
Design and Analysis of Soft-Error Resilience Mechanisms for GPU Register File

Sparsh Mittal⋆, Haonan Wang†, Adwait Jog†, Jeffrey S. Vetter§

⋆IIT Hyderabad, India, †College of William and Mary, USA, §Oak Ridge National Laboratory, USA

Email: sparsh@iith.ac.in, {hwang07,adwait}@cs.wm.edu, vetter@computer.org

Abstract—Modern graphics processing units (GPUs) are
using increasingly larger register file (RF) which occupies a
large fraction of GPU core area and is very frequently accessed.
This makes RF vulnerable to soft-errors (SE). In this paper, we
present two techniques for improving SE resilience of GPU RF.
First, we propose compressing the RF values for reducing the
number of vulnerable bits. We leverage value similarity and
the presence of narrow-width values to perform compression at
warp or thread-level, respectively. Second, we propose selective
hardening to design a portion of register entry with SE immune
circuits. By collectively using these techniques, higher resilience
can be provided with lower overhead. Without hardening, our
warp and thread-level compression techniques bring 47.0%
and 40.8% reduction in SE vulnerability, respectively.

I. INTRODUCTION

Recent trends in processor design have aggravated the

occurrence of faults in modern processors.. Ongoing voltage

scaling accompanied with feature size scaling reduces the

critical charge required to flip a bit. This allows even lower-

energy particles to cause soft errors. Due to these reasons,

soft-error rate at 16nm is expected to be more than 100

times that at 180nm [1]. As GPUs become mainstream

computing systems, improving soft-error reliability of GPUs

has become extremely important.

Out of different GPU components, RF is particularly vul-

nerable to soft-errors due to its large size and performance-

optimized design. For example, a recent study performed on

Titan supercomputer showed that over a period of 2 years,

out of five GPU components (L1/L2 cache, texture memory,

device memory and RF), 86% and 14% of double bit errors

occurred in device memory and RF, respectively [2]. Further,

as shown in Table I, the total RF size on GPUs is much

larger than that of L1/L2 caches and has been increasing in

recent GPU generations (SM = streaming multiprocessor).

Similarly, AMD Radeon HD 7970 GPU has 16 KB L1 cache

in each of 32 computing units and a total of 8.25 MB RF

and 768 KB shared L2 cache [3]. By comparison, CPUs

possess tiny RF and much larger caches, e.g., Intel’s 32

nm Itanium 9560 processor has 22 KB integer RF and 20

KB floating point RF and 32 MB L3 cache [4]. Clearly,

due to performance-criticality and vulnerability of GPU RF,

Sparsh contributed to this paper while working at ORNL. Sparsh and
Jeffrey acknowledge support from U.S. DoE, Office of Science, Advanced
Scientific Computing Research. Haonan and Adwait acknowledge start-up
grant from College of William and Mary. We use warp-register (or register)
to denote the architectural register referenced by a warp and thread-register
to denote the register corresponding to each thread in the warp.

along with its fundamental differences with CPU RF, novel

mechanisms are required to improve its resilience.

Table I: Size of L1/L2 cache and RF on NVIDIA GPUs [5–

7] (Sizes in KB, CC = compute capability, ⋆maximum size

of L1 cache, †size of unified L1/texture cache)

Archi-
CC

L1 size
L2 size

RF size # of Total RF
tecture per SM per SM SMs size

G80 Tesla 1.0 None None 32 16 512

GT200 Tesla 1.3 None None 64 30 1920

GF100 Fermi 2.0 48⋆ 768 128 16 2048

GK110 Kepler 3.5 48⋆ 1536 256 15 3840

GK210 Kepler 3.7 48⋆ 1536 512 15 7680

GM204 Maxwell 5.2 48† 2048 256 16 4096

GP100 Pascal 6.0 48† 4096 256 56 14336

In this paper, we present two techniques to reduce SE

vulnerability (SEV) of GPU RF. First, we propose com-

pressing the register values which reduces the number of

bits required for storing a value and thus, reduces the

number of vulnerable bits. We do not use compression

to store more data in registers and thus, we forgo the

capacity advantage of compression in favor of reliability

[8]. Second, we propose selective hardening, i.e., designing

a portion of RF with radiation-hardened (i.e., SE immune)

