# Modulation & Coding for the Gaussian Channel

#### Trivandrum School on Communication, Coding & Networking January 27–30, 2017

Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology Hyderabad lakshminatarajan@iith.ac.in



# **Digital Communication**

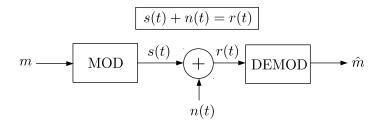
Convey a message from *transmitter* to *receiver* in a finite amount of time, where the message can assume only finitely many values.



• 'time' can be replaced with any resource: space available in a compact disc, number of cells in flash memory

Picture courtesy brigetteheffernan.wordpress.com

# The Additive Noise Channel



- Message m
  - ▶ takes finitely many, say M, distinct values
  - ▶ Usually, not always,  $M = 2^k$ , for some integer k
  - assume m is uniformly distributed over  $\{1, \ldots, M\}$
- Time duration T
  - ▶ transmit signal s(t) is restricted to  $0 \le t \le T$
- Number of message bits  $k = \log_2 M$  (not always an integer)

# Modulation Scheme

- The transmitter & receiver agree upon a set of waveforms  $\{s_1(t), \ldots, s_M(t)\}$  of duration T.
- The transmitter uses the waveform  $s_i(t)$  for the message m = i.
- The receiver must guess the value of m given r(t).
- We say that a decoding error occurs if the guess  $\hat{m} \neq m$ .

#### Definition

An *M*-ary modulation scheme is simply a set of *M* waveforms  $\{s_1(t), \ldots, s_M(t)\}$  each of duration *T*.

#### Terminology

- Binary: M = 2, modulation scheme  $\{s_1(t), s_2(t)\}$
- Antipodal: M = 2 and  $s_2(t) = -s_1(t)$
- Ternary: M = 3, Quaternary: M = 4

#### Parameters of Interest

• Bit rate  $R = \frac{\log_2 M}{T}$  bits/sec

Energy of the  $i^{th}$  waveform  $E_i = \|s_i(t)\|^2 = \int_{t=0}^T s_i^2(t) \mathrm{d}t$ 

• Average Energy

$$E = \sum_{i=1}^{M} P(m=i)E_i = \sum_{i=1}^{M} \frac{1}{M} \int_{t=0}^{T} \|s_i(t)\|^2$$

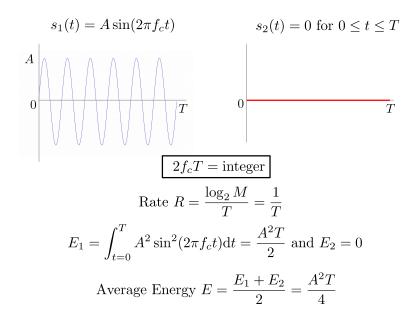
• Energy per message bit 
$$E_b = \frac{E}{\log_2 M}$$

• Probability of error  $P_e = P(m \neq \hat{m})$ 

#### Note

 ${\cal P}_e$  depends on the modulation scheme, noise statistics and the demodulator.

#### Example: On-Off Keying, M = 2



# Objectives

**1** Characterize and analyze a modulation scheme in terms of energy, rate and error probability.

- ▶ What is the best/optimal performance that one can expect?
- **2** Design a good modulation scheme that performs close to the theoretical optimum.

#### Key tool: Signal Space Representation

- Represent waveforms as vectors: 'geometry' of the problem
- Simplifies performance analysis and modulation design
- Leads to efficient modulation/demodulation implementations

1 Signal Space Representation

2 Vector Gaussian Channel

**3** Vector Gaussian Channel (contd.)

**4** Optimum Detection

6 Probability of Error

# References

- I. M. Jacobs and J. M. Wozencraft, Principles of Communication Engineering, Wiley, 1965.
- G. D. Forney and G. Ungerboeck, "Modulation and coding for linear Gaussian channels," in *IEEE Transactions on Information Theory*, vol. 44, no. 6, pp. 2384-2415, Oct 1998.
- D. Slepian and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty I," in *The Bell System Technical Journal*, vol. 40, no. 1, pp. 43-63, Jan. 1961.
- H. J. Landau and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty III: The dimension of the space of essentially time- and band-limited signals," in *The Bell System Technical Journal*, vol. 41, no. 4, pp. 1295-1336, July 1962.

#### 1 Signal Space Representation

2 Vector Gaussian Channel

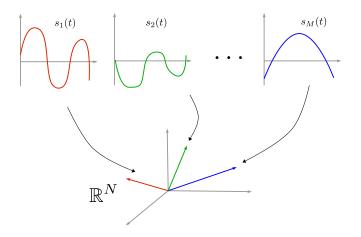
**3** Vector Gaussian Channel (contd.)

**4** Optimum Detection

6 Probability of Error

#### Goal

Map waveforms  $s_1(t), \ldots, s_M(t)$  to M vectors in a Euclidean space  $\mathbb{R}^N$ , so that the map preserves the mathematical structure of the waveforms.



# Quick Review of $\mathbb{R}^N$ : N-Dimensional Euclidean Space

$$\mathbb{R}^N = \left\{ (x_1, x_2, \dots, x_N) \mid x_1, \dots, x_N \in \mathbb{R} \right\}$$
  
Notation:  $\boldsymbol{x} = (x_1, x_2, \dots, x_N)$  and  $\boldsymbol{0} = (0, 0, \dots, 0)$ 

Addition Properties:

• 
$$x + y = (x_1, \dots, x_N) + (y_1, \dots, y_N) = (x_1 + y_1, \dots, x_N + y_N)$$

• 
$$\boldsymbol{x} - \boldsymbol{y} = (x_1, \dots, x_N) - (y_1, \dots, y_N) = (x_1 - y_1, \dots, x_N - y_N)$$

• 
$$oldsymbol{x} + oldsymbol{0} = oldsymbol{x}$$
 for every  $oldsymbol{x} \in \mathbb{R}^N$ 

**Multiplication Properties:** 

• 
$$a \boldsymbol{x} = a (x_1, \dots, x_N) = (a x_1, \dots, a x_N)$$
, where  $a \in \mathbb{R}$ 

• 
$$a(\boldsymbol{x} + \boldsymbol{y}) = a\boldsymbol{x} + a\boldsymbol{y}$$

• 
$$(a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$$

• 
$$a \boldsymbol{x} = \boldsymbol{0}$$
 if and only if  $a = 0$  or  $\boldsymbol{x} = \boldsymbol{0}$ 

