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Summary

In this work we investigate t-subnorms M
that have strong associated negation. Firstly,
we show that such t-subnorms are neces-
sarily t-norms. Following this, we investi-
gate the inter-relationships between differ-
ent algebraic and analytic properties of such
t-subnorms, viz., Archimedeanness, condi-
tional cancellativity, left-continuity, nilpo-
tent elements, etc. In particular, we show
that under this setting many of these prop-
erties are equivalent.
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1 Introduction

The theory of triangular norms and triangular sub-
norms have been well studied and their applications
well-established. Many algebraic and analytical prop-
erties of these operations, viz., Archimedeanness, con-
ditional cancellativity, left-continuity, etc., have been
studied and their inter-relationships shown (see for in-
stance, Klement et al. [4]).

Yet another way of categorizing t-subnorms is as fol-
lows: Given a t-subnorm M , one can obtain its as-
sociated negation nM (see Definitions 2.2 and 2.4 be-
low). Note that nM is usually not a fuzzy negation,
i.e., nM (1) ≥ 0. However, we can broadly consider
two sub-classes of t-subnorms based on whether their
associated negation nM is strong or not.

In this work, we study the class of t-subnorms whose
associated negation nM is strong. Firstly, we show
that such t-subnorms are necessarily t-norms. Follow-
ing this, we investigate some particular classes of these

and study the inter-relationships between different al-
gebraic and analytic properties of such t-subnorms,
viz., Archimedeanness, conditional cancellativity, left-
continuity, etc. In particular, we show that under this
setting many of these properties are equivalent.

2 Preliminaries

Definition 2.1. A fuzzy negation is a function
N : [0, 1] → [0, 1] that is non-increasing and such that
N(1) = 0 and N(0) = 1. Further, it is said to be
strong or involutive, if N ◦N = id[0,1].

Definition 2.2. A t-subnorm is a function
M : [0, 1]2 → [0, 1] such that it is monotonic
non-decreasing, associative, commutative and
M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1], i.e., 1
need not be the neutral element.

Definition 2.3. Let M be a t-subnorm.

(i) If 1 is the neutral element of M , then it becomes
a t-norm. We denote a t-norm by T in the sequel.

(ii) M is said to satisfy the Conditional Cancellation
Law if, for any x, y, z ∈ (0, 1],

M(x, y) = M(x, z) > 0 implies y = z . (CCL)

Alternately, (CCL) implies that on the posi-
tive domain of M , i.e., on the set {(x, y) ∈
(0, 1]2 | M(x, y) > 0}, M is strictly increasing.

(iii) M is said to be Archimedean, if for all x, y ∈
(0, 1) there exists an n ∈ N such that x

[n]
M < y;

(iv) An element x ∈ (0, 1) is a nilpotent element of
M if there exists an n ∈ N such that x

[n]
M = 0;

(v) A t-norm T is said to be nilpotent, if it is contin-
uous and if each x ∈ (0, 1) is a nilpotent element
of T .

Definition 2.4. Let M be any t-subnorm and x, y ∈
[0, 1].



• The residual implication IM of M is given by

I(x, y) = sup {t ∈ [0, 1] | M(x, t) ≤ y} . (1)

• The associated negation nM of M is given by

nM (x) = sup{t ∈ [0, 1] | M(x, t) = 0}. (2)

Clearly, nM is a non-increasing function. Note that
though nM (0) = 1, it need not be a fuzzy negation,
since nM (1) can be greater than 0. Hence, only in
the case nM is a fuzzy negation we call nM the natu-
ral negation of M in this work. However, many results
hold even if nM (1) > 0 and hence to preserve this gen-
erality in such situations we term nM as the associated
negation.

For instance, the following result is true even when
nM (1) > 0.
Lemma 2.5 (cf. [1], Proposition 2.3.4). Let M be
any t-subnorm and nM its associated negation. Then
we have the following:

(i) M(x, y) = 0 =⇒ y ≤ nM (x) .

(ii) y < nM (x) =⇒ M(x, y) = 0.

(iii) If M is left-continuous then y = nM (x) =⇒
M(x, y) = 0, i.e., the reverse implication of (i)
also holds.

