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Synopsis

Multiphase flows can be observed in many naturally occurring phenomena such as rain, snow,
avalanches, clouds, underground water flows, sea waves, etc. Multiphase flows are also common
in many industrial processes, such as transportation of crude oil in pipelines; enhance oil recovery,
hydrology, filtration, coating, and many other applications. In food processing industries, the clean-
ing of plants involves the removal of highly viscous fluid by fast flowing water streams injected at the
inlet of the conduits. Therefore, the fundamental understanding of such flows is essential, thus at-
tracting many experimentalists and theoreticians to investigate the miscible and immiscible systems
in various flow configurations.

The main objective of the present thesis is to investigate the flow dynamics and instabilities
occurring in buoyancy-driven and pressure-driven displacement flows of two immiscible liquids with
varying viscosities and densities in two- and three-dimensional geometries. The resulting flow in
such systems can give rise to several new instability patterns, which have been studied using lat-
tice Boltzmann method (LBM) for multiphase flows [He et al. (1999a,b), Zhang et al. (2000), Sahu
& Vanka (2011)]. The behavior of infinitesimal small disturbance is also investigated via a linear
stability analysis, and the results are compared with those obtained from the LBM simulations.

The LBM is an alternative computational method for fluid flows and is found to be very promising
for interfacial flows. It is a mesoscopic model derived from lattice gas automata. The explicit na-
ture of this method and the absence of the pressure-Poisson equation (which is essential to satisfy
the conservation of mass in conventional Navier-Stokes (N-S) solvers) make the method computa-
tionally very economical and an easily parallelizable technique. In addition to this, our LBM code
is implemented on graphics processing unit (GPU), which gives 25 times speed up over the corre-
sponding CPU based code. The GPU is a new paradigm for scientific computing. It is a powerful tool
for performing parallel computations with less energy consumption (one GPU card requires only 150
Watts and it costs only Rs. 60,000-70,000). The LBM, which itself is computationally faster than the
conventional N-S solvers, when implemented on GPU, gives a very high computational speed-up.

The various problems investigated in the present work are discussed below.

(i) Buoyancy-driven flow which is commonly known as lock-exchange flow refers to the inter-
penetration of two immiscible fluids initially separated by a partition and suddenly allowed to mix
under the action of gravitational force. Considering miscible fluids having different density, but the
same dynamic viscosity, this problem has been studied experimentally and numerically by many
researchers [Séon et al. (2004), Séon et al. (2007a,b), Hallez & Magnaudet (2008)]. In the present
work, the buoyancy-induced interpenetration of two immiscible fluids of varying viscosities and den-
sities is investigated in a confined tilted channel. In this configuration, the gravitational force has
two components, which act in the axial and transverse directions. The axial component of gravity
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induces a downward motion of the heavier fluid, which in turn, by mass conservation, displaces the
lighter fluid to move into the region of the heavier fluid. Thus both the heavier and the lighter fluids
accelerate into the lower and the upper parts of the channel, respectively. On the other hand, the
component of the gravitational force in the transverse direction, acts to segregate the two fluids. The
interface between the fluids becomes unstable, which give rise to the development of the interfacial
instabilities.

The main aim of this study is to investigate the effects of viscosity differential on the flow dynam-
ics. For high viscosity ratios relatively stable fingers are observed, which move essentially like two
individual Poiseuille flows in the opposite directions. The intensity of interfacial instabilities increases
with decreasing viscosity differential of the fluids and the flow becomes progressively more complex.
The front velocities decrease with increase in viscosity ratios. The effect of other parameters like the
angle of inclination and surface tension are also investigated. A three-dimensional extension of this
study is carried out and the results are compared with those obtained in two-dimensional channel.

(ii) Next, the effects of imposed pressure-gradient on the flow dynamics has been investigated.
In this case, the displacement of an initially resident fluid inside the channel by another fluid of
different viscosity and density, which is injected at the inlet, has been studied. As discussed above,
the displacement flow of one fluid by another one can be found in many industrial and geological
applications. In this case, the flow dynamics is a result of the competition between the imposed
pressure-gradient and the axial component of gravity. The pressure-driven flow induces motion of
displacing fluid into the channel, whereas the axial component of the gravity opposes this force by
accelerating the displaced fluid in the upstream direction. When a less viscous fluid displaces a
high viscous fluid, the flow becomes unstable forming interesting instability patterns at the interface
separating the fluids.

This is a parametrically rich problem, involving several dimensionless parameters, such as,
viscosity ratio, Atwood number, Reynolds number, Froude number, Capillary number and angle of
inclination. A detailed parametric study is conducted to investigate the effects of these parameters
on the flow dynamics. The Yih-type interfacial instabilities of sawtooth-like shape are observed at the
interface separating the fluids. It is found that the displacement rate of the resident fluid decreases
with increase in viscosity ratio. Although viscosity ratio has a non-monotonic effect on the velocity
of the leading front, the velocity of the trailing front is found to be decreasing with increasing the
viscosity ratio. Our results also predict the front velocity of the “lock-exchange flow” of two immiscible
fluids in the exchange flow dominated regime which is consistent with the experiments of Séon et al.
(2005). A single dimensionless parameter χ(≡ 2Resinθ/AtFr2) is derived by balancing the buoyancy
force in the axial direction with the imposed pressure force. Various flow regimes such as temporary
back flow, stationary back flow and instantaneous displacement are identified based on χ. The
critical value of χ for which transition of the exchanged flow regime to the displacement flow regime
occurs agrees with the experimental finding of Taghavi et al. (2012). A linear stability analysis for
a three-layer flow has been conducted and qualitative agreement is found with the results obtained
from the lattice Boltzmann simulations.

(iii) Finally, in order to get the complete picture of the instabilities, the above study is extended
to three-dimensions. A new screw-type instability is observed in the three-dimensional simulations.
It is also shown that increasing angle of inclination increases the intensity of the instabilities. The
effects of other parameters like Atwood number, Froude number and surface-tension parameter are
observed to be qualitatively similar to those obtained in a two-dimensional channel.
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Nomenclature

Roman Letters
L,H,W : length, height and width of the channel, respectively
h : height of the interface
fα : index distribution function
gα : pressure distribution function
eα : lattice vector
wα : weighing coefficient
cs : velocity of sound
Fs : surface tension force
G : gravity force
g : acceleration due to gravity
a : strength of molecular interaction
ac : critical value of Carnahan-Starling equation of state
p : pressure
R : gas constant
T : temperature
L/H : aspect ratio
m : viscosity ratio
Q : volumetric flow rate
Re : Reynolds number
At : Atwood number
Fr : Froude number
Ca : Capillary number
Vr,Vb : front velocties of heavier and lighter fluids, respectively
Vl,Vt : velocties of leading and trailing fronts, respectively
Tp : time period of oscillation
Lo, Lm : mixing lengths in non-oscillating and oscillating channels, respectively
Lo/Lm : normalised mixing length
c : phase speed of the disturbance



x, y, z : axial, wall normal and azimuthal coordinates, respectively
t : time
δt, δx : time and space increments, respectively
i, j, k : index in the axial, wall normal and azimuthal directions, respectively
nx, ny, nz : number of lattice points in the axial, wall normal and azimuthal

directions, respectively
u, v,w : velocities in the axial, wall normal and azimuthal

directions, respectively
Uwall,Vwall,Wwall : wall velocities in the axial, wall normal and azimuthal

directions, respectively

Greek Letters
α : lattice direction
θ : angle of inclination
θm : angle of inclination in oscillating channel
µ : viscosity
ν : kinematic viscosity
ρ : density
τ : relaxation time
φ : index function
φ1, φ2 : minimum and maximum values of the index function, respectively
κ : magnitude of surface tension
σ : surface tension
ζ : direction normal to the interface
β : axial real wavenumber
ω : complex frequency
Φ : amplitude of the streamfunction
η : amplitude of the interfacial perturbation

Subscripts
α : lattice direction
1 : properties of fluid 1
2 : properties of fluid 2

Superscripts
eq : equilibrium
0 : base state quantity
′ : differentiation
ˆ : disturbance quantity
¯ : averaged quantity



Abbreviations
LGA : lattice gas automata
LGCA : lattice gas cellular automata
LBM : lattice Boltzmann method
LBE : lattice Boltzmann equation
BGK : Bhatnagar-Gross-Krook
N − S : Navier-Stokes
K − H : Kelvin-Helmholtz
C − S : Carnahan-Starling
GPU : graphics processing unit
CUDA : compute unified device architecture
D2Q7 : two-dimensional-seven-velocity
D2Q9 : two-dimensional-nine-velocity
D3Q15 : three-dimensional-fifteen-velocity
D3Q19 : three-dimensional-nineteen-velocity
D3Q27 : three-dimensional-twentyseven-velocity
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CHAPTER 1

Introduction

1.1 Background

Multiphase flows of fluids having different fluid properties are common in many industrial pro-
cesses, such as transportation of crude oil in pipelines [Joseph et al. (1997)], enhance oil recovery
[Taghavi et al. (2012)], hydrology, filtration, coating, etc. In food processing industries, the cleaning
of plants involves the removal of highly viscous fluid by fast flowing water stream injected at the inlet of
the conduits [Regner et al. (2007)]. Multiphase systems can also be observed in many naturally occurring
phenomena such as rain, snow, avalanches, clouds, underground water flows, sea waves, etc. Thus, many
fascinating and counter-intuitive phenomena in multiphase fluid mechanics continue to be discovered
despite the long fluid mechanics history in the areas, such as viscous fingering [Homsy (1987)], drop
deformation [Clayton et al. (1998)] and electro-hydrodynamics [Melcher & Taylor (1969)]. A variety of
situations were studied by considering the fluids to be immiscible (fluids separated by sharp interface,
where the fluid properties undergoes a sudden jump) and miscible (where the flow dynamics is dominated
by diffusion). A brief review of the literature conducted on these systems is given below. An extensive
review of instabilities/flow dynamics in miscible and immiscible systems can also be found in Sahu &
Govindarajan (2014).

1.1.1 Miscible flow configuration

A large number of studies have been conducted in various miscible configurations, such as three-
layer and core-annular flows, displacement of one fluid by another fluid in channels, pipes, Hele-Shaw
cells and porous media. In fact, the later one is extensively considered and the phenomenon known as
viscous fingering, which occurs when a less viscous fluid displaces a more viscous one in porous media,
has been investigated by several authors [see review by Homsy (1987)]. Hill et al. (1952) were the first to
study viscous fingering phenomena in the context of packed columns. Hill et al. (1952), Homsy (1987)
and also other researchers working in this area studied viscous fingering by considering isodensity fluids.
The effects of density contrast in buoyancy-driven flow, wherein a highly dense fluid overlays a less dense
one in a confined geometry, are investigated by several researchers experimentally [Séon et al. (2004),
Séon et al. (2005), Séon et al. (2006a, 2007b)] and numerically [Grosfils et al. (2004), Goyal & Meiburg
(2006), Hallez & Magnaudet (2008), Sahu & Vanka (2011)]. The effects of viscosity and density contrast
are also studied in three-layer and core-annular flows (shown in Fig. 1.1) by several researchers [e.g.,
Ranganathan & Govindarajan (2001), Govindarajan (2004), Goyal et al. (2007), Sahu et al. (2009a),
Selvam et al. (2009), Sahu & Govindarajan (2011)] by conducting linear stability analysis and analysing
infinitisimally small perturbation. In a three-layer channel flow, Ranganathan & Govindarajan (2001) and
Govindarajan (2004) showed that these flows are unstable at low Reynolds numbers and high Schmidt
numbers. Ern et al. (2003) demonstrated the destabilizing effect of diffusion for continuous but rapidly
varying viscosity stratification in a similar system.

1
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Figure 1.1: Schematic diagram of a core-annular flow.

Several authors [e.g. Taylor (1961), Cox (1962), Chen & Meiburg (1996), Petitjeans & Maxworthy
(1996), Kuang et al. (2003)] experimentally studied core-annular miscible flows and focused on deter-
mining the thickness of the highly viscous fluid left on the pipe wall following its displacement by a less
viscous fluid and on measuring the tip speed of the propagating finger of the less viscous fluid. In immis-
cible lubricated pipelining [Joseph et al. (1997)] and miscible three-layer channel flows [Govindarajan
et al. (2001), Malik & Hooper (2005)], the flow is unstable if the annular fluid is more viscous than that
of the fluid in the core of the channel/pipe. However, in the case of neutrally buoyant core-annular flow,
Selvam et al. (2007) showed that beyond a critical viscosity ratio, the flow is unstable even when the less
viscous fluid occupies near the wall. They also showed that axisymmetric (corkscrew) mode is unstable
if the more (less) viscous fluid occupies the core of the pipe, for large Schmidt numbers, relatively small
Reynolds number and large wave numbers.

1.1.2 Immiscible flow configuration

Many investigators have focused on the stability of immiscible fluids [Yih (1967), Hickox (1971),
Joseph et al. (1984), Hu & Joseph (1989), Joseph et al. (1997), Kouris & Tsamopoulos (2001), Kouris
& Tsamopoulos (2002) and references therein]. Starting with the work of Yih (1967) and Hickox (1971)
carried out using long-wave theory in planar channel and cylindrical pipe, respectively, these studies have
shown that two-layer flows are unstable due to interfacial mode at arbitrarily small Reynolds numbers.
Yih (1967) used an asymptotic analysis to derive an expression for the complex wave speed as a function
of the relevant system parameters, such as density, viscosity, and thickness ratios. He then demonstrated
that instability exists due to an interfacial mode which results from the viscosity stratification even in
the limit of vanishingly small Reynolds numbers. Yiantsios & Higgins (1988b) subsequently showed the
appearance of a shear mode at sufficiently large Reynolds numbers, which corresponds to a short-wave
Tollmien-Schlichting (TS) mode. Yiantsios & Higgins (1988a) also carried out an asymptotic analysis
and extended the work of Yih (1967) to cover large wavenumbers and to account for the effects of
gravity and interfacial tension using the perturbation scheme of Hooper & Boyd (1983); the latter authors
examined the short-wave asymptotics of the interfacial instability between two unbounded viscous fluids.
They provided predictions of critical Reynolds numbers for both the shear and interfacial modes and
demonstrated the existence of discrepancies between these predictions and the experimental data of Kao
& Park (1972). They also compared their results with the weakly nonlinear evolution of the interface
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considered by Hooper & Grimshaw (1985).

Short-wave asymptotics were also carried out by Hooper & Boyd (1983), who showed that viscous
stratification of two unbounded, immiscible fluids undergoing Couette flow leads to an unconditional
instability in the absence of surface tension; the physical mechanism of this instability was elucidated by
Hinch (1984). At sufficiently large Reynolds numbers, a short-wave, shear mode also becomes unstable
[Yiantsios & Higgins (1988b)]. An extensive review of the work on the linear stability of planar two-fluid
Poiseuille flow is provided by Boomkamp & Miesen (1996). A number of studies have also been carried
out on the stability of immiscible core-annular flows in connection with lubricated oil pipelines and static
mixers [Joseph et al. (1997)]. These studies have included linear stability analyses for horizontal [Joseph
et al. (1984), Renardy & Joseph (1985), Hu & Joseph (1989), Preziosi et al. (1989), Hu et al. (1990),
Sahu et al. (2007)] and vertical pipes [Hickox (1971), Hu & Patankar (1995)] accounting for viscosity
and density contrasts, experiments [Charles et al. (1961), Bai et al. (1992)] and numerical simulations
in straight [Li & Renardy (1999), Kouris & Tsamopoulos (2001), Kouris & Tsamopoulos (2002)] and
corruagated pipes [Wei & Rumschitzki (2002a), Wei & Rumschitzki (2002b), Cao et al. (2003)].

The linear instability of two-dimensional disturbance in pressure-driven two-layer channel flow was
studied by Sahu et al. (2007), wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley
fluid. The results of their study indicate a destabilizing effect by increasing the yield stress, prior to
the formation of unyielded zones. An energy analysis was also conducted to study the mechanism of
this instability. Frigaard (2001) studied two-dimensional linear stability of two-layer Poiseuille flow of
two Bingham fluids in which only a fraction of the Bingham fluid has yielded. Their study involves
an unyielded region between the Newtonian fluid and the yielded part of the Bingham fluid unlike in
the study of Sahu et al. (2007). Interfacial waves would not develop under such conditions; this sup-
pression of interfacial modes then leads to superstable two-layer flows [Frigaard (2001), Nouar et al.
(2007)], similar to single-fluid pressure-driven flows. The effects of three-dimensional disturbances on
the interfacial mode in the linear regime was also investigated by Sahu & Matar (2010). They found
that three-dimensional disturbances are more unstable than two-dimensional disturbances, which arises
a question on the application of Squire’s theorem [Squire (1933)] on the interfacial flows.

Next, the literatures directly relevant to the present study are discussed. Two typical configurations,
namely:

1. Buoyancy-driven flow

2. Pressure-driven displacement of one fluid by another fluid

are considered in this thesis.

1.2 Buoyancy-driven flow

A flow problem of considerable industrial and natural importance is the interpenetration of two
immiscible fluids initially separated by a partition in a confined inclined channel and suddenly allowed to
mix by the action of the gravitational force [Benjamin (1968), Joseph et al. (1997), Debacq et al. (2003),
Ding et al. (2007)]. This problem is frequently referred to as the lock-exchange problem [Séon et al.
(2004), Séon et al. (2007a,b), Hallez & Magnaudet (2008)], schematic of this configuration is shown in
Fig. 1.2. This phenomenon plays an important role in the design of chemical and petroleum engineering
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processes [Benjamin (1968), Joseph et al. (1997)] as well as for the understanding of various natural
systems in oceanography and atmospheric sciences [Baird et al. (1992)]. In the absence of pressure-
gradient, buoyancy-induced mixing has been previously studied experimentally by Séon et al. (2004,
2005), Séon et al. (2006a,b) and numerically by Hallez & Magnaudet (2008) and Sahu & Vanka (2011).

Figure 1.2: Schematic diagram of lock-exchange flow. H and L are the width and length of the channel, respec-
tively. The partition is placed at x = L/2. g is the acceleration due to gravity. θ is the tilt angle measured with the
horizontal. The density of fluid ‘1’ is higher than that of fluid ‘2’.

In the experiments of Séon et al. (2005), three distinct regions of the flow and mixing patterns were
observed as the tilt angle was increased. For smaller tilt angles (θ < 65◦, θ is the angle with vertical), the
velocity of the high and low density fluids (moving in the opposite directions) increased linearly as the
tilt angle was increased. The mixing (or interpenetration) of the two fluids could be characterized by a
diffusive process described by a diffusion equation with a suitably defined diffusion coefficient. The flow
and mixing are influenced by two distinct processes. First, the component of gravitational force along
the axis of the channel accelerates the two fluids into each other at comparable velocities depending on
the individual densities of the fluids. The interface of the two fluids becomes unstable and gives rise to
the Kelvin-Helmholtz (KH) instabilities, and consequent transverse mixing. However, the component
of the gravitational force normal to the channel axis has an opposite effect by acting to segregate the
two fluids. The front velocity depends on the local density contrast across the interface, which in turn
is decreased from the initial maximum value because of diffusional mixing (smearing) of the interface.
Thus, while the KH instabilities decrease the front velocity, the segregation of the two fluids caused by
the transverse gravitational force increases the front velocity. For 65◦ < θ < 82◦, the flow is characterized
by a regime in which the front velocity is nearly constant, with a value approximately 0.7

√
Atgd, where

g is the gravitational acceleration and d is a characteristic dimension of the confining channel. The
region of constant front velocity depends on the fluid viscosity (for a given Atwood number) with a
higher fluid viscosity causing an earlier transition to the constant front velocity limit. This is a result
of decreased small scale transverse mixing due to lower Reynolds number. When the pipe is almost
horizontal (θ > 82◦) the flow transitions to a third region in which the two fluids move as counter-current
Poiseuille flows and the front velocity is then determined by the balance between buoyancy and wall
friction. In this region, the velocity decreases with tilt angle because of the reduced buoyancy force.

Only a limited number of computational studies have been reported for this flow. Hallez & Mag-
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naudet (2008) solved the governing equations with a finite volume method and studied the buoyancy-
induced mixing of two fluids in circular, rectangular and square geometries. They found that the vortices
which develop during the flow are more coherent and persistent in two than in three dimensional chan-
nel. Consequently, the vortices give rise to more intense mixing and long-lasting flow structures in
two-dimensional than in three dimensional geometries. Recently, Sahu & Vanka (2011) used a two-
phase lattice Boltzmann method (LBM) to simulate the interpenetration of two immiscible fluids in a
tilted channel. They investigated the effects of Atwood number, Reynolds number, tilt angle and surface
tension in terms of flow structures, front velocities and velocity profiles. They compared the result of a
typical case with that of a finite volume method using the diffuse interface technique [Ding et al. (2007)]
and found good agreement. Their results also compared well with the previous experimental results [De-
bacq et al. (2003), Séon et al. (2004, 2005)]. Recently, the study of Sahu & Vanka (2011) is extended to
multicomponent systems by Lee & Kim (2013), where more than two fluids are allowed to mix inside a
two-dimensional channel.

1.3 Pressure-driven displacement flow

The pressure-driven displacement flow of one fluid by another fluid is also common in many indus-
trial processes, such as transportation of crude oil in pipelines [Joseph et al. (1997)], oil recovery, food-
processing, coating, etc. The cleaning of plants also involves removal of viscous fluids by fast-flowing
water streams [Regner et al. (2007)]. In enhanced oil recovery, hydrocarbon solvent or supercritical
carbon dioxide is used to displace oil from an oil reservoir.

