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1. INTRODUCTION

It is essential to identify an accurate model before de-
signing and tuning control algorithms. Identification of
continuous-time (CT) linear time-invariant (LTI) systems
from the input- output data was pursued initially but ad-
vancements in digital computers and availability of digital
data acquisition schemes interested researchers to move
from Continuous time to Discrete time(DT) identification
and establish the theory for Discrete time identification
(Ljung (1987), Soderstrom et al. (1988)). However identi-
fying a CT model is essential because most of the systems
are continuous in nature and estimating a CT model en-
ables a better understanding of the system.

CTI methods are broadly classified into two categories, viz.
Indirect method and the Direct method. In the Indirect
method, firstly a discrete time model is identified from the
sampled data and the identified model is then converted
into continuous time. An example for such method is
given in (Sinha, 2000). The main challenge in indirect
identification is to find an accurate method that converts
the DT model to CT. In the direct method, the major
challenge lies in the numerical estimation of derivatives.
If the derivatives information is readily available, the
parameters can be estimated easily using least squares
technique.

To estimate the derivatives from data, (Swartz et al., 1975)
proposed a method of fitting a piece-wise polynomial,
which smoothens the noise in the data. (Varah, 1982)
used cubic splines to fit the noisy data to estimate the
derivatives. The main problem with above methodologies
is that the parameters estimated are biased because of
the derivatives estimation based on the noisy data and no
regularization term is involved. (Ramsay, 1996) used B-
spline as basis functions and proposed Principle differential
analysis (PDA) algorithm in which alongside the data fit,
a regularization term which is a second order penalty term
derived from the differential equation is introduced. (Poy-
ton et al., 2008) demonstrated that if the data is heavily
corrupted by noise, the parameter estimates from the PDA

are biased because of the penalty term in PDA algorithm
forces the second derivatives of the splines to be smaller
than the actual second derivatives. Thus (Poyton et al.,
2008) introduced a model (ordinary differential equation)
based penalty term while fitting the data and proposed an
iteratively refined algorithm in which iteration between the
data fit and the parameter estimation step is performed
until convergence.

On the other hand, compressed sensing, Lasso have be-
come an important tool for estimating sparse vectors from
linear system of equations. Recently, (Beck et al., 2013)
proposed a general sparsity constrained algorithm for the
non-linear case. The algorithm is guaranteed to converge
to a co-ordinate wise minima but not the global optima.
Being a search based algorithm the final solution depends
on the initial parameter guess. The algorithm needs only
sparsity of the desired solution as an input and, is ad-
vantageous compared to l1-minimization based algorithms
which require l1 norm of the solution vector. Another
advantage is that unlike in the linear case the function
need not satisfy stringent conditions such as Restricted
Isometry Property (RIP).

In this paper the idea of fitting B-splines to the data
and penalizing it with respect to the system (ordinary
differential equation) by (Poyton et al., 2008) is coupled
with sparsity seeking optimization method of (Beck et al.,
2013) to estimate the parameters along with the order of
LTI system for both noiseless and noisy data. In the noisy
case, the signal to noise ratio (SNR, defined as ratio of
root mean square value of noise-free output to that of the
noise) is assumed to be in between 5 and 10.

This paper is organized as follows. Section 2 gives the
formulation of the problem, introduces the concept of
co-ordinate wise minima and briefly discusses B-splines.
Section 3 describes the objective function and the opti-
mization procedure. Section 4 provides numerical results
whereas Section 5 gives the concluding remarks.
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need not satisfy stringent conditions such as Restricted
Isometry Property (RIP).

In this paper the idea of fitting B-splines to the data
and penalizing it with respect to the system (ordinary
differential equation) by (Poyton et al., 2008) is coupled
with sparsity seeking optimization method of (Beck et al.,
2013) to estimate the parameters along with the order of
LTI system for both noiseless and noisy data. In the noisy
case, the signal to noise ratio (SNR, defined as ratio of
root mean square value of noise-free output to that of the
noise) is assumed to be in between 5 and 10.

