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Abstract 

Geotechnical practice deals with designing foundations and earth structures. Structure–Foundation–Ground 

interaction is a unique field or topic that concerns both structural and geotechnical engineers. Most 

geotechnical problems are very sensitive to foundation geometry (length, diameter, spacing), flexural 

stiffness etc. Even basic parameters such as bearing capacity of shallow foundations, ultimate axial and 

lateral load capacities of deep/pile foundations, are influenced by the foundation characteristics. More 

importantly, the serviceability criterion can be satisfied only by proper and rational estimates of structure–

foundation–ground interactions. The paper summarizes modelling approaches for foundation–ground 

interactions, a leaning instability approach for tall structures, and analysis of geosynthetic-reinforced 

foundation beds. 
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INTRODUCTION 

Geotechnical practice involves the safe and economical design of foundations and earth structures. 
Conventionally, design of foundations involves the interaction of the foundation with the ground 
even for a basic parameter such as bearing capacity. Thus, when dealing with either shallow or 
deep foundations, the geometric and stiffness properties of the structural elements, isolated, 
combined or raft foundations in the former, or length, diameter, spacing, arrangement, provision of 
piles in the latter, affect and control the overall performance of the system along with the strength 
and deformation characteristics of the ground. In an ideal situation, the system consisting of the 
structure, the foundation and the ground need to be analyzed together, which is currently practiced 
for important structures. 

Retaining structures too involve interaction between the structural element and the backfill or 
the ground. The earth pressure mobilized behind ‘rigid’ retaining structures is affected by 
kinematics or wall movement, rotation about the toe/top, translation or a combination of all of 
these. Design of flexible retaining structures requires consideration of their flexural stiffness be it 
sheet pile or diaphragm wall. Many a time, failures of deep excavations occur because of 
inadequate or improper understanding of these interactions. The more recent development of 
reinforced soil or mechanically stabilized earth walls, also consist of interactions between the 
reinforcing element and the facing units with the backfill. The keynote addresses some of these 
issues and presents an overview of modeling ground–foundation interactions. The term ‘Ground’ 
is used instead of loosely referred term ‘Soil’ as the former is more appropriate than the latter 
(Madhav [1], 2015). 
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Modulus of Subgrade Reaction 

The basic parameter that defines the interaction between the ground and the foundation is defined 
(Terzaghi [2], 1943) as (Fig. 1)  

Fig. 1  Pressure–deformation response of ground 

𝑘𝑠 =
∆𝜎

∆𝛿
  (1) 

where ks is the modulus of subgrade reaction, Δσ - the increment of applied pressure and Δδ – the 
corresponding change in deformation. The range of values of the modulus of subgrade reaction for 
different soils obtained from load tests with 300 mm size plate are given in Table 1. In more 
advanced studies, a non-linear (hyperbolic) relation between stress and settlement is typically 
considered. 

Table 1. Range of modulus of subgrade reaction ks 

Soil ks (kN/m3) 

Loose sand 4800 – 16000 

Medium dense sand 9600 – 80000 

Dense sand 64000 – 128000 

Clayey medium dense sand 32000 – 80000 

Silty medium dense sand 24000 – 48000 

Clay: 

qa  ≤ 200 kPa 

200 < qa ≤ 800 kPa 

qa> 800 kPa 

 

12000 – 24000 

24000 – 48000 

> 48000 

GROUND–FOUNDATION INTERACTION MODELS 

The inherent complexity in the behaviour of natural ground has led to the development of many 
idealized models for the analysis of ground–foundation interaction problems. The classical 
theories of elasticity and plasticity are two such idealizations commonly employed in the analysis 
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of such problems in geotechnical engineering. Although the idealized ground–foundation 
interaction models do not describe exactly the physical properties of real soil media, yet, they 
provide a useful description of certain features of the response under finite conditions of operation. 
The mathematical or physical idealization of ground behaviour is particularly instrumental in 
reducing the analytical rigor expended in the solution of many complex boundary value problems 
in geotechnical engineering (Selvadurai [3], 1979). The idealization depends on a variety of 
factors, such as, the type of soil and soil conditions, the type of foundation and the nature of 
external loading. The response or character of each idealized model is typified by the surface 
deflection it experiences under the application of an external system of forces. 