Figure 1.3: Schematic showing the pressure-driven displacement of fluid ‘2’ by fluid ‘1’ in an inclined channel. θ
is the angle of inclination, and g is the acceleration due to gravity. The viscosity and density of fluid ‘1’ and ‘2’
are µ1, ρ1 and µ2, ρ2, respectively.

The schematic of pressure-driven dispalcement of one fluid by another is shown in Fig. 1.3. When
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a less viscous fluid displaces a more viscous one (i.e. µ1 < µ2) a two-layer/core-annular flow is ob-
tained in most part of the channel/pipe as the elongated ‘finger’ of the less viscous fluid penetrates into
the bulk of the more viscous one [Sahu et al. (2009a)]. The interface between the two fluids becomes
unstable forming Yih-type instability in immiscible [Yih (1967)] and Kelvin-Helmholtz (KH) type in-
stabilities and “roll-up” structures in miscible flows. A review of the phenomenon occurring in porous
media (commonly known as viscous fingering) can be found in Homsy (1987). In pressure-driven two-
layer/core-annular flows several authors have conducted linear stability analyses by considering the fluids
to be immiscible [Yih (1967), Yiantsios & Higgins (1988b), Sahu et al. (2007), Sahu & Matar (2010)] and
miscible [Govindarajan (2004), Malik & Hooper (2005), Selvam et al. (2007), Sahu et al. (2009a), Sahu
& Govindarajan (2011)]. This problem was also studied by many researchers experimentally [Charles
et al. (1961), Bai et al. (1992)] and numerically [Li & Renardy (1999), Kouris & Tsamopoulos (2001,
2002), Wei & Rumschitzki (2002b)]. In miscible core-annular flows, the thickness of the more viscous
fluid layer left on the pipe walls and the speed of the propagating ‘finger’ were experimentally investi-
gated by many authors [Taylor (1961), Cox (1962), Petitjeans & Maxworthy (1996), Chen & Meiburg
(1996), Kuang et al. (2003)] and the axisymmetric and “corkscrew” patterns were found [Lajeunesse
et al. (1997), Lajeunesse et al. (1999), Scoffoni et al. (2001), Gabard & Hulin (2003), Cao et al. (2003)].
In neutrally-buoyant core-annular pipe flows, d’Olce et al. (2008) observed axisymmetric “pearl” and
“mushroom” patterns at high Schmidt number. By an asymptotic analysis, Yang & Yortsos (1997) stud-
ied miscible displacement flow between parallel plates and in cylindrical capillary tube with large aspect
ratio in the Stokes regime. They investigated viscous fingering instability for large viscosity ratio and
found that the displacement efficiency decreases with increasing viscosity ratio. Goyal et al. (2007)
studied miscible displacement flows in a vertical Hele-Shaw cell with less-viscous fluid displacing a
more-viscous one. They found that the flow develops as a result of linear instability, and the front veloc-
ity increases with increasing unstable density stratification and decreasing diffusion. The flow fields are
qualitatively similar to those observed in the experiment of Petitjeans & Maxworthy (1996) in a capillary
tube and in the theoretical predictions of Lajeunesse et al. (1999) in Hele-Shaw cells.

Sahu et al. (2009b) studied pressure-driven miscible displacement flow in an inclined channel via
numerical solution of the Navier-Stokes equations coupled to a convective-diffusion equation for the
concentration of the more viscous fluid. The viscosity and density are assumed to be function of the
concentration of the more viscous fluid. The effects of density ratio, Froude number, and channel in-
clination were investigated. Their results demonstrated that the rate of mixing and displacement of the
more viscous fluid are promoted by the development of KH-type instabilities, and enhanced with in-
creasing density ratio and Froude number. The mixing rates were also shown to increase with increasing
inclination angles when the displaced fluid is also the denser one. Recently, Taghavi et al. (2010, 2011)
studied the effects of imposed mean flow on a buoyant exchange flow of two miscible fluids in a near
horizontal pipe. For very low imposed velocity, they observed an inertial gravity current and KH like
instabilities in the interfacial region separating the fluids. The flow becomes stable for higher imposed
flow with the absence of KH instabilities and consequent decreased mixing. This behavior is counterin-
tuitive since more energy is injected into the system as the imposed flow is increased. Non-Newtonian
effects on miscible displacement flows in vertical narrow eccentric annuli were experimentally studied
by Mohammadi et al. (2010). They demonstrated that suitable choice of viscosity ratio, density ratio
and flow rate results in steady displacement flows. In case of steady flow, they observed that eccentricity
drives a strong azimuthal counter-current flow above/below the interface resulting in an advancing spike.

As the above brief review shows, inspite of the large volume of research on the miscible displace-
ment flows, very few studies have been conducted for the displacement flow in immiscible systems. The
flow dynamics in immiscible flows are very different from those of the miscible flows due to the presence
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of a sharp interface separating the fluids and are associated with interfacial tension. On the other hand,
miscible flows are associated with diffusion. Selvam et al. (2007) compared the stability of immiscible
flows (with zero surface tension) with miscible flows and found that miscible flows are stable for any
Reynolds number when the viscosity ratio is less than a critical value, unlike the immiscible flows with
zero surface tension, which can be unstable for any Reynolds number for any arbitrarily small viscosity
gradient. Also in miscible flows the width of the interfacial region increases with time even when the
diffusion coefficient is very small (this rate is proportional to the inverse of Peclet number), which in turn
stabilizes the flow [see Hickox (1971); Selvam et al. (2007)].

Most numerical studies of displacement flows solved the continuum Navier-Stokes equations using
a finite volume/element/spectral method. The lattice Boltzmann method (LBM) is an alternative to solve
the Navier-Stokes equations for study of fluid flows. Also very high computational power is necessary
to simulate interfacial flows as fine grids and long domains are required for accurate simulation of the
interfacial dynamics. LBM could be ideal for studying the interfacial flows because of its low computa-
tional cost and its ability to track the interface automatically. The displacement flows of two immiscible
liquids were studied by Chin et al. (2002), Grosfils et al. (2004), Kang et al. (2004) and Dong et al.
(2010) via lattice Boltzmann method. The effects of wettability, surface tension, viscosity ratio and grav-
ity have been included sequentially. Although the recent study of Dong et al. (2010) considered all these
parameters, the formation of the interfacial instabilities, which are the important characteristics of such
flows, was not reported by any of the previous studies. This may be due to the low Reynolds number and
smaller computational domain considered in the earlier studies.

In the present thesis, lattice Boltzmann method is used to study the flow dynamics in buoyancy-driven
and pressure-driven dispalcement flows which are discussed in Chapters 3 and 4, respectively. Below, a
brief overview of lattice Boltzmann method for multiphase flows is provided.

1.4 Lattice Boltzmann method

Lattice Boltzmann method is originated from lattice gas cellular automata (LGCA) or simply lattice
gas automata (LGA). Detailed theory of LGCA can be found in Rothman & Zaleski (1997) and Rivet
& Boon (2000). The lattice Boltzmann method (LBM) is the simplified form of lattice-gas automata.
This is a mesoscopic model that has its origin in the kinetic theory. The LBM solves discrete density
distribution functions and obtains the velocities and density as moments of this distribution function. In
comparison with solution of the Navier-Stokes equations, LBM is a simple, efficient and easily paral-
lelizable technique. It involves only three basic steps: (a) collision; (b) streaming; and (c) calculation of
the flow variables. It can include mesoscopic flow physics such as velocity slip, surface tension force,
and other inter-molecular forces. Chen & Doolen (1998) provide a detailed review of lattice Boltzmann
method and the Chapman-Enskog procedure which is used to show that the LBM equations approxi-
mately resemble Navier-Stokes equations in compressible form.

The boolean variables in lattice gas automata are replaced by discrete distribution functions in lattice
Boltzmann equation (LBE) and the collision rule is replaced by a continuous function called collision
operator. The computational domain in the LBM contains a regular lattice of sites on which a set of
particle distribution functions can be computed. Each of the particle distribution function is associated
with a specific lattice vector. At each time, two steps, collision and streaming takes place. In the collision
step, the distribution functions arriving at a node interact and change their velocity directions according to
scattering rules. In the streaming step, each distribution function moves to the neighbouring node along
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the direction of velocity. If two distribution functions arrive at the same point, they are redistributed so
as to conserve mass and momentum.

General form of the lattice Boltzmann equation can be written as:

fα(x + eαδt, t + δt) = fα(x, t) + Ωα(x, t), (1.1)

where fα is the distribution function along the αth lattice direction; the number of lattice directions
depends on the lattice. x is the position vector and eα is the lattice vector. Ωα = Ωα(x, t) is the collision
operator which represents the rate of change of fα resulting from collision. δt and δx correspond to time
and space increments, respectively.

A simplification in the LBM is to approximate the collision operator with the Bhatnagar-Gross-
Krook (BGK) relaxation term [Bhatnagar et al. (1954), Qian et al. (1992)], given by

Ωα(x, t) = −
fα(x, t) − fα(x, t)eq

τ
, (1.2)

where τ is the relaxation time which is related to viscosity as ν = (τ−1/2)δtc2
s , wherein cs is the velocity

of sound. feq
α is the equilibrium distribution function along the αth lattice direction.

Substituting Eq. 1.2 in Eq. 1.1, one gets the LBM equation with the BGK approximation:

fα(x + eαδt, t + δt) = fα(x, t) −
fα(x, t) − fα(x, t)eq

τ
. (1.3)

The density and the momentum density are defined as the moments of the distribution function, fα as:

ρ =
∑

fα and ρu =
∑

fαeα. (1.4)

1.4.1 LBM approaches for multiphase flows

The LBM equations discussed above are for single phase systems. These are modified by many
researchers for multiphase flows. Mainly, there are four different LBM approaches for multiphase flows:
(i) the color segregation method [Gunstensen et al. (1991)], (ii) method of Shan and Chen [Shan & Chen
(1993a); Shan & Doolen (1995)], (iii) free energy approach [Swift et al. (1995)] and (iv) the method of
He and co-workers [He et al. (1999b)]. An extensive review of the work on the first three approaches can
be found in Chen & Doolen (1998). A brief overview of these multiphase LBM approaches is presented
below.

Color segregation method:

Gunstensen et al. (1991) proposed the first LBM approach for immiscible fluids. This method is
also called the “color segregation method“. In this approach, the particles are colored either red or blue
and the collision rules for both phases are modified to obtain surface tension between the two fluids.
These collision rules send particles of one color to the neighbouring sites containing other particles of
the same color. A perturbation is first added to the particle distribution near an interface. This creates an
appropriate surface tension dynamics. In the second step, the mass is recolored to achieve zero diffusivity
of one color into the other. Grunau et al. (1993) later introduced density and viscosity variations to this
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model. However, the color segregation method has some drawbacks like the time consuming color
redistribution step, distribution functions causing anisotropic surface tension, etc.

Method of Shan and Chen:

Shan & Chen (1993a) and Shan & Doolen (1995) developed a lattice Boltzmann model that has
the capability of simulating multiphase and multi-component immiscible fluids with different densities
at constant temperature. This model uses the concept of microscopic interactions to modify the surface
tension related collision operator. The model introduces an interparticle potential to account for phase
segregation and surface tension. Separation of the phases takes place automatically. The model is suitable
for high density contrast, but has difficulty to handle the systems with high viscosity contrast.

Free energy model:

Swift et al. (1996, 1995) modified to the above models by defining the equilibrium distributions
based on thermodynamics. This model introduces Helmholtz free energy to represent the equation of
state of the system. This feature enables the conservation of total energy in the system including surface
energy, kinetic energy and internal energy. The method is useful in the systems having variable surface
tension, such as thermo-capillary motion.

Method of He and co-workers:

He and co-workers [He et al. (1999a,b); Zhang et al. (2000)] developed a multiphase lattice Boltz-
mann model that uses an index fluid to track the interface between the phases. It uses molecular interac-
tions to account for interfacial dynamics and phase segregation. Strong molecular attractions make the
index fluid to separate into different phases automatically. A sharp interface can be maintained through-
out the simulation and surface tension is also naturally incorporated in the model. Sahu & Vanka (2011)
modified this approach to study the buoyancy-driven interpenetration of two immiscible fluids having
different viscosities. This method has been used in the present thesis, and discussed in detail in the next
chapter.

1.5 LBM on Graphics Processing Unit

Graphics processing unit (GPU) is a new paradigm for computing fluid flows and has become more
popular in the recent years. It is a powerful tool for performing parallel computations. It can be thought as
a massively parallel computer that is capable of executing instructions, simultaneously on a large number
of arithmetic units. The GPU is designed in such a way that it yields very high computational power.
The LBM, which itself is a faster and reliable technique for fluid flow simulation, when implemented
on GPU gives a very high computational speed-up. The high performance computing and low energy
consumption have made GPU more beneficial. Detailed report on GPU architecture and implementation
is also presented in Chapter 2.

Several researchers have implemented LBM on GPUs. Li et al. (2005) implemented single phase
LBM on GPU with Cg and OpenGL as programming model on NVIDIA GeForce FX 5900 Ultra GPU.
They achieved 8-15 times speed up than the CPU counterpart. Tolke (2008) implemented two-phase
LBM on GPU using CUDA for simulation of flow through porous media. They reported 10 times speed
up over the corresponding CPU program. Peng et al. (2008) implemented three-dimensional lattice
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Boltzmann method on a GPU using CUDA and observed 8.67 times speed-up. The differences in speed-
up are mainly caused due to various properties like the CPU compiler, hardware and also the type of
CPU core. The GPU based LBM algorithm developed in our research group gives 25 times speed up
over the corresponding CPU based code [Sahu & Vanka (2011)]. The same code has been used in the
present work.

1.6 Outline of the thesis

In this thesis, the numerical simulation of two immiscible fluids is conducted using a multiphase
lattice Boltzmann method. The instability patterns arise in the flow due to a imposed pressure-gradient
and gravity have been investigated. A brief background, relevant applications, and a extensive literature
survey on the problems considered are discussed in this chapter. The rest of the thesis is organised as
follows:

The mathematical formulation of the current multiphase lattice Boltzmann method (LBM) is dis-
cussed in Chapter 2. The LBM approaches used for both the two and three-dimensional geometries are
discussed. The implementation of the LBM on graphics processing unit (GPU) is also presented in this
chapter.

In Chapter 3, the buoyancy-driven flow of two immiscible fluids with different viscosities and den-
sities in a confined tilted channel is presented. The effects of viscosity differential on the flow structures
and front velocities are examined. The main findings of this study are as follows. Relatively stable fin-
gers are observed for high viscosity ratios. The intensity of the interfacial instabilities and the transverse
interpenetration of the fluids increase with decreasing viscosity differential of the fluids.

Chapter 4 focuses on the study of pressure-driven displacement of two immiscible fluids. A sys-
tematic parametric study is conducted to investigate the effects of various dimensionless numbers, such
as viscosity ratio, Atwood number, Froude number and surface tension. The effects of angle of inclina-
tion on the flow dynamics are also investigated. The results are then compared with the experimental
results of Taghavi et al. (2012). A three-dimensional extension of this problem is provided in Chapter
5. A two-dimensional-nine velocity (D2Q9) lattice model is used in the two-dimensional flow problems,
whereas, a three-dimensional-fifteen-velocity (D3Q15) lattice model is used in order to simulate the flow
in three-dimensions. The effects of channel inclination, viscosity and density contrasts are investigated.
The contours of the density and the average viscosity profiles in different planes are plotted and compared
with those obtained in a two dimensional channel.

Some other studies which are in the preliminary stage are described in Chapter 6. These include the
interpenetration of two immiscible liquids in an oscillating channel, and three-dimensional extension of
buoyancy-driven flow of two immiscible liquids in an inclined channel.

Finally, the whole study presented in this thesis is summarised and concluded in Chapter 7.



CHAPTER 2

LBM Formulation

Many numerical methods have been developed in last few decades for solving fluid flow problems.
Most of these are based on solving the continuum Navier-Stokes and continuity equations using finite vol-
ume/element/spectral methods. In conventional approaches the governing partial-differential equations
are discretized in space and time and solved. Depending on the numerical scheme used, an explicit or
iterative procedure has been used to update velocities and pressure. For incompressible flows, typically a
pressure-Poisson equation is solved iteratively to obtain the pressure field that provides a divergence-free
velocity field [Chorin (1967)]. In such methods, the solution of the pressure-Poisson equation is the most
time consuming step and requires a large number of iterations to reach a good degree of convergence.
In multiphase flows, in addition to the momentum and continuity equations, a concentration transport
equation must be solved with an accurate front capturing technique [Ding et al. (2007)].

An alternative approach of solving the Navier-Stokes equations is the lattice Boltzmann method
(LBM) [Chen & Doolen (1998)] which is a mesoscopic model whose origin is in kinetic theory. The
LBM solves discrete density distribution functions and obtains the velocities and density as moments of
this distribution function. It is a simple and elegant method that has rapidly evolved as an alternative
multi-scale model of fluid flows [Shui et al. (2007), Li & Tafti (2009)]. In comparison with solution of
the Navier-Stokes equations, LBM is a simple, efficient and easily parallelizable technique. It involves
only three basic steps: (a) collision; (b) streaming; and (c) calculation of the flow variables. It can
include mesoscopic flow physics such as velocity slip, surface tension forces, and other inter-molecular
forces. The LBM has also been extended to simulate multiple phases by the use of multiple distribution
functions [Gunstensen et al. (1991), Shan & Chen (1993a,b), Shan & Doolen (1995), Swift et al. (1995),
Swift et al. (1996), Rakotomalala et al. (1997), He et al. (1999a,b), Zhang et al. (2000), Latva-Kokko &
Rothman (2005), Lee & Lin (2005), Lishchuk et al. (2008), Wu et al. (2008a,b), Li & Tafti (2009)]. For
multiphase flows, intermolecular forces are introduced to make the phases attract and repel each other as
required. Four distinctly different LBM approaches for multiphase flows, namely, the color segregation
method of Gunstensen et al. (1991), method of Shan and Chen [Shan & Chen (1993a); Shan & Doolen
(1995)], free energy approach [Swift et al. (1995), Swift et al. (1996), Li & Tafti (2009)] and method
of He and co-workers [He et al. (1999a,b); Zhang et al. (2000)] have been proposed and applied to a
number of flows. These methods are discussed in Chapter 1.

This chapter describes the approach suggested by He and co-workers [He et al. (1999a,b); Zhang
et al. (2000)] which has been used in simulating all the multiphase flow problems reported in this thesis.
Inorder to increase the computational efficiency, the present LBM algorithm has been implemented on
Graphics Processing Unit (GPU), which is discussed at the end of this chapter.

11
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2.1 Numerical approach

The numerical approach used in this thesis is similar to the two-phase lattice Boltzmann method
previously proposed by He and co-workers [Zhang et al. (2000)], and used in the recent study of Sahu
& Vanka (2011). The LBM simulates fluid flow problems using discrete distribution functions. In this
method, two distribution functions (index distribution function (f) and the pressure distribution function
(g)) are used to track the interface and to calculate the macroscopic properties of the fluids.

The evolution equations for the index distribution function (f) and the pressure distribution function
(g) are given by:

fα(x + eαδt, t + δt) − fα(x, t) = −
fα(x, t) − feq

α (x, t)
τ

−
2τ − 1

2τ
(eα − u) · ∇ψ(φ)

c2
s

Γα(u)δt, (2.1)

gα(x + eαδt, t + δt) − gα(x, t) = −
gα(x, t) − geq

α (x, t)
τ

+

2τ − 1
2τ

(eα − u) ·
[
Γα(u) (Fs + G) − (Γα(u) − Γα(0))∇ψ(ρ)

]
δt. (2.2)

In the above equations the left hand side terms represent the advection of the distribution functions
on the lattice by the unit vectors. The first term on the right hand side of Eqs. (2.1) and (2.2) repre-
sents the collision of the distribution functions with its equilibrium values and a time constant. The last
term in Eqs. (2.1) and (2.2) represents the molecular interaction and a deviation from the ideal gas law,
respectively. Here u represents the velocity field; for two-dimensional flows, u = (u, v) and for three-
dimensional flows u = (u, v,w), where u, v and w denote the velocity components in the streamwise, x,
wall-normal, y and spanwise, z, directions, respectively. δt is the time step; τ is the single relaxation time
using the Bhatnagar-Gross-Krook (BGK) model [Bhatnagar et al. (1954)]. The kinematic viscosity, ν is
related to the relaxation time by the expression, ν = (τ−1/2)δtc2

s . α is the lattice direction which depend
on the lattice model one uses. Various lattice models used in two-dimensional geometries are D2Q7
(two-dimensional-seven-velocity) and D2Q9 (two-dimensional-nine-velocity). Similarly for simulat-
ing flows in three-dimensional geometries, D3Q15 (three-dimensional-fifteen-velocity), D3Q19 (three-
dimensional-nineteen-velocity) and D3Q27 (three-dimensional-twentyseven-velocity) lattice models are
widely used. All the simulations presented in this thesis are based on D2Q9 lattice model for two-
dimensional geometries and D3Q15 for three-dimensional geometries. The structure of these lattices are
shown in Fig. 2.1.

In D2Q9 lattice, the lattice velocities (eα) and the weighing coefficients (wα) are given by:

eα =


0, α = 1,[

cos
(

(α−1)π
2

)
, sin

(
(α−1)π

2

)]
, α = 2, 3, 4, 5,

√
2
[
cos

(
(α−5)π

2 + π
4

)
, sin

(
(α−5)π

2 + π
4

)]
, α = 6, 7, 8, 9,

(2.3)

and

wα =


4/9, α = 1,
1/9, α = 2, 3, 4, 5,

1/36, α = 6, 7, 8, 9,
(2.4)
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(a) D2Q9 lattice (b) D3Q15 lattice

Figure 2.1: Lattice structures in two- and three-dimensional geometries.

respectively. In D3Q15 lattice, lattice velocities (eα) and the weighing coefficients (wα) are given by:

[
e1, e2, ...., e15

]
=

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

 , (2.5)

and

wα =


2/9, α = 1,
1/9, α = 2, 3, ....7,
1/72, α = 8, 9, ....15,

(2.6)

respectively.