memory. Compression and hardening are dynamic and static

techniques, respectively and they can be used individually

or together. We propose performing compression at the level

of each warp or each thread. For warp-level compression

(WarpC), we use the insight that due to value similarity,

many thread-registers store values which are identical, have

low dynamic range or are zero. By exploiting this redun-

dancy, thread-registers of a warp are compressed using base-

delta immediate (BDI) compression [9]. However, we do not

use WarpC for divergent warps due to its higher complexity

and lower benefits for them (§III-A).

Our thread-level compression technique (ThreadC) com-

presses each thread-register value individually. For a 4B

thread-register, it determines the effective width (K) as the

smallest among four possible values, viz. 0B, 1B, 2B and 4B

(uncompressed). Only K bytes are read from thread-registers

which reduces the number of vulnerable bits.

ThreadC can be applied to individual active threads

of divergent instructions and thus, it is especially use-

ful for applications with many divergent warps. However,

ThreadC does not exploit value similarity and hence, for

non-divergent applications, it provides smaller benefit than

WarpC. Thus, our work reveals the importance of accounting



for GPU application characteristics for choosing the optimal

compression approach. Our key contributions are:

1. By detailed characterization of many GPU applications,

we show that SEV of GPU RF can be significantly reduced

via compression. However, performing compression either at

warp-level or thread-level alone may not give optimal SEV

reduction for all applications.

2. We propose that higher reduction in SE vulnerability can

be obtained by leveraging the warp divergence properties of

GPU applications to decide between warp and thread-level

compression techniques at runtime.

3. For further reduction in SEV, we propose selective hard-

ening and show the potential of compression in reducing

the requirement of hardening for achieving a desired level

of protection. To the best of our knowledge, this is the first

work that collectively considers compression at warp and

thread-level, and selective hardening for protecting RF for a

wide range of GPU applications with minimal overheads.

4. Micro-architectural simulations using a cycle-accurate

GPGPU simulator and diverse range of workloads have

shown that without hardening, WarpC and ThreadC bring

47.0% and 40.8% reduction in SEV respectively. With

increasing amount of hardening, SEV can be further reduced.

II. MOTIVATION AND BACKGROUND

A. Existing RF protection techniques

Recent commercial GPUs, such as Fermi, Kepler and Pas-

cal use single-error-correction double-error-detection (SEC-

DED) ECC for protecting RF, L1/L2 caches, shared mem-

ories and DRAM. However, due to high frequency of RF

access, computing/checking ECC incurs large energy over-

head. Further, multi-bit ECCs incur extremely high overhead

and ECC also fails to exploit characteristics of GPU appli-

cations. Our technique protects RF by using compression

to leverage redundancy present in GPU execution. Also,

designing RF with hardened memory provides protection

from multi-bit errors.

Palframan et al. [10] propose a precision-aware RF protec-

tion technique for RF which hardens the sign and exponent

bits corresponding to single-precision FP values. To also

provide protection to integer values, they store them in

FP-like format. This, however, requires changing the data

storage format. Tan et al. [11] use compiler to observe the

lifetime (number of instructions between the write and last

read) of register values and map long-lived and short-lived

values to STT-RAM and SRAM, respectively in the SRAM-

STTRAM hybrid RF. However, due to major differences

between SRAM and STT-RAM technologies, designing such

hybrid RF may incur significant design complexity.