# Quick Review of $\mathbb{R}^N$ : Inner Product and Norm

#### Inner Product

• 
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_N y_N$$

• 
$$\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} 
angle = \langle \boldsymbol{x}, \boldsymbol{y} 
angle + \langle \boldsymbol{x}, \boldsymbol{z} 
angle$$
 (distributive law)

• 
$$\langle a \boldsymbol{x}, \boldsymbol{y} \rangle = a \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

• If 
$$\langle {m x}, {m y} 
angle = 0$$
 we say that  ${m x}$  and  ${m y}$  are orthogonal

#### Norm

- $\|m{x}\| = \sqrt{x_1^2 + \cdots + x_N^2} = \sqrt{\langle m{x}, m{x} 
  angle}$  denotes the length of  $m{x}$
- $\|m{x}\|^2 = \langle m{x}, m{x} 
  angle$  denotes the energy of the vector  $m{x}$

• 
$$\| \boldsymbol{x} \|^2 = 0$$
 if and only if  $\boldsymbol{x} = \boldsymbol{0}$ 

- If  $\|\boldsymbol{x}\| = 1$  we say that  $\boldsymbol{x}$  is of unit norm
- $\|\boldsymbol{x} \boldsymbol{y}\|$  is the distance between two vectors.

#### Cauchy-Schwarz Inequality

•  $|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|$ 

• Or equivalently, 
$$-1 \leq rac{\langle m{x}, m{y} 
angle}{\|m{x}\| \|m{y}\|} \leq 1$$

# Waveforms as Vectors

The set of all finite-energy waveforms of duration T and the Euclidean space  $\mathbb{R}^N$  share *many* structural properties.

#### Addition Properties

- We can add and subtract two waveforms x(t) + y(t), x(t) y(t)
- The all-zero waveform 0(t) = 0 for  $0 \le t \le T$  is the additive identity x(t) + 0(t) = x(t) for any waveform x(t)

#### **Multiplication Properties**

• We can scale x(t) using a real number a and obtain a x(t)

• 
$$a(x(t) + y(t)) = ax(t) + ay(t)$$

• 
$$(a+b)x(t) = ax(t) + bx(t)$$

• ax(t) = 0(t) if and only if a = 0 or x(t) = 0(t)

# Inner Product and Norm of Waveforms

Inner Product

• 
$$\langle x(t), y(t) \rangle = \langle y(t), x(t) \rangle = \int_{t=0}^{T} x(t)y(t) dt$$

•  $\langle x(t), y(t) + z(t) \rangle = \langle x(t), y(t) \rangle + \langle x(t), z(t) \rangle$  (distributive law)

• 
$$\langle ax(t), y(t) \rangle = a \langle x(t), y(t) \rangle$$

• If  $\langle x(t),y(t)\rangle=0$  we say that x(t) and y(t) are orthogonal

Norm

• 
$$||x(t)|| = \sqrt{\langle x(t), x(t) \rangle} = \sqrt{\int_{t=0}^{T} x^2(t) dt}$$
 is the norm of  $x(t)$ 

• 
$$||x(t)||^2 = \int_{t=0}^T x^2(t) dt$$
 denotes the energy of  $x(t)$ 

- If ||x(t)|| = 1 we say that x(t) is of unit norm
- $\|x(t) y(t)\|$  is the distance between two waveforms

#### Cauchy-Schwarz Inequality

•  $|\langle x(t),y(t)
angle|\leq \|x(t)\|\,\|y(t)\|$  for any two waveforms  $x(t),\,y(t)$ 

We want to map  $s_1(t), \ldots, s_M(t)$  to vectors  $s_1, \ldots, s_M \in \mathbb{R}^N$  so that the addition, multiplication, inner product and norm properties are preserved.

# **Orthonormal Waveforms**

#### Definition

A set of N waveforms  $\{\phi_1(t),\ldots,\phi_N(t)\}$  is said to be orthonormal if

**1** 
$$\|\phi_1(t)\| = \|\phi_2(t)\| = \dots = \|\phi_N(t)\| = 1$$
 (unit norm)

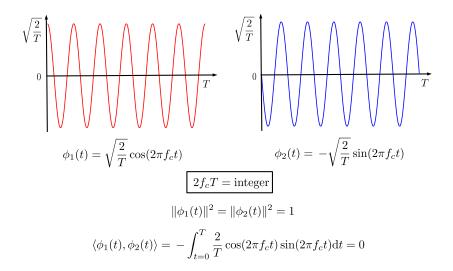
**2** 
$$\langle \phi_i(t), \phi_j(t) \rangle = 0$$
 for all  $i \neq j$  (orthogonality)

The role of orthonormal waveforms is similar to that of the standard basis

$$\boldsymbol{e}_1 = (1, 0, 0, \dots, 0), \boldsymbol{e}_2 = (0, 1, 0, \dots, 0), \cdots, \boldsymbol{e}_N = (0, 0, \dots, 0, 1)$$

# $\frac{\underline{\text{Remark}}}{\text{Say }x(t) = x_1\phi_1(t) + \dots + x_N\phi_N(t), \ y(t) = y_1\phi_1(t) + \dots + y_N\phi_N(t)$ $\langle x(t), y(t) \rangle = \left\langle \sum_{i=1}^N x_i\phi_i(t), \sum_{j=1}^N y_j\phi_j(t) \right\rangle = \sum_i \sum_j x_iy_j \langle \phi_i(t), \phi_j(t) \rangle$ $= \sum_i \sum_{j=i} x_iy_j = \sum_i x_iy_i$ $= \langle \mathbf{x}, \mathbf{y} \rangle$

#### Example



## Orthonormal Basis

Definition An orthonormal basis for  $\{s_1(t), \ldots, s_M(t)\}$  is an orthonormal set  $\{\phi_1(t), \ldots, \phi_N(t)\}$  such that  $s_i(t) = s_{i,1}\phi_i(t) + s_{i,2}\phi_2(t) + \cdots + s_{i,M}\phi_N(t)$ for some choice of  $s_{i,1}, s_{i,2}, \ldots, s_{i,N} \in \mathbb{R}$ 

- We associate  $s_i(t) \rightarrow \boldsymbol{s}_i = (s_{i,1}, s_{i,2}, \dots, s_{i,N})$
- A given modulation scheme can have many orthonormal bases.
- The map  $s_1(t) \rightarrow \boldsymbol{s}_1, s_2(t) \rightarrow \boldsymbol{s}_2, \ldots, s_M(t) \rightarrow \boldsymbol{s}_M$  depends on the choice of orthonormal basis.