Γα(u) in Eqs. (2.1) and (2.2) is a function of macroscopic velocity u, which is given by:

Γα(u) = wα

[
1 +

eα · u
c2

s
+

(eα · u)2

2c4
s
−

u2

2c2
s

]
. (2.7)

The equilibrium distribution functions, feq
α and geq

α are given by:

feq
α = wαφ

[
1 +

eα · u
c2

s
+

(eα · u)2

2c4
s
−

u2

2c2
s

]
and (2.8)

geq
α = wα

[
p + ρc2

s

(
eα · u

c2
s

+
(eα · u)2

2c4
s
−

u2

2c2
s

)]
, (2.9)

respectively, where c2
s = 1/3, wherein cs is the velocity of sound in lattice unit.
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Calculation of ∇ψ(ρ) and ∇ψ(φ)

In non-ideal gases or dense fluids, ∇ψ(φ) mimics the physical intermolecular interactions and plays a
key role in separating the phases through the term, ∇ψ(ρ) ≡ ∇

(
p − c2

sρ
)
. To calculate ψ(φ), the following

expression of the Carnahan-Starling (C-S) equation of state is used [Carnahan & Starling (1969)]:

ψ(φ) = c2
sφ

[
1 + φ + φ2 − φ3

(1 − φ)3 − 1
]
− aφ2, (2.10)

where a determines the strength of molecular interactions. This equation of state is used by several
researchers working on LBM simulation of multiphase flows [Premnath & Abraham (2005), Chang &
Alexander (2006), Fakhari & Rahimian (2009), Fakhari & Rahimian (2010)].

He et al. (1999b) showed that maximum and minimum values of the index function (φ) can be
obtained from Eq. (2.10) for which d(ψ + φRT )/dφ < 0. The critical value of a, ac is 3.53374, below
which the fluids cannot separate into different phases. Thus in the present study, a is chosen to be 4.
By plotting the coexistence curve shown in Fig. 2.2, He et al. (1999b) found the minimum (φ1) and
maximum (φ2) values of φ to be 0.04 and 0.259, respectively.

0.04 0.13 0.259

φ

0.500

0.883

1.000

a
c
/ 
a

Figure 2.2: Coexistence curve of φ [He et al. (1999b)]

A fourth order compact scheme is used to discretize ∇ψ(φ) and ∇ψ(ρ) [Lee & Lin (2005)], which
are listed below.
For D2Q9 model,(

∂ψ

∂x

)
(i, j)

=
1
3

[
ψi+1, j − ψi−1, j

]
+

1
12

[
ψi+1, j+1 − ψi−1, j−1

]
+

1
12

[
ψi+1, j−1 − ψi−1, j+1

]
, (2.11)

(
∂ψ

∂y

)
(i, j)

=
1
3

[
ψi, j+1 − ψi, j−1

]
+

1
12

[
ψi+1, j+1 − ψi−1, j−1

]
+

1
12

[
ψi−1, j+1 − ψi+1, j−1

]
. (2.12)
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For D3Q15 model,(
∂ψ

∂x

)
(i, j,k)

=
1
6

[
ψi+1, j,k − ψi−1, j,k

]
+

1
12

[
ψi+1, j+1,k − ψi−1, j−1,k

]
+

1
12

[
ψi+1, j−1,k − ψi−1, j+1,k

]
+

1
12

[
ψi+1, j,k+1 − ψi−1, j,k−1

]
+

1
12

[
ψi+1, j,k−1 − ψi−1, j,k+1

]
, (2.13)(

∂ψ

∂y

)
(i, j,k)

=
1
6

[
ψi, j+1,k − ψi, j−1,k

]
+

1
12

[
ψi+1, j+1,k − ψi−1, j−1,k

]
+

1
12

[
ψi−1, j+1,k − ψi+1, j−1,k

]
+

1
12

[
ψi, j+1,k+1 − ψi, j−1,k−1

]
+

1
12

[
ψi, j+1,k−1 − ψi, j−1,k+1

]
, (2.14)(

∂ψ

∂z

)
(i, j,k)

=
1
6

[
ψi, j,k+1 − ψi, j,k−1

]
+

1
12

[
ψi+1, j+1,k − ψi−1, j−1,k

]
+

1
12

[
ψi−1, j−1,k − ψi+1, j+1,k

]
+

1
12

[
ψi, j+1,k+1 − ψi, j−1,k−1

]
+

1
12

[
ψi, j−1,k+1 − ψi, j+1,k+1

]
, (2.15)

where i, j and k are grid indices in the x, y and z directions, respectively. The present methodology
slightly differs from that of He et al. (1999a,b) and Zhang et al. (2000) in which they used third order
upwinding to descretize ∇ψ. The fourth order compact scheme is chosen here as it has less dissipation
error.

External forces:

The surface tension force (Fs) and gravity force (G) in Eq. (2.2) are given by

Fs = κφ∇∇2φ and G = (ρ − ρm)g, (2.16)

respectively, where κ is the magnitude of surface tension, g is gravity component and ρm ≡ (ρ1 + ρ2)/2.

3.5 4 4.5 5
a

0

0.02

0.04

I(
a)

Figure 2.3: Dependence of I on a [Zhang et al. (2000)].
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The surface tension, σ, in the LBM multiphase model can be obtained by:

σ = κ

∫ (
∂φ

∂ζ

)2

dζ, (2.17)

where ζ is the direction normal to the interface. Using the C-S equation of state, for a given a, and given
numerical scheme, the surface tension can be chosen as [Zhang et al. (2000)]:

κ =
σ

I(a)
, (2.18)

where

I(a) =

∫ (
∂φ

∂ζ

)2

dζ. (2.19)

The dependence of I on a for C-S equation of state is shown in Fig. 2.3, where the fitting curve [Zhang
et al. (2000)] is given by

I(a) =
0.1518(a − ac)1.5

1 + 3.385(a − ac)0.5 . (2.20)

The second order derivative in Eq. (2.16) to calculate the surface tension force is evaluated as follows:
For D2Q9 model,

∇2φ =
1
6

[
φi+1, j+1 + φi−1, j+1 + φi+1, j−1 + φi−1, j−1 + 4

(
φi+1, j + φi−1, j + φi, j+1 + φi, j−1

)
− 20φi, j

]
. (2.21)

For D3Q15 model,

∇2φ =
1
6

[
φi+1, j+1,k + φi−1, j−1,k + φi+1, j−1,k + φi−1, j+1,k + φi+1, j,k+1 + φi−1, j,k−1 + φi+1, j,k−1+

φi−1, j,k+1 + φi, j+1,k+1 + φi, j−1,k−1 + φi, j+1,k−1 + φi, j−1,k+1 + 2φi+1, j,k+

2φi−1, j,k + 2φi, j+1,k + 2φi, j−1,k + 2φi, j,k+1 + 2φi, j,k−1 − 2φi, j,k
]
. (2.22)

Calculation of variables

The index function (φ), pressure (p) and the velocity field (u) are calculated from the distribution
functions as:

φ =
∑

fα, (2.23)

p =
∑

gα −
1
2

u · ∇ψ(ρ)δt, (2.24)

ρuc2
s =

∑
eαgα +

c2
s

2
(Fs + G)δt. (2.25)

The fluid density and kinematic viscosity are calculated from the index function using the following
equations:

ρ(φ) = ρ2 +
φ − φ2

φ1 − φ2
(ρ1 − ρ2), (2.26)
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ν(φ) = ν2 +
φ − φ2

φ1 − φ2
(ν1 − ν2), (2.27)

where ν1 and ν2 are the kinematic viscosities of fluid ‘1’ and ‘2’, respectively.

2.2 Boundary conditions

An important issue associated with LBM is the accurate implementation of the boundary conditions.
The difficulty arises from the fact that in LBM while macroscopic pressure and velocity fields can be
easily computed from the particle distribution functions, the reverse process is not easy. Noble et al.
(1995) introduced the idea of hydrodynamic boundary conditions as an alternative to previously used
bounce-back conditions and proposed use of the no-slip condition itself to find the missing particle
distributions. The most straightforward hydrodynamic boundary condition is the equilibrium condition
at the walls. Streaming components are not used and all the particle distribution functions are set to their
equilibrium values. Equilibrium values can be obtained by using velocity and density values at the walls.
Guo et al. (2002) proposed an extension of the second order accurate boundary condition suggested
by Chen et al. (1996) and extrapolated the non-equilibrium parts from the interior nodes to add to the
equilibrium values.

In the present work, the hydrodynamic boundary conditions based on the ghost fluid approach are
used to simulate the boundaries and equilibrium distribution functions [Sahu & Vanka (2011)]. The
non-equilibrium distribution functions are extrapolated and added to get the instantaneous distribution
functions. Specifically, the boundary conditions are implemented as follows.

Index function φ: A second-order accurate zero derivative condition is used by placing the wall bound-
ary condition between lattice points. This implies:

φ1, j,k = φ2, j,k; φnx, j,k = φnx−1, j,k, f or j = 1, ny and k = 1, nz; (2.28)

φi,1,k = φi,2,k; φi,ny,k = φi,ny−1,k, f or i = 1, nx and k = 1, nz; (2.29)

φi, j,1 = φi, j,2; φi, j,nz = φi, j,nz−1, f or i = 1, nx and j = 1, ny, (2.30)

where nx, ny and nz are number of lattice points in the x, y and z directions, respectively.

Figure 2.4: Grid near the wall.
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Velocities: Velocities are mirror reflected to impose no slip and no penetration conditions. Thus,

Uwall =
Uwall+1 + Uwall−1

2
; Vwall =

Vwall+1 + Vwall−1

2
; Wwall =

Wwall+1 + Wwall−1

2
, (2.31)

where, subscript “wall” stands for wall node as shown in Fig. 2.4. In the present study, Uwall = Vwall =

Wwall = 0.

Index distribution function ( f ):

f = f eq + f neq, (2.32)

f1, j,k = f eq
1, j,k + f neq

2, j,k; fnx, j,k = f eq
nx, j,k + f neq

nx−1, j,k, (2.33)

fi,1,k = f eq
i,1,k + f neq

i,2,k; fi,ny,k = f eq
i,ny,k + f neq

i,ny−1,k, (2.34)

fi, j,1 = f eq
i, j,1 + f neq

i, j,2; fi, j,nz = f eq
i, j,nz + f neq

i, j,nz−1. (2.35)

Pressure and pressure function (g): Pressure is extrapolated with zero derivative boundary condition.
Thus at walls,

pwall = pwall±1. (2.36)

This pressure is used to evaluate the equilibrium g value. However, in the expression for the equilibrium
g function, the velocity at the grid node is taken to be zero instead of the ghost value. The equilibrium
value is added to the extrapolated non-equilibrium value to get the final value of g that is streamed inside.

Density and ψ: The density is evaluated from the value of φ, which is extrapolated with zero derivative
condition. The value of ψ(≡ p − ρRT ) is evaluated at all the lattice points including the boundary points
using appropriate boundary values of p.

2.3 GPU Implementation

To accelerate the computational efficiency, the algorithm was implemented on a graphics processing
unit (GPU). Brief introduction about the graphics processing unit and the review of the previous work
conducted using GPU is given in Chapter 1. The architecture of GPU and the implementation of LBM
on GPU are discussed below.

2.3.1 GPU Architecture

The architecture of GPU is quite different as compared to that of a CPU. It is designed with more
transistors that are dedicated to computation and less resource dedicated to data caching and flow control
compared to that of a CPU. The parallel processing in GPU is designed using multiple threads that
execute instructions in a program. Each thread is unique and will be assigned to a unique element of
data to be processed. The instructions for a GPU are written in a ‘kernel’ which is similar to a ‘function’
in ‘C’ programming. When a kernel is executed on a GPU, each thread executes the statements in that
kernel and map to different elements of data. The threads are organized into ‘blocks’ and the blocks are
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organized into ‘grid’ (see Fig. 2.5). The threads within a block share data through some ‘shared memory’
and synchronize their execution to coordinate memory accesses. The number of threads per block and
the number of blocks depend on the data size to be processed. CPU executes the main program and the
GPU can be utilized by launching the kernels from the main program. Therefore the CPU and GPU act
simultaneously.

Figure 2.5: Thread hierarchy of GPU [Vanka et al. (2011)]

The memory spaces (RAM) of the CPU and GPU are separate. The GPU has multiple memory
spaces; global memory, local memory, shared memory, constant memory and texture memory. Global
memory is the largest memory space on the GPU. Each thread contains local memory to store the vari-
ables declared in the kernel. Blocks have the shared memory and the threads within the block have access
to this memory. Detailed report on these memory spaces can be found in NVIDIA (2010).

2.3.2 GPU Programing

The structure of a program for a GPU is different than that of a CPU program. In a CPU code,
the instructions given by a program are executed by a single CPU thread whereas in a GPU code, the
instructions are executed in parallel by a batch of threads. GPU program eliminates the ‘for’ loops written
in a CPU code and allows it to be executed in parallel. Other than the usual programming languages like
C/C++ or FORTRAN, GPU algorithms are built on special programming languages that can provide
parallel computing platform. In the present study, CUDA (Compute Unified Device Architecture), a
parallel programming model developed by Nvidia Corporation is used. OpenCL, HLCL, Cg etc. are
some other GPU programming languages. CUDA is available as CUDA C/C++ and CUDA FORTRAN
depending on the compilers the programmers prefer to use. The high level languages are used with
CUDA extensions to express parallelism, data locality and thread cooperation. CUDA programming
model assumes that the CUDA threads execute on a physically separate ‘device’ (GPU) that operates as
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a co-processor to the ‘host’ (CPU). That means when the kernels execute on a GPU rest of the program
executes on CPU. The model assumes that both the ‘host’ and the ‘device’ maintain their own RAM,
referred to as ‘host memory’ and ‘device memory’, respectively. Therefore, the program manages the
global, constant and texture memory spaces visible to kernels through calls to the CUDA runtime. This
includes device memory allocation and deallocation, as well as data transfer between the host and the
device memory. The algorithm written in CUDA and implemented on GPU should be optimized carefully
so as to get maximum performance. Minimum memory copies from host-to-device and device-to-host
and the optimal block size and grid size would give higher throughput.

In the present work, the two-phase lattice Boltzmann method discussed above is implemented on
graphics processing unit to perform the two-dimensional and three-dimensional simulations. Various
graphic cards like the Tesla 1060, Tesla 2070 developed by the Nvidia corporation are used. The new
Tesla Kepler K10, which is the fastest and most efficient high performance processor released by Nvidia
most recently is also used to perform the three- dimensional simulations. The Kepler compute architec-
ture gives three times higher performance than the Fermi compute architecture. Tesla K10 accelerator
board features two Kepler GPUs each of 8GB onboard memory. Thus two GPU based programs can be
run at a time. The GPU based LBM algorithm developed in our research group gives 25 times speed up
over the corresponding CPU based code [Sahu & Vanka (2011)]. As all the steps in LBM are of explicit
in nature, the error doesnot accumulate like in case of implicit code. The results obtained from single
and double precision calculations are compared. It is found that the difference in the residual occurs only
in the 4th decimal place, but the speed-up decreases to 8 times as compared to that of CPU based code.

A simple algorithm that shows the programing structure in CUDA is shown below. For the calcula-
tion of the fluid density using Eq. (2.26), the subroutine in FORTRAN can be written as:

do i=1,nx

do j=1,ny

do k=1,nz

rho(i,j,k) = rho1+((phi(i,j,k)-phi1)/(phi2-phi1))*(rho2-rho1)

end do

end do

end do

When the subroutine is called, the density is estimated at all the grid points.

In a GPU program, a one-dimensional array is defined as i jk = i + ( j − 1) × nx + (k − 1) × nx × ny.
Thus the total number of grids, ‘ntotal’ becomes nx × ny × nz. The above subroutine in CUDA kernel
can be written as follows:

__global__ void

findvar_kernel (float *rho_d, float rho1, float rho2,

float *phi_d, float phi1, float phi2)

{

int ijk;

float phit;

int tx = threadIdx.x + blockIdx.x * blockDim.x;

ijk = tx + 1;
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phit = phi_d[ijk];

rho_d[ijk] = rho1 + ((phit - phi1) / (phi2 - phi1)) * (rho2 - rho1);

__syncthreads();

}

Kernel is defined using global declaration specifier. The variables in the kernel are declared using the
syntax ‘kernelname ( )’. Here the variable stated as ‘rho d’ correspond to variable ‘rho’ on the device.
Each variable is allocated memory on host and device in the main program before calling the kernel.
This is implemented as:

rho = (float *) malloc(memsize_all);

float *rho_d; cudaMalloc((void**) &rho_d, memsize_all);

where ‘memsize all’ is the dynamic memory allocated on the host. Enough memory is allocated to reach
the largest index. ‘cudaMalloc’ allocates memory on the device.

Each thread is given a unique thread ID which can be accessible within the kernel through threa-
dIDx. ThreadIDx is a three-component vector so that either a one-dimensional or two-dimensional or
three-dimensional thread block can be used. Although we use one-dimensional thread block, in general,
one could have three-dimensional thread block. The total number of threads is equal to the number of
threads per block times the number of blocks. For more details, the reader is referred to the cuda manual
[NVIDIA (2010)].

Multiple blocks are organized into grids. The dimension of the grid is specified in the main program.
The grid and the block dimension for the kernel execution are specified when calling the kernel using the
‘<<< , >>>’ syntax. This part in the main is shown below:

dim3 grid(ntotal/bx);

findvar_kernel<<<grid, block>>> (rho_d, rho1, rho2, phi_d, phi1, phi2);

cutilCheckMsg("Kernel execution failed");

Here ‘bx’ is the block size. The execution of each kernel is checked using ‘cutilCheckMsg’. Once the
calculation is done on the device, the results are copied from device to host in the main. This is done as:

cudaMemcpy(rho_d, rho, memsize_all, cudaMemcpyHostToDevice);

After performing the simulation the allocated memory is deallocated which can be done using the
following syntax:

free(rho);

The simulation time in CUDA can be recorded using the syntax given below.
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CUDA_SAFE_CALL( cudaThreadSynchronize() );

CUT_SAFE_CALL(cutStopTimer(timerApp));

printf("GPU Kernel Time: %f (seconds)\n",

cutGetTimerValue(timerApp) / 1000.0);

CUT_SAFE_CALL(cutDeleteTimer(timerApp));

This gives the simulation time using GPU. This time is compared with the corresponding time for the
CPU based code. The comparison of the time taken by both codes reveals that GPU code is 25 times
faster than our CPU based LBM code.



CHAPTER 3

Buoyancy-driven 
ow

In this chapter, the buoyancy-driven interpenetration of two immiscible fluids in a tilted channel
(also commonly known as the lock-exchange problem [Debacq et al. (2003); Hallez & Magnaudet
(2008); Séon et al. (2007a,b)] is discussed. It refers to the situation where the two fluids are initially
separated by a partition and suddenly allowed to mix. The mixing occur as a result of the interpene-
tration of the two fluids by the action of the gravitational force. As discussed in the introduction, this
phenomenon plays an important role in the design of chemical and petroleum engineering processes
[Benjamin (1968); Joseph et al. (1997)].

Séon et al. (2004, 2005) and Séon et al. (2007a,b) performed experiments to study the buoyancy-
induced mixing of two miscible fluids in a tilted channel. They observed various flow regimes and
mixing patterns for different tilt angles. All these studies considered the case of two fluids having equal
kinematic viscosities. The fluids used in the experiments of Debacq et al. (2003) were water and glycerol
solutions with the heavier fluid generated by adding CaCl2. The viscosity of the two fluids were changed
by varying the concentration of glycerol, but both the fluids were selected to be of the same viscosity.
However, the dynamics of the unsteady mixing can be quite different if the viscosities of the two fluids
differed significantly from each other. Numerical studies of this flow have been carried out by few
researchers. Hallez & Magnaudet (2008) used a finite volume method to study the buoyancy-induced
mixing of two fluids in circular, rectangular and square geometries. Recently, Sahu & Vanka (2011)
used a two-phase lattice Boltzmann method (LBM) to simulate the interpenetration of two immiscible
fluids of same viscosities in a tilted channel. They investigated the effects of Atwood number, Reynolds
number, tilt angle and surface tension in terms of flow structures, front velocities and velocity profiles.

To the best of my knowledge, no previous studies exist in literature in which the case of unequal
fluid viscosities have been considered in the “lock-exchange” problem. In this work, the “mixing” of
two immiscible fluids in a tilted channel is investigated with viscosity ratios, 10 ≤ m ≤ 0.1 between
the heavier and the lighter fluids. The main objective of this work has been to study the effects of a
differential viscosity on the flow evolution in a tilted channel. The two-phase lattice Boltzmann method
(see Chapter 2) using the two-dimensional-nine-velocity (D2Q9) model is used to simulate the problem.
The effects of viscosity differential on the flow structures, average density profiles and front velocities are
studied. Relatively stable fingers are observed for high viscosity ratios. The intensity of the interfacial
instabilities and the transverse interpenetration of the fluids are seen to increase with decreasing viscosity
differential of the fluids.