B. Measuring soft-error vulnerability

We measure soft-error vulnerability of RF based on the

idea of architectural vulnerability factor (AVF) [12] as it

captures soft-error characteristics independent of raw error

rate. AVF shows the fraction of time RF is vulnerable

to soft errors. A register value which propagates to other

components is considered critical and the time period during

which an error in a register propagates to other components

is called critical time. Specifically, a register value is critical

between write-to-read and read-to-read and not between

write-to-write and read-to-write.

Then, AVF of RF is the average critical time of all critical

registers. Let M and R be number of critical registers and

total registers, respectively, and bpR be number of bits in

the register. CTi shows critical time of a critical register

and TT shows total execution time. Also, failure rates of all

bits are assumed to be linearly uncorrelated. Then, AV F =
(
∑M

i=1
CTi)/(TT ·R) and SEV = R ·bpR ·AV F = (bpR ·

∑M

i=1
CTi)/TT

Thus, relative reduction in SEV due to a technique is

shown as SEVbaseline/SEVtechnique and a higher value is

better. It is clear that RF SEV can be reduced by (1) re-

ducing number of bits in a critical register (2) designing RF

with SE immune memory (e.g., non-volatile memory [11]

or radiation-hardened memory [13, 14]) and (3) reducing

critical time of register (e.g., by instruction rescheduling [1]).

In this work, we exploit (1) and (2).

III. DESIGN OF RESILIENCE MECHANISMS

Figure 1 shows the GPU RF architecture assumed in

this paper [15, 16]. Each RF entry is 128B wide and

provides 32-bit operands to all 32 threads of a warp. Section

IV-C discusses how our technique can work in other RF

architectures. We follow CUDA terminology in this paper.

Bank 

0

Bank 

15

Bank 

7

Crossbar network

Operand collectors

……….

Execution units

SFUs ALUs LDST

Register file

……..……..

REG 0
REG 1

REG 63

1024 bits

RF bank
Register

IDs
Compressor

Decompressor

Read

Queue

0 - 15

Ready

warps

Arbiter

………….

…………. ………….

………….

……….

………….………….

Figure 1: GPU RF architecture assumed in the paper

A. Warp-level compression

Key observation: Value similarity in GPU RF: In

SIMT (single instruction multiple thread) execution model of

GPUs, RF provides 32 times the number of source operands

to the execution unit for any warp instruction, since there are

32 threads/warp. In this execution model, the thread registers

of a warp may show significant value similarity due to mul-

tiple reasons. For several applications, the values operated

by different threads may be similar (e.g., initialization by a

constant, using a fixed number of iterations, etc.) or have

low dynamic range. Also, many kernels assign data portions

to different threads which access their data portions using



thread indices. Since thread indices differ by one, a warp

register which accesses such data shows value similarity.

Further, register values may be zero due to initialization,

nature of program inputs (e.g., absence of any object in an

image) and outputs (e.g., binary classification), operating on

sparse matrices, etc.

Compression approach and algorithm: WarpC exploits

value similarity to compress register values using BDI

compression [9]. Register values with zero data are also

compressed. This reduces the effective number of bits re-

quired for storing the data and hence, reduces the number

of vulnerable bits. Compression and decompression are

performed during RF write and read operations, respectively.

The BDI algorithm [9] attempts compression with base

2B, 4B and 8B. Denoting a compression state as BxDy,

BDI uses B2D1, B4D1, B4D2, B8D0 (i.e. repeated values),

B8D1, B8D2, B8D4 and AllZero states, where x and y
are widths of base and delta in bytes, respectively. BDI

compression was originally proposed for last level caches

in CPU, where a large latency of (de)compression can be

tolerated. However, since RF exists as the topmost level in

memory hierarchy and is accessed very frequently, exploring

multiple compression states at RF level can lead to large

performance overhead. Also, since each thread-register is

4B, the value locality is best exploited on using a base size

of 4B. For these reasons, we use three compression states:

AllZero, B4D0 and B4D1. Thus, a register can be in either

these three or the uncompressed state and only 2 bits are

required to store this information.

