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Summary

In this work we investigate t-subnorms M
that have strong associated negation. Firstly,
we show that such t-subnorms are neces-
sarily t-norms. Following this, we investi-
gate the inter-relationships between differ-
ent algebraic and analytic properties of such
t-subnorms, viz., Archimedeanness, condi-
tional cancellativity, left-continuity, nilpo-
tent elements, etc. In particular, we show
that under this setting many of these prop-
erties are equivalent.
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1 Introduction

The theory of triangular norms and triangular sub-
norms have been well studied and their applications
well-established. Many algebraic and analytical prop-
erties of these operations, viz., Archimedeanness, con-
ditional cancellativity, left-continuity, etc., have been
studied and their inter-relationships shown (see for in-
stance, KLEMENT et al. [4]).

Yet another way of categorizing t-subnorms is as fol-
lows: Given a t-subnorm M, one can obtain its as-
sociated negation nys (see Definitions 2.2 and 2.4 be-
low). Note that nj; is usually not a fuzzy negation,
ie., np(1l) > 0. However, we can broadly consider
two sub-classes of t-subnorms based on whether their
associated negation ny; is strong or not.

In this work, we study the class of t-subnorms whose
associated negation nps is strong. Firstly, we show
that such t-subnorms are necessarily t-norms. Follow-
ing this, we investigate some particular classes of these

and study the inter-relationships between different al-
gebraic and analytic properties of such t-subnorms,
viz., Archimedeanness, conditional cancellativity, left-
continuity, etc. In particular, we show that under this
setting many of these properties are equivalent.

2 Preliminaries

Definition 2.1. A fuzzy negation is a function
N:[0,1] — [0,1] that is non-increasing and such that
N(1) = 0 and N(0) = 1. Further, it is said to be
strong or involutive, if N o N =idg ).

Definition 2.2. A t-subnorm is a function
M: 0,12 — [0,1] such that it is monotonic
non-decreasing, associative, commutative  and
M(z,y) < min(x,y) for all xz,y € [0,1], de., 1
need not be the neutral element.

Definition 2.3. Let M be a t-subnorm.

(i) If 1 is the neutral element of M, then it becomes
a t-norm. We denote a t-norm by T in the sequel.

(ii) M is said to satisfy the Conditional Cancellation
Law if, for any z,y,z € (0,1],

M(z,y) = M(z,z) >0 impliesy =2 . (CCL)

Alternately, (CCL) implies that on the posi-
tive domain of M, i.e., on the set {(x,y) €
(0,12 | M(z,y) > 0}, M is strictly increasing.

(iii) M is said to be Archimedean, if for all x,y €

(0,1) there exists an n € N such that 375\7}[] <y;

(iv) An element x € (0,1) is a nilpotent element of
M if there exists an n € N such that xE\T}] =0;

(v) A t-norm T is said to be nilpotent, if it is contin-
uous and if each x € (0,1) is a nilpotent element
of T.

Definition 2.4. Let M be any t-subnorm and x,y €
[0,1].



o The residual implication Inr of M is given by
I(z,y) =sup{t € [0,1] | M(z,t) <y}. (1)

e The associated negation ny; of M is given by
na(z) = sup{t € [0,1] | M(z,t) =0}.  (2)

Clearly, njy; is a non-increasing function. Note that
though np(0) = 1, it need not be a fuzzy negation,
since nps(1) can be greater than 0. Hence, only in
the case nys is a fuzzy negation we call ny; the natu-
ral negation of M in this work. However, many results
hold even if nps(1) > 0 and hence to preserve this gen-
erality in such situations we term np; as the associated
negation.

For instance, the following result is true even when
Lemma 2.5 (cf. [1], Proposition 2.3.4). Let M be
any t-subnorm and nys its associated negation. Then
we have the following:

(i) M(z,y)=0=y < npx) .
(i) y < ny(x) = M(x,y) =0.

(ii5) If M s left-continuous then y = np(z) =
M(z,y) = 0, i.e., the reverse implication of (i)
also holds.

