̂ 6= m) is as small as possible.

Optimal Detection: Maximum a posteriori (MAP) detector
Given received vector rrr, choose the vector sssj that has the highest
probability of being transmitted

m̂ = arg max
k∈{1,...,M}

P (sssk transmitted |rrr received )

In other words, choose m̂ = k if

P (sssk transmitted |rrr received ) > P (sssj transmitted |rrr received ) for every j 6= k

� In case of a tie, can choose one of the indices arbitrarily. This does
not increase Pe.
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Optimum Detection Rule

Use Bayes’ rule P (A|B) =
P (A)P (B|A)

P (B)

m̂ = arg max
k

P (sssj |rrr) = arg max
k

P (sssk)f(rrr|sssk)

f(rrr)

P (sssj) = Probability of transmitting sssj = 1/M (equally likely messages)
f(rrr|sssk) = Probability density of rrr when sssk is transmitted
f(rrr) = Probability density of rrr averaged over all possible transmissions

m̂ = arg max
k

1/M · f(rrr|sssk)

f(rrr)
= arg max

k
f(rrr|sssk)

Likelihood function f(rrr|sssk), Max. likelihood rule m̂ = arg maxk f(rrr|sssk)

If all the M messages are equally likely

Max. a posteriori detection = Max. likelihood (ML) detection
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Maximum Likelihood Detection in Vector Gaussian Channel

Use the model rrr = sssi +nnn and the assumption nnn is independent of sssi

m̂ = arg max
k

f(rrr|sssk) = arg max
k

fnoise(rrr − sssk|sssk)

= arg max
k

fnoise(rrr − sssk)

= arg max
k

1

(
√
πNo)N

exp

(
−‖r

rr − sssk‖2

No

)
= arg min

k
‖rrr − sssk‖2

ML Detection Rule for Vector Gaussian Channel

Choose m̂ = k if ‖rrr − sssk‖ < ‖rrr − sssj‖ for every j 6= k

� Also called minimum distance/nearest neighbor decoding

� In case of a tie, choose one of the contenders arbitrarily.
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Example: M = 6 vectors in R2

The kth Decision region Dk

Dk = set of all points closer to sssk than any other sssj

=
{
rrr ∈ RN | ‖rrr − sssk‖ < ‖rrr − sssj‖ for all j 6= k

}
The ML detector outputs m̂ = k if rrr ∈ Dk.
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Examples in R2
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1 Signal Space Representation

2 Vector Gaussian Channel

3 Vector Gaussian Channel (contd.)

4 Optimum Detection

5 Probability of Error
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Error Probability when M = 2

Scenario

Let {sss1, sss2} ⊂ RN be a binary modulation scheme with

� P (sss1) = P (sss2) = 1/2, and

� detected using the nearest neighbor decoder

� Error E occurs if (sss1 tx, m̂ = 2) or (sss2 tx, m̂ = 1)

� Conditional error probability

P (E|sss1) = P (m̂ = 2|sss1) = P (‖rrr − sss2‖ < ‖rrr − sss1‖ |sss1)

� Note that

P (E) = P (sss1)P (E|sss1) + P (sss2)P (E|sss2) =
P (E|sss1) + P (E|sss2)

2
� P (E|sssi) can be easy to analyse
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Conditional Error Probability when M = 2

E|sss1: sss1 is transmitted rrr = sss1 +nnn, and ‖rrr − sss1‖2 > ‖rrr − sss2‖2

(E|sss1) : ‖sss1 +nnn− sss1‖2 > ‖sss1 +nnn− sss2‖2

⇔‖nnn‖2 > 〈sss1 − sss2 +nnn,sss1 − sss2 +nnn〉

⇔‖nnn‖2 > 〈sss1 − sss2, sss1 − sss2〉+ 〈sss1 − sss2,nnn〉+ 〈nnn,sss1 − sss2〉+ 〈nnn,nnn〉

⇔‖nnn‖2 > ‖sss1 − sss2‖2 + 2〈nnn,sss1 − sss2〉+ ‖nnn‖2

⇔〈nnn,sss1 − sss2〉 < −
‖sss1 − sss2‖2

2

⇔
〈
nnn,

sss1 − sss2
‖sss1 − sss2‖

·
√

2

No

〉
< −‖s

ss1 − sss2‖2

2
· 1

‖sss1 − sss2‖
·
√

2

No

⇔
〈
nnn,

sss1 − sss2
‖sss1 − sss2‖

·
√

2

No

〉
< −‖s

ss1 − sss2‖√
2No
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Error Probability when M = 2

� Z =
〈
nnn, sss1−sss2
‖sss1−sss2‖ ·

√
2
No

〉
is Gaussian with zero mean and variance

No
2

∥∥∥∥ sss1 − sss2
‖sss1 − sss2‖

·
√

2

No

∥∥∥∥2 =
No
2
· 2

No

∥∥∥∥ sss1 − sss2
‖sss1 − sss2‖

∥∥∥∥2 = 1

� P (E|sss1) = P

(
Z < −‖s

ss1 − sss2‖√
2No

)
= Q

(
‖sss1 − sss2‖√

2No

)
� P (E|sss2) = Q

(
‖sss1 − sss2‖√

2No

)