A previous RF compression technique used B4D0, B4D1,

B4D2 states [17]. We choose AllZero state since a large

fraction of RF values are compressed to this state (§V). For

registers with AllZero state, actual read/write to RF are not

performed since the actual value can be recovered based on

compression encoding only and thus, their SEV is reduced

completely. Also, we do not choose B4D2 state to reduce

metadata overhead and because including it provides only

small additional benefit (§V-C). We now discuss challenges

in ensuring effective use of compression.

1. Accounting for Criticality of Base: During decom-

pression, the original data is obtained by adding the delta

values to the base. Due to this, any error in the base during

compressed state can spread to all the thread-registers and

thus, even a single-bit error in base can manifest as a

multi-bit error. Clearly, due to compression, the base value

becomes crucial in terms of reliability and hence, naively

applying compression may not achieve a right tradeoff

between compression ratio and reliability improvement.

To address this, WarpC stores two copies of the base.

This leads to a slight increase in the compressed width,

but provides higher protection to the base. In this work, we

only assume single-bit error model [18] and leave addressing

multi-bit error to future work. We assume that any single-

bit error can be detected by using a parity bit at byte

granularity. For base value, correction can also be performed

by leveraging two copies. For this, during decompression, an

error in one copy can be detected by consulting the parity

bit. Assuming single-bit errors, the same bit position in both

copies of the base are unlikely to have errors. Thus, on

detecting an error, the other copy can be taken as correct

base value. This allows immediate recovery of base without

raising an exception.

We do not duplicate the base when hardening is performed

since at least 4B are always hardened (§III-C) and thus, base

is always stored in hardened memory.

2. Handling Divergent Warps: When a divergent warp

reaches writeback stage, the thread-registers of only active

warps are written. Since we use delta compression on all

threads of a warp, compressing divergent warps presents

additional challenges. There are some ways to address this:

(i) Assuming that active threads are contiguous, one

option is that only active threads are compressed. How-

ever, with decreasing number of active-threads in a warp,

benefit from compression reduces. Also, the active threads

of a divergent warp may not be contiguous, e.g., for

needle (NED) benchmark, the active mask of one warp

is [02, 1, 0, 1, 02, 13, 0, 12, 019], where 0k or 1k denote k-

consecutive 0s and 1s, respectively. Similarly, for gaus-

sian (GSS) benchmark, an example of active mask is

[03, 1, 03, 1, 03, 1, 03, 1, 016]. For such cases, compressing

only active threads causes fragmentation since base and delta

can no longer be placed in contiguous manner.

(ii) Since compressing divergent warps requires dealing

with different number and position of active threads, it

increases the complexity of (de)compressor circuits and their

metadata and timing overheads, e.g., the compressor would

need to account for active mask, and decompressed values

would need to be transferred to different positions based

on active mask. Also, an increase in the latency of BDI

compression may make it unacceptable for RF.

(iii) Another option is to read the thread-registers of

inactive threads also and then compress all the 32 threads.

However, since these thread-registers are written by different

warp-instructions, they are likely to have much smaller value

locality. In BDI algorithm, even if one delta has larger than

the specified width, the entire value is incompressible.

For these reasons, WarpC does not compress divergent

warps. During RF write, if stored data is compressed, it is

first decompressed and then a write is performed.

B. Thread-level Compression

ThreadC compresses each thread-register value individ-

ually and thus, requires 32 compressors. Hence, we use

a simple compression approach, specifically, we exploit

narrow values. Narrow values occur when a large size data

type may be reserved for handling the worst-case scenario

but the actual value may require fewer bytes [19], e.g., only

1B data may be stored in a 4B integer. ThreadC determines



the width K of a value from 4 possible values, viz. 0B, 1B,

2B and 4B (uncompressed) and from this, the smallest width

is chosen. On a register read, only lower K bytes are read

which reduces the number of vulnerable bits.

Note that WarpC and ThreadC have different strengths

and limitations. WarpC exploits value similarity and zero

values whereas ThreadC leverages narrow and zero values.