Lemma 2.6. Let M be any t-subnorm with nM be-
ing a natural negation with e as its fixed point, i.e.,
nM (e) = e. Then

(i) Every x ∈ (0, e) is a nilpotent element; in fact,
x

[2]
M = 0 for all x ∈ [0, e).

(ii) In addition, if M is either conditionally cancella-
tive or left-continuous, then e is also a nilpotent
element.

Proof. (i) By definition,

nM (e) = sup{t ∈ [0, 1] | M(e, t) = 0} = e,

implies that M(e, e−) = 0, from whence we get
M(x, x) ≤ M(e, e−) = 0 for all x ∈ [0, e). In
other words, x

[2]
M = 0 for all x ∈ [0, e).

(ii) If M is conditionally cancellative, then M(e, e) =
x < e and from (ii) above we have M(x, x) = 0.
Now,

e
[4]
M = M(M(e, e),M(e, e)) = M(x, x) = 0.

If M is left-continuous, then nM (e) = max{t ∈
[0, 1] | M(e, t) = 0} = e, i.e., e ∈ {t ∈
[0, 1] | M(e, t) = 0} and hence M(e, e) = 0, i.e., e
is also a nilpotent element.

Remark 2.7. (i) In the case nM is a strong natural
negation we can show that if M is conditionally
cancellative then every x ∈ (0, 1) is also a nilpo-
tent element, see Remark 5.8(ii).

(ii) Note that without any further assumptions, the
set of nilpotent elements need not be the whole of
(0, 1). For instance, for the nilpotent minimum
t-norm

TnM(x, y) =

{
0, if x + y ≤ 1,

min(x, y), otherwise,
x, y ∈ [0, 1],

which is left-continuous but not conditionally can-
cellative, its set of nilpotent elements is (0, .5],
while its set of zero divisors is (0, 1).
However, Theorem 6.1 gives an equivalence condi-
tion for the whole of (0, 1) to be the set of nilpotent
elements under a suitable condition on nM .

3 T-subnorms with strong associated
negation = T-norms

There are works showing that some classes of t-
subnorms M whose associated negations nM are in-
volutive do become t-norms. Jenei [3] showed it for
the class of left-continuous M , while Jayaram [2] did
the same for conditionally cancellative M . The main
result of this section shows that the above results are
true in general, i.e., any t-subnorm with a strong nat-
ural negation is a t-norm.

The following result was firstly proven by Jenei in [3].
However, we give a very simple proof of this result
without resorting to the rotation-invariance property.
Theorem 3.1 (Jenei, [3], Theorem 3). If M is a left-
continuous t-subnorm with nM being strong, then M
is a t-norm.

Proof. Firstly, note that if M is a left-continuous t-
subnorm, then its residual satisfies the exchange prin-
ciple, i.e.,

IM (x, IM (y, z)) = IM (y, IM (x, z)).

It follows from the fact that the neutral element of M
does not play any role in the proof, see, for instance
the proof given for Theorem 2.5.7 in [1].

If nM is strong, then for every y ∈ [0, 1] there exists
y′ ∈ [0, 1] such that nM (y) = y′. Now,

IM (1, y′) = IM (1, IM (y, 0))
= IM (y, IM (1, 0)) = IM (y, 0) = y′.

Thus, for all y′ ∈ [0, 1],

IM (1, y′) = max{t |M(1, t) ≤ y′} = y′ =⇒ M(1, y′) = y′ .



Theorem 3.2 (Jayaram [2], Theorem 4). Let M be
any conditionally cancellative t-subnorm. If nM is a
strong natural negation then M is a t-norm.

Now, we prove the main result of this section which
shows that the above results are true in general.

Theorem 3.3. Let M be any t-subnorm with nM be-
ing a strong natural negation. M is a t-norm.

Proof. Note, firstly, that since nM (x) = sup{t ∈
[0, 1] | M(x, t) = 0}, is a strong negation, we have
that nM (z) = 1 ⇐⇒ z = 0 and nM (z) = 0 ⇐⇒ z = 1.
Equivalently, M(1, z) = 0 ⇐⇒ z = 0.