This paper is organized as follows. Section 2 gives the
formulation of the problem, introduces the concept of
co-ordinate wise minima and briefly discusses B-splines.
Section 3 describes the objective function and the opti-
mization procedure. Section 4 provides numerical results
whereas Section 5 gives the concluding remarks.
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1. INTRODUCTION

It is essential to identify an accurate model before de-
signing and tuning control algorithms. Identification of
continuous-time (CT) linear time-invariant (LTI) systems
from the input- output data was pursued initially but ad-
vancements in digital computers and availability of digital
data acquisition schemes interested researchers to move
from Continuous time to Discrete time(DT) identification
and establish the theory for Discrete time identification
(Ljung (1987), Soderstrom et al. (1988)). However identi-
fying a CT model is essential because most of the systems
are continuous in nature and estimating a CT model en-
ables a better understanding of the system.

CTI methods are broadly classified into two categories, viz.
Indirect method and the Direct method. In the Indirect
method, firstly a discrete time model is identified from the
sampled data and the identified model is then converted
into continuous time. An example for such method is
given in (Sinha, 2000). The main challenge in indirect
identification is to find an accurate method that converts
the DT model to CT. In the direct method, the major
challenge lies in the numerical estimation of derivatives.
If the derivatives information is readily available, the
parameters can be estimated easily using least squares
technique.

To estimate the derivatives from data, (Swartz et al., 1975)
proposed a method of fitting a piece-wise polynomial,
which smoothens the noise in the data. (Varah, 1982)
used cubic splines to fit the noisy data to estimate the
derivatives. The main problem with above methodologies
is that the parameters estimated are biased because of
the derivatives estimation based on the noisy data and no
regularization term is involved. (Ramsay, 1996) used B-
spline as basis functions and proposed Principle differential
analysis (PDA) algorithm in which alongside the data fit,
a regularization term which is a second order penalty term
derived from the differential equation is introduced. (Poy-
ton et al., 2008) demonstrated that if the data is heavily
corrupted by noise, the parameter estimates from the PDA

are biased because of the penalty term in PDA algorithm
forces the second derivatives of the splines to be smaller
than the actual second derivatives. Thus (Poyton et al.,
2008) introduced a model (ordinary differential equation)
based penalty term while fitting the data and proposed an
iteratively refined algorithm in which iteration between the
data fit and the parameter estimation step is performed
until convergence.

On the other hand, compressed sensing, Lasso have be-
come an important tool for estimating sparse vectors from
linear system of equations. Recently, (Beck et al., 2013)
proposed a general sparsity constrained algorithm for the
non-linear case. The algorithm is guaranteed to converge
to a co-ordinate wise minima but not the global optima.
Being a search based algorithm the final solution depends
on the initial parameter guess. The algorithm needs only
sparsity of the desired solution as an input and, is ad-
vantageous compared to l1-minimization based algorithms
which require l1 norm of the solution vector. Another
advantage is that unlike in the linear case the function
need not satisfy stringent conditions such as Restricted
Isometry Property (RIP).

In this paper the idea of fitting B-splines to the data
and penalizing it with respect to the system (ordinary
differential equation) by (Poyton et al., 2008) is coupled
with sparsity seeking optimization method of (Beck et al.,
2013) to estimate the parameters along with the order of
LTI system for both noiseless and noisy data. In the noisy
case, the signal to noise ratio (SNR, defined as ratio of
root mean square value of noise-free output to that of the
noise) is assumed to be in between 5 and 10.

This paper is organized as follows. Section 2 gives the
formulation of the problem, introduces the concept of
co-ordinate wise minima and briefly discusses B-splines.
Section 3 describes the objective function and the opti-
mization procedure. Section 4 provides numerical results
whereas Section 5 gives the concluding remarks.
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2. FORMULATION

2.1 Problem statement

Consider a continuous-time (CT) linear time-invariant
(LTI) system described by

an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a1

dx

dt
+ a0x(t) =

bm
dmu

dtm
+ bm−1

dm−1u

dtm − 1
+ · · ·+ u(t)

(1)

A noise corrupted version of x is measured,

y(tk) = x(tk) + ε(tk), k = 1, 2, . . . ,M

where, ε(tk) is Gaussian noise with mean 0 and variance
σ2, M is the number of samples taken.

