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Abstract

Stereoscopic image quality typically depends on two factors: i) the quality of the luminance image

perception, and ii) the quality of depth perception. The effect of distortion on luminance perception

and depth perception is usually different, even though depth is estimated from luminance images.

Therefore, we present a full reference stereoscopic image quality assessment (FRSIQA) algorithm that

rates stereoscopic images in proportion to the quality of individual luminance image perception and

the quality of depth perception. The luminance and depth quality is obtained by applying the robust

Multiscale-SSIM (MS-SSIM) index on both luminance and disparity maps respectively. We propose a

novel multi-scale approach for combining the luminance and depth scores from the left and right images

into a single quality score per stereo image. We also explained that a small amount of distortion does

not significantly affect depth perception. Further, heavy distortion in stereo pairs will result in significant

loss of depth perception. Our algorithm performs competitively over standard databases and is called

the 3D-MS-SSIM index.

Index Terms

Stereoscopic images, full-reference image quality assessment, depth perception, MS-SSIM.

I. INTRODUCTION

Stereoscopic content creation and rendering has a long and interesting history [1]. The ear-

liest known stereoscopic camera (Fig.1) was invented by David Brewster in 1844. Since this

invention, stereoscopic technology has come a long way and is now a standard medium for

content creation and consumption in the movie and gaming industry. As the demand for 3D

applications are increasing, there is a necessity to manage the huge volumes of 3D content

being generated. Perceptual quality assessment then plays a crucial role in data management.

Perceptual quality assessment is typically classified into three categories. i) Full reference (FR),

ii) Reduced reference (RR) and iii) No reference (NR). In FR the quality of test stereo pair
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Fig. 1: The Brewster stereoscope. Image credit Wikicommons.

is evaluated in comparison with reference stereo pair, in RR we have partial information about

reference stereo pair and in NR the quality of test stereo pairs are evaluated with out any reference

stereo pairs.

In this paper, our focus is limited to full reference quality assessment. Literature suggests

that 3D image quality assessment (IQA) methods can be grouped into two categories based on

whether or not depth/disparity information is considered. Earlier methods for 3D IQA, with out

disparity, were done by simply adopting conventional 2D full reference image quality assessment

(FRIQA) methods on left and right images and pooled the scores by different processes. Campisi

et al. [2] carried out a systematic study of stereoscopic image quality. 2D FRIQA methods were

applied to left and right images and it was concluded that 2D FRIQA does not necessarily

perform well on stereo images. Benoit et al. [3] explicitly considered disparity information in

their analysis. They combined existing 2D FRIQA methods along with local and global disparity

measure to come up with an objective quality metric. While our work is similar in approach

to this paper, it differs significantly in the perceptual underpinnings. The cyclopean paradigm

proven to be promising in FR stereo IQA. Maalouf et al. [4] proposed a RR 3D IQA where

cyclopean images are constructed and human visual system (HVS) sensitivity coefficients of

reference and test stereo pairs were compared to determine stereo image quality. Chen et al.

[5] proposed a cyclopean model where existing 2D FRIQA methods were used to measure the

quality of cyclopean image.

Other recent methods for stereo FRIQA algorithms have considered different approaches.

Bensalma et al. [6] proposed an algorithm based on difference of binocular energy between

reference and tested stereo pairs. Shao et al. [7] proposed a stereo FRIQA algorithm by con-

sidering the binocular visual characteristics. The major contribution of this paper is that the

binocular perception and combination properties are considered in quality assessment. Wang et
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al. [8] proposed a subjective quality assessment on a database. Their results suggests that simply

averaging the quality of left and right images predicts the quality of symmetrically distorted

stereo images well, but generates substantial bias in the case of asymmetric distortions. Wang et

al. [9] proposed a 3D gradient magnitude based stereo FRIQA where they calculate pointwise

3D gradient magnitude similarity (3D-GMS) along horizontal, vertical and viewpoint directions

and quality score is obtained by averaging the 3D-GMS scores of all points. Lin et al. [10]

present a model where they utilized binocular combination and binocular frequency integration

for measuring the quality of stereoscopic images. Khan et al. [11] proposed a full reference

metric for stereoscopic images based on the statistical modeling of luminance and disparity.

They modeled marginal statistics of luminance and disparity using a univariate GGD model. In

their approach, they considered the disparity maps only for reference stereoscopic images.