Lemma 2.6. Let M be any t-subnorm with ny; be-
g a natural negation with e as its fixed point, i.e.,
nar(e) = e. Then

(i) Fvery x € (0,e) is a nilpotent element; in fact,

ngf] =0 for all x € [0,¢).

(it) In addition, if M is either conditionally cancella-
tive or left-continuous, then e is also a nilpotent
element.

Proof. (i) By definition,

nar(e) = sup{t € [0,1] | M(e ) = 0} = e,
implies that M(e,e™) = 0, from whence we get
M(z,z) < M(e,e”) = 0 for all z € [0,e). In
other words, a:[l\z/l] =0 for all z € [0,€).

(ii) If M is conditionally cancellative, then M (e, e) =

x < e and from (ii) above we have M (z,z) = 0.
Now,

el = M(M(e,e), M(e,e)) = M(z,2) = 0.

If M is left-continuous, then njs(e) = max{t €
[0,1) | M(e,t) = 0} = e, ie, e € {t €
[0,1] | M(e,t) =0} and hence M(e,e) =0, i.e.,, e
is also a nilpotent element.

O

Remark 2.7. (i) In the case nys is a strong natural
negation we can show that if M is conditionally
cancellative then every x € (0,1) is also a nilpo-
tent element, see Remark 5.8(%i).

(i) Note that without any further assumptions, the
set of milpotent elements need not be the whole of
(0,1). For instance, for the nilpotent minimum
t-norm

0, ifr+y<1,
TnM(‘ray) { f v

. z,y € 0,1],
min(z, y),

otherwise,
which is left-continuous but not conditionally can-
cellative, its set of nilpotent elements is (0,.5],
while its set of zero divisors is (0,1).

However, Theorem 6.1 gives an equivalence condi-

tion for the whole of (0,1) to be the set of nilpotent
elements under a suitable condition on njy.

3 T-subnorms with strong associated
negation = T-norms

There are works showing that some classes of t-
subnorms M whose associated negations nj,; are in-
volutive do become t-norms. Jenei [3] showed it for
the class of left-continuous M, while Jayaram [2] did
the same for conditionally cancellative M. The main
result of this section shows that the above results are
true in general, i.e., any t-subnorm with a strong nat-
ural negation is a t-norm.

The following result was firstly proven by Jenei in [3].
However, we give a very simple proof of this result
without resorting to the rotation-invariance property.

Theorem 3.1 (Jenei, [3], Theorem 3). If M is a left-
continuous t-subnorm with ny; being strong, then M
18 a t-norm.

Proof. Firstly, note that if M is a left-continuous t-
subnorm, then its residual satisfies the exchange prin-
ciple, i.e.,

In(z, I (y, 2)) = I (y, I (, 2)).

It follows from the fact that the neutral element of M
does not play any role in the proof, see, for instance
the proof given for Theorem 2.5.7 in [1].

If nps is strong, then for every y € [0, 1] there exists
y' € ]0,1] such that np(y) = y'. Now,

I]VI(]-vy,) = IM(laIM(yvo))
Thus, for all ¢’ € [0, 1],
In(Ly') = max{t [M(1,t) <y'} =y = M(L,y) =y .
O



Theorem 3.2 (Jayaram [2], Theorem 4). Let M be
any conditionally cancellative t-subnorm. If nys is a
strong natural negation then M is a t-norm.

Now, we prove the main result of this section which
shows that the above results are true in general.

Theorem 3.3. Let M be any t-subnorm with ny; be-
ing a strong natural negation. M is a t-norm.

Proof. Note, firstly, that since np(z) = sup{t €
[0,1] | M(x,t) = 0}, is a strong negation, we have
that ny(z) =l<=z2=0and ny(z) =0 <= 2z = 1.
Equivalently, M (1,2z) =0 < z = 0.