The goal of identification is to estimate the parame-
ters an, an−1, . . . , a1, a0, bm, bm−1, . . . , b1 from the input-
output data i.e., {(u(tk), y(tk); k = 1, 2, . . . ,M}, along
with the output order n. Throughout the paper it is
assumed that the input is known and the parameters are
denoted with the θ vector i.e.,
θ = (an, an−1, . . . , a1, a0, bm, bm−1, . . . , b1)

2.2 Overview of estimation procedure

As explained earlier, only the output is a measured vari-
able and the derivative values are unmeasured, to estimate
the derivatives, the output data is to be fitted first. Thus,
two sets of parameters are to be estimated simultaneously.
First set, the fitting parameters and second set, the actual
parameters i.e., the θ vector. In the first step, alongside the
data fit, a regularization term involving the fit to ODE is
also included.

In the second step, using the information of noise free out-
put and its derivatives from the first step, the parameter
vector is to be estimated. As the order of the system is
also an unknown quantity, the parameters of model have
to be estimated in such a way that the zero norm of the
parameter vector (the number of non-zero entries in a
vector) is less than s i.e., ||θ||0 ≤ s where s is sparse index
(in the proposed algorithm it is greater than the assumed
order of system). Before giving the detailed description of
algorithm, some notations and definitions are fixed.

2.3 Notations and Definitions

Notations: For a given vector, x ∈ Rn, and the function
f(x), the support set of x is defined as

S(x) ≡ {i : xi �= 0}
and its compliment is given by

Sc(x) ≡ {i : xi = 0}
The set of vectors which are at most s−sparse is denoted
by

Cs = {x : ||x||0 ≤ s}

Definitions:

Basic Feasible Vector: A vector, x∗ ∈ Cs is called a
basic feasible vector of the function f(x), if

1. when ||x∗||0 < s,�f(x∗) = 0
2. when ||x∗||0 = s,�if(x

∗) = 0 ∀ i ∈ Ss(x
∗)

Coordinate-wise Minima: Let x∗ be a feasible solution of
function f(x), then it is called a Coordinate-wise Minima
if

1. ||x∗||0 < s and i = 1, 2, . . . , n, f(x∗) = min
t∈R

f(x∗ + tei)

2. ||x∗||0 = s and for every i ∈ Ss(x
∗) and j =

1, 2, . . . , n, f(x∗) ≤ min
t∈R

f(x∗ − x∗
i ei + tej)

In the hierarchy of estimation, any optimal point is a CW-
Minima and any CW-Minima is a Basic Feasible vector
(Beck et al., 2013). The same authors give an algorithm
called the Greedy Sparse Algorithm, which computes a
CW-minima.

B-splines and its Construction

A B-spline is a piece wise polynomial of some defined order
fitted between the data points. An interesting property of
B-splines is that they are local i.e., if a few data points
were changed, the splines related to that data point will
change and the splines corresponding to unchanged data
will remain the same which enables us to get local control.

Let U be a set ofm+1 non-decreasing sequence of numbers
of form ui, called the knots and P be a vector of control
points of the form Pi then the general nth order spline is
expressed as a recursive relation of the form

Ni,p(t) =
t− ui

ui+p − ui
Ni,p−1(t) +

ui+p+1 − t

ui+p+1 − ui+1
Ni+1,p−1(t)

where

Ni,0(t) =

{
1, if ui≤t<ui+1

0, otherwise

i indicates the position of the spline and p indicates the
order of the spline to fit. and the curve is defined by

C(t) =
L∑

i=0

PiNi,p(t)

where L is the number of control points considered. The
Derivative of the B-spline curve is given by the recursive
expression

dNi,p

dt
=

p

ui+p − ui
Ni,p−1 +

p

ui+p+1 − ui+1
Ni+1,p−1

2.4 Detailed Description of Algorithm

As explained in the overview subsection, the overall algo-
rithm comprises of two steps. The first step in which the
data is fitted subject to the system and the second step,
in which the parameters are estimated with the constraint
on the sparsity of the parameter vector.