WarpC cannot benefit divergent warps, whereas ThreadC

can compress both non-divergent and (active threads of)

divergent warps. However, ThreadC does not exploit value

similarity and hence, it cannot compress values with low

dynamic range. Due to this, for non-divergent applications,

it is less effective in compressing data than WarpC.

To achieve the best of both WarpC and ThreadC, we

propose the following approach. Since warps retain the

same divergence behavior for long execution periods, the

divergence behavior of an application can be recorded for

first 1M cycles. Based on it, for highly-divergent applica-

tions, WarpC can be disabled and ThreadC can be used.

Conversely, WarpC can be used for regular applications.

C. Selective Hardening

Since many real-world GPU applications show irregu-

lar behavior or have wide data values, another technique

is also required for benefitting all the applications. We

propose selective hardening of registers, i.e., left-most H
bytes are designed with radiation-hardened circuits, where

H is a multiple of 4. For example, with no compression

and H=16B, only 112B (=128-16) remain vulnerable. With

B4D0 compression (compressed size of 4B) and H=16B,

entire register is stored in hardened memory and its SEV

is reduced to zero. Note that designing entire RF with SE

immune memory (i.e., H = 128B) would incur unaccept-

ably large overheads, e.g., replacing an SRAM RF with

an STT-RAM RF can reduce performance by 70% [11].

Clearly, by only performing selective hardening and also

using compression, our technique incurs lower hardware

and latency costs. Also, while Palframan et al. [10] harden

selected bits of all the thread registers, we harden all the bits

of selected thread registers. Further, WarpC exploits value

similarity to compress the thread registers for preferentially

storing them in hardened byte, whereas Palframan et al. do

not exploit this opportunity.

IV. IMPLEMENTATION AND OVERHEAD ASSESSMENT

A. Implementation of Compression

For ThreadC, both divergent and non-divergent warps are

considered compressible, whereas, for WarpC, only non-

divergent warps are compressible and the divergent warps

bypass the (de)compressor and thus, do not incur corre-

sponding latency overheads. Compressor and decompressor

are both implemented in pipelined manner and have one port

for each bank which allows serving all banks in one cycle.

For WarpC, serving both compressible and incompressible

warps at the same cycle can cause additional conflicts since

requests from different cycles will request the bank at the

same cycle. To address this, we use two reservation arrays in

the arbiter to solve the conflict for request to the compressor

and request to the register banks separately. When the

requests for compressible and incompressible data meet at

the register bank, compressible writes are prioritized over

incompressible writes and they are prioritized over reads.

This ensures stall-free operation.

Latency overhead: WarpC uses BDI compression which

takes 2 and 1 cycles for compression and decompression, re-

spectively [9]. ThreadC uses narrow value detection (NVD)

and since NVD circuits are much simpler than a compressor

[19], ThreadC compression takes 1 cycle. Note that BDI

compressor itself uses NVD circuit to find the width of each

delta [9]. Decompression in ThreadC incurs no additional

latency since it only involves reading lower K bytes of

a narrow value. Thus, latency and hardware overhead of

ThreadC are lower than that of WarpC.

Storage overhead: To store the compression state, WarpC

uses 2 bits/warp and ThreadC uses 2 bits/thread (i.e., 64

bits/warp). By virtue of using compression, our technique

reduces data access and wire movement energy [17]. Es-

pecially for AllZero data, read/write to RF are completely

avoided. Further, BDI circuit and NVD circuit only involve

addition/subtraction and/or bit-comparison [9, 19].

B. Implementation of Hardened memory

As for hardened memory, we use the 10T SRAM cell

[13] which showed 98% less SE rate than the standard 6T

SRAM cell and thus, data stored in this cell is assumed

to be invulnerable. Compared to 6T cell, 10T cell has

7%, 72%, 43% and 40% overhead in write time, static

power, dynamic power and area, respectively [14], e.g., on

hardening 32 out of 128 bytes, overhead in static power,

dynamic power and area are 18%, 11%, 10%, respectively.