P (E) =
P (E|sss1) + P (E|sss2)

2
= Q

(
‖sss1 − sss2‖√

2No

)

� Error probability decreasing function of distance ‖sss1 − sss2‖

44 / 54



Bound on Error Probability when M > 2

Scenario

Let C = {sss1, . . . , sssM} ⊂ RN be a modulation/coding scheme with

� P (sss1) = · · · = P (sssM ) = 1/M , and

� detected using the nearest neighbor decoder

� Minimum distance
dmin = smallest Euclidean distance between any pair of vectors in C

dmin = min
i6=j
‖sssi − sssj‖

� Observe that ‖sssi − sssj‖ ≥ dmin for any i 6= j

� Since Q(·) is a decreasing function

Q

(
‖sssi − sssj‖√

2No

)
≤ Q

(
dmin√
2No

)
for any i 6= j

� Bound based only on dmin ⇒ Simple calculations, not tight, intuitive
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Union Bound on Conditional Error Probability

Assume that sss1 is transmitted, i.e., rrr = sss1 +nnn. We know that

P ( ‖rrr − sssj‖ < ‖rrr − sssj‖ | sss1 ) = Q

(
‖sss1 − sssj‖√

2No

)

Decoding error occurs if rrr is closer some sssj than sss1, j = 2, 3, . . . ,M

P (E|sss1) = P (rrr /∈ D1 |sss1) = P

 M⋃
j=2

‖rrr − sssj‖ < ‖rrr − sss1‖ | sss1


From union bound P (A2 ∪ · · · ∪AM ) ≤ P (A2) + · · ·+ P (AM )

P (E|sss1) ≤
M∑
j=2

P ( ‖rrr − sssj‖ < ‖rrr − sssj‖ | sss1 ) =

M∑
j=2

Q

(
‖sss1 − sssj‖√

2No

)
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Union Bound on Error Probability

Since Q(·) is a decreasing function and ‖sss1 − sssj‖ ≥ dmin

P (E|sss1) ≤
M∑
j=2

Q

(
‖sss1 − sssj‖√

2No

)
≤

M∑
j=2

Q

(
dmin√
2No

)

P (E|sss1) ≤ (M − 1)Q

(
dmin√
2No

)
Upper bound on average error probability P (E) =

∑M
i=1 P (sssi)P (E|sssi)

P (E) ≤ (M − 1)Q

(
dmin√
2No

)
Note

� Exact Pe (or good approximations better than the union bound) can
be derived for several constellations, for example PAM, QAM and
PSK.

� Chernoff bound can be useful: Q(a) ≤ 1
2 exp(−a2/2) for a ≥ 0

� Union bound, in general, is loose.
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� Abscissa is [SNR]dB = 10 log10 SNR

� The union bound is a reasonable approximation for large values of
SNR
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Performance of QAM and FSK

η =
2 log2M

N
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Performance of QAM and FSK

Probability of Error Pe = 10−5

Modulation/Code Spectral Efficiency Signal-to-Noise Ratio
η (bits/sec/Hz) SNR (dB)

16-QAM 4 20

4-QAM 2 13

2-FSK 1 12.6

8-FSK 3/4 7.5

16-FSK 1/2 4.6

How good are these modulation schemes ?
What is the best trade-off between SNR and η ?
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Capacity of the (Vector) Gaussian Channel

Let the maximum allowable power be P and noise variance be No/2.

SNR =
P

No/2
=

2P

No

What is the highest η achievable while ensuring that Pe is small?

Theorem
Given an ε > 0 and any constant η such that η < log2 (1 + SNR), there
exists a coding scheme with Pe ≤ ε and spectral efficiency at least η.

Conversely, for any coding scheme with η > log2(1 + SNR) and M
sufficiently large, Pe is close to 1.

C(SNR) = log2(1 + SNR) is the capacity of the Gaussian channel.
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How Good/Bad are QAM and FSK?

Least SNR required to communicate reliably with spectral efficiency η is

SNR∗(η) = 2η − 1

Probability of Error Pe = 10−5

Modulation/Code η SNR (dB) SNR∗(η)

16-QAM 4 20 11.7

4-QAM 2 13 4.7

2-FSK 1 12.6 0

8-FSK 3/4 7.5 −1.7

16-FSK 1/2 4.6 −3.8
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How to Perform Close to Capacity?

� We need Pe to be small at a fixed finite SNR
I dmin must be large to ensure that Pe is small

� It is necessary to use coding schemes in high dimensions N � 1
I Can ensure that dmin ≈ constant×

√
N

� If N is large it is possible to ‘pack’ vectors {sssi} in RN such that
I Average power is at the most P
I dmin is large
I η is close to log2(1 + SNR)
I Pe is small

� A large N implies that M = 2ηN/2 is also large.
I We must ensure that such a large code can be encoded/decoded

with practical complexity

Several known coding techniques

η > 1: Trellis coded modulation, multilevel codes, lattice codes,
bit-interleaved coded modulation, etc.

η < 1: Low-density parity-check codes, turbo codes, polar codes, etc.

Thank You!
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