On the contrary, let us assume that M(1, x) = x′ � x
for some x ∈ (0, 1]. Since nM is strong, the following
are true:

(i) nM (x′) > nM (x)

(ii) if p > nM (x) then M(x, p) > 0,

(iii) there exists a y ∈ (0, 1) such that nM (x′) > y >
nM (x) and M(y, x) = q > 0 while M(y, x′) = 0.

Now, by associativity we have

M(y, M(x, 1)) = M(y, x′) = 0
M(M(y, x), 1) = M(q, 1)

}
=⇒ M(q, 1) = 0,

a contradiction. Thus M(1, x) = x for all x ∈ [0, 1]
and hence we have the result.

In the following sections, we deal with t-subnorms
whose associated negations are strong, or equivalently
t-norms whose associated negations are strong. We
discuss the inter-relationships between the different al-
gebraic and analytical properties for this subclass of
t-norms; in particular, Archimedeanness, Conditional
Cancellativity, (Left-)continuity and Nilpotence that
are relevant to our context. We begin with listing out
some established results and go on to present some
new ones.

4 Continuity and Nilpotence

Let T be a t-norm and nT a strong negation. The
following result, whose proof is straight-forward, shows
the equivalence between continuity and nilpotence:

Theorem 4.1 ( Klement et al. [4]). Let T be a t-
norm with nT being strong. Then the following are
equivalent:

(i) T is continuous.

(ii) T is a nilpotent t-norm.

Further, we know that every nilpotent t-norm is both
Archimedean and Conditionally cancellative, since ev-
ery nilpotent t-norm is isomorphic to the  Lukasiewicz
t-norm and Archimedeanness and Conditionally can-
cellativity are preserved under isomorphism, see [4],
Examples 2.14(iv) and 2.15(v). Trivially, every nilpo-
tent t-norm is also left-continuous.

5 Conditional Cancellativity, Left
Continuity and Nilpotence

Recenty, in Jayaram [2], the following problem of
U.Höhle, given in Klement et al. [5] has been solved.
Further it was shown that it characterizes the set of
all conditionally cancellative t-subnorms.

(U.Höhle, [5], Problem 11) Characterize all left-
continuous t-norms T which satisfy

IT (x, T (x, y)) = max(nT (x), y), x, y ∈ [0, 1] . (3)

where IT , nT are as given in (1) and (2) with M = T .

Theorem 5.1 (Jayaram [2], Theorem 1). Let M be
any t-subnorm, not necessarily left-continuous. Then
the following are equivalent:

(i) The adjoint pair (I,M) satisfies (3).

(ii) M is a Conditionally Cancellative t-subnorm.

Remark 5.2. The following statements follow from
Theorem 5.1 with M = T , a t-norm:

(i) If a (right) continuous T satisfies (3) along with
its residual then T is necessarily Archimedean, see
[4], Proposition 2.15(ii).

(ii) However, if a left-continuous T satisfies (3) along
with its residual then T need not be Archimedean
and hence not continuous. An example is Hajék’s
t-norm or the following t-norm TOY of Ouyang et
al [7], Example 3.4, which is a (CCL) t-norm (and
hence a t-subnorm too) that is left-continuous
but not continuous at (0.5, 0.5) and hence is not
Archimedean (see Figure 1(a)):

TOY(x, y) =



2(x− 0.5)(y − 0.5) + 0.5,

if (x, y) ∈ (0.5, 1]2

2y(x− 0.5),
if (x, y) ∈ (0.5, 1]× [0, 0.5]

2x(y − 0.5),
if (x, y) ∈ [0, 0.5]× (0.5, 1]

0, otherwise

.

Theorem 5.3 (Jenei, [3], Theorem 2). Let T be a
left-continous t-norm with nT being strong. Then the
following are equivalent:



(i) T is a conditionally cancellative t-norm.

(ii) T is a nilpotent t-norm.

In fact, for a conditionally cancellative t-subnorm M
we can give an equivalent condition for it to be left-
continuous.

Theorem 5.4. Let M be a (CCL) t-subnorm. Then
the following are equivalent:

(i) M(x, nM (x)) = 0, x ∈ [0, 1] .

(ii) M is left-continuous.