These overheads are comparable to that incurred with ECC

[10]. Further, 10T cell provides 14% less SE rate than the

ECC-protected SRAM [13]. When using (de)compression,

the additional latency of hardened memory can be hidden

with that of (de)compression and in other cases, 1 cycle

penalty is incurred. The compression state encoding bits are

also stored in hardened memory in the arbiter and due to

their small size, their overhead is assumed to be negligible.

C. Implementation on Other GPU RF Architectures

Since the exact details of RF in commercial products

are not known, previous work has assumed different RF

organizations. One RF design [20] assumes that registers are

split in 32 banks. Each bank is 4B wide and provides data

only to one thread within the warp. Each bank provides data

to one processing element (PE) only. In another organization

[21], four PEs form a cluster and each cluster has its own

RF which is 16B wide. The RF provides four 32b values to



four PEs associated with it. Our technique can easily work

with these RF organizations. Also, hardening can be done

at bank-granularity and WarpC reduces the number of banks

consulted for accessing a data value.

V. RESULTS AND ANALYSIS

We use GPGPUSim v3.2.2 simulator [22] and a configu-

ration similar to NVIDIA Fermi GTX480 GPU. There are 15

SMs, each runs up to 48 warps. SM frequency is 700 MHz

and ‘greedy then oldest’ (GTO) scheduling policy is used.

RF has 16 banks and 128KB size. We simulate a diverge

range of workloads from Lonestar, ISPASS09, Rodinia,

Parboil, and CUDA SDK suites. In total, we simulate 20

workloads and they are shown in Table II.
Table II: Workloads and their acronyms

mst (MST), sp (SUP), sssp (SSP), bfs (BFS), LPS (LPS)

NN (NEN), NQU (NQU), gaussian (GSS), heartwall (HWA)

hotspot(HOS), needle (NED), particlefilter (PFL), pathfinder (PAF)

cutcp(CUT), mri-q(MRQ), tpacf(TPF), alignedtypes (ALT)

matrixmul (MML), reduction (RDC), streams (STR)

A. Results on Compression Techniques

Figure 2(a) shows the percentage of non-divergent warps

and SEV reduction. Figure 2(b) shows percentage of RF

writes compressed using each state to give insight into

compressibility of RF values. The SEV reduction for any

application depends on the fraction of non-divergent warps

(for WarpC) and compressibility of RF values. For several

applications, most instructions are non-divergent and hence,

WarpC provides larger SEV reduction than ThreadC, e.g.,

MST, PAF, CUT, MRQ, TPF, ALT, RDC, STR, etc.

However, for some applications, most warps are divergent,

e.g., for NED, GSS, SSP and BFS, 100%, 99.7%, 97.5% and

97.1% (respectively) warps are divergent. NED (Needleman-

Wunsch) has limited parallelism in every iteration due to

dependencies of processing data values in diagonal strip

manner. In NED, no warp has more than 16 active threads.

GSS (Gaussian elimination) solves system of equations

using Gaussian elimination approach and requires synchro-

nization between iterations. In BFS (breadth first search),

the connectivity and distance of a node depend on the

input graph and in SSP (single-source shortest paths), the

shortest distance of a node depends on input graph. Due

to these, both show irregular memory access pattern [23].

Hence, these applications do not benefit from WarpC. For

these and a few other applications, e.g., NQU, HWA, HOS,

etc., ThreadC provides larger SEV reduction than WarpC.

Clearly, although WarpC on average performs better than

ThreadC, a single compression technique cannot be taken

as optimal for all applications.

From Figure 2(b), WarpC and ThreadC can compress

50.1% and 49.3% of writes on average. In ALT and STR,

WarpC compresses all the writes and several other appli-

cations are also highly compressible, e.g., LPS, PAF, CUT,

TPF, etc. For ThreadC, compressibility depends on presence

of narrow values, e.g., for many applications, many RF

values are zero, e.g. MST, SUP, LPS, PFL, etc.