#### Example: *M*-ary Phase Shift Keying

Modulation Scheme

• 
$$s_i(t) = A\cos(2\pi f_c t + \frac{2\pi i}{M}), \ i = 1, \dots, M$$

• Expanding  $s_i(t)$  using  $\cos(C+D) = \cos C \cos D - \sin C \sin D$ 

$$s_i(t) = A\cos\left(\frac{2\pi i}{M}\right)\cos(2\pi f_c t) - A\sin\left(\frac{2\pi i}{M}\right)\sin(2\pi f_c t)$$

#### Orthonormal Basis

• Use  $\phi_1(t) = \sqrt{2/T}\cos(2\pi f_c t)$  and  $\phi_2(t) = \sqrt{2/T}\sin(2\pi f_c t)$ 

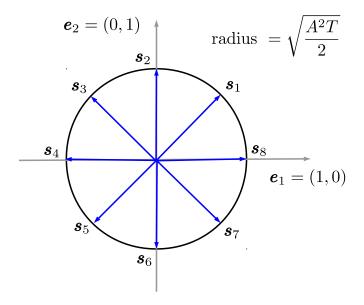
$$s_i(t) = A\sqrt{\frac{T}{2}}\cos\left(\frac{2\pi i}{M}\right)\phi_1(t) + A\sqrt{\frac{T}{2}}\sin\left(\frac{2\pi i}{M}\right)\phi_2(t)$$

• Dimension N=2

Waveform to Vector

$$s_i(t) \to \left(\sqrt{\frac{A^2T}{2}}\cos\left(\frac{2\pi i}{M}\right), \sqrt{\frac{A^2T}{2}}\sin\left(\frac{2\pi i}{M}\right)\right)$$

#### 8-ary Phase Shift Keying



#### How to find an orthonormal basis

# Gram-Schmidt Procedure

Given a modulation scheme  $\{s_1(t), \ldots, s_M(t)\}$ , constructs an orthonormal basis  $\phi_1(t), \ldots, \phi_N(t)$  for the scheme.

Similar to QR factorization of matrices

$$\boldsymbol{A} = [\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \cdots \ \boldsymbol{a}_M] = [\boldsymbol{q}_1 \ \boldsymbol{q}_2 \ \cdots \ \boldsymbol{q}_N] \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & r_{1,M} \\ r_{2,1} & r_{2,2} & \cdots & r_{2,M} \\ \vdots & \vdots & \cdots & \vdots \\ r_{N,1} & r_{N,2} & \cdots & r_{N,M} \end{bmatrix} = \boldsymbol{Q} \boldsymbol{R}$$
$$[s_1(t) \ \cdots \ s_M(t)] = [\phi_1(t) \ \cdots \ \phi_N(t)] \begin{bmatrix} s_{1,1} & s_{2,1} & \cdots & s_{M,1} \\ s_{1,2} & s_{2,2} & \cdots & s_{M,2} \\ \vdots & \vdots & \cdots & \vdots \\ s_{1,N} & s_{2,N} & \cdots & s_{M,N} \end{bmatrix}$$

#### Waveforms to Vectors, and Back

Say  $\{\phi_1(t), \dots, \phi_N(t)\}$  is an orthonormal basis for  $\{s_1(t), \dots, s_M(t)\}$ . Then,  $s_i(t) = \sum_{j=1}^N s_{i,j}\phi_j(t)$  for some choice of  $\{s_{i,j}\}$ 

Waveform to Vector

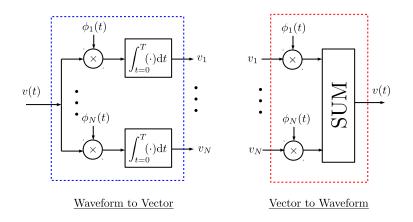
$$\begin{split} \langle s_i(t), \phi_j(t) \rangle &= \langle \sum_k s_{i,k} \phi_k(t), \phi_j(t) \rangle = \sum_k s_{i,k} \langle \phi_k(t), \phi_j(t) \rangle = s_{i,j} \\ s_i(t) &\to (s_{i,1}, s_{i,2}, \dots, s_{i,N}) = \mathbf{s}_i \end{split}$$
 where  $s_{i,1} &= \langle s_i(t), \phi_1(t) \rangle, \ s_{i,2} = \langle s_i(t), \phi_2(t) \rangle, \dots, \ s_{i,N} = \langle s_i(t), \phi_N(t) \rangle$ 

Vector to Waveform

$$\mathbf{s}_i = (s_{i,1}, \dots, s_{i,N}) \to s_{i,1}\phi_1(t) + s_{i,2}\phi_2(t) + \dots + s_{i,N}\phi_N(t)$$

- Every point in  $\mathbb{R}^N$  corresponds to a unique waveform.
- · Going back and forth between vectors and waveforms is easy.

#### Waveforms to Vectors, and Back



#### Caveat

 $v(t) \rightarrow \text{Waveform to vector} \rightarrow \boldsymbol{v} \quad \boldsymbol{v} \rightarrow \text{Vector to waveform} \rightarrow \hat{v}(t)$  $\hat{v}(t) = v(t) \text{ iff } v(t) \text{ is some linear combination of } \phi_1(t), \dots, \phi_N(t),$ or equivalently, v(t) is some linear combination of  $s_1(t), \dots, s_M(t)$ 

# Equivalence Between Waveform and Vector Representations

Say  $v(t) = v_1\phi_1(t) + \dots + v_N\phi_N(t)$  and  $u(t) = u_1\phi_1(t) + \dots + u_N\phi_N(t)$ 

| Addition              | v(t) + u(t)                  | $oldsymbol{v}+oldsymbol{u}$               |
|-----------------------|------------------------------|-------------------------------------------|
| Scalar Multiplication | a  v(t)                      | $a  \boldsymbol{v}$                       |
| Energy                | $\ v(t)\ ^2$                 | $\ oldsymbol{v}\ ^2$                      |
| Inner product         | $\langle v(t), u(t) \rangle$ | $\langle oldsymbol{v},oldsymbol{u} angle$ |
| Distance              | $\ v(t) - u(t)\ $            | $\ oldsymbol{v}-oldsymbol{u}\ $           |
| Basis                 | $\phi_i(t)$                  | $oldsymbol{e}_i$ (Std. basis)             |