II. PROPOSED APPROACH

The frame work for the proposed approach is shown in Fig.2. The proposed approach is

based upon the intuition that stereoscopic image quality assessment will depend upon two

factors: i) perceptual annoyance of left and right luminance images, and ii) loss in depth

perception. Perceptual annoyance in luminance can be evaluated by applying conventional 2D

IQA techniques on both the left and right luminance images. Loss in depth perception can be

quantified by measuring the dissimilarity of distorted disparity map w.r.t the original disparity

map. Our algorithm is described in the following subsections.

A. Luminance Quality Evaluation

In early work of stereoscopic image quality assessment (SIQA), conventional 2D IQA methods

were used without considering disparity information. This approach partially achieved their goals.

This partial success led us to believe that 3D IQA will depend on the individual quality of left

and right images, but not completely so. To assess the quality of luminance images we rely

on the robust MS-SSIM [12] index. The MS-SSIM index is applied to both the left and right

images. Therefore we come up with two quality scores per stereo pair. The luminance quality

scores are obtained as follows:

sil = Q(Iol , I
t
l ) ; sir = Q(Ior , I

t
r), (1)
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where Iol , Ior are the reference stereo pair, I tl , I
t
r are the test stereo pair and Q indicates the MS-

SSIM index. The subscripts l and r indicates left and right, the superscripts o and t indicates

original (reference) and test (distorted) and the superscripts i refers to luminance image.

B. Depth Quality Evaluation

It has been shown in the literature [2] [5] that disparity plays an important role in stereo quality

evaluation, and especially so in the case of asymmetric distortions. We describe our depth quality

perception strategy next. We first compute disparity map using SSIM-based disparity estimation

algorithm which was also used in [5]. The strength of dissimilarity of distorted disparity map

with respect to the original disparity map will quantify the loss in depth perception. We claim

that loss in structural information of luminance images will affect depth perception. This is

because the sense of depth can be perceivable at the edges, lines and other structural features.

With the loss in structural information, the depth perception is also reduced. This intuition can

also be supported with the fact that complex cells, where binocular disparities are measured in

the HVS, will respond primarily to oriented edges and gratings [13] [14]. Also disparity map

retains the same structural information from both luminance images, it would be worthwhile to

evaluate the loss in structural information from disparity maps. Therefore, to quantify the loss

in depth perception we need to measure the amount of loss in structural information of distorted

disparity map w.r.t the reference disparity map. The aforementioned reasons motivate us to use

the MS-SSIM [12] metric to measure the dissimilarity of disparity map of distorted stereo pair

w.r.t the reference disparity map. We compute the disparity maps w.r.t both the left and right

luminance images (for both reference and distorted stereo pair), and therefore have two scores

for each distorted stereo pair. The depth quality scores from disparity maps are obtained as

follows:

sdl =
√

Q(Do
l , D

t
l) ; sdr =

√
Q(Do

r , D
t
r), (2)

where Do
l , Do

r are the reference disparity maps, Dt
l , Dt

r are the test disparity maps and the

super script d refers to disparity map. We observed that for most stereo pairs, small amounts of

distortion doesn’t significantly affect depth perception. The loss in depth perception is perceivable

only when the distortion is high enough to degrade the structural information. Since disparity

estimation algorithms are sensitive to noise, the resultant disparity maps estimated for test stereo

pairs are noisy. This affects the value of MS-SSIM index and therefore, the resultant value

July 19, 2018 DRAFT



5

Ref Stereo

Pair
Ref Dmap

Test

Stereo Pair
Test Dmap

Luminance

Scores

Disparity

Scores
spyrdecom spyrdecom

Luminance

weights

Disparity

weights

Pooled

Luminance Score

Pooled

Disparity Score

Objective score

Fig. 2: Flowchart of proposed algorithm.

should be enhanced. We would like to recall that the MS-SSIM indices lie in the range [0, 1].

Therefore, to accurately capture the effects of distortion on disparity map, we apply the square

root operator on disparity scores.