3.1 Problem definition

The buoyancy-driven flow in a tilted planar channel, as shown in Fig. 3.1 is considered, wherein
fluid ‘1’ (dynamic viscosity µ1 and density ρ1) and fluid ‘2’ (dynamic viscosity µ2 and density ρ2) occupy
the upper and the bottom halves of the channel, respectively. θ is the angle of inclination measured with

23
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the horizontal. g is the acceleration due to gravity; the two components of gravity, gsinθ and gcosθ act
in the axial and the transverse directions, respectively. The two fluids are considered to be Newtonian,
incompressible and immiscible with varying viscosities and densities. The viscosity ratio, m, and the
Atwood number, At, are defined as µ1/µ2 and (ρ1 − ρ2)/(ρ1 + ρ2), respectively. A two-dimensional
rectangular coordinate system, (x, y), is used to model this flow, where x and y denote the axial and the
transverse coordinates, respectively. The rigid and impermeable channel side walls are located at y = 0
and y = H, respectively; the sharp interface, which separates the immiscible fluids is at x = L/2, L
being the length of the channel. The aspect ratio of the channel, L/H, is 40. As the flow is a balance
between gravity and inertial forces, we used V ≡

√
Hg as the characteristic velocity with the width of

the channel, H and t ≡
√

H/g as length and time scales, respectively; the Reynolds number is defined
as Re ≡ (H3/2g1/2ρ1/µ1). In the present simulations, gravity is chosen such that

√
Hg = 0.08. The

numerical method used in this study is discussed in the previous chapter.

Figure 3.1: Schematic diagram of the initial equilibrium configuration of the system. Aspect ratio of the confined
channel is 1 : 40.

3.2 Results and discussion

Grid Convergence test

First, the effect of grid resolution is investigated by considering three different grids. In Fig. 3.2
(a), (b) and (c), the spatio-temporal diagrams (time vs x plane) of

∫ H
0 φdy obtained using 2562 × 66,

3842 × 98 and 5122 × 130 lattice points, respectively are plotted. The rest of the parameter values used
to generate this figure are Re = 500, At = 0.1, m = 5, κ = 0.005 and θ = 30◦. Using these diagrams,
one can study the movement of the “blue” and “red” fronts. The slopes of the left and right white dashed
lines in each panel represent the front velocities of the heavier (Vr) and lighter (Vb) fluids, respectively.
The velocities of the fingers obtained using different sets of lattice points are then compared in Table
1. In view of this observed small effect of the grid, we have chosen the 2562 × 66 grid for the rest of
the parametric calculations. The results obtained using the present code agree with those obtained using
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another home made finite volume code and also the experimental results of Seon and co-workers. The
detailed validation of the present solver is reported by Sahu & Vanka (2011).

(a) (b) (c)

Figure 3.2: (a) Spatio-temporal diagram of
∫ H

0 φdy obtained using (a) 2562× 66 (b) 3842× 98 and (c) 5122× 130
grid points. The slope of the white dashed lines represent the front velocities. The rest of the parameter values are
Re = 500, At = 0.05, m = 5, κ = 0.005 and θ = 30◦.

Table 3.1: The velocities of the “red” (Vr) and “blue” (Vb) fingers for different grid densities. The rest of the
parameter values are Re = 500, At = 0.05, m = 5, κ = 0.005 and θ = 30◦.

Grid Vr Vb

2562 × 66 -0.1375 0.1159
3842 × 98 -0.1401 0.1189

5122 × 130 -0.1414 0.1202

The main objective of this work has been to study the effects of a differential viscosity on the flow
evolution in a tilted channel. To this end, we begin the presentation of our results by first studying the
effects of viscosity ratio on the spatio-temporal evolutions of the density contours for At = 0.05. Fig.
3.3 shows the density contours and velocity vector-fields at t = 40 and t = 100 for three viscosity ratios
m = 0.1, 1 and 10. The rest of the parameter values are Re = 500, κ = 0 and θ = 60◦. It can be seen that
the component of the gravitational force in axial direction, proportional to gsinθ, induces a downward
motion of the heavier fluid which in turn, by mass conservation, displaces the lighter fluid to move into
the region of the heavier fluid. Thus both the heavier and lighter fluids are accelerated into the lower and
upper parts of the channel, respectively. On the other hand, the component of the gravitational force in the
transverse direction, proportional to gcosθ, acts to segregate the two fluids. For viscosity ratio, m = 0.1,
the interface between the fluids becomes quite unstable, giving rise to the development of the interfacial
instabilities as shown in Fig. 3.3(a). These instabilities manifest themselves in the form of vortical
structures which entrain the fluids into each other, as shown by the velocity vector-fields in Fig. 3.3. For
m = 10 (shown in Fig. 3.3(c)), which corresponds to a case when fluid ‘1’ is ten times more viscous than
fluid ‘2’, it can be seen that the fingers of the heavier and lighter fluids are less unstable as they move
towards the bottom and top parts of the channel, respectively. Inspection of Fig. 3.3 reveals that the
flow dynamics and interpenetration of the fluids for m = 1 (shown in Fig. 3.3(b)) lies in an intermediate
level to those for m = 0.1 and m = 10, as shown in Fig. 3.3(a) and (c), respectively. The intensity
of the interfacial instabilities and small-scale structures increases with decreasing viscosity ratio. Close
inspection of Fig. 3.3 reveals that the velocity of the fingers increases with decreasing viscosity ratio.
By conducting linear stability analyses in pressure-driven displacement flow and flow through porous
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media, many authors [Sahu et al. (2009a); Tan & Homsy (1986)] shown that if the displacing fluid is
less viscous than the displaced one, the interface separating them becomes unstable and fingering pattern
develops at the interface. In the present study, m = 0.1 corresponds to a situation when the less viscous
fluid induces into the region of high viscous fluid, which can be related to an unstable configuration of
displacement flows. However, m = 10 is fundamentally different for m = 0.1, although both represent 10
times difference in viscosity between two fluids. For m = 10, the highly viscous fluid displaces the less
viscous fluid which is known to be a stable configuration.

(a)

t = 40

t = 100

(b)

t = 40

t = 100

(c)

t = 40

t = 100

Figure 3.3: Spatio-temporal evolutions of the density contours and velocity vector-fields for (a) m = 0.1, (b) m = 1
and (c) m = 10. The rest of the parameter values are Re = 500, At = 0.05, κ = 0 and θ = 60◦.

In Fig. 3.4, we compare the axial variation of the depth-averaged c (c̄x =
∫ H

0 cdy/H) and the

transverse variation of the axially-averaged c (c̄y =
∫ L

0 cdx/L) for the parameter values the same as
those used to generate Fig. 3.3. Here c ≡ (ρ − ρ2)/(ρ1 − ρ2). It can be seen in Fig. 3.4(a), (c) and (e)
that the variation of c̄x along the axial direction is complex for this set of parameters. However, in the
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experimental study of lock-exchange flow of two miscible fluids in a vertical tube, Debacq et al. (2003)
found that the flow dynamics is diffusive in nature. In Fig. 3.4(b), (d) and (f), it can be seen that profiles
of c̄y are asymmetrical in the y-direction. This is due to the effect of segregation of the fluids due to the
transverse gravitational force. Close inspection of the figure also reveals that the c̄y profile for m = 1
(Fig. 3.4(b)) is less asymmetrical as compared to those for m = 10 and m = 0.1.

Next, in Fig. 3.5, the effect of surface tension on the density contours is investigated by considering
three values of the surface tension parameter (κ) at t = 80. The rest of the parameter values are the
same as those used to generate Fig. 3. It can be seen that the surface tension makes the flow dynamics
coherent by stabilizing the flow; increasing κ value, which corresponds to increase in surface tension,
increases the stabilizing influence. Close inspection of Fig. 3.5 also reveals that for the same κ value the
flow with higher viscosity ratio is more coherent than that with lower viscosity ratios. For example, the
flow dynamics for κ = 0.005 and m = 10 (shown in the third panel of Fig. 3.5(c)) is more stable than
that for κ = 0.005 and m = 0.1 (shown in the third panel of Fig. 3.5(a)). It can also be seen in Fig. 3.5
(c) that for κ = 0.005 and m = 10 both the fingers are always attached to the walls, but for other cases
considered (m = 1 and m = 0.1) the fingers propagate nearly at the centerline of the channel surrounded
by the opposite fluid. The effect of κ on the axial variation of c̄x and the transverse variation of c̄y are
shown in Fig. 3.6. It can be seen in Fig. 3.6(a), (b) and (c) that the complexity in the variation of c̄x is
significantly reduced with increasing κ value. This is also evident from Fig. 3.5 as increasing κ stabilizes
the density contours.

In Fig. 3.7, the evolution of the density contours and velocity vector-fields are shown for a tilt angle
of 30◦ for the same three viscosity ratios. The rest of the parameter values are the same as those for
θ = 60◦ (Fig. 3.3). In this case, as the channel is tilted closer to the vertical compared to the θ = 60◦

case, the transverse gravitational force (proportional to gcosθ) segregating the two fluids is stronger, thus
resulting in decreased interpenetration of the fluids in the transverse direction (Fig. 3.7). The two fluids
now move more parallel to each other quite coherently and expectedly interpenetration in the transverse
direction is reduced as shown by the velocity vectors in Fig. 3.7. It can also be seen that unlike the
previous case of θ = 60◦ (Fig. 3.3), both the fingers are attached to the walls for all the three viscosity
ratios considered. This is primarily a consequence of the increased transverse gravitational force at
the larger tilt angles. The axial variation of the depth-averaged c (c̄x =

∫ H
0 cdy/H) and the transverse

variation of the axially-averaged c (c̄y =
∫ L

0 cdx/L) are also studied with the parameter values the same
as those for Fig. 3.7. A similar conclusion as for Fig. 3.4 can be drawn from Fig. 3.8 as well. The
variation of c̄x in the axial direction in Fig. 3.8(e) is smooth as the density contours obtained in this case
are free from the instabilities (see Fig. 3.7(c)). It can be seen in Fig. 3.8(a) and (c) that the variation of
c̄x is complex for smaller viscosity ratios. In Fig. 3.8(b), (d) and (f), it can be seen that profiles of c̄y are
asymmetrical in the y-direction.

The density contours and velocity vector-fields at t = 80 for different values of κ are shown in Fig.
3.9(a), (b) and (c) for m = 0.1, m = 1 and m = 10, respectively. The rest of the parameter values are the
same as those used to generate Fig. 3.7. As expected, it can be seen that for this case also surface tension
makes the structures more coherent with increasing κ value. This behavior is also evident in Fig. 3.10.
For m = 1 case (Fig. 3.9(b)), a third finger of the heavier fluid propagate in the same direction (towards
the upper part of the channel) as that of the lighter fluid. This finger is not observed for m , 1 cases.
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Figure 3.4: Evolution of the axial variation of the depth-averaged c (c̄x) and the transverse variation of the axial-
averaged c (c̄y) for (a,b) m = 0.1, (c,d) m = 1 and (e,f) m = 10, respectively. The rest of the parameter values are
Re = 500, At = 0.05, κ = 0 and θ = 60◦.
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Figure 3.5: Effects of surface tension parameter (κ) on the density contours and velocity vector-fields at t = 80 for
(a) m = 0.1, (b) m = 1 and (c) m = 10. The rest of the parameter values are Re = 500, At = 0.05 and θ = 60◦.
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Figure 3.6: Effects of surface tension parameter (κ) on the axial variation of the depth-averaged c (c̄x) and the
transverse variation of the axial-averaged c (c̄y) at t = 80 for (a,b) m = 0.1, (c,d) m = 1 and (e,f) m = 10,
respectively. The rest of the parameter values are Re = 500, At = 0.05 and θ = 60◦.
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Figure 3.7: Spatio-temporal evolutions of the density contours and velocity vector-fields for (a) m = 0.1, (b) m = 1
and (c) m = 10. The rest of the parameter values are Re = 500, At = 0.05, κ = 0 and θ = 30◦.
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Figure 3.8: Evolution of the axial variation of the depth-averaged c (c̄x) and the transverse variation of the axial-
averaged c (c̄y) for (a,b) m = 0.1, (c,d) m = 1 and (e,f) m = 10, respectively. The rest of the parameter values are
Re = 500, At = 0.05, κ = 0 and θ = 30◦.
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Figure 3.9: Effects of surface tension parameter (κ) on the density contours and velocity vector-fields at t = 80 for
(a) m = 0.1, (b) m = 1 and (c) m = 10. The rest of the parameter values are Re = 500, At = 0.05 and θ = 30◦.
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Figure 3.10: Effects of surface tension parameter (κ) on the axial variation of the depth-averaged c (c̄x) and the
transverse variation of the axial-averaged c (c̄y) at t = 80 for (a,b) m = 0.1, (c,d) m = 1 and (e,f) m = 10,
respectively. The rest of the parameter values are Re = 500, At = 0.05 and θ = 30◦.
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Figure 3.11: Variation of the front velocity of the “blue” fluid, Vb with m for (a) θ = 60◦ and (b) θ = 30◦. The rest
of the parameter values are Re = 500 and At = 0.05.

Finally, the variation of the front velocities of the “blue” fluid (Vb) with viscosity ratio (m) are
studied for three κ values. This is shown in Fig. 3.11 (a) and (b) for θ = 60◦ and θ = 30◦, respectively.
The rest of the parameter values are the same as those used to generate Fig. 3.3. It is seen that Vb

decreases with increase in m for both values of the tilt angle considered. This behavior can also be
observed in the spatio-temporal evolutions of the density contours (in Figs. 3.3 and 3.7). A similar trend
is observed (not shown) for the “red” fluid as well. It is also observed that at low At, the two fronts move
with an almost equal velocity for this set of parameters. However, there is small difference between the
velocity of the finger tips at the higher Atwood numbers.

In the next section, buoyancy driven flow in an three-dimensional inclined channel is presented. The
results obtained from the three-dimensional simulation are compared with those of the 2D simulations.

3.3 Buoyancy driven flow in a three-dimensional inclined
channel

In this section, two-phase lattice Boltzmann simulation of three-dimensional buoyancy-driven flow
of two immiscible liquids in a confined square duct is discussed. The length, height and width of the
channel are L, H and W, respectively, as shown in Fig. 3.12. A three-dimensional rectangular coordinate
system (x, y, z) is used to model the flow dynamics. We considered W = H and the aspect ratio of the
channel L/H to be 32. θ is the angle of inclination measured with the horizontal. The three components
of gravity gx(= gsinθ), gy(= gcosθ) and gz(= 0) act in the negative axial, negative transverse and the
azimuthal directions, respectively. The grid size considered here is (32 × 64) × 64 × 64.

The spatio-temporal evolution of the iso-surface of φ at the interface is shown in Fig. 3.13 at different
times. The parameters that are used to generate the contours are Re = 500, m = 1, At = 0.05, κ = 0 and
the angle of inclination, θ = 60◦ measured with the horizontal. As the time progresses, the heavier fluid
occupying the upper part of the channel move into the region of the lighter fluid at the bottom part of
the channel. This downward motion is caused by the axial component of gravity, gsinθ. The transverse
component of gravity, gcosθ induces segregating effect. It can be seen that the interface between the
fluids become unstable and the instabilities develop in the form of small structures.
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Figure 3.12: Schematic diagram of the initial equilibrium configuration of the system. Aspect ratio of the confined
channel is 1 : 32.

Figure 3.13: Evolution of the isosurface of φ at the interface at different times (from left to right: t = 20, 40, 60,
80 and 100). The parameters are Re = 100, m = 1, At = 0.05, κ = 0 and θ = 60◦.
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The x-y cross-section of the three-dimensional channel is considered and the contours obtained in
this plane are shown in Fig. 3.14(a). For the same parameters, two-dimensional simulation is carried
out and the results obtained is shown in Fig. 3.14(b). Therefore, comparing Fig. 3.14(a) and 3.14(b),
it is observed that the two-dimensional simulation gives the contours with more small scale structures
which are not seen in 3D. One can say that the structure of the instabilities is different in 3D and a more
stable mixing is seen for this set of parameters. The instabilities appear more at the central portion of
the channel and smooth fingers are seen towards the both ends. It is also evident from the figure that the
three-dimensional instabilities are more coherent than that of the two-dimensional counterparts as found
by Hallez & Magnaudet (2008) previously. Longer finger lengths are observed in 3D than that in 2D at
the same instant of time. This is in agreement with the findings of Oliveira & Meiburg (2011).

(a)
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t = 100

(b)

t = 10

t = 20

t = 30

t = 50

t = 100

Figure 3.14: Spatio-temporal evolution of the contours of the index function φ at different times in (a) x-y plane
of the 3D channel, and (b) 2D channel. The parameters are the same as that of Fig.3.13.
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3.4 Summary

In this chapter, the effects of viscosity differential on a buoyancy-driven flow in tilted planar two-
and three-dimensional channels are studied using a multiphase lattice Boltzmann method implemented
on a graphics processing unit. The effects of viscosity differential on the flow structures, average density
profiles and front velocities are investigated. Relatively stable fingers are observed for high viscosity
ratios; the flow becomes essentially like two individual Poiseuille flows. The intensity of the interfacial
instabilities and the transverse interpenetration of the fluids increase with decreasing viscosity differen-
tial of the fluids. Plots of the average density profiles show that the flow becomes progressively more
complex with decreasing viscosity ratio. As expected, surface tension stabilizes the flow by reducing
the small-scale structures. In three-dimensional simulations we found that the flow is more stable than
that observed in two-dimensional channel. The length of the ‘finger’ is also found to be longer in three-
dimensional buoyancy-driven flow than that in two-dimensional simulations.



CHAPTER 4

Pressure-driven displacement 
ow

In this chapter, the pressure-driven displacement of two immiscible fluids in an inclined channel
in the presence of viscosity and density gradients is investigated. A systematic parametric study is
conducted to investigate the effects of viscosity ratio (m), Atwood number, (At), Froude number, (Fr)
and surface tension, which is characterized by capillary number (Ca). As Selvam et al. (2007) found
that in core-annular flows beyond a critical viscosity ratio the flow is unstable even when the less viscous
fluid is at the wall, the situation when a high viscous fluid displaces a less viscous one (a classically
stable system) at high viscosity ratio is also investigated in the present study. The effects of angle of
inclination on the flow dynamics are also investigated, which have not been studied earlier in the context
of immiscible fluids. A linear stability analysis similar to the one of Sahu & Matar (2010) for a three-
layer system is compared with the LBM simulations. The pressure-driven displacement flow of one fluid
by another fluid is common in many industrial processes, such as transportation of crude oil in pipelines
[Joseph et al. (1997)], oil recovery, food-processing, coating, flow of lava inside the earth [Whitehead &
Helfrich (1991)], etc. In the latter case the temperature gradient also plays an important role in the flow
dynamics. In porous media or in a Hele-Shaw cell, the displacement of a highly viscous fluid by a less
viscous one becomes unstable forming various instability patterns widely known as viscous fingering
[Homsy (1987)].

The rest of the chapter is organized as follows. The problem is formulated in Section 4.1, and the
results of the lattice Boltzmann simulations are presented in Section 4.2. In Section 4.3, we discuss the
results of the linear stability analysis, and provide concluding remarks in Section 4.4.

4.1 Problem description

Consider a two-dimensional channel of length L and height H, initially filled with a stationary,
Newtonian, incompressible fluid of viscosity µ2 and density ρ2 (fluid ‘2’). Through an imposed pressure-
gradient, this initially filled liquid is displaced by another immiscible liquid of viscosity µ1 and density
ρ1 (fluid ‘1’), as shown in Fig. 4.1. A rectangular coordinate system (x, y) is used to model the flow
dynamics, where x and y denote the coordinates in axial and the wall normal directions, respectively.
The aspect ratio of the channel, L/H, is 48. The channel inlet and outlet are located at x = 0 and L,
respectively. The rigid and impermeable walls of the channel are located at y = 0 and H, respectively.
The initial configuration is arranged such that fluid ‘1’ and fluid ‘2’ occupy the channel from 0 ≤ x ≤ 5
and 5 ≤ x ≤ L, respectively. The prescribed boundary conditions are such that fluid can only enter and
leave the channel through the inlet and outlet, respectively. θ is the angle of inclination measured with
the horizontal. g is acceleration due to gravity; the two components of the gravity gsinθ and gcosθ act in
the axial and transverse directions, respectively.

The hydrodynamic boundary conditions based on the ghost fluid approach are used to simulate
the boundaries and equilibrium distribution functions [Sahu & Vanka (2011)]. A Neumann boundary
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condition for pressure is used at the outlet, while a constant pressure-gradient obtained from the con-
stant volumetric flow rate condition is imposed at the inlet. In addition, the non-equilibrium distribution
functions are extrapolated and added to get the instantaneous distribution functions. Various dimension-
less parameters describing the flow characteristics are the Atwood number, At(≡ (ρ2 − ρ1)/(ρ2 + ρ1)),
the Reynolds number, Re(≡ Qρ1/µ1), the Froude number, Fr(≡ Q/H

√
AtgH), the capillary number,

Ca(≡ Qµ1/σH) and the viscosity ratio, m = µ2/µ1. Here, Q is the volumetric flow rate per unit length in
the spanwise direction; in the present study the characteristic velocity is chosen such that the value of Q
is 1.92. The dimensionless time is defined as t = H2/Q.

Figure 4.1: Schematic showing the geometry (not to scale) and initial flow configuration. The inlet and outlet are
located at x = 0 and x = L, respectively. The aspect ratio of the channel, L/H, is 48. Initially the channel is filled
with fluids ‘1’ and ‘2’ from 0 ≤ x ≤ 5 and 5 ≤ x ≤ L of the channel, respectively.

In order to demonstrate the dynamics, a flow configuration (displacing and displaced fluids with
leading and trailing edges) at a typical time is shown in Fig. 4.2(a). In Fig. 4.2(b), the spatio-temporal
diagram of

∫ H
0 φdy is plotted, which provides the location of the leading and trailing fronts at all times.