1 Signal Space Representation

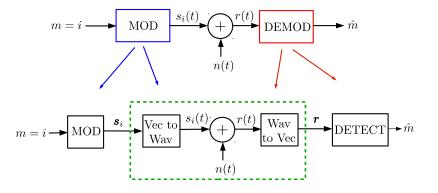
#### 2 Vector Gaussian Channel

**3** Vector Gaussian Channel (contd.)

**4** Optimum Detection

6 Probability of Error

## Vector Gaussian Channel



#### Definition

An *M*-ary modulation scheme of dimension *N* is a set of *M* vectors  $\{s_1, \ldots, s_M\}$  in  $\mathbb{R}^N$ 

• Average energy 
$$E = \frac{1}{M} \Big( \| \boldsymbol{s}_1 \|^2 + \dots + \| \boldsymbol{s}_M \|^2 \Big)$$

## Vector Gaussian Channel

Relation between received vector  $\boldsymbol{r}$  and transmit vector  $\boldsymbol{s}_i$ 

The  $j^{\mathsf{th}}$  component of received vector  $oldsymbol{r} = (r_1, \ldots, r_N)$ 

$$r_{j} = \langle r(t), \phi_{i}(t) \rangle = \langle s_{i}(t) + n(t), \phi_{j}(t) \rangle$$
$$= \langle s_{i}(t), \phi_{j}(t) \rangle + \langle n(t), \phi_{j}(t) \rangle$$
$$= s_{i,j} + n_{j}$$

Denoting  $\boldsymbol{n} = (n_1, \ldots, n_N)$  we obtain

 $\boldsymbol{r} = \boldsymbol{s}_i + \boldsymbol{n}$ 

If n(t) is a Gaussian random process, noise vector  $\boldsymbol{n}$  follows Gaussian distribution.

#### Note

Effective noise at the receiver  $\hat{n}(t) = n_1\phi_1(t) + \cdots + n_N\phi_N(t)$ In general, n(t) not a linear combination of basis, and  $\hat{n}(t) \neq n(t)$ ,

# Designing a Modulation Scheme

1 Choose an orthonormal basis  $\phi_1(t), \ldots, \phi_N(t)$ 

- $\blacktriangleright$  Determines bandwidth of transmit signals, signalling duration T
- **2** Construct a (vector) modulation scheme  $\boldsymbol{s}_1, \ldots, \boldsymbol{s}_M \in \mathbb{R}^N$ 
  - Determines the signal energy, probability of error

An  $N\mbox{-}dimensional$  modulation scheme exploits 'N uses' of a scalar Gaussian channel

 $r_j = s_{i,j} + n_j$  where  $j = 1, \ldots, N$ 

With limits on bandwidth and signal duration, how large can N be?

# Dimension of Time/Band-limited Signals

Say transmit signals s(t) must be time/band limited

- $\textbf{0} \ s(t) = 0 \ \text{if} \ t < 0 \ \text{or} \ t \geq T, \text{ and (time-limited)}$
- **2** S(f) = 0 if  $f < f_c \frac{W}{2}$  or  $f > f_c + \frac{W}{2}$  (band-limited)

Uncertainty Principle: No non-zero signal is both time- and band-limited.

 $\Rightarrow$  No signal transmission is possible!

We relax the constraint to approximately band-limited

**1** 
$$s(t) = 0$$
 if  $t < 0$  or  $t > T$ , and (time-limited)  
**2**  $\int_{f=f_c-W/2}^{f_c+W/2} |S(f)|^2 df \ge (1-\delta) \int_0^{+\infty} |S(f)|^2 df$  (approx. band-lim.)

Here  $\delta>0$  is the fraction of out-of-band signal energy.

What is the largest dimension N of time-limited/approximately band-limited signals?

# Dimension of Time/band-limited Signals

Let T > 0 and W > 0 be given, and consider any  $\delta, \epsilon > 0$ .

Theorem (Landau, Pollak & Slepian 1961-62)

If TW is sufficiently large, there exists  $N=2TW(1-\epsilon)$  orthonormal waveforms  $\phi_1(t),\ldots,\phi_N(t)$  such that

$$\begin{aligned} \bullet & \phi_i(t) = 0 \text{ if } t < 0 \text{ or } t > T \text{, and (time-limited)} \\ \bullet & \int_{f=f_c-W/2}^{f_c+W/2} |\Phi_i(f)|^2 \mathrm{d}f \ge (1-\delta) \int_0^{+\infty} |\Phi_i(f)|^2 \mathrm{d}f \text{ (approx. band-lim.)} \end{aligned}$$

#### In summary

- We can 'pack'  $N\approx 2TW$  dimensions if the time-bandwidth product TW is large enough.
- Number of dimensions/channel uses normalized to  $1\ {\rm sec}$  of transmit duration and  $1\ {\rm Hz}$  of bandwidth

$$\frac{N}{TW}\approx 2~{\rm dim/sec/Hz}$$

## Relation between Waveform & Vector Channels

| Assume $N = 2TW$ |       |                                    |                                         |  |
|------------------|-------|------------------------------------|-----------------------------------------|--|
| Signal energy    | $E_i$ | $\ s_i(t)\ ^2$                     | $\ m{s}_i\ ^2$                          |  |
| Avg. energy      | E     | $\frac{1}{M}\sum_{i} \ s_i(t)\ ^2$ | $rac{1}{M}\sum_{i}\ \pmb{s}_{i}\ ^{2}$ |  |
| Transmit Power   | S     | $rac{E}{T}$                       | $\frac{E}{N}2W$                         |  |
| Rate             | R     | $\frac{\log_2 M}{T}$               | $\frac{\log_2 M}{N} 2W$                 |  |

Parameters for Vector Gaussian Channel

- Spectral Efficiency  $\eta = 2 \log_2 M/N$  (unit: bits/sec/Hz)
  - Allows comparison between schemes with different bandwidths.
  - ▶ Related to rate as  $\eta = R/W$
- Power P = E/N (unit: Watt/Hz)

▶ Related to actual transmit power as S = 2WP

1 Signal Space Representation

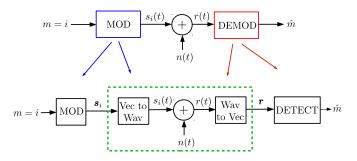
2 Vector Gaussian Channel

#### **3** Vector Gaussian Channel (contd.)

**4** Optimum Detection

6 Probability of Error

# Detection in the Gaussian Channel

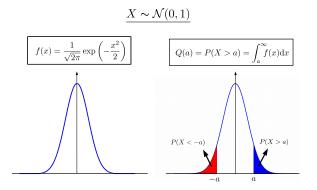


#### Definition

Detection/Decoding/Demodulation is the process of estimating the message m given the received waveform r(t) and the modulation scheme  $\{s_1(t), \ldots, s_M(t)\}$ .