On the contrary, let us assume that M(1,z) =2’ <z
for some z € (0, 1]. Since nys is strong, the following
are true:
(i) nar(2') > na(2)
(i) if p > npr(z) then M(z,p) > 0,
(iii) there exists a y € (0,1) such that np (') >y >
ny () and M(y,z) = ¢ > 0 while M(y,z') =0

Now, by associativity we have

M{(y, M(z,1)) = M(y,
M(M(y,x),1) = M(q,

a contradiction. Thus M(1,z) = z for all = € [0, 1]
and hence we have the result. O

1))_0 }:‘M(q,l)—O,

In the following sections, we deal with t-subnorms
whose associated negations are strong, or equivalently
t-norms whose associated negations are strong. We
discuss the inter-relationships between the different al-
gebraic and analytical properties for this subclass of
t-norms; in particular, Archimedeanness, Conditional
Cancellativity, (Left-)continuity and Nilpotence that
are relevant to our context. We begin with listing out
some established results and go on to present some
new ones.

4 Continuity and Nilpotence

Let T be a t-norm and np a strong negation. The
following result, whose proof is straight-forward, shows
the equivalence between continuity and nilpotence:

Theorem 4.1 ( KLEMENT et al. [4]). Let T be a t-
norm with ny being strong. Then the following are
equivalent:

(i) T is continuous.

(i) T is a nilpotent t-norm.

Further, we know that every nilpotent t-norm is both
Archimedean and Conditionally cancellative, since ev-
ery nilpotent t-norm is isomorphic to the Lukasiewicz
t-norm and Archimedeanness and Conditionally can-
cellativity are preserved under isomorphism, see [4],
Examples 2.14(iv) and 2.15(v). Trivially, every nilpo-
tent t-norm is also left-continuous.

5 Conditional Cancellativity, Left
Continuity and Nilpotence

Recenty, in Jayaram [2], the following problem of
U.Héhle, given in KLEMENT et al. [5] has been solved.
Further it was shown that it characterizes the set of
all conditionally cancellative t-subnorms.

(U.Hohle, [5], Problem 11) Characterize all left-

continuous t-norms 7" which satisfy

Ir(z,T(2,y))

where I, nr are as given in (1) and (2) with M =T.

Let M be
Then

= max(nr(z),y), =z,y€[0,1]. (3)

Theorem 5.1 (Jayaram [2], Theorem 1).
any t-subnorm, not necessarily left-continuous.
the following are equivalent:

(i) The adjoint pair (I, M) satisfies (3).
(i) M is a Conditionally Cancellative t-subnorm.

Remark 5.2. The following statements follow from
Theorem 5.1 with M =T, a t-norm:

(i) If a (right) continuous T satisfies (3) along with
its residual then T is necessarily Archimedean, see
[4], Proposition 2.15(ii).

(i) However, if a left-continuous T satisfies (3) along
with its residual then T need not be Archimedean
and hence not continuous. An example is Hajék’s
t-norm or the following t-norm Toy of Ouyang et
al [7], Example 3.4, which is a (CCL) t-norm (and
hence a t-subnorm too) that is left-continuous
but not continuous at (0.5,0.5) and hence is not
Archimedean (see Figure 1(a)):

2(z —0.5)(y — 0.5) + 0.5,
if (z,y) € (0.5,1]2
2y(x —0.5),
Tovy(z,y) = if (x,y) € (0.5,1] x [0,0.5]
2z(y — 0.5),
if (z,y) € 10,0.5] x (0.5,1]
0, otherwise
Theorem 5.3 (Jenei, [3], Theorem 2). Let T be a

left-continous t-norm with np being strong. Then the
following are equivalent:



(i) T is a conditionally cancellative t-norm.
(i1) T is a nilpotent t-norm.
In fact, for a conditionally cancellative t-subnorm M

we can give an equivalent condition for it to be left-
continuous.

Theorem 5.4. Let M be a (CCL) t-subnorm. Then
the following are equivalent:

(1) M(z,nn(z)) =0,

(i) M is left-continuous.

x €[0,1].