Expressing mathematically, in the step-1, objective is to
minimize

H = f + λg (2)

with respect to the spline coefficients Pi, where

f = ||y(tk)− Ŷ (tk)||2

g =

∫ T

0

[
an

dnŶ

dtn
+ . . .+ aoŶ −

(
bm

dmu

dtm
+ . . .+ u(t)

)]2
dt

and
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Ŷ (tk) =
L∑

i=0

PiNi,p(t)

λ is the weighting factor which plays a major role in
estimation of the spline parameters especially in the noisy
cases so it is essential to understand the optimal value of λ
or to have some control over λ. Selection of optimal value
of lambda was given in (Varziri et al., 2008). Applying the
same approach, λopt can be obtained as sum of variance

of (y − Ŷ ) and mean of (y − Ŷ )2. L is the number of knot
points to be taken. As spline fit highly depends on the
knot point selection and order of the spline to be fitted, the
order of the spline is taken as one greater than the order
of system to be observed and knot points are selected on a
trail and error basis in such a way that there are no sharp
peaks while fitting and maximum possible information of
data is captured by the fit.

In the second step, the objective function is minimized
with respect to the parameters alone and with the spline
coefficients that are obtained from the step-1 such that
||θ||0 ≤ s where s can be chosen to be greater than or
equal to the order of system, one would like to identify.
Thus the objective function in step-2 is

min
||θ||0<s

H

As the function f is independent of parameters in the
second step, minimizing the above function is equivalent
to

min
||θ||0<s

g (3)

The overall algorithm is as follows. Firstly an initial guess
of actual parameters is provided in step-1 and the spline
coefficients are obtained. Using the spline coefficients from
the step-1, the parameter vector, θ is estimated from
step-2. This procedure is repeated until the termination
criteria is satisfied (error between the parameter vectors
obtained in two successive iterations is small enough or the
function value H with estimated spline coefficients and the
parameter vector should be minimum). In the proposed
algorithm, the termination criteria is selected to be the
error between the parameters be less than 0.005.

As the objective function in step-2 is non-linear, one can-
not use standard sparsity seeking optimization methods
such as LASSO, Basis Pursuit. Thus the Greedy Sparse
(GS) algorithm given in (Beck et al., 2013) is used, which
needs a bound on the sparsity an the initial guess. Selection
of initial values is described in the later part and the overall
algorithm is explained here.

Provide the
input-output

data

Estimate Pi’s
by optimizing
equation 2

Solve
equation 3
using the

greedy sparse
algorithm to
obtain the θ

vector

Termination
criteria
satisfied

display the
parameters

and the order

no

yes

The assumptions to apply GS algorithm are

i) The objective function should be continuously differ-
entiable

ii) The objective function is lower bounded

g(θ) is continuously differentiable and is lower bounded
so one can apply GS algorithm which is guaranteed to
converge to a CW-minima (Beck et al., 2013). The Greedy
Sparse algorithm is as follows.

• Choose θ0 ∈ Cs and k = 0, 1, . . .
• If ||θk||0 < s, for every i=1,2,. . . ,n

ti ∈ argmin
t∈R

g(θk + tei)

gi = min
t∈R

g(θk + tei)

where ei is the vector whose i
th component is one and

remaining all are zeros.
let ik ∈ arg min

i=1,2,...,n
gi and if gik < g(θk)

θk+1 = θk + tikeik
else return the parameter vector θ and terminate the
algorithm.

• If ||θk||0 = s for each i ∈ Ss(θ
k), j = 1, 2, . . . , n

ti,j ∈ argmin
t∈R

g(θk − θki ei + tej)

gi,j = min
t∈R

g(θk − θki ei + tej)

(ik, jk) ∈ argmin gi,j , i ∈ Ss(θ
k), j = 1, 2, . . . , n

and
If gikjk < g(θk);

θk+1 = θk − θkikeik + tik,jkeik
else return the parameter vector θ and terminate the
algorithm.