**Objective**: Design the decoder to minimize  $P_e = P(\hat{m} \neq m)$ .

#### The Gaussian Random Variable



• 
$$P(X < -a) = P(X > a) = Q(a)$$

- $Q(\cdot)$  is a decreasing function
- $Y = \sigma X$  is Gaussian with mean 0 and var  $\sigma^2$ , i.e.,  $\mathcal{N}(0, \sigma^2)$
- $P(Y > b) = P(\sigma X > b) = P(X > \frac{b}{\sigma}) = Q\left(\frac{b}{\sigma}\right)$

# White Gaussian Noise Process n(t)

Noise waveform n(t) modelled as a white Gaussian random process, i.e., as a a collection of random variables  $\{n(\tau) \mid -\infty < \tau < +\infty\}$  such that

- Stationary random process Statistics of the processes n(t) and n(t - constant) are identical
- Gaussian random process

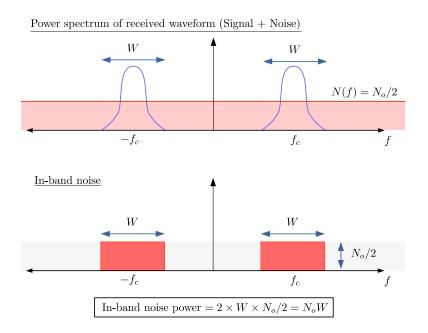
Any linear combination of finitely many samples of n(t) is Gaussian

 $a_1n(t_1) + a_2n(t_2) + \cdots + a_\ell n(t_\ell) \sim \text{Gaussian distributed}$ 

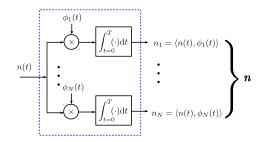
• White random process

The power spectrum N(f) of the noise process is 'flat'

$$N(f) = \frac{N_o}{2} \text{ W/Hz}, \text{ for } -\infty < f < +\infty$$



#### Noise Process Through Waveform-to-Vector Converter



Properties of the noise vector  $\boldsymbol{n} = (n_1, \dots, n_N)$ 

- $n_1, n_2, \dots, n_N$  are independent  $\mathcal{N}(0, N_o/2)$  random variables  $f(n_i) = \frac{1}{\sqrt{\pi N_o}} \exp\left(-\frac{n_i^2}{N_o}\right)$
- Noise vector  $\boldsymbol{n}$  describes only a part of n(t) $\hat{n}(t) = n_1 \phi_1(t) + \dots + n_N \phi_N(t) \neq n(t)$

The noise component not captured by waveform-to-vector converter:

$$\Delta n(t) = n(t) - \hat{n}(t) \neq 0$$

#### White Gaussian Noise Vector n

$$\boldsymbol{n}=(n_1,\ldots,n_N)$$

• Probability density of  $\boldsymbol{n} = (n_1, \dots, n_N)$  in  $\mathbb{R}^N$ 

$$f_{\text{noise}}(\boldsymbol{n}) = f(n_1, \dots, n_N) = \prod_{i=1}^N f(n_i) = \frac{1}{(\sqrt{\pi N_o})^N} \exp\left(-\frac{\|\boldsymbol{n}\|^2}{N_o}\right)$$

- ▶ Probability density depends only on ||n||<sup>2</sup> ⇒ Spherically symmetric: Isotropic distribution
- ▶ Density highest near 0 and decreasing in ||n||<sup>2</sup> ⇒ noise vector of larger norm less likely than a vector with smaller norm

• For any 
$$\pmb{a} \in \mathbb{R}^N$$
,  $\langle \pmb{n}, \pmb{a} 
angle \sim \mathcal{N}\left(0, \|\pmb{a}\|^2 rac{N_o}{2}
ight)$ 

•  $\boldsymbol{a}_1, \dots, \boldsymbol{a}_K$  are orthonormal  $\Rightarrow \langle \boldsymbol{n}, \boldsymbol{a}_1 \rangle, \dots, \langle \boldsymbol{n}, \boldsymbol{a}_K \rangle$  are independent  $\mathcal{N}(0, N_o/2)$ 

# $\Delta n(t)$ Carries Irrelevant Information

$$r(t) = s_i(t) + n(t) \longrightarrow \left\{ \begin{array}{c} \text{Waveform} \\ \text{to} \\ \text{Vector} \end{array} \right\} \mathbf{r} = s_{i,1} + n_1 \\ \bullet \\ \mathbf{s} \\ \mathbf{r}_N = s_{i,N} + n_N \end{array} \right\} \mathbf{r} = \mathbf{s}_i + \mathbf{n}$$

•  $\boldsymbol{r} = \boldsymbol{s}_i + \boldsymbol{n}$  does not carry all the information in r(t)

$$\hat{r}(t) = r_1 \phi_1(t) + \dots + r_N \phi_N(t) \neq r(t)$$

• The information about r(t) not contained in  $\boldsymbol{r}$ 

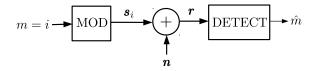
$$r(t) - \sum_{j} r_{j}\phi_{j}(t) = s_{i}(t) + n(t) - \sum_{j} s_{i,j}\phi_{j}(t) - \sum_{j} n_{j}\phi_{j}(t) = \Delta n(t)$$

#### Theorem

The vector  $\boldsymbol{r}$  contains all the information in r(t) that is relevant to the transmitted message.

•  $\Delta n(t)$  is irrelevant for the optimum detection of transmit message.