Proof. (i) =⇒ (ii): Let M(x, nM (x)) = 0, for all x ∈
[0, 1]. On the contrary, let us assume that M is
non-left-continuous. Then there exist x0 ∈ (0, 1],
y0 ∈ (0, 1) and an increasing sequence (xn)n∈N,
where xn ∈ [0, 1), such that lim

n→∞
xn = x0, but

lim
n→∞

M(xn, y0) = M(x−0 , y0) = z′ < z0 = M(x0, y0).

Observe that

IM (y0, z
′) = sup{t ∈ [0, 1] | M(y0, t) ≤ z′} = x0,

(4)
since from the monotonicity of M we have
M(y0, xn) ≤ z′ for every n ∈ N and M(y0, x0) =
z0 > z′. Since M is (CCL), we have

IM (y0, z
′) = IM (y0,M(y0, x

−
0 )) = max(n(y0), x−0 ).

Now, we have two cases. On the one hand, if
IM (y0, z

′) = x−0 � x0, then it is a contradiction
to (4). On the other hand, if IM (y0, z

′) = n(y0),
then this implies that n(y0) = x0 from (4) and
hence

M(x0, y0) = M(y0, n(y0)) = z0 = 0,

by the hypothesis and hence there does not exist
any z′ < z0 and hence M is left-continuous.

(ii) =⇒ (i): Follows from Lemma 2.5(iii).

Remark 5.5. In Theorem 5.4 we do not need nM to
be a negation, i.e., nM (1) ≥ 0. Consider the follow-
ing t-subnorm MPf

(cf. Example 3.15 of [4], see Fig-
ure 1(b)) which is a left-continuous (CCL) but nMPf

is not a negation since nMPf
(1) = 0.2

MPf
=

0.2 +
3(x− 0.2)(y − 0.2)

4
, if (x, y) ∈ (0.2, 1]2

0, otherwise
.

Theorem 5.6. Let M be a (CCL) t-subnorm whose
nM is strong. Then M is left-continuous.

Proof. If possible, let M(x0, n(x0)) = p > 0 for some
x0 ∈ (0, 1). Since M is (CCL), we have M(1−, x0) <
x0 and hence by associativity we have

M(1−,M(x0, n(x0))) = M(1−, p)

M(M(1−, x0), n(x0)) = 0

from whence it follows M(1−, p) = 0, i.e., n(p) = 1,
a contradiction to the fact that nM is strong. Thus
p = 0 and the result follows from Theorem 5.4.

Theorem 5.7. Let M be a t-subnorm such that nM

is strong. Then the following are equivalent:

(i) M is conditionally cancellative.

(ii) M is a nilpotent t-norm.

Proof. If M satisfies (CCL) then M is left-continuous,
from Theorem 5.6 and now, using Theorem 5.3 we have
the result.

Remark 5.8. (i) The nilpotent minimum t-norm
TnM is an example of a t-subnorm M whose nM

is involutive and M satisfies (LEM) with nM but
is not conditionally cancellative and hence is not
a nilpotent t-norm.

(ii) In the case nM is a strong natural negation, from
Theorem 5.6 we see that conditionally cancellativ-
ity is equivalent to left-continuity and from The-
orem 5.7 that every x ∈ (0, 1) is a nilpotent ele-
ment.

6 Archimedeanness , Left Continuity
and Nilpotence

We begin with a result that shows that if nM is strong,
then the Archimedeanness is equivalent to every ele-
ment x ∈ (0, 1) being nilpotent. However, unless M is
also left-continuous, M is not a nilpotent t-norm.

Theorem 6.1. Let M be any t-subnorm such that nM

is not completely vanishing, i.e., there exists z ∈ (0, 1)
such that nM (z) > 0. The following are equivalent:

(i) Every x ∈ (0, 1) is a nilpotent element.

(ii) M is Archimedean.

Proof. (i) =⇒ (ii): Follows from Proposi-
tion 2.15 (iv) in Klement et al. [4].

(ii) =⇒ (i): Let M be any Archimedean t-subnorm
such that nM is not completely vanishing, i.e.,
there exist z ∈ (0, 1) such that nM (z) > 0. By
Lemma 2.5(ii) we see that for any 0 < z′ < nM (z)
we have M(z′, z) = 0.