As Greedy sparse algorithm is a search based algorithm,
one needs a good initial guess to start with otherwise al-
gorithm converges to the CW minima which might not be
close to the true solution. Thus, a way to obtain an initial
guess is proposed. After step-1 in the actual algorithm
with lambda a very small quantity (preferably zero for
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estimation of the spline parameters especially in the noisy
cases so it is essential to understand the optimal value of λ
or to have some control over λ. Selection of optimal value
of lambda was given in (Varziri et al., 2008). Applying the
same approach, λopt can be obtained as sum of variance

of (y − Ŷ ) and mean of (y − Ŷ )2. L is the number of knot
points to be taken. As spline fit highly depends on the
knot point selection and order of the spline to be fitted, the
order of the spline is taken as one greater than the order
of system to be observed and knot points are selected on a
trail and error basis in such a way that there are no sharp
peaks while fitting and maximum possible information of
data is captured by the fit.

In the second step, the objective function is minimized
with respect to the parameters alone and with the spline
coefficients that are obtained from the step-1 such that
||θ||0 ≤ s where s can be chosen to be greater than or
equal to the order of system, one would like to identify.
Thus the objective function in step-2 is

min
||θ||0<s

H

As the function f is independent of parameters in the
second step, minimizing the above function is equivalent
to

min
||θ||0<s

g (3)

The overall algorithm is as follows. Firstly an initial guess
of actual parameters is provided in step-1 and the spline
coefficients are obtained. Using the spline coefficients from
the step-1, the parameter vector, θ is estimated from
step-2. This procedure is repeated until the termination
criteria is satisfied (error between the parameter vectors
obtained in two successive iterations is small enough or the
function value H with estimated spline coefficients and the
parameter vector should be minimum). In the proposed
algorithm, the termination criteria is selected to be the
error between the parameters be less than 0.005.

As the objective function in step-2 is non-linear, one can-
not use standard sparsity seeking optimization methods
such as LASSO, Basis Pursuit. Thus the Greedy Sparse
(GS) algorithm given in (Beck et al., 2013) is used, which
needs a bound on the sparsity an the initial guess. Selection
of initial values is described in the later part and the overall
algorithm is explained here.
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algorithm to
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Termination
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The assumptions to apply GS algorithm are

i) The objective function should be continuously differ-
entiable

ii) The objective function is lower bounded

g(θ) is continuously differentiable and is lower bounded
so one can apply GS algorithm which is guaranteed to
converge to a CW-minima (Beck et al., 2013). The Greedy
Sparse algorithm is as follows.

• Choose θ0 ∈ Cs and k = 0, 1, . . .
• If ||θk||0 < s, for every i=1,2,. . . ,n

ti ∈ argmin
t∈R

g(θk + tei)

gi = min
t∈R

g(θk + tei)

where ei is the vector whose i
th component is one and

remaining all are zeros.
let ik ∈ arg min

i=1,2,...,n
gi and if gik < g(θk)

θk+1 = θk + tikeik
else return the parameter vector θ and terminate the
algorithm.

• If ||θk||0 = s for each i ∈ Ss(θ
k), j = 1, 2, . . . , n

ti,j ∈ argmin
t∈R

g(θk − θki ei + tej)

gi,j = min
t∈R

g(θk − θki ei + tej)

(ik, jk) ∈ argmin gi,j , i ∈ Ss(θ
k), j = 1, 2, . . . , n

and
If gikjk < g(θk);

θk+1 = θk − θkikeik + tik,jkeik
else return the parameter vector θ and terminate the
algorithm.

As Greedy sparse algorithm is a search based algorithm,
one needs a good initial guess to start with otherwise al-
gorithm converges to the CW minima which might not be
close to the true solution. Thus, a way to obtain an initial
guess is proposed. After step-1 in the actual algorithm
with lambda a very small quantity (preferably zero for
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noiseless case and a non-zero value in noisy case this is
because λ is chosen based on measurement uncertainties
and in the noisy case the measurements are more uncer-
tain), equation 3 is solved for parameter vector θ without
sparsity constraint. Thus, the identification problem now
becomes a least squares problem and the solution can be
easily obtained. After obtaining the solution vector θ, the
elements with the negative values are made zero to assure
the stability of system and also if any values are close

to zero ( 1
100

th
of the maximum value of the estimated

parameter vector) these too are made zero to ensure proper
order estimation. Thus the dense θ vector has now became
sparse, which was considered as an initial guess to solve
step-2 with sparsity constraint. An important aspect of the
aforementioned algorithm is that one can obtain the actual
solution even if the actual parameters of the solution
become zero in the initial guess, which is not the case with
l1 norm minimization.