## The (Effective) Vector Gaussian Channel



- Modulation Scheme/Code is a set  $\{s_1, \ldots, s_M\}$  of M vectors in  $\mathbb{R}^N$
- Power  $P = \frac{1}{N} \cdot \frac{\|\boldsymbol{s}_1\|^2 + \dots + \|\boldsymbol{s}_M\|^2}{M}$
- Noise variance  $\sigma^2 = \frac{N_o}{2}$  (per dimension)
- Signal to noise ratio SNR =  $\frac{P}{\sigma^2} = \frac{2P}{N_o}$
- Spectral Efficiency  $\eta = \frac{2 \log_2 M}{N}$  bits/s/Hz (assuming N = 2TW)

1 Signal Space Representation

2 Vector Gaussian Channel

**3** Vector Gaussian Channel (contd.)

#### Optimum Detection

6 Probability of Error

# **Optimum Detection Rule**

Objective Given  $\{s_1, \ldots, s_M\}$  & r, provide an estimate  $\hat{m}$  of the transmit message m, so that  $P_e = P(\hat{m} \neq m)$  is as small as possible.

Optimal Detection: Maximum a posteriori (MAP) detector Given received vector r, choose the vector  $s_j$  that has the highest probability of being transmitted

$$\hat{m} = \arg \max_{k \in \{1,...,M\}} P(\mathbf{s}_k \text{ transmitted} \,|\, \mathbf{r} \text{ received}\,)$$

In other words, choose  $\hat{m}=k$  if

 $P(\boldsymbol{s}_k \text{ transmitted} | \boldsymbol{r} \text{ received}) > P(\boldsymbol{s}_j \text{ transmitted} | \boldsymbol{r} \text{ received}) \text{ for every } j \neq k$ 

• In case of a tie, can choose one of the indices arbitrarily. This does not increase  $P_e$ .

## **Optimum Detection Rule**

Use Bayes' rule  $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$ 

$$\hat{m} = \arg\max_{k} P(\boldsymbol{s}_{j} | \boldsymbol{r}) = \arg\max_{k} \frac{P(\boldsymbol{s}_{k}) f(\boldsymbol{r} | \boldsymbol{s}_{k})}{f(\boldsymbol{r})}$$

 $P(\mathbf{s}_j) = \text{Probability of transmitting } \mathbf{s}_j = 1/M$  (equally likely messages)  $f(\mathbf{r}|\mathbf{s}_k) = \text{Probability density of } \mathbf{r}$  when  $\mathbf{s}_k$  is transmitted  $f(\mathbf{r}) = \text{Probability density of } \mathbf{r}$  averaged over all possible transmissions

$$\hat{m} = \arg\max_{k} \frac{1/M \cdot f(\boldsymbol{r}|\boldsymbol{s}_{k})}{f(\boldsymbol{r})} = \arg\max_{k} f(\boldsymbol{r}|\boldsymbol{s}_{k})$$

Likelihood function  $f(\mathbf{r}|\mathbf{s}_k)$ , Max. likelihood rule  $\hat{m} = \arg \max_k f(\mathbf{r}|\mathbf{s}_k)$ 

# If all the M messages are equally likely Max. a posteriori detection = Max. likelihood (ML) detection

#### Maximum Likelihood Detection in Vector Gaussian Channel

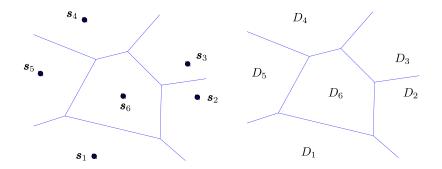
Use the model  $\boldsymbol{r} = \boldsymbol{s}_i + \boldsymbol{n}$  and the assumption  $\boldsymbol{n}$  is independent of  $\boldsymbol{s}_i$ 

$$\begin{split} \hat{m} &= \arg\max_{k} f(\boldsymbol{r}|\boldsymbol{s}_{k}) = \arg\max_{k} f_{\text{noise}}(\boldsymbol{r} - \boldsymbol{s}_{k}|\boldsymbol{s}_{k}) \\ &= \arg\max_{k} f_{\text{noise}}(\boldsymbol{r} - \boldsymbol{s}_{k}) \\ &= \arg\max_{k} \frac{1}{(\sqrt{\pi N_{o}})^{N}} \exp\left(-\frac{\|\boldsymbol{r} - \boldsymbol{s}_{k}\|^{2}}{N_{o}}\right) \\ &= \arg\min_{k} \|\boldsymbol{r} - \boldsymbol{s}_{k}\|^{2} \end{split}$$

ML Detection Rule for Vector Gaussian Channel Choose  $\hat{m} = k$  if  $||\mathbf{r} - \mathbf{s}_k|| < ||\mathbf{r} - \mathbf{s}_j||$  for every  $j \neq k$ 

- Also called minimum distance/nearest neighbor decoding
- In case of a tie, choose one of the contenders arbitrarily.

Example: M = 6 vectors in  $\mathbb{R}^2$ 

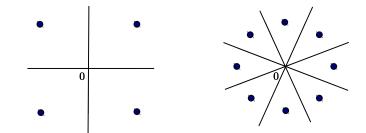


#### The $k^{\text{th}}$ Decision region $D_k$

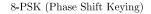
 $D_k = \text{set of all points closer to } \boldsymbol{s}_k \text{ than any other } \boldsymbol{s}_j$  $= \left\{ \boldsymbol{r} \in \mathbb{R}^N \, | \, \| \boldsymbol{r} - \boldsymbol{s}_k \| < \| \boldsymbol{r} - \boldsymbol{s}_j \| \text{ for all } j \neq k \right\}$ 

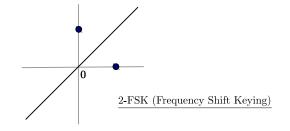
The ML detector outputs  $\hat{m} = k$  if  $\boldsymbol{r} \in D_k$ .