C. Stereo Quality Evaluation

We consolidate the left and right scores obtained from previous subsections into a single

score of luminance and disparity. This consolidation is inspired from the fact that binocular

strength is a convex combination of monocular stimulus strength [15]. The weights in the convex

combination depends on dominance of one eye over other and this is particularly visible in the

case of asymmetric distortions. Similarly we believe that the weights used in consolidation are

also convex weights. These weights are computed from monocular strengths of stereo pairs. To

compute convex weights, we need to adapt the strategy that comes from the theories of human

visual system (HVS). So we use multi-scale multi-orientation steerable pyramid decomposition

(spyrdecom) [16] [17] whose space scale orientation models the band pass filtering that occurs in

area V1 of primary visual cortex [18]. We believe that the monocular strengths of each luminance

image can be obtained from mean square (MS) of subband of spyrdecom. The convex weights

are obtained as follows. Firstly we perform one scale six orientations (00, 300, 60, 900, 1200, 1500)
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spyrdecom. As mentioned in [19] [20], to be consistent with luminance perception in the HVS,

the pyramid decomposition is performed on the logarithm of distorted stereo pair and disparity

maps. After spyrdecom, per each stereo pair we obtain six subbands. We compute MS of each

subband as given in (3).

q(j) =
1

|Xj|
∑
∀m,n

(Xj(m,n))2, j = 1, .., 6. (3)

Where Xj indicates jth subband and |Xj| indicates its cardinality. Hence for six subbands we

have six length MS vector. For distorted stereo pair and disparity maps we have the following

MS vectors.

• qi
lt, qi

rt, qd
lt, qd

rt are the 6 length MS vectors for distorted left and right luminance and

disparity maps respectively.

We compute mean values of MS vectors as follows:

eil =
1

6

6∑
j=1

qi
lt(j) ; eir =

1

6

6∑
j=1

qi
rt(j), (4)

edl =
1

6

6∑
j=1

qd
lt(j) ; edr =

1

6

6∑
j=1

qd
rt(j). (5)

From the mean values obtained in (4) & (5) we compute scalar weights shown in (6) & (7).

These weights facilitate the convex combination of scores obtained in (1) & (2).

Ei
l =

(
eil

eil + eir

)
; Ei

r =

(
eir

eil + eir

)
, (6)

Ed
l =

(
edl

edl + edr

)
; Ed

r =

(
edr

edl + edr

)
. (7)

Therefore, left and right scores of test luminance pairs and disparity maps are consolidated

as shown in (8) and (9):

Si = Ei
ls

i
l + Ei

rs
i
r, (8)

Sd = Ed
l s

d
l + Ed

r s
d
r . (9)

The overall objective quality score of the stereo image is empirically obtained as:

S = Si
√
Sd. (10)
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TABLE I: DMOS vs 3D MS-SSIM

LIVE Phase-I LIVE Phase-II

Distortion LCC SROCC LCC SROCC

WN 0.9502 0.9430 0.9633 0.9572

JPEG2000 0.9362 0.8987 0.8728 0.8537

JPEG 0.7143 0.6576 0.9057 0.8775

BLUR 0.9445 0.9344 0.9752 0.9233

FF 0.8307 0.7624 0.9320 0.9164

OVERALL 0.9318 0.9254 0.9313 0.9323

ASYMM – – 0.9217 0.9183

SYMM – – 0.9372 0.9269

III. RESULTS AND DISCUSSION

For the performance evaluation of the proposed algorithm, we used the LIVE 3D Image

Quality Assessment database – both Phase-I [21], and Phase-II [5], [22], the IRCCYN [3] and

MICT [23] database. LIVE Phase I & II databases spans five distortion categories – JPEG and

JPEG2000 compression, additive white Gaussian noise (WN), Gaussian blur (Blur) and Rayleigh

fast fading channel distortion (FF). These databases represent subjective quality as the difference

of mean opinion score (DMOS) associated with each of its distorted stereo pairs. Phase-I consists

of 20 reference stereo pairs with 365 distorted pairs. Each distortion type consists of 4 levels of

distortion strengths. Phase-II consists of 8 reference stereo pairs with 360 distorted stereo pairs,

which classified into asymmetric(240 stereo pairs) and symmetric (120 stereo pairs) distortions.

Each distortion type consists of 9 levels of distortion strengths. The IRCCYN database consists

of 6 stereo pairs each of 15 distortions. It includes blur and JPEG2000 distortions. The MICT

stereo image database has 480 JPEG distorted stereo images and 10 pristine stereo images. It

includes mostly asymmetrically distorted stereo images. The objective quality scores are fitted

to subjective scores (DMOS) using a standard logistic function. All scores are reported post

logistic fitting.

Table I shows the performance of proposed approach on LIVE (Phase-I & II) database. It

shows how the proposed approach works on different distortions in the LIVE databases and

also shows the performance on asymmetric distortions specified in LIVE-II. Table II shows the

performance on MICT and IRCCYN databases. Table III shows the comparison of 3D MS-SSIM
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Fig. 3: Scatter plot of 3D-MSSSIM versus DMOS over LIVE-I.