Figure 2(c) shows the RF critical time (refer §II-B)

averaged over entire execution . Clearly, RF critical times

can be very high, for example, for SUP and BFS, critical

times are 2662 and 1092 cycles, respectively and on average,

the critical time is 459 cycles. Thus, RF values remain

vulnerable for long periods which highlights the importance

of reducing their SEV. Previous works (e.g., [15]) have

also observed that RF inter-access times (the time period

between two RF accesses) range in hundreds of cycles.

Finally, as shown in Figure 2(d), our techniques incur less

than 1% performance loss compared to a baseline that does

not use any RF protection scheme or hardening. This is

in acceptable range and is comparable to that with other

reliability techniques, such as ECC.

B. Results on Hardening

To see the benefit from using both compression and hard-

ening, for each application, we show the number of bytes

required to be hardened to reduce SEV by P% compared to

the baseline. Without compression, hardening (P×128)/100
bytes can reduce SEV by P% for a fully non-divergent

application. We look for ability of compression to reduce

this requirement.

Figure 3 shows these results for P = 50% and P = 90%.

On average, without compression, 62 and 110 bytes need

to be hardened for reducing SEV by 50% and 90% and

WarpC can reduce this to 18 and 74 bytes, and ThreadC

can reduce this to 21 and 102 bytes, respectively. For

several benchmarks, compression alone can reduce SEV

by at least 50%, obviating the need of hardening. For

WarpC, this happens for MST, LPS, HWA, PAF, CUT,

MRQ, ALT, MML, RDC, STR, etc. Even for reducing SEV

by 90%, several benchmarks require only few hardened

bytes on using compression. For WarpC, the examples of

such benchmarks are ALT (4B), STR (20B), CUT (28B).

For divergent applications, ThreadC reduces requirement

of hardening more than WarpC, e.g., for 90% reduction

with ThreadC, SSP, NED and GSS require 112B, 56B and

52B, respectively, which are smaller than that required for

WarpC. On using hardening, the smaller benefit of ThreadC

compared to WarpC is because WarpC stores the register in

left-aligned manner to preferentially use hardened memory,

whereas ThreadC stores each thread-register in its own place.

Thus, by combining hardening with WarpC or ThreadC,

stronger protection can be provided to a wide variety of

GPU applications with only small overhead.

C. Parameter Sensitivity Results

Including B4D2 state in WarpC: On including B4D2

state in WarpC, average SEV reduction increases from

47.01% to 48.00%, although the metadata requirement of



 0

 20

 40

 60

 80

 100

 120

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

(a) % Non-divergent warps and % Decrease in Vulnerability (Higher is better) %NonDivergentWarps WarpC ThreadC

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

WarpC ThreadC(b) Compression state distribution Uncompr B4D1 B4D0 AllZero K=2B K=1B

 0

 200

 400

 600

 800

 1000

 1200

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

2662
(c) Average critical time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

(d) Relative Performance (Higher is better) WarpC ThreadC

Figure 2: Results with WarpC and ThreadC: (a) percentage of divergent warps and SEV reduction (b) compression states

(K=2B and K=1B are 2B and 1B narrow values in ThreadC) (c) average critical times and (d) relative performance (IPC)

0B
16B
32B
48B
64B
80B
96B

112B
128B

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

WarpC ThreadCNoCompression 90% 50%

Figure 3: Hardening requirement for reducing SEV by 50% and 90% (value for 90% is the height of the whole bar)

WarpC increases from 2 bits/warp to 3 bits/warp. On av-

erage, 2.6% RF writes are compressed with B4D2 and a

highest value of 24.7% is seen in RDC. Thus, for our

workloads, including B4D2 state leads to only small benefit

which confirms our choice of not using B4D2 state.