# Examples in $\mathbb{R}^2$



4-QAM (Quadrature Amplitude Modulation)





1 Signal Space Representation

2 Vector Gaussian Channel

**3** Vector Gaussian Channel (contd.)

**4** Optimum Detection

**6** Probability of Error

## Error Probability when M = 2

#### Scenario

Let  $\{s_1, s_2\} \subset \mathbb{R}^N$  be a binary modulation scheme with

- $P(s_1) = P(s_2) = 1/2$ , and
- · detected using the nearest neighbor decoder

- Error  $\mathcal{E}$  occurs if  $(\mathbf{s}_1 \text{ tx}, \hat{m} = 2)$  or  $(\mathbf{s}_2 \text{ tx}, \hat{m} = 1)$
- Conditional error probability

$$P(\mathcal{E}|\boldsymbol{s}_{1}) = P\left(\hat{m} = 2|\boldsymbol{s}_{1}\right) = P\left(\|\boldsymbol{r} - \boldsymbol{s}_{2}\| < \|\boldsymbol{r} - \boldsymbol{s}_{1}\| \,|\, \boldsymbol{s}_{1}\right)$$

Note that

$$P(\mathcal{E}) = P(\boldsymbol{s}_1)P(\mathcal{E}|\boldsymbol{s}_1) + P(\boldsymbol{s}_2)P(\mathcal{E}|\boldsymbol{s}_2) = \frac{P(\mathcal{E}|\boldsymbol{s}_1) + P(\mathcal{E}|\boldsymbol{s}_2)}{2}$$

•  $P(\mathcal{E}|\boldsymbol{s}_i)$  can be easy to analyse

# Conditional Error Probability when ${\cal M}=2$

$$\mathcal{E}|m{s}_1:m{s}_1$$
 is transmitted  $m{r}=m{s}_1+m{n}$ , and  $\|m{r}-m{s}_1\|^2>\|m{r}-m{s}_2\|^2$ 

$$\begin{split} (\mathcal{E}|\mathbf{s}_{1}) &: \|\mathbf{s}_{1} + \mathbf{n} - \mathbf{s}_{1}\|^{2} > \|\mathbf{s}_{1} + \mathbf{n} - \mathbf{s}_{2}\|^{2} \\ \Leftrightarrow \|\mathbf{n}\|^{2} > \langle \mathbf{s}_{1} - \mathbf{s}_{2} + \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} + \mathbf{n} \rangle \\ \Leftrightarrow \|\mathbf{n}\|^{2} > \langle \mathbf{s}_{1} - \mathbf{s}_{2}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle + \langle \mathbf{s}_{1} - \mathbf{s}_{2}, \mathbf{n} \rangle + \langle \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle + \langle \mathbf{n}, \mathbf{n} \rangle \\ \Leftrightarrow \|\mathbf{n}\|^{2} > \|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2} + 2\langle \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle + \|\mathbf{n}\|^{2} \\ \Leftrightarrow \langle \mathbf{n}, \mathbf{s}_{1} - \mathbf{s}_{2} \rangle < -\frac{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2}}{2} \\ \Leftrightarrow \left\langle \mathbf{n}, \frac{\mathbf{s}_{1} - \mathbf{s}_{2}}{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|} \cdot \sqrt{\frac{2}{N_{o}}} \right\rangle < -\frac{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2}}{2} \cdot \frac{1}{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|} \cdot \sqrt{\frac{2}{N_{o}}} \\ \Leftrightarrow \left\langle \mathbf{n}, \frac{\mathbf{s}_{1} - \mathbf{s}_{2}}{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|} \cdot \sqrt{\frac{2}{N_{o}}} \right\rangle < -\frac{\|\mathbf{s}_{1} - \mathbf{s}_{2}\|}{\sqrt{2N_{o}}} \end{split}$$

#### Error Probability when M = 2

•  $Z = \left\langle \boldsymbol{n}, \frac{\boldsymbol{s}_1 - \boldsymbol{s}_2}{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|} \cdot \sqrt{\frac{2}{N_o}} \right\rangle$  is Gaussian with zero mean and variance  $\frac{N_o}{2} \left\| \frac{\boldsymbol{s}_1 - \boldsymbol{s}_2}{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|} \cdot \sqrt{\frac{2}{N_o}} \right\|^2 = \frac{N_o}{2} \cdot \frac{2}{N_o} \left\| \frac{\boldsymbol{s}_1 - \boldsymbol{s}_2}{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|} \right\|^2 = 1$ •  $P(\mathcal{E}|\boldsymbol{s}_1) = P\left(Z < -\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right) = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right)$ •  $P(\mathcal{E}|\boldsymbol{s}_2) = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right)$ 

$$P(\mathcal{E}) = \frac{P(\mathcal{E}|\boldsymbol{s}_1) + P(\mathcal{E}|\boldsymbol{s}_2)}{2} = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|}{\sqrt{2N_o}}\right)$$

• Error probability decreasing function of distance  $\|m{s}_1 - m{s}_2\|$ 

## Bound on Error Probability when M>2

# Scenario Let $\mathscr{C} = \{s_1, \dots, s_M\} \subset \mathbb{R}^N$ be a modulation/coding scheme with • $P(s_1) = \dots = P(s_M) = 1/M$ , and • detected using the nearest neighbor decoder

#### • Minimum distance

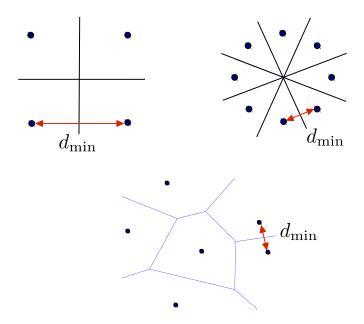
 $\mathit{d}_{\min} = \mathsf{smallest}$  Euclidean distance between any pair of vectors in  $\mathscr C$ 

$$d_{\min} = \min_{i \neq j} \| \boldsymbol{s}_i - \boldsymbol{s}_j \|$$

- Observe that  $\| {m s}_i {m s}_j \| \geq d_{\min}$  for any i 
  eq j
- Since  $Q(\cdot)$  is a decreasing function

$$Q\left(\frac{\|\boldsymbol{s}_i - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right) \leq Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right) \text{ for any } i \neq j$$

- Bound based only on  $d_{\min} \Rightarrow$  Simple calculations, not tight, intuitive



#### Union Bound on Conditional Error Probability

Assume that  $\boldsymbol{s}_1$  is transmitted, i.e.,  $\boldsymbol{r} = \boldsymbol{s}_1 + \boldsymbol{n}$ . We know that

$$P(\|\boldsymbol{r} - \boldsymbol{s}_j\| < \|\boldsymbol{r} - \boldsymbol{s}_j\| \mid \boldsymbol{s}_1) = Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right)$$