4.2 Results and discussion

4.2.1 Grid independency test

We begin presenting our results in Fig. 4.3(a) by first plotting the temporal variation of the dimen-
sionless volume of fluid ‘2’, Mt/M0, for At = 0.2, m = 2, Fr = 2.236, Re = 100, Ca = 0.263 and
θ = 45◦. Here, Mt is defined as

∫ L
0

∫ H
0

φ−φ1
φ2−φ1

dxdy. Thus, M0 denotes the volume of fluid ‘2’ initially

occupying the channel (M0 ≡
φ−φ1
φ2−φ1

LH). The parameter values are chosen to correspond to a situation
where a heavier fluid is displaced by a fluid of lower density and viscosity. In this case, one would expect
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(a)

(b)

Figure 4.2: (a) Contour showing the penetrating finger and the leading and trailing fronts, (b) the spatio-temporal

diagram of
∫ H

0 φdy in time versus x plane showing the leading and the trailing front regimes. The plots are for a
particular set of parameters.

the flow to be destabilized because of viscosity contrast and via a Rayleigh-Taylor (RT) instability. In-
spection of Fig. 4.3(a) reveals that Mt/M0 undergoes an almost linear decrease at the earlier stages of the
flow due to its displacement by fluid ‘1’. The slope of the curve during this linear stage is close to that
of the line represented by 1 − tH/L corresponding to a plug flow displacement of fluid ‘2’ with a sharp
interface separating the fluids. This is expected due to the conservation of mass of the fluids entering
and leaving the channel. Previously in a miscible system, Sahu et al. (2009b) observed that slope of
Mt/M0 versus time plot is steeper than that of the plug flow line (1 − tH/L), i.e the actual displacement
rate is higher than that of the plug flow. This is attributed to the miscibility effects. In miscible system
along with the removal of fluid from the outlet, the flow is associated with phase change of fluid ‘2’ to
fluid ‘1’ (which does not occur in immiscible flows). Thus, the displacement rate in the present study
is slower than that of miscible flows [Sahu et al. (2009b)]. At approximately t = 38 when the ‘front’
of the displacing fluid ‘1’ reaches the end of simulation domain, as shown in Fig. 4.4, a transition to a
different linear regime occurs; the slope of the Mt/M0 variation in this regime is much smaller than in the
first period, indicating slower displacement process. Also shown in Fig. 4.3(a) are results with different
grids, which demonstrate convergence upon mesh refinement.

The spatio-temporal diagram of
∫ H

0 φdy in time versus x plane is plotted in Fig. 4.3(b) for 4608×98
grid. The spatio-temporal diagrams generated using 3072×66 and 6144×130 grids look the same as that
shown in Fig. 4.3(b). It can be seen that the positions of the leading and the trailing ‘fronts’ separating
the two fluids exhibit a linear dependence on time. The slopes of the bottom and top white dashed lines
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Figure 4.3: (a) Variation of volume fraction of the displaced fluid (Mt/M0) with time obtained using different mesh

densities, and (b) the spatio-temporal diagram of
∫ H

0 φdy in time versus x plane for At = 0.2, m = 2, Fr = 2.236,
Re = 100, Ca = 0.263 and θ = 45◦. The dotted line in panel (a) represents the analytical solution of the plug-flow
displacement, given by Mt/M0 = 1 − tH/L.

represent the velocity of leading (Vl) and trailing (Vt) fronts, respectively. The front velocities obtained
using different sets of lattice points are then compared in Table 4.1. It is evident upon inspection of Table
4.1 that the results of the three grids are nearly the same. Therefore for the rest of the calculations, the
4608 × 98 grid is chosen, balancing accuracy and computational time.

Table 4.1: The velocity of the leading (Vl) and trailing (Vt) fronts for different grid densities. The rest of the
parameter values are At = 0.2, m = 2, Fr = 2.236, Re = 100, Ca = 0.263 and θ = 45◦.

Grid Vl Vt

3072 × 66 1.3141 0.2444
4608 × 98 1.3139 0.2441
6144 × 130 1.3132 0.2440

The flow dynamics is illustrated in Fig. 4.4, which shows the spatio-temporal evolution of the φ
contours for the parameters as in Fig. 4.3. The observed flow dynamics is a result of the competition
between the imposed pressure-gradient and the axial component of gravity. For the positive angle of
inclination considered in this case, these two forces act in opposite directions. The pressure-driven
flow induces motion of fluid ‘1’ into the channel, which is opposed by the acceleration of fluid ‘2’ by
the gsinθ component of the gravity. On the other hand, the component of the gravitational force in
the transverse direction, proportional to gcosθ, acts to segregate the two fluids. This force therefore
counteracts the effects caused by the pressure-gradient and the component of the gravitational force in
the axial direction. For the set of parameter values considered in this figure, the effects of the gravity
component in the transverse direction (gcosθ) is quite less as compared to the imposed flow. In other
words, as the Fr is relatively larger, the gravitational effects are dominated by the inertial force. Thus,
the remnants of fluid ‘2’ left behind by the penetrating finger form thin layers adjacent to the upper and
lower walls. The lower layer is thicker than the upper one since the denser fluid ‘2’ expectedly settles on
the lower channel wall. However, for smaller value of Fr (i.e., for significant gravity effects) it is shown
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Figure 4.4: Spatio-temporal evolution of the contours of the index function, φ for At = 0.2, m = 2, Fr = 2.236,
Re = 100, Ca = 0.263 and θ = 45◦.

later that a two-layer flow develops, where the top and bottom parts of the channel are filled with the
lighter and heavier fluids, respectively. It can be seen in Fig. 4.4 that the flow is accompanied by the
development of the interfacial instabilities of sawtooth-like shape for t > 10. It is also observed that the
top layer moves faster than the bottom layer.

The effects of viscosity contrasts (m), Atwood number (At) and Froude number (Fr) in a horizontal
channel (setting θ = 0) are discussed in the next section.

4.2.2 Horizontal channel

In this section, the effects of viscosity contrast on the flow dynamics for the case of a horizontal
channel is discussed first. In Fig. 4.5(a) and (b), the temporal evolutions of the dimensionless measure
of the volume of fluid ‘2’, Mt/M0 for different values of m, are plotted for At = 0, Fr = ∞ (i.e.,
in the absence of density contrast and gravity), and At = 0.3, Fr = 0.577, respectively. The rest of
the parameter values are Re = 100, Ca = 0.263 and θ = 0◦. It can be seen in Fig. 4.5(a) and (b)
that increasing the value of m decreases the displacement rate. The dotted lines in Fig. 4.5(a) and (b)
represent the analytical solution (given by Mt/M0 = 1− tH/L) which is obtained when fluid ‘1’ displaces
fluid ‘2’ as a plug, without forming a finger-like structure. Inspection of Fig. 4.5 reveals that for low
viscosity ratio the slope of the curve in the linear region (for t < 35 for this set of parameter values) is
nearly the same as that of the plug-flow displacement. At approximately t = 35, a transition to another
linear regime occurs. The displacement rate for t ≥ 35 decreases significantly as the thin layers of the
remnants of fluid ‘2’ at the top and bottom of the channel take longer time to be displaced.

The variations of velocity of the leading (Vl) and trailing (Vt) fronts with viscosity contrasts are
shown in Fig. 4.6 (a) and (b), respectively. The rest of the parameter values are the same as those used
to generate Fig. 4.5. It can be seen in Fig. 4.6 (a) and (b) that m has a non-monotonic effect on the
velocity of the leading front, i.e., increasing m increases Vl for m ≤ 5, a further increase in m leads
to a decrease in the value of Vl. This is in contrast to the miscible system, where the velocity of the
leading front increases with increasing m (see Sahu et al. (2009a)). It can be seen in Fig. 4.6 (b) that
the velocity of the trailing front (Vt) decreases with increasing the viscosity contrasts. This is similar
to the finding of my study [Redapangu et al. (2012)] in buoyancy-driven flow of two immiscible fluids
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Figure 4.5: Variation of volume fraction of the displaced fluid (Mt/M0) with time for different values of viscosity
ratio, m for (a) At = 0 and Fr = ∞, and (b) At = 0.3, Fr = 0.577. The rest of the parameters are Re = 100,
Ca = 0.263 and θ = 0◦. The dotted lines in panels (a) and (b) represent the analytical solution of plug-flow
displacement, given by Mt/M0 = 1 − tH/L.

which is discussed in Chapter 3. Close inspection of Fig. 4.6 also reveals that the velocity of the leading
front in the presence of density contrasts and gravity is higher than that of the no gravity case. However,
the velocity of the trailing front (Vt) is smaller in the presence of density contrasts and gravity. This is
expected as the gravity acting in the downward direction settles the remnants of fluid ‘2’ at the bottom
part of the channel and opposes the motion in the positive axial direction.
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Figure 4.6: Variations of velocities of (a) the leading (Vl) and (b) the trailing (Vt) fronts with viscosity ratio, m.
The rest of the parameter values are Re = 100, Ca = 0.263 and θ = 0◦.

The evolution of the φ contours for different values of m is plotted in Fig. 4.7 at t = 15 and t = 50.
These two instances of time are considered in order to understand the flow dynamics in the two distinct
linear regimes shown in Fig.4.5. In the absence of density contrast, it can be seen in Fig. 4.7(a) that for
m = 0.9 the flow is fairly stable as in this case a high viscous fluid displaces a less viscous one. m = 20
which represents a situation where less viscous fluid displaces a high viscous fluid, the flow becomes
considerably unstable accompanied by a wavy interface. This is purely due to the viscosity stratification.
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As expected, it can also be seen that the ‘finger’ of the displacing fluid is axially symmetrical in the
absence of gravity (see Fig. 4.7(a)). On the other hand, for Fr = 0.577 the ‘finger’ of fluid ‘1’ penetrates
into the region of fluid ‘2’ with a blunt ‘nose’ (see Fig. 4.7(b)). Unlike in Fig. 4.7(a), it can be seen in
Fig. 4.7(b) that the flow becomes unstable due to the RT mechanism even for m = 0.9. This ‘finger’
becomes asymmetric: the thickness of the remnants of fluid ‘2’ adjoining the lower wall is larger than
that near the upper wall. For m = 0.9 the remnants of fluid ‘2’ completely move to the bottom part of the
channel at the later times destroying the finger-like structure. The observed asymmetry is brought about
by the density contrasts characterized by At = 0.3.

(a)
m = 0.9 m = 0.9

m = 20 m = 20

(b)

m = 0.9 m = 0.9

m = 20 m = 20

At time, t = 15 At time, t = 50

Figure 4.7: The contours of the index function, φ at t = 15 and t = 50 in a horizontal channel (θ = 0◦) for two
different values of viscosity ratio, m for (a) At = 0 and Fr = ∞ and (b) At = 0.3 and Fr = 0.577. The rest of the
parameter values are Re = 100 and Ca = 0.263.

4.2.3 Inclined channel

Next, the effect of the inclination angle (θ) on the displacement process is investigated. In Fig. 4.8,
the φ field at t = 30 is plotted for different angles of inclinations. The rest of the parameter values are
m = 10, At = 0.2, Fr = 1, Re = 100 and Ca = 0.263. The gravity is acting in the vertical direction;
thus the two components of the gravity gsinθ and gcosθ act in the negative axial and negative transverse
directions, respectively. It can be seen that the pressure-driven flow induces motion of a ‘finger’ of the
less dense and less viscous fluid (fluid ‘1’) into the more dense and more viscous fluid (fluid ‘2’). This is
opposed by the flow due to gravitational force in axial direction, which accelerates fluid ‘2’ into fluid ‘1’
in the downward direction. At the same time, the component of the gravitational force in the transverse
direction segregates the two fluids. As the ‘finger’ of fluid ‘1’ penetrates into fluid ‘2’, the remnants of
fluid ‘2’ left behind form thin layers adjacent to the upper and lower walls, and a two-layer structure is
obtained. The interface separating the two fluids becomes unstable forming Yih-type instabilities. The
linear stability characteristics of this two-layer flow is discussed in Section 4.3.

In a horizontal channel (θ = 0◦), the transverse component of gravity becomes maximum and
the axial penetration is only due to the imposed pressure-gradient. In this case, the high density fluid
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θ = 0◦

θ = 5◦

θ = 60◦

θ = 85◦

Figure 4.8: The contours of the index function, φ at t = 30 for different inclination angles. The rest of the
parameter values are m = 10, At = 0.2, Fr = 1, Re = 100 and Ca = 0.263.
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Figure 4.9: The effects of angle of inclination on the variation of the volume fraction of the displaced fluid,
(Mt/M0) with time. The parameters used are m = 10, At = 0.2, Fr = 1, Re = 100 and Ca = 0.263. The
dotted line represents the analytical solutions of the variation of Mt/M0 for plug-flow displacement, given by
Mt/M0 = 1 − tH/L.

(remnants of fluid ‘2’) tries to segregate from the less dense fluid (fluid ‘1’) by moving in the transverse
direction into the bottom part of the channel. As a result the lower layer becomes thicker than the
upper layer, resulting in an asymmetric ‘finger’ moving in the axial direction. Comparison with Fig.
4.7, which corresponds to a smaller value of Fr, reveals that the thickness of the lower layer increases
with decreasing Fr. This is expected as decreasing Fr for a given inclination increases the gravitational
influence in the transverse direction, which increases the segregation of the fluids. It can be seen in Fig.
4.8 that increasing θ for a given value of Fr also decreases fluid segregation due to the diminishing role
of the gravitational force. Therefore the finger becomes increasingly symmetrical with increasing the
angle of inclination (see Fig. 4.8). This also increases the intensity of the interfacial instabilities, which
in turn increases the removal rate of fluid ‘2’ in later times (for t > 60 for this set of parameter values),
as shown in Fig. 4.9.

The spatio-temporal diagrams of
∫ H

0 φdy in time versus x plane are plotted in Fig. 4.10 for different
angles of inclination, with the rest of the parameter values kept the same as Fig.4.8 . It can be seen that
the speed of the trailing front decreases with increasing the value of θ. This happens because increasing θ
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(a) (b)

(c) (d)

Figure 4.10: The spatio-temporal diagram of
∫ H

0 φdy in time versus x plane for (a) θ = 0◦, (b) θ = 5◦, (c) θ = 60◦

and (d) θ = 85◦. The rest of the parameter values the same as those in Fig. 4.8.

increases the gravitational influence (gsinθ) in the negative axial direction. We found later that a further
increase in the gravitational force by decreasing the value of Fr (shown in Section 4.2.4) leads the heavier
fluid in the lower layer to move in the opposite direction. It can also be seen that the variation of the
location of the leading front tip (boundary separating the red and green regions in Fig. 4.10) is nonlinear
for larger angles of inclination, and this nonlinearity is predominant at later times. In contrast, Sahu et al.
(2009b) observed a constant slope in the xtip (location of the leading front) versus time plot. However,
their study was associated with miscible fluids, in which diffusion may have played a role to reduce the
nonlinearity as observed in the present study.

Fig. 4.11 shows the vorticity (first panel) and velocity vector (second panel) fields for the parameter
values the same as those used to generate Fig. 4.8. It can be seen that the central region contains strong
vortical activity. Inspection of Fig. 4.11 also reveals that the level of vortical structures in the central
region increases with increasing the angle of inclination as the flow accelerates due to the combined
action of the pressure-gradient and the components of the gravity.

The effect of viscosity contrast is investigated in Fig. 4.12, where the contours of the index function,
φ are shown at different times for different viscosity ratios. It can be seen in Fig. 4.12(a) that the flow
for m < 1 is associated with the formation of small scale structures. It is well known that the flow for
m < 1 is stable without density contrast and gravity [Joseph et al. (1997); Saffman & Taylor (1958)]
(also see Fig. 4.7). Thus instabilities in this case are due to the RT mechanism as the high dense fluid
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θ = 0◦

θ = 5◦

θ = 60◦

θ = 85◦

Figure 4.11: The vorticity (first panel) and velocity vectors (second panel) fields for the same parameter values as
those used to generate Fig. 4.8. The color-maps for the vorticity contours are shown as third panel.

moves in the negative axial direction while the finger of fluid ‘1’ penetrates inside the channel due to the
imposed pressure gradient. The back flow of the denser fluid is clearly evident in Fig. 4.13(a), where
the spatio-temporal diagram of

∫ H
0 φdy is plotted in time versus x plane. It can be seen in Fig. 4.12

that the flow becomes more coherent with increasing viscosity ratio. Inspection of Fig. 4.13(b) and (c)
also reveals that there is no back flow for higher viscosity ratio. This due to the increase in wall shear
stress with increasing viscosity ratio, which prevents the motion of the layer of fluid ‘2’ in the backward
direction. Thus, the rate of displacement of fluid ‘2’ also decreases with increase in viscosity ratio, as
shown in Fig. 4.14.

In Fig. 4.15, the effect of surface tension on the φ fields is investigated by considering three values
of capillary number, Ca at t = 30. The rest of the parameter values used to generate this plot are m = 5,
At = 0.2, Fr = 1, Re = 100 and θ = 45◦. Inspection of Fig. 4.15 reveals that the surface tension makes
the flow dynamics coherent by stabilizing the short wavelength waves [Yih (1967)], and decreasing value
of Ca (which corresponds to increase in surface tension), increases the stabilizing influence of the flow.
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Figure 4.12: Spatio-temporal evolution of contours of the index function, φ for (a) m = 0.8, (b) m = 10 and (c)
m = 30. The rest of the parameters are At = 0.2, Fr = 1, Re = 100, θ = 45◦ and Ca = 0.263.
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(a) (b) (c)

Figure 4.13: The spatio-temporal diagram of
∫ H

0 φdy in time versus x plane for (a) m = 0.8, (b) m = 10 and (c)
m = 30. The rest of the parameter values are the same as those used to generate Fig. 4.12.
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Figure 4.14: Effects of viscosity ratio, m on variation of the volume fraction of the displaced fluid,(Mt/M0) with
time. The rest of the parameter values are the same as those used to generate Fig. 4.12. The dotted line represents
the analytical solution for plug-flow displacement, given by Mt/M0 = 1 − tH/L.
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Figure 4.15: The contours of the index function, φ for different values of capillary number at t = 30. The rest of
the parameter values are m = 5, At = 0.2, Fr = 1, Re = 100 and θ = 45◦.
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4.2.4 Near horizontal channel

In this section, the effects of Froude number in a near horizontal channel (θ = 5◦) are presented.
Fig. 4.16(a) and (b) show the variation of the normalized front velocity, FrVl with Froude number, Fr
for m = 1 and m = 10, respectively. Two values of Atwood number, At = 0.2 and 0.04 are considered.
The rest of the parameter values are Re = 100 and Ca = 0.263. It can be seen in Fig. 4.16(a) and (b) that
the results for both the values of At collapse on a single curve; these are also independent of viscosity
ratio. This suggests that for the parameter values considered, the velocity of the leading front can be
obtained by balancing the buoyancy (proportional to (ρ2 − ρ1)g) and imposed pressure force with the
inertial force. The dashed lines in Fig. 4.16(a) and (b) represent the best fitted polynomial, given by
FrVl = 0.38 + 0.665Fr + 0.3534Fr2. The first and second terms on the right hand side correspond to
the buoyancy and imposed pressure forces, respectively. The leading term in the best fit curve compares
well with that of Sahu & Vanka (2011), who studied the buoyancy-driven “lock-exchange flow” of two
immiscible fluids in an inclined channel and that of Taghavi et al. (2012) for miscible displacement flow
in a near horizontal channel. However, in a purely buoyancy-driven flow of two miscible fluids in an
inclined pipe, Séon et al. (2005) determined the leading term (= 0.7) by balancing the buoyancy with the
inertial force. This difference in the value of the leading term is attributed to the cylindrical geometry
considered by Séon et al. (2005).
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Figure 4.16: Variation of the normalized front velocity, FrVl with Froude number, Fr for (a) m = 1 (b) m = 10.
The rest of the parameter values are Re = 100, Ca = 0.263 and θ = 5◦. The dashed line is the best fitted polynomial,
given by FrVl = 0.38 + 0.665Fr + 0.3534Fr2. The red, blue and green square boxes in panel (a) correspond to
Fr = 0.604, Fr = 0.671 and Fr = 2.24, respectively.

Next, the three points marked with points 1, 2 and 3 in Fig. 4.16(a), are considered which correspond
to Fr = 0.604, Fr = 0.671 and Fr = 2.24, respectively. The spatio-temporal diagrams of

∫ H
0 φdy in x-t

plane are plotted for Fr = 0.604, Fr = 0.671 and Fr = 2.24 in Figs. 4.17(a), (b) and (c), respectively.
The rest of the parameter values are the same as Fig. 4.16. It can be seen in Fig. 4.17(a) that the trailing
front moves upstream for 0 ≤ t ≤ 60 and then moves in the downstream direction for t > 60. This is
termed as “temporary back flow” by Taghavi et al. (2011). For Fr = 2.24, it can be seen that the trailing
front move in the downstream direction for any t > 0 (“instantaneous displacement”). It can be observed
that Fr = 0.671 is a marginal state, where the trailing front remains stationary for some time before
moving in the downstream direction. This is termed as “stationary back flow” by Taghavi et al. (2011).
Thus for Fr > 0.671, a temporary lock-exchange type of flow is observed for this set of parameter values.
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(a) (b) (c)

Figure 4.17: The spatio-temporal diagram of
∫ H

0 φdy in time versus x plane for (a) Fr = 0.604, (b) Fr = 0.671
and (c) Fr = 2.24 for the parameters At = 0.2, m = 1, Re = 100, θ = 5◦ and Ca = 0.263. The white dashed lines
represent the initial location of the interface (x = 5).
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Figure 4.18: Normalized front velocity as a function of normalized Fr, for (a) m = 1 and (b) m = 10 where
χ = 2Resinθ/AtFr2. The rest of the parameters are Re = 100, θ = 5◦ and Ca = 0.263. The solid line represents the
line Vl = V0. The filled circle in (a) corresponds to Fr = 0.671, the squares to the left and the right of this filled
circle correspond to Fr = 0.604 and Fr = 2.24, respectively.