Mechanical Models 

A linear elastic half-space is the simplest idealization of ground response. From a physical point of 
view, an elastic material is one that deforms under the application of an external system of forces 
and regains its original configuration upon removal of these forces. However when idealizing 
ground, the word ‘elastic’ is used in a more restrictive sense to mean a material having a linear, 
reversible stress–strain curve (Lambe and Whitman [4], 1969). A number of one, two and three 
parameter elastic models have been proposed and widely used to predict the response of a 
foundation resting in the ground. 

One-Parameter Winkler Model 
The idealized model of ground proposed by Winkler [5] (1867) assumes that the deflection, w, of 
the ground at any point on the surface is directly proportional to the stress, q, applied at that point 
and independent of the stresses applied at other locations, i.e.  

𝑞 𝑥, 𝑦 = 𝑘𝑠𝑤 𝑥, 𝑦  (2) 

Equation (2) constitutes the response function for the Winkler model. Physically, Winkler’s 
idealization of the ground consists of a system of mutually independent linearly elastic springs 
with spring constant, ks. An important feature of this model is that the displacement occurs 
immediately beneath the loaded area and the displacements are zero outside this region (Fig. 2). 
Further, the displacements of the loaded region are constant or uniform whether the ground is 
subjected to load through an infinitely rigid footing or uniform load. Winkler’s model serves as a 
preliminary idealization of the actual operating conditions in many geotechnical problems.  

Two-Parameter Models 
The inherent deficiency of the Winkler Model in depicting the continuous behaviour of the ground 
and the mathematical complexities of the elastic continuum approach led to the development of 
many other simple ground response models. These models possess some of the characteristic 
features of continuous elastic solids (Kerr [6], 1964; Hetenyi [7], 1966). The term ‘two-parameter’ 
signifies the fact that the model is defined by two independent elastic constants. Basically, the 
development of these two-parameter models has been approached along two distinct lines. The 
first type proceeds from the Winkler model and eliminates its discontinuous behavior by providing 
a mechanical interaction between the individual spring elements. Such physical models of ground 
behaviour have been proposed by Filonenko-Borodich [8] (1940), Hetenyi [9] (1946), Pasternakp 
[10] (1954) and Kerr [6] (1964) where interaction between adjacent spring elements is provided by 
either elastic membranes, elastic beams, or elastic layers capable of purely shearing deformation. 
The second approach stems from the elastic continuum model and introduces constraints or 
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simplified assumptions with respect to the distribution of displacements and stresses. The models 
proposed by Reissner [11] (1958) and Vlazov and Leontiev [12] (1966) take into consideration 
such simplifications. 
 

Fig. 2  Surface displacement profiles of Winkler model (1867) due to (a) non-uniform load  
 (b) concentrated load, (c) rigid load, and (d) uniform flexible load 

Filonenko-Borodich Model (1940)  
The model proposed by Filonenko-Borodich [8] (1940) achieves continuity between individual 
Winkler springs by connecting them to a smooth thin elastic membrane subjected to a uniform 
tension, T (Fig. 3). Considering the equilibrium of the membrane–spring system, the surface 
deflection of the ground due to a pressure, q, for three-dimensional problems (e.g. square and 
rectangular foundations) is given by 

𝑞 𝑥, 𝑦 = 𝑘𝑠𝑤 𝑥, 𝑦 − 𝑇∇2𝑤 𝑥, 𝑦  (3) 

where ∇2is the Laplacian operator in Cartesian coordinates. In the case of two-dimensional plane 
strain problems such as strip foundations, Eq. (3) reduces to 

𝑞 𝑥 = 𝑘𝑠𝑤 𝑥 − 𝑇
𝑑2𝑤 𝑥 

𝑑𝑥2  (4) 
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Filonenko-Borodich model is characterized by two elastic constants, ks and T. Typical examples of 
surface deflection profiles of this particular model due to concentrated, flexible and rigid external 
loads are shown in Fig. 3.  
 