Proof. (1) = (ii): Let M(z,np(x)) =0, for all z €
[0,1]. On the contrary, let us assume that M is
non-left-continuous. Then there exist xy € (0, 1],
yo € (0,1) and an increasing sequence (Z,)nen,
where x,, € [0,1), such that lim x, =z, but

n—oo

lim M (zn,y0) = M(xg,y0) = 2" < 20 = M(20,%0).

n—oo

Observe that

In(yo, ") = sup{t € [0,1] | M(yo,?) < 2"} = 0,

(4)
since from the monotonicity of M we have
M (yo, 2n) < 2’ for every n € N and M (yg,zg) =
zg > z'. Since M is (CCL), we have

Int(yo, 2") = Ing(yo, M (yo, xy ) = max(n(yo), g ).

Now, we have two cases. On the one hand, if
Ine(y0,2") = ®y < o, then it is a contradiction
to (4). On the other hand, if Ins(yo,2") = n(yo),
then this implies that n(yp) = x¢ from (4) and
hence

M (z0,y0) = M(yo,n(y0)) = 20 = 0,

by the hypothesis and hence there does not exist
any 2z’ < zp and hence M is left-continuous.
(ii) = (i): Follows from Lemma 2.5(iii).
O
Remark 5.5. In Theorem 5.4 we do not need nas to
be a negation, i.e., np (1) > 0. Consider the follow-
ing t-subnorm Mp, (cf. Example 3.15 of [4], see Fig-

ure 1(b)) which is a left-continuous (CCL) but nasp,
is not a negation since napp (1) = 0.2

—0.2)(y — 0.2
024 2 Oi(y 02)

0, otherwise

Mp

f:

Theorem 5.6. Let M be a (CCL) t-subnorm whose
npr s strong. Then M is left-continuous.

if (z,y) € (0.2,1]? '

Proof. If possible, let M (xo,n(xo)) = p > 0 for some
xo € (0,1). Since M is (CCL), we have M (17, x9) <
xo and hence by associativity we have

M(17, M(xo,n(x0))) = M(17,p)
M(M@QA™,x0),n(x0)) =0

from whence it follows M(17,p) = 0, i.e., n(p) = 1,
a contradiction to the fact that nj,s is strong. Thus
p = 0 and the result follows from Theorem 5.4. O

Theorem 5.7. Let M be a t-subnorm such that njs
is strong. Then the following are equivalent:

(i) M is conditionally cancellative.

(ii) M is a nilpotent t-norm.

Proof. If M satisfies (CCL) then M is left-continuous,
from Theorem 5.6 and now, using Theorem 5.3 we have
the result. O

Remark 5.8. (i) The nilpotent minimum t-norm
TamMm 18 an example of a t-subnorm M whose ns
is involutive and M satisfies (LEM) with ny; but
18 not conditionally cancellative and hence is not
a nilpotent t-norm.

(ii) In the case npy is a strong natural negation, from
Theorem 5.6 we see that conditionally cancellativ-
ity is equivalent to left-continuity and from The-
orem 5.7 that every x € (0,1) is a nilpotent ele-
ment.

6 Archimedeanness , Left Continuity
and Nilpotence

We begin with a result that shows that if ny, is strong,
then the Archimedeanness is equivalent to every ele-
ment x € (0,1) being nilpotent. However, unless M is
also left-continuous, M is not a nilpotent t-norm.

Theorem 6.1. Let M be any t-subnorm such that nyy

is not completely vanishing, i.e., there exists z € (0,1)
such that np(z) > 0. The following are equivalent:

(i) Every x € (0,1) is a nilpotent element.
(ii) M is Archimedean.

Proof. (i) = (ii): Follows from Proposi-
tion 2.15 (iv) in KLEMENT et al. [4].

(i) = (i): Let M be any Archimedean t-subnorm
such that njps is not completely vanishing, i.e.,
there exist z € (0,1) such that ny(z) > 0. By
Lemma 2.5(ii) we see that for any 0 < 2’ < nps(2)
we have M(2',z) = 0.
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Figure 1: A t-norm and a t-subnorm that are conditionally cancellative

For any « € [0, 1), by the Archimedeanness of M,

there exists an n,p € N such that xg\z] < 7z’ and

azg\’}] < z from whence we have that

Z'E\Z'H”] =M (xk}],:r[&]) <M(,z)=0.