In the comparison section, the results obtained by the
proposed algorithm are compared with the l1 norm mini-
mization algorithm (Basis Pursuit Denoising (BPDN) al-
gorithm, where in ||x||1 is minimized subject to ||Ax −
b||2 ≤ σ, where σ = ||Axls − b|| + γ, γ > 0) as explained
in (Jampana et al., 2013).

3. NUMERICAL EXPERIMENTS

The proposed algorithm is experimented on a variety of
systems and in all the following experiments, the input
is a multi-frequency sine wave with frequency range in
between 0.1 and 1.0 and the input order (m) is assumed
to be known.

3.1 System-1

Let the system-1 is a first order system as

dx

dt
+ 2x = u(t)

The system has been simulated in simulink to obtain u(tk)
and x(tk) and Gaussian noise ε(tk) is added to x(tk) to
obtain the output data, y(tk), which is the output. Input-
output data is provided to the algorithm and in the general
case one does not know the order, one can specify a high
order as n value and estimate the parameters. In the
following simulations, the order is varied as n = 1(the
actual order), n = 3 and n = 5. For the noisy case,
the variances of noise is varied in between 5 and 10 and
a histogram of parameters are plotted. The mean along
with the standard deviation are reported in the following
tabulated results.

Table 1. First order Noiseless Case

Actual n=1 n=3 n=5
parameters

a5=0
a3=0 a4=0

a1=1 a1=0.9998 a2=0 a3=0
a0=2 a0=2.0001 a1=0.9621 a2=0

a0=1.99 a1=0.9983
a0= 1.997

Table 2. First order Noisy Case with SNR
varied in between 5 and 10

Actual n=1 n=3 n=5

a5=0
a3=0 a4=0

a1=1 a1=0.96±0.01 a2=0 a3=0
a0=2 a0=2±0.001 a1=1.02±0.02 a2=0

a0=2.02±0.06 a1=0.95±0.02
a0= 1.961±0.04

From the above results, it can be said that for first order
systems, even with the higher order assumption of order,
the identification method satisfactorily approximates the
true system.

3.2 System-2

System-2 is the same first order system with additional
input derivative term

dx

dt
+ 2x =

du

dt
+ u(t)

The data is obtained using the same procedure mentioned
in system-1. The solution from the algorithm is as follows

Table 3. First order Noiseless Case

Actual n=1 n=3 n=5
parameters

a5=0
a3=0 a4=0

a1=1 a1=1.05 a2=0 a3=0
a0=2 a0=2.0006 a1=1.026 a2=0
b1=1 b1=1.028 a0=1.999 a1=1.072

b1=1.019 a0= 1.993
b1=1.059

Table 4. First order Noisy Case with SNR
varied in between 5 and 10

Actual n=1 n=3 n=5
parameters

a5=0
a3=0 a4=0

a1=1 a1=1.01±0.03 a2=0 a3=0
a0=2 a0=1.99±0.04 a1=0.99±0.05 a2=0
b1=1 b1=1.07±0.02 a0=1.99±0.02 a1=0.92±0.02

b1=1.02±0.02 a0= 1.98±0.03
b1=0.96±0.02

3.3 System-3

Now, consider a second order system

d2x

dt2
+ 2.8

dx

dt
+ x = u(t)

Applying the identification algorithm after obtaining the
input-output data, the results are as follows.