Fig. 3  Surface displacement profiles of Filonenko-Borodich model (1940): (a) basic model 
 (b) concentrated load, (c) rigid load, and (d) uniform flexible load 

Hetenyi Model (1946) 
In the model proposed by Hetenyi [9] (1946), interaction between independent spring elements is 
accomplished by incorporating an elastic plate in three-dimensional problems, or an elastic beam 
in the case of two-dimensional problems (Fig. 4). The response function of this model is given by 

Fig. 4  Hetenyi model (1946) 

𝑞 𝑥, 𝑦 = 𝑘𝑠𝑤 𝑥, 𝑦 − 𝐷∇4𝑤 𝑥, 𝑦  (5) 

where D = Eph3/12(1 – νp
2) is the flexural rigidity of the plate/beam. In the case of two-

dimensional plane strain problems such as strip foundations, Eq. (5) reduces to 
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𝑞 𝑥 = 𝑘𝑠𝑤 𝑥 − 𝐷
𝑑4𝑤 𝑥 

𝑑𝑥4  (6) 

Pasternak Model (1954) 
The model of ground behaviour proposed by Pasternak [10] (1954) assumes the existence of shear 
interaction between the spring elements. This is achieved by connecting the spring elements to a 
layer of incompressible vertical elements that deform in transverse shear (Fig. 5a). The 
deformations and forces maintaining equilibrium in the shear layer are shown in Figs. 5b and c. 
For an isotropic linear shear layer in the x–y plane with shear moduli Gx = Gy = G, the expressions 
for the shear stresses in the vertical direction are 

Fig. 5  Pasternak model (1954): (a) basic model, (b) stress state of infinitesimal element of shear 
layer, and (c) forces acting on the shear layer element 

𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧 = 𝐺
𝜕𝑤

𝜕𝑥
  (7) 

𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 = 𝐺
𝜕𝑤

𝜕𝑦
  (8) 

The governing equation for the two-parameter Pasternak model is  

𝑞 𝑥, 𝑦 = 𝑘𝑠𝑤 𝑥, 𝑦 − 𝐺𝐻∇2𝑤 𝑥, 𝑦  (9) 

The surface deflection profiles for this model are very similar to those obtained for the Filonenko-
Borodich model. Winkler condition is recovered as a limiting case for the two-parameter models 
presented thus far, when T, D and GH tend to zero. The Pasternak model is the most reasonable, 
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generalized two-parameter model and is easily conceivable for geotechnical applications as 
ground exhibits compressibility and deforms in shear (Madhav [13], 1998).  

Vlazov Model (1956a, b) 
The model of ground response proposed by Vlazov [14, 15]  (1956a, b) is an example of the 
second type of two-parameter elastic model, derived by introducing displacement constraints that 
simplify the basic equations of the linear theory of elasticity for an isotropic continuum and using 
the variational approach. Vlazov [14,15]  (1956a, b) obtained a response function similar in 
character to Eqs. (3) and (9) by imposing certain restrictions on the possible distribution of 
displacements in an elastic layer of thickness, Hs, modulus of elasticity, Es, and Poisson’s ratio, νs, 
subjected to an arbitrary plane strain load, q(x), on the surface (Fig. 6). The state of strain in the 
foundation layer is assumed to be such that the horizontal displacements are zero while the vertical 
displacements are expressed as 
 

Fig. 6  Vlazov model (1956a, b): stresses in a single elastic layer 

𝑤 𝑥, 𝑧 = 𝑤 𝑥 ℎ 𝑧  (10) 

where the function h(z) describes the variation of the displacements with depth, z, from the 
surface. Vlazov and Leontiev [12] (1966) proposed linear and exponential variations of the 
function, h(z), for thin and thick deposits, respectively, as 

ℎ 𝑧 =  1 − 𝜂  (11) 

ℎ 𝑧 =
𝑠𝑖𝑛ℎ 𝛾 𝐻−𝑧 /𝐿 

𝑠𝑖𝑛ℎ 𝛾𝐻/𝐿 
  (12) 

where η = z/H; γ and L are constants. The final equation developed by Vlazov and Leontiev [12] 
(1966) takes the form 
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𝐸𝑠𝐻

6 1+𝜈𝑠 

𝑑2𝑤

𝑑𝑥2 −
𝐸𝑠 1−𝜈𝑠 

𝐻 1+𝜈𝑠  1−2𝜈𝑠 
𝑤 + 𝑞 𝑥 𝑔1 0 = 0 (13) 

Eq. (13) was rewritten by Vlazov and Leontiev [12] (1966) as 

𝑞 𝑥 = 𝑘𝑤 𝑥 − 2𝑡
𝑑2𝑤 𝑥 

𝑑𝑥2   (14) 

where 

𝑘 =
𝐸0

𝐻 1−𝜈0
2 

 and 𝑡 =
𝐸0𝐻

12 1+𝜈0 
;  for thin layers   (15) 