O

Corollary 6.2. Let M be any t-subnorm such that nas
is a strong negation. Then the following are equivalent:

(i) Every x € (0,1) is a nilpotent element.
(i) M is Archimedean.

The following result is due to Kolesarova [6]:

Theorem 6.3. Let T be any Archimedean t-norm.
Then the following are equivalent:

(i) T is left-continuous.
(ii) T is continuous.

Corollary 6.4. A left-continuous Archimedean t-
subnorm M whose nys is involutive is a nilpotent t-
norm.

Proof. From Theorem 3.1 we see that M is a left-
continuous t-norm. From Theorem 6.3, since M is
Archimedean it is continuous. Also by Theorem 6.1,
we have that every x € (0,1) is a nilpotent element.
Thus T is nilpotent, i.e., isomorphic to Tt,. O

Remark 6.5. (i) Note that there exist left-
continuous Archimedean t-subnorms M that

are not continuous and hence their np; is not
involutive. For instance, consider the t-subnorm

x+y713 fo+y>%7

M(z,y) =
(@) 0, otherwise ,

x,y € [0,1].

(ii) The nilpotent minimum t-norm Tym s an exam-
ple of a left-continuous t-subnorm M whose nys
is involutive but is not Archimedean and hence is
not a nilpotent t-norm.

(iii) Howewver, it is not clear whether there exists any
non-nilpotent Archimedean t-subnorm M whose
nps is involutive. Clearly such t-(sub)norms are
not left-continuous.

Problem 1. Does there exist any non-nilpotent
Archimedean t-subnorm M whose nj is involutive. In
other words, is an Archimedean t-subnorm M whose
np is involutive necessarily left-continuous?

7 Archimedeanness and Conditional
Cancellativity

In general, there does not exist any inter-relationships
between Archimedeanness and conditional cancellativ-
ity, as the following examples show.

Example 7.1. (i) The Ouyang t-norm Toy is
an example of a t-(sub)norm which is not
Archimedean but is both left-continuous and con-
ditionally cancellative.

(ii) The following t-norm is neither Archimedean nor
left-continuous but is conditionally cancellative:
0, if vy < t& max(z,y) < 1
T(z,y) = { 2y, ifxy > 3
min(z,y), otherwise



-

------- —>> Existing results

- >
7 e J— Every x < (0,1)

CGontimes ] < = = > [Ripsientlg
\ 5

Notte | ——— [Newresuis |

is nilpotent
*

left continuity |

Figure 2: A Summary of the results available so far when np is strong

(iii) The following t-subnorm is Archimedean and con-
tinuous, but not conditionally cancellative:

2]

M(z,y) = max(0,min(z +y — 1, — a,y — a,1 — 2a)),

where a € (0,0.5). For instance, with a = 0.25 we
have M(0.75,0.75) = M(0.75,0.8) = 0.5.

(iv) The nilpotent minimum Tym, whose nyy is strong,
is meither Archimedean nor conditionally can-

cellative, but is left-continuous.

In the case, when n,; is strong we have the following
partial implication.

Lemma 7.2. Let M be any t-subnorm whose nys s
strong. If M is conditionally cancellative then M is
Archimedean.

Proof. From Theorem 5.7, we have that if M is con-
ditionally cancellative then M is a nilpotent t-norm
from whence it follows that M is Archimedean. O

Problem 2. Does there exist any Archimedean
t-subnorm M whose njs is involutive but is not
conditionally cancellative? In other words, is an
Archimedean t-subnorm M whose njs is involutive
necessarily conditionally cancellative?

8 Concluding Remarks

In this work, we have shown that t-subnorms whose as-
sociated negations are strong are necessarily t-norms.
Further, we have studied the inter-relationships be-
tween some algebraic and analytical properties of such
t-(sub)norms. Figure 2 gives a pictorial summary of
the results that exist so far.
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