For a second order system also it can be said that the
identification method approximates the true system along
with correct order estimation.
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Table 5. Second order Noiseless case

Actual parameters n=2 n=5

a5=0
a2=1 a2=0.9898 a4=0
a1=2.8 a1=2.801 a3=0
a0=1 a0=0.9988 a2=1.001

a1=2.769
a0= 1.003

Table 6. Second order Noisy Case with SNR
varied from 10 to 5

Actual parameters n=2 n=5

a5=0
a2=1 a2=0.93±0.01 a4=0
a1=2.8 a1=2.83±0.04 a3=0
a0=1 a0=0.99±0.001 a2=0.85±0.04

a1=2.73±0.02
a0=0.97±0.005

3.4 System-4

A fourth order system of the form

d4x

dt4
+ 10

d3x

dt3
+ 35

d2x

dt2
+ 50

dx

dt
+ 24x = u(t)

is considered as our third system and after obtaining the
data by the procedure mentioned above, identification
algorithm is applied with n = 6 and the results are
tabulated below.

Table 7. Fourth order Noiseless Case

Actual parameters n=4 n=6

a6=0
a4=1 a4=0.9581 a5=0
a3=10 a3=10.02 a4=0.93
a2=35 a2=34.94 a3=9.86
a1=50 a1=50.01 a2=34.75
a0=24 a0=23.99 a1=49.93

a0=23.982

Table 8. Fourth order Noisy Case with SNR=8

Actual least squares Initial guess final
parameters solution sparse algorithm solution

a6=-3.492 a6=0 a6=0
a4=1 a5=-0.3713 a5=0 a5=0
a3=10 a4=-6.37 a4=0 a4=0.9659
a2=35 a3=10.69 a3=10.69 a3=10.69
a1=50 a2=31.79 a2=31.79 a2=31.79
a0=24 a1=49.62 a1=49.62 a1=49.70

a0=24.08 a0=24.08 a0=24.08

From Table 8, it can be seen that the initial guess to the
sparse algorithm has the a4 coefficient set to zero, however
this is recovered back by the sparse algorithm.

With the same fourth order system, and with first order

input derivative term i.e., d4x
dt4 + 10d3x

dt3 + 35d2x
dt2 + 50dx

dt +

24x = 2du
dt +u(t), the solution obtained from the algorithm

is θ = (0, 0.9746, 9.28, 33.34, 47.34, 23.96, 1.864) with
n = 5 and m = 1.

4. COMPARISON

The proposed method is compared with the method of
solving for sparse solutions given in (Jampana et al., 2013),
where l1 norm minimization is done using Basis Pursuit
Denoising(BPDN) algorithm. In the following table, x(1s,γ)

is the result of BPDN algorithm on System-4 where γ is
the parameter which is selected on a trail and error basis.

Table 9. Comparison of proposed method with
the BPDN algorithm of fourth order system in

noiseless case

coefficient Proposed x(1s,10) x(1s,5)

a6 0 0 0.0603
a5 0 0 0
a4 0.93 0.3155 0.8918
a3 9.86 8.6773 9.3467
a2 34.75 33.6388 34.3501
a1 49.93 49.0486 49.7257
a0 23.982 22.4575 23.0507

Fig. 1. Comparison of step response of proposed method
with the actual system and with BPDN algorithm

Fig. 2. Comparison of Frequency response of proposed
method with the actual system and with BPDN
algorithm
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Table 5. Second order Noiseless case

Actual parameters n=2 n=5

a5=0
a2=1 a2=0.9898 a4=0
a1=2.8 a1=2.801 a3=0
a0=1 a0=0.9988 a2=1.001

a1=2.769
a0= 1.003

Table 6. Second order Noisy Case with SNR
varied from 10 to 5

Actual parameters n=2 n=5

a5=0
a2=1 a2=0.93±0.01 a4=0
a1=2.8 a1=2.83±0.04 a3=0
a0=1 a0=0.99±0.001 a2=0.85±0.04

a1=2.73±0.02
a0=0.97±0.005

3.4 System-4

A fourth order system of the form

d4x

dt4
+ 10

d3x

dt3
+ 35

d2x

dt2
+ 50

dx

dt
+ 24x = u(t)

is considered as our third system and after obtaining the
data by the procedure mentioned above, identification
algorithm is applied with n = 6 and the results are
tabulated below.