(a) TOY (b) MPf

Figure 1: A t-norm and a t-subnorm that are conditionally cancellative

For any x ∈ [0, 1), by the Archimedeanness of M ,
there exists an n, p ∈ N such that x

[n]
M < z′ and

x
[p]
M < z from whence we have that

x
[n+p]
M = M

(
x

[n]
M , x

[p]
M

)
≤ M(z′, z) = 0.

Corollary 6.2. Let M be any t-subnorm such that nM

is a strong negation. Then the following are equivalent:

(i) Every x ∈ (0, 1) is a nilpotent element.

(ii) M is Archimedean.

The following result is due to Kolesárová [6]:

Theorem 6.3. Let T be any Archimedean t-norm.
Then the following are equivalent:

(i) T is left-continuous.

(ii) T is continuous.

Corollary 6.4. A left-continuous Archimedean t-
subnorm M whose nM is involutive is a nilpotent t-
norm.

Proof. From Theorem 3.1 we see that M is a left-
continuous t-norm. From Theorem 6.3, since M is
Archimedean it is continuous. Also by Theorem 6.1,
we have that every x ∈ (0, 1) is a nilpotent element.
Thus T is nilpotent, i.e., isomorphic to TL.

Remark 6.5. (i) Note that there exist left-
continuous Archimedean t-subnorms M that

are not continuous and hence their nM is not
involutive. For instance, consider the t-subnorm

M(x, y) =

{
x + y − 1, if x + y > 3

2 ,

0, otherwise ,
x, y ∈ [0, 1].

(ii) The nilpotent minimum t-norm TnM is an exam-
ple of a left-continuous t-subnorm M whose nM

is involutive but is not Archimedean and hence is
not a nilpotent t-norm.

(iii) However, it is not clear whether there exists any
non-nilpotent Archimedean t-subnorm M whose
nM is involutive. Clearly such t-(sub)norms are
not left-continuous.

Problem 1. Does there exist any non-nilpotent
Archimedean t-subnorm M whose nM is involutive. In
other words, is an Archimedean t-subnorm M whose
nM is involutive necessarily left-continuous?

7 Archimedeanness and Conditional
Cancellativity

In general, there does not exist any inter-relationships
between Archimedeanness and conditional cancellativ-
ity, as the following examples show.
Example 7.1. (i) The Ouyang t-norm TOY is

an example of a t-(sub)norm which is not
Archimedean but is both left-continuous and con-
ditionally cancellative.

(ii) The following t-norm is neither Archimedean nor
left-continuous but is conditionally cancellative:

T (x, y) =


0, if xy ≤ 1

2& max(x, y) < 1
xy, if xy > 1

2

min(x, y), otherwise
.



Figure 2: A Summary of the results available so far when nT is strong

(iii) The following t-subnorm is Archimedean and con-
tinuous, but not conditionally cancellative:

M(x, y) = max(0, min(x + y − 1, x− a, y − a, 1− 2a)),

where a ∈ (0, 0.5). For instance, with a = 0.25 we
have M(0.75, 0.75) = M(0.75, 0.8) = 0.5.

(iv) The nilpotent minimum TnM, whose nM is strong,
is neither Archimedean nor conditionally can-
cellative, but is left-continuous.

In the case, when nM is strong we have the following
partial implication.
Lemma 7.2. Let M be any t-subnorm whose nM is
strong. If M is conditionally cancellative then M is
Archimedean.

Proof. From Theorem 5.7, we have that if M is con-
ditionally cancellative then M is a nilpotent t-norm
from whence it follows that M is Archimedean.

Problem 2. Does there exist any Archimedean
t-subnorm M whose nM is involutive but is not
conditionally cancellative? In other words, is an
Archimedean t-subnorm M whose nM is involutive
necessarily conditionally cancellative?

8 Concluding Remarks

In this work, we have shown that t-subnorms whose as-
sociated negations are strong are necessarily t-norms.
Further, we have studied the inter-relationships be-
tween some algebraic and analytical properties of such
t-(sub)norms. Figure 2 gives a pictorial summary of
the results that exist so far.
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