Fig. 4: Scatter plot of 3D-MSSSIM versus DMOS over LIVE-II.

with existing state-of-art algorithms over LIVE-II database. Table IV compares the performance

of our algorithm on asymmetric distortions with respect to the state-of-the-art methods over

LIVE-II database. The performance was measured using standard measures: Spearman’s rank

order correlation coefficient (SROCC), Pearson’s linear correlation coefficient (LCC) and root-

mean-squared error (RMSE) between predicted scores and the DMOS scores. The values are

reported after logistic regression. Higher SROCC and LCC indicates good correlation with human

scores, while lower values of RMSE indicate better performance. Figs. 3 and 4 shows the scatter

plots of the proposed approach on LIVE-I & LIVE-II databases respectively. The major advantage
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Fig. 5: Performance of 3D-MSSSIM as a function of number of scales over LIVE-II.

of our algorithm is low complexity, where the complexity lies only in obtaining convex weights.

We also studied the performance of our algorithm at 2nd and 3rd scales over LIVE Phase-II

database and is shown in Fig. 5. From the bar plot it is clear that the better performance is

obtained in the first scale itself thus minimizing the computational complexity.

While our method is similar in approach to the method proposed by Benoit et al. [3], there are

important differences that we bring out in the following. Benoit et al. do not use conventional

2D IQA methods for measuring distortions in disparity maps since they are of the opinion that

distortion maps are not natural images. We apply the MS-SSIM index on the disparity map since

we believe that it has the ability to measure changes to structural information in the disparity

maps. Next, in their pooling strategy, they simply average the left and right luminance scores

while we propose a convex combination. This convex combination leads to better performance

on asymmetrically distorted images. Further, their method considers only one disparity map

(only w.r.t left), but we consider two disparity maps to better capture asymmetric distortions. We

compare our method with their in Table V. It is clear that the proposed method outperforms their

method on all but one databases. For the reasons mentioned above, our method performs well

on the LIVE Phase-II and MICT databases that contain a majority of asymmetrically distorted

images. Therefore, the proposed approach is particularly suited for the cases where we find

asymmetric distorted stereo pairs.
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TABLE II: DMOS vs 3D MS-SSIM

Database LCC SROCC RMSE

IRCCYN 0.8143 0.7893 12.80

MICT 0.7725 0.7681 14.77

TABLE III: Comparison with state-of-the-art over LIVE Phase-II.

Algorithm LCC SROCC RMSE

Chen [5] 0.901 0.893 10.58

Lin [10] 0.900 0.889 –

Fezza [24] 0.938 0.930 5.55

Khan [11] 0.902 0.892 4.87

Proposed 0.931 0.932 4.11

TABLE IV: Comparison with state-of-the-art on asymmetric distortions over LIVE Phase-II database.

Algorithm LCC SROCC RMSE

Bensalma [6] 0.766 0.721 6.51

Shao [7] 0.609 0.630 8.03

Chen [5] 0.879 0.854 7.93

Wang [9] 0.728 0.695 6.92

Fezza [24] 0.915 0.920 5.95

Khan [11] 0.889 0.868 4.64

Proposed 0.921 0.918 3.93

IV. CONCLUSIONS AND FUTURE WORK

In this work, we presented a perceptually inspired stereo image quality assessment algorithm

called 3D MS-SSIM. Our algorithm emphasises that stereo FRIQA can rely on 2D IQA of the

luminance images. At the same time, we also showed that heavy loss of structural information in

stereo pairs results in significant loss in depth perception. Loss in depth perception is quantified

by measuring dissimilarity of distorted disparity maps w.r.t reference maps. We first obtain the

luminance and disparity scores using the MS-SSIM index and propose a perceptually inspired

pooling method to arrive at a single score per stereo image pair. Our algorithm is competitive with

the state-of-the-art methods on standard databases and is particularly effective on asymmetric

distortions. As future work, we plan on extending this method to stereo video quality assessment.
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TABLE V: Comparison of 3D MS-SSIM with Benoit [3]

Benoit 3D MS-SSIM

Database LCC SROCC LCC SROCC

LIVE Phase-I 0.8946 0.8975 0.9318 0.9254

LIVE Phase-II 0.7571 0.7291 0.9313 0.9323

IRCCYN 0.8459 0.8444 0.8143 0.7893

MICT 0.6364 0.6353 0.7725 0.7681
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