Decoding error occurs if  $\boldsymbol{r}$  is closer some  $\boldsymbol{s}_j$  than  $\boldsymbol{s}_1$ ,  $j=2,3,\ldots,M$ 

$$P(\mathcal{E}|\boldsymbol{s}_1) = P(\boldsymbol{r} \notin D_1 | \boldsymbol{s}_1) = P\left(\bigcup_{j=2}^M \|\boldsymbol{r} - \boldsymbol{s}_j\| < \|\boldsymbol{r} - \boldsymbol{s}_1\| | \boldsymbol{s}_1\right)$$

From union bound  $P(A_2 \cup \cdots \cup A_M) \leq P(A_2) + \cdots + P(A_M)$ 

$$P(\mathcal{E}|\boldsymbol{s}_1) \leq \sum_{j=2}^{M} P(\|\boldsymbol{r} - \boldsymbol{s}_j\| < \|\boldsymbol{r} - \boldsymbol{s}_j\| \mid \boldsymbol{s}_1) = \sum_{j=2}^{M} Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right)$$

# Union Bound on Error Probability

Since  $Q(\cdot)$  is a decreasing function and  $\| \boldsymbol{s}_1 - \boldsymbol{s}_j \| \geq d_{\min}$ 

$$P(\mathcal{E}|\boldsymbol{s}_1) \le \sum_{j=2}^{M} Q\left(\frac{\|\boldsymbol{s}_1 - \boldsymbol{s}_j\|}{\sqrt{2N_o}}\right) \le \sum_{j=2}^{M} Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right)$$

$$P(\mathcal{E}|\boldsymbol{s}_1) \le (M-1)Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right)$$

Upper bound on average error probability  $P(\mathcal{E}) = \sum_{i=1}^{M} P(\boldsymbol{s}_i) P(\mathcal{E}|\boldsymbol{s}_i)$ 

$$P(\mathcal{E}) \le (M-1)Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right)$$

#### Note

- Exact P<sub>e</sub> (or good approximations better than the union bound) can be derived for several constellations, for example PAM, QAM and PSK.
- Chernoff bound can be useful:  $Q(a) \leq \frac{1}{2} \exp(-a^2/2)$  for  $a \geq 0$
- Union bound, in general, is loose.



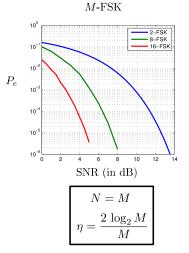
• Abscissa is  $[SNR]_{dB} = 10 \log_{10} SNR$ 

• The union bound is a reasonable approximation for large values of SNR

#### Performance of QAM and FSK

10<sup>0</sup> 4-QAM 16-QAM 10 10-2  $P_e$ 10 10 10 10-6 0 5 10 15 20 SNR (in dB) N=2 $\eta = \log_2 M$ 

M-QAM



$$\eta = \frac{2\log_2 M}{N}$$

# Performance of QAM and FSK

Probability of Error  $P_e = 10^{-5}$ 

| Modulation/Code | $\frac{\text{Spectral Efficiency}}{\eta \text{ (bits/sec/Hz)}}$ | Signal-to-Noise Ratio<br>SNR (dB) |
|-----------------|-----------------------------------------------------------------|-----------------------------------|
| 16-QAM          | 4                                                               | 20                                |
| 4-QAM           | 2                                                               | 13                                |
| 2-FSK           | 1                                                               | 12.6                              |
| 8-FSK           | $^{3/4}$                                                        | 7.5                               |
| 16-FSK          | $^{1}/_{2}$                                                     | 4.6                               |

How good are these modulation schemes ? What is the best trade-off between  $\rm SNR$  and  $\eta$  ?

## Capacity of the (Vector) Gaussian Channel

Let the maximum allowable power be P and noise variance be  $N_o/2$ .

$$SNR = \frac{P}{N_o/2} = \frac{2P}{N_o}$$

What is the highest  $\eta$  achievable while ensuring that  $P_e$  is small?

#### Theorem

Given an  $\epsilon > 0$  and any constant  $\eta$  such that  $\eta < \log_2 (1 + \text{SNR})$ , there exists a coding scheme with  $P_e \le \epsilon$  and spectral efficiency at least  $\eta$ .

Conversely, for any coding scheme with  $\eta > \log_2(1 + \text{SNR})$  and M sufficiently large,  $P_e$  is close to 1.

 $C(SNR) = \log_2(1 + SNR)$  is the **capacity** of the Gaussian channel.

#### How Good/Bad are QAM and FSK?

Least  ${\rm SNR}$  required to communicate reliably with spectral efficiency  $\eta$  is  ${\rm SNR}^*(\eta)=2^\eta-1$ 

Probability of Error  $P_e = 10^{-5}$ 

| Modulation/Code | $\eta$   | SNR (dB) | $\mathrm{SNR}^*(\eta)$ |
|-----------------|----------|----------|------------------------|
| 16-QAM          | 4        | 20       | 11.7                   |
| 4-QAM           | 2        | 13       | 4.7                    |
| 2-FSK           | 1        | 12.6     | 0                      |
| 8-FSK           | $^{3/4}$ | 7.5      | -1.7                   |
| 16-FSK          | $^{1/2}$ | 4.6      | -3.8                   |

# How to Perform Close to Capacity?

- We need  $P_e$  to be small at a fixed finite SNR
  - $d_{\min}$  must be large to ensure that  $P_e$  is small
- It is necessary to use coding schemes in high dimensions  $N\gg 1$ 
  - Can ensure that  $d_{\min} \approx \text{constant} \times \sqrt{N}$
- If N is large it is possible to 'pack' vectors  $\{m{s}_i\}$  in  $\mathbb{R}^N$  such that
  - Average power is at the most P
  - $\blacktriangleright$   $d_{\min}$  is large
  - ▶  $\eta$  is close to  $\log_2(1 + SNR)$
  - ▶ P<sub>e</sub> is small
- A large N implies that  $M = 2^{\eta N/2}$  is also large.
  - We must ensure that such a large code can be encoded/decoded with practical complexity

#### Several known coding techniques

 $\eta>1:$  Trellis coded modulation, multilevel codes, lattice codes, bit-interleaved coded modulation, etc.

 $\eta < 1:$  Low-density parity-check codes, turbo codes, polar codes, etc.

#### Thank You!