As suggested by Taghavi et al. (2012), in the exchange flow dominated regime, it is possible to
derive a single dimensionless parameter, χ(≡ 2Resinθ/AtFr2) by balancing the buoyancy force in the
axial direction with the imposed pressure force. The normalized front velocity (2Vl/χ) is plotted against
2/χ in Fig. 4.18(a) and (b) for m = 1 and 10, respectively. The filled circle in (a) corresponds to
χ = 193.6, and the squares below and above this filled circle correspond to χ = 293.1 and χ = 17.4,
respectively. It can be seen that for χ > χcr(= 193.6) the results are diverged from the Vl = V0 line,
which corresponds to pure displacement flow. For the set of parameter values considered, the value of
χcr corresponds to Fr = 0.671 (see Fig. 4.17(b)). Thus, the trailing front has a tendency to move in
the downstream direction (back flow) for χ > χcr, whereas it moves only in the positive axial direction
for χ < χcr (no back flow). In case of miscible displacement flows in a near horizontal pipe, Taghavi
et al. (2012) found the value of χcr to be 116.32. This difference is also due to the cylindrical geometry
considered by these authors. The result seems to be invariant for m = 10.
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4.3 Linear stability analysis

The linear stability analysis of the three-layer channel flow which can be obtained when the elon-
gated ‘finger’ of fluid ‘1’ penetrates into the bulk of fluid ‘2’ (as discussed in Chapter 1) is considered.
The base state whose linear stability characteristics will be analyzed corresponds to a parallel, fully-
developed flow in which the two fluids are separated by flat interfaces, with fluid ‘1’ located in the region
−h0 ≤ y ≤ h0, as shown in Fig. 4.19. We assume P1 = P2 ≡ P and the pressure distribution is linear in x.

x

y

Fluid 1

Fluid 2

-1

1

h
0

Fluid 2

Figure 4.19: Schematic showing the geometry and initial condition of the flow. Also shown here is profile of the
steady, streamwise velocity component generated with m = 10 and h0 = 0.5.

By assuming symmetry in the wall-normal direction, the bottom part of the channel is considered
for the linear stability analysis. The velocity distribution is given by:

U1 =
1
2

dP
dx

y2 + c1y + c2, (4.1)

U2 =
1

2m
dP
dx

y2 +
c3y
m

+ c4. (4.2)

and
∫ h

0
U1dy +

∫ 1

h
U2dy = 1. (4.3)

The pressure gradient, dP/dx and the integration constants, c1, c2, c3, and c4 are obtained using the
no-slip condition at the lower wall, symmetric boundary conditions across the channel centerline, and
demanding continuity of velocity and stress at the interface. Eq. (4.3) represents a condition of constant
volumetric flow rate, Q, chosen to be one, and the half channel width has been used as a length scale in
this section. A typical velocity profile for m = 10 and h0 = 0.5 is shown in Fig. 4.19.

The stability of the base state characterized by U1 and U2 to infinitesimal, two-dimensional (2D)
disturbances are investigated using a normal mode analysis by expressing each flow variable as the sum
of a base state and a 2D perturbation:

uk(x, y, t) = Uk(y) + ûk(x, y, t) (4.4)

vk(x, y, t) = v̂k(x, y, t) and (4.5)

pk(x, y, t) = P + p̂k(x, y, t), (4.6)

with (k = 1, 2). Similarly h can be expanded as follows

h(x, t) = h0 + ĥ(x, t), (4.7)



54 Chapter 4.

where the superscript ‘0’ designates base state quantities. Substitution of Eqs. (4.4) to (4.7) into the
Navier-Stokes and continuity equations, subtraction of the base state equations and subsequent lineari-
sation yields the linear stability equations in terms of primary variables. These equations are then re-
expressed in terms of the stream-function, (uk, vk) = (∂Ψk/∂y,−∂Ψk/∂x) (k = 1, 2) and the decomposi-
tion Ψ(x, y, t) = Φ(y)ei(βx−ωt) is imposed, whence,

ûk(x, y, t) = Φ′k(y)ei(βx−ωt), (4.8)

v̂k(x, y, t) = −iβΦk(y)ei(βx−ωt), (4.9)

p̂k(x, y, t) = pk(y)ei(βx−ωt), and (4.10)

ĥ(x, t) = ηei(βx−ωt). (4.11)

Then eliminating the pressure perturbations from the resultant equations, yields the following coupled
Orr-Sommerfeld-type equations.

iβRe
[(

Φ′′1 − β
2Φ1

)
(U1 − c) − Φ1U′′1

]
= [Φ′′′′1 − 2β2Φ′′1 + β4Φ1] (4.12)

iβRe
(
1 + At
1 − At

) [(
Φ′′2 − β

2Φ2
)

(U2 − c) − Φ2U′′2
]

= m
[
Φ′′′′2 − 2β2Φ′′2 + β4Φ2

]
. (4.13)

Here, the prime represents differentiation with respect to y, and Φk and η denote the amplitudes of the
streamfunction and interfacial perturbation, respectively; β is a axial real wavenumber, ω(≡ βc) is a
complex frequency, wherein c is a complex phase speed of the disturbance. Note that (1 + At)/(1 − At)
represents the density ratio, ρ1/ρ2. In the temporal stability analysis considered in this section, ωi > 0
indicates the presence of a linear instability.

The eigenvalue c and the eigenfunctions Φ1 and Φ2 are obtained via solution of Eqs. (4.12) and
(4.13) subject to the following boundary conditions: the no-slip and no-penetration conditions at the
upper wall:

Φ2 = Φ′2 = 0, at y = −1; (4.14)

and either
Φ′1 = Φ′′′1 = 0 or Φ1 = Φ′′1 = 0 at y = 0 (centerline), (4.15)

which are appropriate for symmetric and anti-symmetric modes, respectively. Our results (not shown)
reveal that the symmetric mode is dominant for the range of parameters considered in the present work.
Consequently, all of the results presented below correspond to symmetric mode exclusively. Using the
continuity of the velocity and stress components for the disturbance in the axial and the wall-normal
directions at the interface, along with the kinematic boundary condition, we obtained:

Φ1 = Φ2, (4.16)

Φ′1 − Φ′2 + η
(
U′1 − U′2

)
= 0, (4.17)

m
(
Φ′′2 + β2Φ2

)
−

(
Φ′′1 + β2Φ1

)
+

(
U′′1 − mU′′2

)
(U1 − c)

= 0, (4.18)

−iβRe
[
Φ′1 (c − U1) + Φ1U′1

]
+ iβ

(
1 + At
1 − At

)
Re

[
Φ′2 (c − U2) + Φ2U′2

]
−

(
Φ′′′1 − β

2Φ′1

)
+

m
(
Φ′′′2 − β

2Φ′2

)
+ 2β2Φ′1 − 2mβ2Φ′2 =

(
β2

Ca
+ G

)
iβ

(
Φ′1 − Φ′2

)(
U′2 − U′1

) , (4.19)
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where η is given by
η = Φ1/ (c − U1) |h = Φ2/ (c − U2) |h. (4.20)

Here, G ≡ 2ReAt2/Fr2(At − 1). The stability analysis conducted here is similar to the one given in Sahu
et al. (2007), Sahu & Matar (2010, 2011). We recover Eqs. (4.12) - (4.20) from the stability equations
and boundary conditions given in Sahu & Matar (2010) for Newtonian fluids.
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Figure 4.20: Variation of (a) maximal growth rate, ωi,max (a) axial wavenumber associated with the most dangerous
mode, βmax with viscosity ratio, m. The rest of the parameter values are Re = 100, At = 0.1, Fr = 1, θ = 0◦ and
Ca = 0.263.
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Figure 4.21: Variation of (a) maximal growth rate, ωi,max (a) axial wavenumber associated with the most dangerous
mode, βmax with Atwood number At. The rest of the parameter values are Re = 100, m = 10, Fr = 1, θ = 0◦ and
Ca = 0.263.

The effects of varying the viscosity ratio (m), Atwood number (At), Froude number (Fr) and capil-
lary number (Ca) on the linear stability characteristics are discussed next. In Fig. 4.20(a) the variation
of the maximal growth rate, ωi,max, and axial wavenumber associated with the most dangerous mode,
βmax are plotted against the viscosity ratio. It can be seen in Fig. 4.20(a) that ωi,max increases and then
decreases with increasing the value of viscosity ratio, m. It can be seen in Fig. 4.20(b) that the ax-
ial wavenumber associated with the most dangerous mode, βmax increases with increasing the viscosity
ratio. This prediction from the linear stability analysis is in agreement with our numerical simulation
results plotted in Figs. 4.7 and 4.12. Similarly, the variation of ωi,max and βmax with Atwood number,
At are plotted in Fig. 4.21(a) and (b), respectively. Inspection of this figure reveals that the disturbance
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Figure 4.22: Variation of (a) maximal growth rate, ωi,max (a) axial wavenumber associated with the most dangerous
mode, βmax with Froude number, Fr. The rest of the parameter values are Re = 100, m = 10, At = 0.1, θ = 0◦ and
Ca = 0.263.
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Figure 4.23: Variation of (a) maximal growth rate, ωi,max (a) axial wavenumber associated with the most dangerous
mode, βmax with capillary number, Ca. The rest of the parameter values are Re = 100, m = 10, At = 0.1, θ = 0◦

and Fr = 1.

growth rate is minimum when there is no density contrast, and increasing or decreasing the ratio of the
density of the annular to the core fluid increases the growth rate. A similar behavior is also observed for
the variation of axial wavenumber of the most dangerous mode with At. It can be seen in Figs. 4.22 and
4.23 that ωi,max and βmax monotonically decrease with increasing Froude number and inverse capillary
number. The decrease in βmax with the inverse capillary number, suggests that the wavelength of the most
dangerous mode increases with increasing surface tension. A similar result was also obtained by several
researchers (e.g. Selvam et al. (2007)). This behavior can be clearly evident in Fig. 4.15 where we can
see that decreasing Ca (increasing surface tension) reduces the shortwave length small scale structures.
An energy budget analysis similar to that given in Sahu & Matar (2010) (not shown) predicts that the
most dangerous modes are interfacial ones. Thus these instabilities are of Yih-type as we do not see any
‘roll-up’ phenomenon in the present study.
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4.4 Summary

The pressure-driven displacement flow of two immiscible fluids in an inclined channel in the pres-
ence of viscosity and density gradients is investigated by using a multiphase lattice Boltzmann method.
The effects of viscosity ratio, density ratio characterized by Atwood number, gravity characterized by
Froude number and surface tension characterized by capillary number are examined. The effect of chan-
nel inclination is investigated in terms of flow structures, front velocities and displacement rates. Our
results indicate that increasing viscosity ratio decreases the displacement rate, and has a non-monotonic
effect on the velocity of the leading front. However, the velocity of the trailing edge decreases with
increasing the viscosity ratio. We found that the displacement rate of the thin-layers (after the leading
front crossed the simulation domain) increases with increasing the angle of inclination. This is due to
the increase in the intensity of the interfacial instabilities with increasing the inclination angle, which
helps in cleaning the channel. Our results predict the front velocity of the “lock-exchange flow” of two
immiscible fluids in the exchange flow dominated regime. This is also consistent with the finding of Séon
et al. (2005); Taghavi et al. (2012) for exchange flow of miscible fluids at high Peclet number. A linear
stability analysis of a three-layer system predicts the behavior of the numerical simulation qualitatively.
We also observe that the instabilities are of Yih-type.
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CHAPTER 5

Pressure-driven displacement 
ow in a square duct

In this chapter, the displacement flow of a liquid originally occupying a square duct by another
immiscible liquid of different density and viscosity, which is injected from the inlet of the channel is in-
vestigated. This is an extension of our previous work of the displacement flow in a two-dimensional (2D)
channel which was presented in Chapter 4. As the three-dimensional simulations are computationally
very demanding, we used our GPU based LBM solver, which is 25-times faster than the correspond-
ing CPU based code on a single core. A three-dimensional-fifteen-velocity (D3Q15) lattice model is
used. The effects of channel inclination, viscosity and density contrasts are investigated. The contours
of the density and the average viscosity profiles in different planes are plotted and compared with those
obtained in a two dimensional channel. This study provides the complete picture of the instabilities; a
new screw-type instability is seen in the three-dimensional channel which can not be observed in two-
dimensional channel. Previously, Riaz & Meiburg (2003) and Oliveira & Meiburg (2011) numerically
studied three-dimensional displacement flow of two miscible fluids in porous media and Hele-Shaw cell,
respectively. They found that some of the flow features in 3D are qualitatively different from those ob-
tained in 2D simulation. Similarly, Hallez & Magnaudet (2008) investigated the effects of buoyancy
in inclined channel/pipe, and found that the vortical structures are more coherent in two-dimensional
geometry than those in three-dimensional geometry.

In this chapter, the details of the problem formulation are given in section 5.1 and the results of this
study are provided in section 5.2.

5.1 Problem description

The pressure-driven displacement of one liquid (liquid ‘2’: viscosity µ2 and density ρ2) by an an-
other liquid (liquid ‘1’: viscosity µ1 and density ρ1) in a square duct is considered. The liquids are
immiscible and are assumed to be incompressible Newtonian. The schematic of the geometry is shown
in Fig. 5.1. A three-dimensional rectangular coordinate system (x, y, z), is used to model the flow dynam-
ics where x, y and z denote the axial, vertical and the azimuthal coordinates, respectively. The inlet and
the outlet of the channel are located at x = 0 and L, respectively. The rigid and impermeable walls of the
channel are located at y = 0,H and z = 0,W, where in this study, we chose W = H. The aspect ratio of
channel, L/H is 32. θ is the angle of inclination measured with the horizontal. g is the acceleration due
to gravity. The components of gravity gx(≡ gsinθ) and gy(≡ gcosθ) act in the negative axial and negative
vertical directions, respectively. The gravity component in the azimuthal direction, gz equals to zero. In
the initial configuration, the channel portions from 0 ≤ x ≤ H/4 and H/4 ≤ x ≤ L are filled with liquid
‘1’ and liquid ‘2’, respectively.

At t = 0, the liquids inside the channel are stationary when a fully-developed flow due to a pressure-
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gradient is imposed at the inlet. This is given by

∂2u
∂y2 +

∂2u
∂z2 = Re

dp
dx
, (5.1)

where u is the velocity component in the axial direction and p is the pressure. The velocity components in
the vertical (v) and azimuthal (w) directions are zero at the inlet. The pressure-gradient is obtained from
the constant volumetric flow rate condition (in the present study, the volumetric flow rate Q is 89.38).
The no-slip and no penetration boundary conditions are imposed at the walls and the Neumann condition
is prescribed at the outlet (x = L). The Reynolds number is defined as Re ≡ Qρ1/Wµ1. Viscosity ratio,
m, is the ratio of viscosity of liquid ‘2’ to the viscosity of liquid ‘1’, i.e. m ≡ µ2/µ1. The density contrasts
between the liquids are measured by Atwood number At (≡ (ρ2 − ρ1)/(ρ2 + ρ1)). The gravity effects can
be characterized by Froude number (Fr), defined as Fr ≡ Q/HW

√
AtgH. The magnitude of surface

tension is measured by κ, which we kept constant in the present study. The dimensionless time scale is
represented as t(≡ H2W/Q).

Figure 5.1: Schematic describing the geometry and the initial configuration. The inlet and outlet are located at
x = 0 and x = L, respectively. The aspect ratio of the channel, L/H, is 32. Initially the channel portions from
0 ≤ x ≤ H/4 and H/4 ≤ x ≤ L are filled with liquid ‘1’ and liquid ‘2’, respectively.

5.2 Results and discussion

We start presenting our results by first showing the results of grid independency tests. The temporal
variation of the dimensionless mass of liquid ‘2’, Mt/M0, is plotted for different grids in Fig. 5.2. Here
Mt represents the instantaneous mass of liquid ‘2’, and is defined as Mt = ρ2

∫ W
0

∫ H
0

∫ L
0

φ−φ1
φ2−φ1

dxdydz.

M0(≡ ρ2
φ−φ1
φ2−φ1

LHW) is the mass of liquid ‘2’ initially occupying the channel at t = 0. The parameters
used to generate this plot are Re = 100, m = 10, At = 0.2, Fr = 5, κ = 0.005 and θ = 45◦. In
Fig. 5.2, it can be seen that Mt/M0 decrease monotonically with time as liquid ‘2’ is displaced by
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liquid ‘1’. The dotted line represents the analytical expression for plug-flow displacement (given by
Mt/M0 = 1 − tH/L). It can be seen that during the early times (t < 10) the displacement rate is close to
that of the analytical solution. However at latter times, the actual displacement is slower than that of the
plug-flow displacement process. Similar behavior is observed in the two-dimensional simulation shown
in Chapter 4, but for miscible fluids, Sahu et al. (2009b) found that the displacement rate is much faster
than that of the plug flow displacement. This difference is attributed to the phase change associated with
the miscible systems. In Fig. 5.2 it can be seen that the results obtained using different grids are nearly
the same (with a maximum absolute error less than 1%). The contours of φ in the x-y plane obtained
from the three-dimensional simulation for the parameter values same as Fig. 5.2 are shown in Fig. 5.3
for t = 10 and 30 for different grids considered. It can be seen that the flow dynamics are qualitatively
similar for all the grids considered; however close inspection of these results reveals that there is a slight
increase in the velocity of the finger tip for the coarsest grid, which tends to converge as we increase the
grid points. Therefore for rest of the simulations, 2112 × 66 × 66 grid is used.
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/M

0

1600×50×50

1856×58×58

2112×66×66

Figure 5.2: Variation of mass fraction of the displaced liquid (Mt/M0) with time for different grids. The rest of
the parameters are Re = 100, m = 10, At = 0.2, Fr = 5, κ = 0.005 and θ = 45◦. The dotted line represents the
analytical solution of the plug-flow displacement, given by Mt/M0 = 1 − tH/L.

The spatio-temporal evolution of the isosurface of φ in the range 0.023 − 0.25 (which represents
the interface between the fluids) is shown in Fig. 5.4 for the parameter values the same as those used to
generate Fig. 5.2. This set of parameter values represents a situation when a less viscous and less dense
liquid displaces a highly viscous and highly dense liquid. In this system, due to the imposed pressure-
gradient at the inlet, a ‘finger’ of liquid ‘1’ penetrates into the region of liquid ‘2’. As the channel is
inclined at an angle θ = 45◦, the motion induced by the imposed pressure-gradient is opposed by the
flow due to the gravitational force (proportional to gx) in the negative axial direction. Therefore the flow
dynamics is due to the competition between the imposed pressure-gradient and the gravity force. At the
same time, the component of the gravitational force in the vertical direction (proportional to gy) acts to
segregate the two liquids. The finger becomes asymmetrical because of this force. We observed that
for t ≥ 10 the interface separating the two liquids becomes unstable forming nonlinear interfacial waves
which grow in time. At later times (t > 18 for this set of parameter values) the instabilities of corkscrew
pattern are observed. This pattern is the consequence of the Yih-type instabilities [Yih (1967)] in the
linear regime. By conducting a linear stability analysis in a miscible core-annular flow configuration,
Selvam et al. (2007) found that, at low diffusivity, the corkscrew mode becomes more unstable than the
axisymmetric mode. The corkscrew-type pattern was also observed by Scoffoni et al. (2001) in miscible
displacement flow in a vertical pipe.
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(a)

1600 × 50 × 50

1856 × 58 × 58

2112 × 66 × 66

(b)

1600 × 50 × 50

1856 × 58 × 58

2112 × 66 × 66

Figure 5.3: Contours of the index function, φ at (a) t = 10 and (b) t = 30 in the x-y plane at z = W/2 for different
grids. The parameters are the same as those of Fig. 5.2 .

Figure 5.4: Evolution of the isosurface of φ at the interface at different times (from left to right: t = 12, 18, 30 and
50) for the simulation domain of 2112 × 66 × 66 grid. The parameters are Re = 100, m = 10, At = 0.2, Fr = 5,
κ = 0.005 and θ = 45◦. The flow is in the positive x-direction.
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Next, the effects of angles of inclination, θ is discussed by plotting the contours of φ at t = 20 in
the x-y plane at z = W/2, and in x-z plane at y = H/2 in Fig. 5.5(a) and (b), respectively. The rest
of the parameter values are Re = 100, At = 0.2, m = 10, Fr = 1 and κ = 0.005. The plots in panel
(a) of this figure are the views in the z-direction. It can be seen that the intensity of the instabilities
increases with increasing the angle of inclination. Also due to the decrease in the gravitational force
in the y-direction, for higher angles of inclination core-annular structures form as the finger penetrates
downstream. However, the gravitational force in the negative axial direction increases with increasing
θ, which makes the trailing fingers asymmetrical in the upstream regime. We observe that the fingers
have blunt “nose” separating the two fluids in these cases. For largest angle of inclination considered
(θ = 85◦), the droplet of fluid ‘1’ is detached from the main finger at t = 20. As the gravitational force in
the y-direction decreases with increase in θ, for higher angles of inclination it is dominated by the effects
created due to the imposed pressure-gradient; thus leaving patches of the heavier fluid near the top wall
at y = H. This is shown in Fig. 5.5(b) when one looks from the top in the y-direction.