Table 7. Fourth order Noiseless Case

Actual parameters n=4 n=6

a6=0
a4=1 a4=0.9581 a5=0
a3=10 a3=10.02 a4=0.93
a2=35 a2=34.94 a3=9.86
a1=50 a1=50.01 a2=34.75
a0=24 a0=23.99 a1=49.93

a0=23.982

Table 8. Fourth order Noisy Case with SNR=8

Actual least squares Initial guess final
parameters solution sparse algorithm solution

a6=-3.492 a6=0 a6=0
a4=1 a5=-0.3713 a5=0 a5=0
a3=10 a4=-6.37 a4=0 a4=0.9659
a2=35 a3=10.69 a3=10.69 a3=10.69
a1=50 a2=31.79 a2=31.79 a2=31.79
a0=24 a1=49.62 a1=49.62 a1=49.70

a0=24.08 a0=24.08 a0=24.08

From Table 8, it can be seen that the initial guess to the
sparse algorithm has the a4 coefficient set to zero, however
this is recovered back by the sparse algorithm.

With the same fourth order system, and with first order

input derivative term i.e., d4x
dt4 + 10d3x

dt3 + 35d2x
dt2 + 50dx

dt +

24x = 2du
dt +u(t), the solution obtained from the algorithm

is θ = (0, 0.9746, 9.28, 33.34, 47.34, 23.96, 1.864) with
n = 5 and m = 1.

4. COMPARISON

The proposed method is compared with the method of
solving for sparse solutions given in (Jampana et al., 2013),
where l1 norm minimization is done using Basis Pursuit
Denoising(BPDN) algorithm. In the following table, x(1s,γ)

is the result of BPDN algorithm on System-4 where γ is
the parameter which is selected on a trail and error basis.

Table 9. Comparison of proposed method with
the BPDN algorithm of fourth order system in

noiseless case

coefficient Proposed x(1s,10) x(1s,5)

a6 0 0 0.0603
a5 0 0 0
a4 0.93 0.3155 0.8918
a3 9.86 8.6773 9.3467
a2 34.75 33.6388 34.3501
a1 49.93 49.0486 49.7257
a0 23.982 22.4575 23.0507

Fig. 1. Comparison of step response of proposed method
with the actual system and with BPDN algorithm

Fig. 2. Comparison of Frequency response of proposed
method with the actual system and with BPDN
algorithm
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1-norm minimization with γ=10 predicted the order cor-
rectly but the error between the actual parameters and the
parameters estimated are very high when compared with
our proposed method and reducing the value of γ results
in error in model order estimation as one can check the
results given in the table 9 with γ = 5.

Table 10. Comparison of proposed method
with the BPDN algorithm of fourth order

system in noisy case

coefficient Proposed x(1s,10) x(1s,5)

a6 0 0 0.0556
a5 0 0 0
a4 0.9659 0.2894 0.8650
a3 10.69 8.7057 9.3447
a2 31.79 33.6113 34.3223
a1 49.78 49.0695 49.7467
a0 24.08 22.4461 23.0387

Fig. 3. Comparison of Frequency response of proposed
method with the actual system and with BPDN
algorithm in noisy case

From Figure 2 and Figure 3 it can be seen that the Bode
plot of the proposed method is closer to the original system
when compared with the BPDN algorithm.

5. CONCLUSIONS

In this paper, a new algorithm to estimate the parameters
as well as order of the system (differential equation) simul-
taneously is presented. With the help of the simulations,
it is successfully shown that the algorithm works well with
the aforementioned way of selecting the initial values, and
the weighting factor (λ) value. However for higher order
systems, the error between the actual and the estimated
parameters are considerable and one reason may be error
in estimation of derivatives based on the spline fit to the
data, which can be reduced upon increasing the number
of knot points. If one has a huge data, placing a knot
point at each time resolves the issue but at the cost of
heavy computation. Thus one has to balance between the
number of knots which implicitly influences the results and
the computation time. Generalizing the selection of knots
will be pursued in the future.

In this paper, the input is assumed to be known. The
aforementioned algorithm can be extended to a general
case where one does not have any information of input
function but only has a set of input data. In such cases,
one more additional step of fitting splines to the input
data is required and this work will also be pursued in the
future.
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