Using only one fixed width in ThreadC: We experiment

with using a fixed width in ThreadC (called ‘ThreadC-

single’), such that, if the width of a value is at most K bytes,

it is considered narrow, otherwise it is taken as wide, e.g., for

K = 0B, only 0B values are considered as narrow and others

as wide. For K = 0B, 1B and 2B, ThreadC-single provides

SEV reduction of 22.99%, 24.96% and 24.63%, which are

much lower than 40.77% achieved with ThreadC. Clearly,

ThreadC finds the most compact width for a narrow value

The benefit of ThreadC-single, however, it is that it uses

simpler compressor circuit and only requires 1 bit/thread

compared to 2 bit/thread in ThreadC.

VI. CONCLUSION

In this paper, we presented compression and selective

hardening to reduce SE vulnerability of GPU RF and demon-

strated its effectiveness over a range of workloads.

REFERENCES

[1] S. Mittal et al., “A Survey of Techniques for Modeling and Improving Reliability
of Computing Systems,” IEEE TPDS, 2015.

[2] D. Tiwari et al., “Reliability lessons learned from GPU experience with the

Titan supercomputer at Oak Ridge leadership computing facility,” in SC, 2015.

[3] AMD HD7000 Graphics, http://goo.gl/PZBjLN, 2012.
[4] Intel Itanium Processor 9500, http://goo.gl/xy5m7G, 2012.
[5] “GeForce GTX Titan X,” http://goo.gl/XajvIj, 2015.

[6] NVIDIA Maxwell, http://goo.gl/8NV82n, 2014.
[7] S. Mittal, “A Survey of Techniques for Architecting and Managing GPU Register

File,” IEEE TPDS, 2016.
[8] S. Mittal et al., “Reducing Soft-error Vulnerability of Caches using Data

Compression,” GLSVLSI, pp. 197–202, 2016.
[9] G. Pekhimenko et al., “Base-delta-immediate compression: practical data com-

pression for on-chip caches,” in PACT, 2012, pp. 377–388.
[10] D. Palframan et al., “Precision-aware soft error protection for GPUs,” HPCA,

2014.
[11] J. Tan et al., “Soft-error reliability and power co-optimization for GPGPUS

register file using resistive memory,” in DATE, 2015.

[12] S. S. Mukherjee et al., “A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor,” MICRO, 2003.

[13] S. M. Jahinuzzaman et al., “A soft error tolerant 10T SRAM bit-cell with
differential read capability,” IEEE TNS, 2009.

[14] G. Zhang et al., “A novel single event upset hardened CMOS SRAM cell,”
IEICE Electronics Express, vol. 9, no. 3, pp. 140–145, 2012.

[15] M. Abdel-Majeed et al., “Warped register file: A power efficient register file for
GPGPUs,” in HPCA, 2013, pp. 412–423.

[16] J. Leng et al., “GPUWattch: enabling energy optimizations in GPGPUs,” ISCA,
pp. 487–498, 2013.

[17] S. Lee et al., “Warped-compression: enabling power efficient GPUs through

register compression,” ISCA, pp. 502–514, 2015.
[18] A. Chakraborty et al., “E < MC2: less energy through multi-copy cache,” in

CASES, 2010, pp. 237–246.
[19] J. Hu et al., “On the exploitation of narrow-width values for improving register

file reliability,” IEEE TVLSI, 2009.
[20] W. Yu et al., “SRAM-DRAM hybrid memory with applications to efficient

register files in fine-grained multi-threading,” ISCA, 2011.
[21] M. Gebhart et al., “Energy-efficient mechanisms for managing thread context

in throughput processors,” in ISCA, 2011, pp. 235–246.
[22] A. Bakhoda et al., “Analyzing CUDA workloads using a detailed GPU simula-

tor,” in IEEE ISPASS, 2009, pp. 163–174.

[23] M. Burtscher et al., “A quantitative study of irregular programs on GPUs,”
IISWC, 2012.