(a)

θ = 5◦

θ = 30◦

θ = 60◦

θ = 85◦

(b)

θ = 5◦

θ = 30◦

θ = 60◦

θ = 85◦

Figure 5.5: Contours of the index function, φ at t = 20 in (a) x-y plane at z = W/2, and(b) x-z plane at y = H/2.
The parameters are Re = 100, At = 0.2, m = 10, Fr = 1 and κ = 0.005.

The contours of φ in the y-z plane at x = L/2 are shown in Fig. 5.6 for different angles of inclination.
The parameter values are the same as those used to generate Fig. 5.5. This is a view of a cross-section
at the mid-length of the channel in the x-direction. For smaller angles of inclination, the gravitational
force in the negative y-direction is stronger which tries to settle the heavier fluid in the bottom part of the
channel. This can be observed for θ ≤ 30◦ in Fig.5.6. However as discussed above for higher angles of
inclination the pressure-gradient dominates the flow dynamics creating a core-annular configuration as
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shown in Fig. 5.6 for θ > 60◦.

θ = 5◦ θ = 30◦ θ = 60◦ θ = 85◦

Figure 5.6: Contours of the index function, φ at t = 20 in the y-z plane at x = L/2. The parameters are Re = 100,
At = 0.2, m = 10, Fr = 1 and κ = 0.005.

In Fig. 5.7(a) and (b), the axial variation of normalized average viscosity, µ̄yz
(
≡ µyz/µ

0
yz

)
is plotted

at different times for θ = 30◦ and θ = 85◦, respectively. Here µyz = 1
HW

∫ W
0

∫ H
0 µdydz and µ0

yz is the
value of µyz at x = 0. The rest of the parameters are the same as those in Fig. 5.5. It can be seen
that as expected from the discussion of Fig. 5.5(a) the variation becomes increasingly complex with
increase in θ. Similarly, the vertical variation of normalized average viscosity, µ̄xz

(
≡ µxz/µxz

0
)
, where

µxz = 1
LW

∫ W
0

∫ L
0 µdxdz, is plotted in Fig. 5.8 for different times. The value of µxz at y = 0 is designated

by µ0
xz. It can be seen that for higher angles of inclination a core-annular structure is formed, which was

also discussed in Fig. 5.6. On the other hand, for lower angles of inclination a two-layer structure is
formed as the heavier fluid settles in the lower part of the channel.
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Figure 5.7: Axial variation of normalized average viscosity, µ̄yz

(
≡ µyz/µ

0
yz

)
for (a) θ = 30◦ and (b) θ = 85◦. The

rest of the parameters are Re = 100, At = 0.2, m = 10, Fr = 1 and κ = 0.005. Here µyz = 1
HW

∫ W
0

∫ H
0 µdydz, and

µ0
yz is the value of µyz at x = 0.
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Figure 5.8: Vertical variation of normalized average viscosity, µ̄xz

(
≡ µxz/µxz

0
)

for (a) θ = 30◦, and (b) θ = 85◦.

The rest of the parameters are the same as those used in Fig. 5.5. Here µxz = 1
LW

∫ W
0

∫ L
0 µdxdz, and µ0

xz is the value
of µxz at y = 0.

The three-dimensional results are next compared with those obtained from the two-dimensional
simulations. For this, the axial and the vertical variation of µ̄y

(
≡ µy/µ

0
y

)
and µ̄x

(
≡ µx/µ

0
x

)
are plotted

in Figs. 5.9 and 5.10, respectively, for θ = 5◦ and θ = 85◦. Here µy = 1
H

∫ H
0 µdy and µx = 1

L

∫ L
0 µdx.

µ0
y and µ0

x are the values of µy at x = 0 and µx at y = 0, respectively. It can be seen in Fig. 5.9 that
the axial variation of µ̄y is more chaotic in the two-dimensional channel as compared to that in three-
dimensional channel (shown in Fig. 5.7). This is due to the stabilizing effects of the azimuthal walls to
the disturbances of smaller-wavelength. This behavior is similar to the surface-tension effects in two-
dimensional channel [Hooper & Grimshaw (1985)]. Inspection of the vertical variation of µ̄x reveals that
the two-dimensional flow remains core-annular even for small angles of inclination. This is in contrast
with the phenomena observed in three-dimensional computations (Fig. 5.8).
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Figure 5.9: Axial variation of normalized average viscosity, µ̄y

(
≡ µy/µ

0
y

)
, for (a) θ = 5◦, (b) θ = 85◦ in a two-

dimensional channel. The rest of the parameters are the same as those used to generate Fig. 5.5. Here µy =
1
H

∫ H
0 µdy, and µ0

y is the value of µy at x = 0.
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Figure 5.10: Vertical variation of normalized average viscosity, µ̄x

(
≡ µx/µ

0
x

)
, for (a) θ = 5◦, (b) θ = 85◦ in a

two-dimensional channel. The rest of the parameters are the same as those used to generate Fig. 5.5. Here µx =
1
L

∫ L
0 µdx, and µ0

x is the value of µx at y = 0.

Lastly, the results obtained from the two and three-dimensional channel are compared by plotting
the spatio-temporal evolution of φ contours in Fig. 5.11(a) and (b), respectively for Re = 100, m = 20,
At = 0.2, Fr = 5, θ = 30◦ and κ = 0.005. It can be observed that 3D effect reduces the short-wave
instabilities, which are apparent in the two-dimensional channel. This behavior is also discussed above.
Close inspection of Fig. 5.11 also reveals that the velocity of the finger tip is more in three-dimensional
channel than that in the two-dimensional channel. We found (not shown here) that the effects of other
parameters such as Atwood number, Froude number and surface-tension parameter are similar to that of
two-dimensional channel.
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Figure 5.11: Spatio-temporal evolution of the contours of the index function, φ. (a) x-y plane at z = W/2 (three-
dimensional simulation), and (b) the corresponding two-dimensional results. The parameters are Re = 100, m =

20, At = 0.2, Fr = 5, θ = 30◦ and κ = 0.005.

5.3 Summary

Three-dimensional simulations of pressure-driven displacement flow of two immiscible liquids are
performed in a square duct using a multiphase lattice Boltzmann approach, and compared with the cor-
responding two-dimensional simulations. The flow dynamics in a three-dimensional channel is quite
different than that in two-dimensional channel. In particular, screw-type instabilities are found in three-
dimensional channel, whereas saw-tooth type instabilities are apparent in 2D channel. It is also shown
that increasing angle of inclination increases the intensity of the instabilities. The effects of Atwood
number, Froude number and surface-tension parameter are observed to be qualitatively similar to those
in a two-dimensional channel.
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CHAPTER 6

Other studies

Apart from the studies reported in previous chapters, few other preliminary studies are carried out.
In this chapter, the buoyancy-driven interpenetration of two immiscible fluids in an oscillating confined
channel is presented. Here, the effect of time period of oscillation on the mixing characteristics is inves-
tigated using the multiphase lattice Boltzmann approach reported in Chapter 2. The geometry considered
and results obtained from this study are discussed below.

6.1 Interpenetration of two immiscible fluids in an oscil-
lating channel
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Figure 6.1: Schematic showing the geometry (not to scale) of the system.

The buoyancy-driven flow of two immiscible fluids in an oscillating channel of height L and width
H is considered, as shown in Fig. 6.1. The upper and the lower halves of the channel are filled with
a fluid having density ρ1 and viscosity µ1 and a fluid having density ρ2 and viscosity µ2, respectively;
ρ1 > ρ2. These fluids are initially separated by a partition at x = L/2 which is suddenly removed and
both the fluids are allowed to interpenetrate into each other at t > 0. A two-dimensional rectangular
coordinate system (x, y) is used to describe the flow, where x and y denote the axial and the transverse
coordinates, respectively. g is the acceleration due to gravity, such that the components of the gravity,
gx(= gcosθ) and gy(= gsinθ) act in the axial and the negative transverse direction, respectively. Here,
θ is the angle of inclination measured with the vertical, given by θ = θm + cos(2πt/Tp) where θm is the
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maximum angle of inclination, t is the time and Tp is the time period of oscillation. As the flow is a
balance between inertial and gravity forces, the characteristic velocity is defined as V =

√
gH. Various

dimensionless parameters describing the flow are the viscosity ratio (m = µ1/µ2), Atwood number (At ≡
(ρ2 − ρ1)/(ρ2 + ρ1)), Reynolds number (Re ≡ H3/2g1/2ρ1/µ1), magnitude of surface tension (κ) and the
time period of oscillation (Tp). The gravity is chosen such that

√
gH = 0.08. In the present study, κ = 0.

6.1.1 Results and discussion

t =⇒ 120 200 360 440 600

Figure 6.2: Spatio-temporal evolution of density contours in a non-oscillating vertical channel. The simulation
parameters are At = 0.01, m = 1, Re = 500, θm = 0◦ and κ = 0.

The main objective of the present study is to investigate the effects of time period of oscillation and
the Atwood number on the buoyancy induced mixing of two immiscible liquids of equal viscosities but
different densities. I begin the presentation of the results by first considering a non-oscillating vertical
channel to study the mixing dynamics. Fig. 6.2 shows the spatio-temporal evolution of the density
contours in a vertical channel (θm = 0◦, Tp = 0) for At = 0.01. The rest of the parameters are m = 1,
Re = 500 and κ = 0. It can be seen that for t > 0, the two fluids interpenetrate each other by moving into
the upper and the lower regions of the channel. Here the mixing and the flow are characterized by the
competition between inertial and the gravity forces. The gravitational force, g, has two components. The
axial component of gravity, proportional to gcosθ, acts in the negative x-direction. It induces motion
of the heavier fluid in the downward direction by displacing the lighter fluid into the upper part of the
channel. The lighter fluid, by mass conservation, moves into the region of the displaced heavier fluid.
Thus the two fluids accelerate into each other as the time progresses. On the other hand, the fluids
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segregate because of the other component of gravity, gsinθ; however, for θm = 0◦, there is no effect of
this component of gravity on the flow dynamics. Thus in this case, the only effect is due to the axial
component of gravity which favors the mixing process due to the formation of the interfacial instabilities
as the fingers of the heavier and the lighter fluids penetrate in the downward and the upward directions,
respectively. At later times, these instabilities become vigorous resulting in intense ‘mixing’ of the fluids.

Next, consider a channel initially inclined at an angle θm and the channel is subjected to oscillations
around this angle of inclination. The dynamics obtained in an oscillatory channel, oscillating with a
time period of oscillation, Tp = 9600 is shown in Fig. 6.3 which shows the spatio-temporal evolution of
density contours at various times. Rest of the parameter values are At = 0.01, m = 1, Re = 500, θm = 45◦

and κ = 0. In comparison with the density contours obtained in a non-oscillating channel (Fig. 6.2), it
can be seen here that the mixing is more vigorous and the interpenetration is more as compared with that
in the vertical channel.

t =⇒ 120 200 360 440 600

Figure 6.3: Spatio-temporal evolution of density contours in an oscillating channel with Tp = 9600. The simula-
tion parameters are At = 0.01, m = 1, Re = 500, θm = 45◦ and κ = 0.

The axial variation of depth-averaged c (c̄x =
∫ H

0 cdy/H) and the transverse variation of axially-

averaged c (c̄y =
∫ L

0 cdx/L) are shown in Fig. 6.4. The parameters that are used to generate this figure
are the same as those of Fig. 6.3. Here, c corresponds to the term (ρ − ρ2)/(ρ1 − ρ2). It can be seen
that the variation of depth-averaged c (c̄x) along the axial direction is asymmetrical. This is due to the
transverse component of gravity that causes the segregation effect. When the transverse component of
gravity is negligible, a symmetrical profile of c̄x is observed in the case of a vertical channel (not shown).
For the set of parameters considered here, it can be observed that the transverse variation of axially-
averaged c (c̄y) is complex. This is due to the unstable interface between the two fluids which can also
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Figure 6.4: Evolution of the (a) axial variation of the depth-averaged c (c̄x) and (b) the transverse variation of the
axially-averaged c (c̄y) in an oscillating channel with Tp = 9600. The rest of the parameter values are At = 0.01,
m = 1, Re = 500, θm = 45◦ and κ = 0.

be observed from the density contours shown in Fig. 6.4.

The effect of time period of oscillation (Tp) on the mixing characteristics is studied next. For this,
a mixing length is defined as the total length of interpenetration of the both the fingers at each time.
The mixing length obtained in an oscillating channel (Lm) is normalized with the mixing length obtained
in a non-oscillatory channel (L0). Fig. 6.5 shows the effect of Tp on the variation of the normalized
mixing length, Lm/L0 at various times. It is observed that as the time period of oscillation increases, the
normalized mixing length also increases. Also, it can be seen that the oscillation enhances the mixing
characteristics at early times. Therefore, intense mixing can be achieved early in a channel subjected to
oscillation.
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Figure 6.5: The effect of Tp on the normalized mixing length (Lm/L0). The parameters are At = 0.01, m = 1, Re =

500, θm = 45◦ and κ = 0.

Lastly, the effect of Atwood number on the mixing characteristics is investigated. Fig. 6.6 shows the
variation of mixing length in an oscillating channel for four different combinations of Atwood number
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Figure 6.6: The temporal variation of mixing length in an oscillating channel (Lm) for various At and Tp. The
parameters are m = 1, Re = 500, θm = 45◦ and κ = 0.

and time period of oscillation. The other simulation parameters are m = 1, Re = 500, θm = 45◦ and
κ = 0. It can be seen that the mixing length increases with increasing At and also increasing Tp. It can be
concluded from the figure that higher mixing lengths can be achieved with increase in Atwood number
and time period of oscillation. Such a combination would give maximum interpenetration of the two
fluids.
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CHAPTER 7

Conclusions

In this thesis, the flow dynamics and instabilities occuring in buoyancy-driven and pressure-driven
displacement flows of two immiscible liquids with varying viscosity and density in two- and three-
dimensional channels are investigated using a multiphase LBM approach. The resulting flow in such
systems can give rise to several new instability patterns. As the problems considered in this thesis are
computationally very expensive, a lattice Boltzmann method is used for solving these problems.

The LBM is an alternative computational method for fluid flows and is found to be very promising
for interfacial flows. It is a mesoscopic model derived from lattice gas automata. The explicit nature
of this method and the absence of the pressure-Poisson equation (which is essential to satisfy the con-
servation of mass in conventional Navier-Stokes (N-S) solvers) make the method computationally very
economical and an easily parallelizable technique. In addition to this, our LBM code is implemented
on graphics processing unit (GPU), which gives 25 times speed up over the corresponding CPU based
code. The GPU is a new paradigm for scientific computing. It is a powerful tool for performing parallel
computations with less energy consumption (one GPU card requires only 150 Watts and it costs only
Rs. 60,000-70,000). The LBM, which itself is computationally faster than the conventional N-S solvers,
when implemented on GPU, gives a very high computational speed-up.

The various problems investigated in the present work are discussed below.

(i) Buoyancy-driven flow which is commonly known as lock-exchange flow refers to the interpene-
tration of two immiscible fluids initially separated by a partition and suddenly allowed to mix under the
action of the gravitational force. Considering miscible fluids having different density, but the same dy-
namic viscosity, this problem has been studied experimentally and numerically by many researchers
[Séon et al. (2004), Séon et al. (2007a,b), Hallez & Magnaudet (2008)]. In the present work, the
buoyancy-induced interpenetration of two immiscible fluids of varying viscosities and densities is in-
vestigated in a confined tilted channel. In this configuration, the gravitational force has two components,
which act in the axial and transverse directions. The axial component of gravity induces a downward
motion of the heavier fluid, which in turn, by mass conservation, displaces the lighter fluid to move into
the region of the heavier fluid. Thus both the heavier and the lighter fluids accelerate into the lower and
the upper parts of the channel, respectively. On the other hand, the component of the gravitational force
in the transverse direction, acts to segregate the two fluids. The interface between the fluids becomes
unstable, which give rise to the development of the interfacial instabilities.

The main aim of this study is to investigate the effects of viscosity differential on the flow dynamics.
For high viscosity ratios relatively stable fingers are observed, which move essentially like two individ-
ual Poiseuille flows in the opposite directions. The intensity of interfacial instabilities increases with
decreasing viscosity differential of the fluids and the flow becomes progressively more complex. The
front velocities decrease with increase in viscosity ratios. The effect of other parameters like the angle
of inclination and surface tension are also investigated. A three-dimensional extension of this study is
carried out and the results are compared with those obtained in two-dimensional channel.
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(ii) Next, the effects on imposed pressure-gradient on the flow dynamics has been investigated. In
this case, the displacement of an initially resident fluid inside the channel by another fluid of different
viscosity and density, which is injected at the inlet, has been studied. As discussed above, the displace-
ment flow of one fluid by another one can be found in many industrial and geological applications. In
this case, the flow dynamics is a result of the competition between the imposed pressure-gradient and the
axial component of gravity. The pressure-driven flow induces motion of displacing fluid into the channel,
whereas the axial component of the gravity opposes this force by accelerating the displaced fluid in the
upstream direction. When a less viscous fluid displaces a high viscous fluid, the flow becomes unstable
forming interesting instability patterns at the interface separating the fluids.

This is a parametrically rich problem, involving several dimensionless parameters, such as, viscosity
ratio, Atwood number, Reynolds number, Froude number, Capillary number and angle of inclination. A
detailed parametric study is conducted to investigate the effects of these parameters on the flow dynamics.
The Yih-type interfacial instabilities of sawtooth-like shape are observed at the interface separating the
fluids. It is found that the displacement rate of the resident fluid decreases with increase in viscosity ratio.
Although viscosity ratio has a non-monotonic effect on the velocity of the leading front, the velocity of
the trailing front is found to be decreasing with increasing the viscosity ratio. Our results also predict
the front velocity of the “lock-exchange flow” of two immiscible fluids in the exchange flow dominated
regime which is consistent with the experiments of Séon et al. (2005). A single dimensionless parameter
χ(≡ 2Resinθ/AtFr2) is derived by balancing the buoyancy force in the axial direction with the imposed
pressure force. Various flow regimes such as temporary back flow, stationary back flow and instantaneous
displacement are identified based on χ. The critical value of χ for which transition of the exchanged flow
regime to the displacement flow regime occurs agrees with the experimental finding of Taghavi et al.
(2012). A linear stability analysis for a three-layer flow has been conducted and qualitative agreement is
found with the results obtained from the lattice Boltzmann simulations.

(iii) Finally, in order to get the complete picture of the instabilities, the above study is extended to
three-dimensions. A new screw-type instability is observed in the three-dimensional simulations. It is
also shown that increasing angle of inclination increases the intensity of the instabilities. The effects of
other parameters like Atwood number, Froude number and surface-tension parameter are observed to be
qualitatively similar to those obtained in a two-dimensional channel.

In future, the study conducted in this thesis can be extended to include the temperature and non-
Newtonian effects. Also it will be very interesting to study these problems in the very high Reynolds
number regime, which are directly relevant to many industrial applications.



APPENDIX I

Derivation of Navier-Stokes equation from the

Boltzmann equation

It is well known that hydrodynamic equations can be obtained from the continuous Boltzmann
equation [Wagner (2008)].

A Maxwell-Boltzmann equilibrium distribution function
and some important identities

Maxewell-Boltzmann equilibrium distribution function is given by

f 0(v) =
n

(2πθ)3/2 e−[(v−u)2/2θ]. (I.1)

In this section, the proof of the following important identities are shown which are used in the subsequent
derivations.

∫ ∞

−∞

f 0 = n, (I.2)

∫ ∞

−∞

f 0(vα − uα) = 0, (I.3)

∫ ∞

−∞

f 0(vα − uα)(vβ − uβ) = nθδαβ, (I.4)

∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(vγ − uγ) = 0, (I.5)

∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(v − u)2 = 5nθ2δαβ. (I.6)
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A.1 Proof of Eq. (I.2)

Left hand side of Eq. (I.2) is given by∫ ∞

−∞

f 0dv =

∫ ∞

−∞

n
(2πθ)3/2 e−(v−u)2/2θdv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v1−u1)2/2θdv1

∫ ∞

−∞

e−(v2−u2)2/2θdv2

∫ ∞

−∞

e−(v3−u3)2/2θdv3

=
n

(2πθ)3/2 I3, (I.7)

where

I =

∫ ∞

−∞

e−(v1−u1)2/2θdv1.

Let t = v1 − u1 =⇒ dt = dv1
So,

I =

∫ ∞

−∞

e−t2/2θdt =
√

2πθ.

So, Eq. (I.7) can be written as ∫ ∞

−∞

f 0dv =
n

(2πθ)3/2 I3

=
n

(2πθ)3/2 ((2πθ)1/2)
3

= n.

A.2 Proof of Eq. (I.3)

Left hand side of Eq. (I.3) is given by∫ ∞

−∞

f 0(vα − uα)dv =

∫ ∞

−∞

n
(2πθ)3/2 e−(v−u)2/2θ(vα − uα)dv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v1−u1)2/2θ(vα − uα)dv1

∫ ∞

−∞

e−(v2−u2)2/2θdv2

∫ ∞

−∞

e−
(v3−u3)2

2θ dv3

=
n

(2πθ)3/2 I1 × I2 × I3,

where α can take values 1, 2, 3.
For α = 1,

I1 =

∫ ∞

−∞

e−(v1−u1)2/2θ(v1 − u1)dv1.

Let t = (v1 − u1)2 =⇒ dt = 2(v1 − u1)dv1
So,

I1 =

∫ ∞

−∞

e−t/2θdt = 0.

Similarly, for α = 2, it can be shown that I2 = 0 (keeping ‘v2 − u2’ in I2 term).
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and for α = 3 it can be shown that I3 = 0 (keeping ‘v3 − u3’ in I3 term).
So, for any values of α we have, I1 × I2 × I3 = 0.
So, LHS : ∫ ∞

−∞

f 0(vα − uα)dv =
n

(2πθ)3/2 × 0 = 0.

A.3 Proof of Eq. (I.4)

Left hand side of Eq. (I.4) is given by∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)dv =

∫ ∞

−∞

n
(2πθ)3/2 e−(v−u)2/2θ(vα − uα)(vβ − uβ)dv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v1−u1)2/2θ(vα − uα)(vβ − uβ)dv1

∫ ∞

−∞

e−(v2−u2)2/2θdv2

∫ ∞

−∞

e−(v3−u3)2/2θdv3

=
n

(2πθ)3/2 I1 × I2 × I3,

(I.8)

where α and β both can take values 1, 2, 3.
For α = 1 and β = 1,

I1 =

∫ ∞

−∞

e−(v1−u1)2/2θ(v1 − u1)2dv1.

Let t = v1 − u1 =⇒ dt = dv1
So,

I1 =

∫ ∞

−∞

t2e−t2/2θdt =

√
π

2
(2θ)3/2,

( ∫ ∞

−∞

x2e−ax2
dx =

√
π

2
a−3/2

)
I2 =

√
2πθ,

I3 =
√

2πθ.

Similarly for α = 2 and β = 2, (including (v2 − u2)2 in I2 term)

I1 =
√

2πθ,

I2 =

√
π

2
(2θ)

3
2 ,

I3 =
√

2πθ.

and for α = 3 and β = 3, (including (v3 − u3)2 in I3 term)

I1 =
√

2πθ,

I2 =
√

2πθ,

I3 =

√
π

2
(2θ)

3
2 .
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So, for any α = β, we can say that

I1 × I2 × I3 =
√

2πθ ×
√

2πθ ×
√
π

2
(2θ)3/2

⇒ I1 × I2 × I3 = θ × (2πθ)3/2 (I.9)

For α = 1 and β = 2,

I1 =

∫ ∞

−∞

e−
(v1−u1)2

2θ (v2 − u2)(v1 − u1)dv1

= (v2 − u2)
∫ ∞

−∞

e−
(v1−u1)2

2θ (v1 − u1)dv1

= 0 (I.10)

Similarly, it can be said that for any α , β, at least one of the integral will be zero. So,

I1 × I2 × I3 = 0

From Eq.(I.9) and Eq.(I.10) we can say that

I1 × I2 × I3 = θ × (2πθ)3/2δαβ.

where δαβ = Kronecker delta.
So, LHS of Eq.(I.4) ∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)dv =
n

(2πθ)3/2 × θ × (2πθ)3/2δαβ

= nθδαβ.

A.4 Proof of Eq. (I.5)

Left hand side of Eq.(I.5) is given as∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(vγ − uγ)dv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v−u)2/2θ(vα − uα)(vβ − uβ)(vγ − uγ)dv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v1−u1)2/2θ(vα − uα)(vβ − uβ)(vγ − uγ)dv1∫ ∞

−∞

e−(v2−u2)2/2θdv2

∫ ∞

−∞

e−(v3−u3)2/2θdv3

=
n

(2πθ)3/2 I1 × I2 × I3,

For α = 1, β = 1 and and γ = 1, we have

80



I1 =

∫ ∞

−∞

(v1 − u1)3e−(v1−u1)2/2θdv1.

Let t = v1 − u1 =⇒ dt = dv1
So,

I1 =

∫ ∞

−∞

t3e−t2/2θdt = 0.

For any set of values of α, β, and γ we can group together the term in I1, I2 and I3 in such a way that at
least one of them will be zero. So, for any set of values of α, β, and γ,

I1 × I2 × I3 = 0.

So, LHS of Eq.(I.5) ∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(vγ − uγ)dv = 0.

A.5 Proof of Eq. (I.6)

Left hand side of Eq.(I.6) is given as∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(v − u)2dv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v−u)2/2θ(vα − uα)(vβ − uβ)(v − u)2dv

=
n

(2πθ)3/2

∫ ∞

−∞

e−(v1−u1)2/2θe−(v2−u2)2/2θe−(v3−u3)2/2θ(vα − uα)(vβ − uβ)
[
(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

]
dv,

(I.11)

For α = 1 and β = 1, the above integral becomes

n

(2πθ)
3
2

∫ ∞

−∞

e−(v1−u1)2/2θe−(v2−u2)2/2θe−(v3−u3)2/2θ(v1 − u1)2
[
(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

]
dv

Let v1 − u1 = x, v2 − u2 = y, v3 − u3 = z
By making the above substitution, we can write the above integral as

n
(2πθ)3/2

∫ ∞

−∞

e−x2/2θe−y2/2θe−z2/2θx2(x2 + y2 + z2) dx dy dz

=
n

(2πθ)3/2

[ (∫ ∞

−∞

x4e−x2/2θdx
∫ ∞

−∞

e−y2/2θdy
∫ ∞

−∞

e−z2/2θdz
)

+

(∫ ∞

−∞

x2e−
x2
2θ dx

∫ ∞

−∞

y2e−y2/2θdy
∫ ∞

−∞

e−z2/2θdz
)

+

(∫ ∞

−∞

x2e−x2/2θdx
∫ ∞

−∞

e−y2/2θdy
∫ ∞

−∞

z2e−z2/2θdz
) ]

(I.12)
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=
n

(2πθ)3/2

[ (√
π3/4(2θ)5/2 ×

√
2θπ ×

√
2θπ

)
+

( √
π

2
(2θ)3/2 ×

√
π

2
(2θ)3/2 ×

√
2θπ

)
+

( √
π

2
(2θ)3/2 ×

√
2θπ ×

√
π

2
(2θ)3/2

) ]
(I.13)

=
n

(2πθ)3/2

[ (
2πθ ×

√
π

3
4

(2θ)5/2
)

+
(
2 × (2θ)3 ×

√
2θπ

) ]
=

n
(2πθ)3/2 × (2θ)7/2 ×

(
3
4
π

3
2 +

2
4
π

3
2

)
= n(2θ)2 × 5/4 = 5nθ2. (I.14)

We can obtain the same result for α = 2; β = 2 and α = 3; β = 3, by grouping together the terms in
appropriate integrals.
So, for any α = β, LHS of Eq.(I.6) = 5nθ2.
But for any α , β, for example α = 1, β = 2
LHS of Eq.(I.6)

=
n

(2πθ)3/2

∫ ∞

−∞

e−
(v1−u1)2

2θ e−
(v2−u2)2

2θ e−
(v3−u3)2

2θ
[
(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

]
(v1 − u1)(v2 − u2)

Let v1 − u1 = x, v2 − u2 = y, v3 − u3 = z
So,

=
n

(2πθ)3/2

[∫ ∞

−∞

(x2 + y2 + z2)xy
(
e−x2/2θ × e−y2/2θ × e−z2/2θ

)]
=

n
(2πθ)3/2

[ (∫ ∞

−∞

x3e−x2/2θdx
∫ ∞

−∞

ye−y2/2θdy
∫ ∞

−∞

e−z2/2θdz
)

+

(∫ ∞

−∞

xe−x2/2θdx
∫ ∞

−∞

y3e−y2/2θdy
∫ ∞

−∞

e−z2/2θdz
)

+

(∫ ∞

−∞

xe−x2/2θdx
∫ ∞

−∞

ye−y2/2θdy
∫ ∞

−∞

ze−z2/2θdz
) ]

=
n

(2πθ)3/2 (0 + 0 + 0) = 0 (I.15)

So, for any α , β, LHS of Eq.(I.6) = 0.
Thus, we can say that ∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(v − u)2 = 5nθ2δαβ.

where δαβ is kroneckor delta.
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B Moments of Maxwell-Boltzmann equilibrium distribu-
tion function

B.1 Zeroth moment of equilibrium distribution function

Zeroth moment of equilibrium distribution function is given by Eq. (I.2) which we have proved in
the previous section.

B.2 First moment of equilibrium distribution function

First velocity moment of equilibrium distribution function is∫ ∞

−∞

f 0vα = nuα.

To prove this we start from Eq. (I.3) (which we have proved in the previous section) i.e.∫ ∞

−∞

f 0(vα − uα) = 0

⇒

∫ ∞

−∞

f 0vα −
∫ ∞

−∞

f 0uα = 0

⇒

∫ ∞

−∞

f 0vα = uα

∫ ∞

−∞

f 0

⇒

∫ ∞

−∞

f 0vα = nuα (I.16)

B.3 Second moment of equilibrium distribution function

Second velocity moment of equilibrium distribution function is∫ ∞

∞

f 0vαvβ = nuαuβ + nθδαβ.

To prove this we start from Eq. (I.4) (which we have proved in the previous section) i.e.∫ ∞

−∞

f 0(vα − uα)(vβ − uβ) = nθδαβ
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⇒

∫ ∞

−∞

f 0vαvβ −
∫ ∞

−∞

f 0vαuβ −
∫ ∞

−∞

f 0uαvβ +

∫ ∞

−∞

f 0uαuβ = nθδαβ

⇒

∫ ∞

−∞

f 0vαvβ − uβ

∫ ∞

−∞

f 0vα − uα

∫ ∞

−∞

f 0vβ +α uβ

∫ ∞

−∞

f 0 = nθδαβ

⇒

∫ ∞

−∞

f 0vαvβ − nuαuβ − nuαuβ + nuαuβ = nθδαβ

⇒

∫ ∞

−∞

f 0vαvβ = nuαuβ + nθδαβ (I.17)

B.4 Third moment of equilibrium distribution function

Third velocity moment of equilibrium distribution function is∫ ∞

∞

f 0vαvβvγ = nθ(uαδβγ + uβδαγ + uγδαβ) + nuαuβuγ.

To prove this we start from Eq. (I.5) (which we have proved in the previous section) i.e.∫ ∞

−∞

f 0(vα − uα)(vβ − uβ)(vγ − uγ) = 0

⇒

∫ ∞

−∞

f 0(vαvβ − vαuβ − uαvβ + uαuβ)(vγ − uγ) = 0

⇒

∫ ∞

−∞

f 0vαvβvγ −
∫ ∞

−∞

f 0vαuβvγ −
∫ ∞

−∞

f 0uαvβvγ +

∫ ∞

−∞

f 0uαuβvγ

−

∫ ∞

−∞

f 0vαvβuγ +

∫ ∞

−∞

f 0vαuβuγ +

∫ ∞

−∞

f 0uαvβuγ −
∫ ∞

−∞

f 0uαuβuγ = 0

⇒

∫ ∞

−∞

f 0vαvβvγ − uβ

∫ ∞

−∞

f 0vαvγ − uα

∫ ∞

−∞

f 0vβvγ + uαuβ

∫ ∞

−∞

f 0vγ

−uγ

∫ ∞

−∞

f 0vαvβ + uβuγ

∫ ∞

−∞

f 0vα + uαuγ

∫ ∞

−∞

f 0vβ − uαuβuγ

∫ ∞

−∞

f 0 = 0

⇒

∫ ∞

−∞

f 0vαvβvγ − uβ(nuαuγ + nθδαγ) − uα(nuβuγ + nθδβγ) + uαuβ(nuγ)

−uγ(nuαuβ + nθδαβ) + uαuγ(nuβ) + uβuγ(nuα) − nuαuβuγ = 0

⇒

∫ ∞

−∞

f 0vαvβvγ − nuβθδαγ − nuαuβuγ − nuαθδβγ − nuγθδαβ = 0

⇒

∫ ∞

−∞

f 0vαvβvγ = nuαuβuγ + nθ(uαδβγ + uβδαγ + uγδαβ) (I.18)

C Conservation of mass

Boltzmann equation with BGK approximation for collision operator can be written as

∂t f + vα∂α f + F∂v f =
1
τ

( f 0 − f ). (I.19)
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Integrating, we get ∫
∂t f dv +

∫
vα∂α f dv +

∫
F∂v f dv =

∫
1
τ

( f 0 − f ) dv

⇒ ∂t

∫
f dv + ∂α

∫
vα f dv + ∂v

∫
F f dv =

∫
1
τ

( f 0 − f ) dv

⇒ ∂tn + ∂α(nuα) + F∂vn =
1
τ

(n − n)

⇒ ∂tn + ∂α(nuα) = 0 (I.20)

D Conservation of momentum

From Eq. (I.19), we can write

f = f 0 − τ(∂t f + vα∂α f + F∂v f ). (I.21)

Eq. (I.19) can be re-written as

∂t f + vβ∂β f + Fβ∂vβ f =
1
τ

( f 0 − f ).

multiplying “vα” on both sides of the above equation and integrating, we get∫
vα∂t f dv +

∫
vαvβ∂β f dv +

∫
Fβvα∂vβ f dv =

∫
1
τ

( f 0vα − f vα) dv

⇒ ∂t

∫
vα f dv + ∂β

∫
vαvβ f dv + Fβ

∫
vα∂vβ f dv =

1
τ

∫
( f 0vα − f vα) dv

⇒ ∂t

∫
vα f dv + ∂β

∫
vαvβ f dv + Fβ

∫
vα∂vβ f dv =

1
τ

(nuα − nuα)

⇒ ∂t

∫
vα f dv + ∂β

∫
vαvβ f dv + Fβ

∫
vα∂vβ f dv = 0 (I.22)

Now, we simplify each term of Eq. (I.22) one by one.
Third term of left hand side of Eq. (I.22) is

Fβ

∫
vα∂vβ f dv = Fβ

[
vα

∫
∂vβ f dv −

∫ (∫
∂vβ f dv

)
dv

]

= Fβ

[
vα∂vβ

∫
f dv −

∫ (
∂vβ

∫
f dv

)
dv

]
= Fβ

(
vα∂vβn −

∫
f dv

)
= Fβ(0 − n)

= −nFα (I.23)
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Substituting Eq. (I.23) in Eq. (I.22), we get

∂t

∫
vα f dv + ∂β

∫
vαvβ f dv − nFα = 0

⇒ ∂t(nuα) + ∂β

∫
vαvβ f dv − nFα = 0 (I.24)

Eq. (I.21) can be re-written as

f = f 0 − τ(∂t f + vγ∂γ f + Fγ∂vγ f ).

multiplying “vαvβ” with all the terms of the above equation and integrating, we get∫
f vαvβ dv =

∫
f 0vαvβ dv − τ

[∫
vαvβ∂t f dv +

∫
vαvβvγ∂γ f dv + Fγ

∫
vαvβ∂vγ f dv

]
(I.25)

If we evaluate Eq. (I.25) upto first order in derivative (by doing Taylor series expansion around the
equilibrium point) and substitute it in Eq. I.22 we will get Euler equation.
Up to first order in derivative, ∫

f vαvβ dv =

∫
f 0vαvβ dv

⇒

∫
f vαvβ dv = nuαuβ + nθδαβ (I.26)

Substituting Eq. (I.26) in Eq. (I.24), we get

∂t(nuα) + ∂β(nuαuβ + nθδαβ) − nFα = 0

⇒ ∂t(nuα) + ∂β(nuαuβ) = nFα − ∂β(nθδαβ) (I.27)

where Kronecker delta, δαβ, is given as

δαβ =

{
1, α = β

0, α , β.
(I.28)

So, we can write Eq. (I.27) as

∂t(nuα) + ∂β(nuαuβ) = nFα − ∂α(nθ) (I.29)

⇒ uα∂tn + n∂tuα + uα∂β(nuβ) + nuβ∂βuα = nFα − ∂α(nθ)

⇒ uα(∂tn + ∂β(nuβ)) + n∂tuα + nuβ∂βuα = nFα − ∂α(nθ) (I.30)

The bracketed term of left hand side of Eq. (I.30) is zero by equation of continuity(Eq. (I.20)). So, Eq.
(I.30) can be written as

∂tuα + uβ∂βuα = Fα −
1
n
∂α(nθ). (I.31)

We will use Eqs. (I.30) and (I.31) when we will derive Eq. (I.23) up to second order in derivative and
then we will substitute that in Eq. (I.24). That will give us the Navier Stokes equation. So, we have to
evaluate three more terms of Eq. (I.25).
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Force term in Eq. (I.25) is

Fγ

∫
vαvβ∂vγ f dv = Fγ

[
vαvβ(

∫
∂vγ f dv) −

∫
(vαvβ)|(

∫
∂vγ f ) dv

]
= Fγ

[
vαvβ∂vγ(

∫
f dv) −

∫
(vα + vβ)(

∫
∂vγ f ) dv

]
= Fγ

[
vαvβ∂vγn −

∫
(vβ + vα) f dv

]
= Fγ(−nuβ − nuα)

= −nFαuβ − nFβuα (I.32)

Substituting Eq. (I.32) in Eq. (I.25), we get∫
f vαvβ dv =

∫
f 0vαvβ dv − τ

[
∂t

∫
f 0vαvβ dv + ∂γ

∫
f 0vαvβvγ dv − nFαuβ − nFβuα

]
(I.33)

While obtaining Eq. (I.33) from Eq. (I.25), we have also made the following approximation

∂t

∫
f vαvβ dv ≈ ∂t

∫
f 0vαvβ dv,

∂γ

∫
f vαvβvγ dv ≈ ∂γ

∫
f 0vαvβvγ dv.

The time derivative term of Eq. (I.33) can be simplify as

∂t
( ∫

f 0vαvβ dv
)

= ∂t(nuαuβ + nθδαβ)

= uβ∂t(nuα) + nuα∂tuβ + θδαβ∂tn + n∂tθδαβ (I.34)

From Eq. (I.29), we can say that

∂t(nuα) = nFα − ∂α(nθ) − ∂γ(nuαuγ) (I.35)

From Eq. I.31, we can say that

∂tuβ = Fβ −
1
n
∂β(nθ) − uγ∂γuβ (I.36)

From equation of continuity(Eq. I.20), we can say that

∂tn = −∂γ(nuγ) (I.37)

and we use the relation
∂tθ = −uγ∂γθ −

2
3
∂γ(θuγ) (I.38)

We have used the above relation directly but this can also be derived from by multiplying (v − u)2 with
Eq. (I.22). Substituting Eqs. (I.35), (I.36), (I.37) and (I.38) in Eq. (I.34), we get

∂t(
∫

f 0vαvβ dv) = uβ
[
nFα − ∂α(nθ) − ∂γ(nuαuγ)

]
+ nuα

[
Fβ −

1
n
∂β(nθ) − uγ∂γuβ

]
(I.39)

+θδαβ(−∂γ(nuγ)) + nδαβ

[
−uγ∂γθ −

2
3
∂γ(θuγ)

]
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The space derivative term in Eq. (I.33) can be simplified as

∂γ

∫
f 0vαvβvγ dv = ∂γ

[
nθ(uαδβγ + uβδαγ + uγδαβ) + nuαuβuγ

]
= ∂γ(nθuαδβγ) + ∂γ(nθuβδαγ) + ∂γ(nθuγδαβ) + ∂γ(nuαuβuγ)

= ∂β(nθuα) + ∂α(nθuβ) + ∂γ(nθuγδαβ) + ∂γ(nuαuβuγ) (I.40)

Adding Eqs. (I.39) and (I.40), we get

∂t(
∫

f 0vαvβ dv) + ∂γ

∫
f 0vαvβvγ dv = −∂γ(nuαuβuγ) − uα∂β(nθ) − uβ∂α(nθ)

+n(Fαuβ + Fβuα) − δαβ∂γ(nuγθ) −
2
3

nδαβ∂γ(θuγ)

+∂β(nθuα) + ∂α(nθuβ) + ∂γ(nθuγδαβ) + ∂γ(nuαuβuγ)

= nθ∂β(uα) + nθ∂α(uβ) + n(Fαuβ + Fβuα) −
2
3

nδαβ∂γ(θuγ) (I.41)

Substituting Eq. (I.41) in Eq. (I.33), we get

∂t

∫
f vαvβ dv = nuαuβ + nθδαβ

−τ

[
nθ(∂βuα + ∂αuβ) + n(Fαuβ + Fβuα) −

2
3

nδαβ∂γ(uγθ) − nFαuβ − nFβuα

]

⇒

∫
f vαvβ dv = nuαuβ + nθδαβ − nθτ

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)
⇒

∫
f vαvβ dv = nuαuβ + nθδαβ − η

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)
(I.42)

where η = nθτ.
Now. substituting Eq. (I.42) in Eq. (I.25), we get

∂t(nuα) + ∂β

[
nuαuβ + nθδαβ − η

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)]
− nFα = 0

⇒ ∂t(nuα) + ∂β(nuαuβ) + ∂β(nθ)δαβ = nFα + ∂β

[
η

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)]
(I.43)

For α = β, δαβ = 1.
So, Eq. (I.43) can be written as

uα∂tn + n∂t(uα) + uα∂β(nuβ) + nuβ∂βuα = −∂α(nθ) + nFα + ∂β

[
η

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)]
⇒ uα

(
∂tn + ∂β(nuβ)

)
+ n∂t(uα) + nuβ∂βuα = −∂α(nθ) + nFα + ∂β

[
η

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)]
(I.44)
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Using equation of continuity i.e Eq. (I.20) in the above equation, we get

n∂t(uα) + nuβ∂βuα = −∂α(nθ) + nFα + ∂β

[
η

(
∂βuα + ∂αuβ −

2
3
δαβ∂γ(uγ)

)]
. (I.45)

Eq. (I.45) is the compressible Navier stokes equation in tensor notation.

He & Luo (1997a,b) gave a much needed theoretical foundation to the lattice Boltzmann method
by deriving the lattice Boltzmann equation from the Boltzmann equation. Navier-Stokes equation can
also be derived from the lattice Boltzmann equation by following the Chapman-Enskog multi-scale ex-
pansion. A detail derivation of Navier-Stokes equation from lattice Boltzmann equation was also given
by Dr. Erlend M. Viggen in his doctoral thesis [Viggen (2009)].
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