𝑘 =
𝐸0

𝐻 1−𝜈0
2 
𝜓𝑘  and 𝑡 =

𝐸0𝐻

12 1+𝜈0 
𝜓𝑡 ;  for thick layers   (16) 

where 

𝜓𝑘 =  𝛾𝐻/2𝐿 
 𝑠𝑖𝑛ℎ 𝛾𝐻/𝐿 𝑐𝑜𝑠ℎ 𝛾𝐻/𝐿 ± 𝛾𝐻/𝐿  

𝑠𝑖𝑛ℎ2 𝛾𝐻/𝐿 
  (17) 

𝜓𝑡 =  3𝐿/2𝛾𝐻 
 𝑠𝑖𝑛ℎ 𝛾𝐻/𝐿 𝑐𝑜𝑠ℎ 𝛾𝐻/𝐿 ± 𝛾𝐻/𝐿  

𝑠𝑖𝑛ℎ2 𝛾𝐻/𝐿 
  (18) 

𝐸0 =
𝐸𝑠

 1−𝜈𝑠
2 

 and 𝜈0 =
𝜈𝑠

1−𝜈𝑠
  (19) 

Equation (14) was referred by Vlazov and Leontiev [12] (1966) as a ground-foundation interaction 
model with two constants, t and k. The parameters, t and k, illustrate the relationship of this model 
to the Winkler model described previously. When t equalszero, Winkler representation is 
recovered (k is the Winkler foundation spring stiffness). The Vlazov model is identical to the 
Pasternak model with the additional advantage that the parameters, k and t, can be derived from 
the elastic deformation properties of the ground.  

Reissner Model (1958) 
Reissner [11] (1958) proposed a model introducing constraints on displacements and stresses that 
simplify the basic equations for a linear elastic isotropic continuum. The in-plane (x-y plane) 
stresses, σx = σy = τxy = 0 throughout the depth, H, of the subgrade, and the displacement 
components, u, v, and w in the x, y and z directions respectively, satisfy the conditions 

u = v = w = 0 on z = H  (20) 

u = v = 0 on z = 0 (21) 

The response function of the Reissner model is 

𝑐1𝑤 − 𝑐2
𝑑2𝑤

𝑑𝑥2 = 𝑞 −
𝑐2

4𝑐1

𝑑2𝑞

𝑑𝑥2  (22) 

where w is the vertical displacement of the surface of the elastic layer and q – the external load. 
The constants c1 and c2 characterizing ground response, Eq. (22), are related to Es and G by c1 = 
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Es/H and c2 = HG/3, where Es and Gare the deformation and shear moduli of the ground 
respectively. 

Three-Parameter Kerr Model 
As a generalization of the Pasternak concept, Kerr [6] (1964) proposed a three-parameter 
foundation model that consists of two layers of elastic springs interconnected by an elastic shear 
layer (Fig. 7). The differential equation governing the response of this model is given by 
 

Fig. 7  Kerr model (1964) 

 1 +
𝑘2

𝑘1
 𝑞 −

𝐺𝐻

𝑘1

𝑑2𝑞

𝑑𝑥2 = 𝑘2𝑤 − 𝐺𝐻
𝑑2𝑤

𝑑𝑥2   (23) 

where k1 and k2 are the spring constants of the upper and lower layers respectively and GH is the 
shear stiffness of the shear layer. The advantages of the three-parameter Kerr model (Kerr [16], 
1965) are 

 Contact pressure response does not include concentrated reactions as in Pasternak model.  

 Availability of an additional parameter to compare predictions with experimental results.  

 Availability of an additional boundary condition on shear layer deflection to simulate the 
restraint of the foundation layer, for a layer of finite thickness. 

To simulate punching shear failure of foundations on loose or highly compressible ground, Rhines 
[17] (1969) included a plastic yielding phenomenon in the shear layer of Kerr’s model. 

STRUCTURE–FOUNDATION–GROUND INTERACTION: TALL STRUCTURES 

In traditional design, the influence of the height of the structure on its stability is ignored, while 
only foundation–ground interactions are considered, as illustrated in the previous section. 
However, the height of the structure plays an important role in the overall behaviour of the system 
and leads to a different failure mechanism, termed ‘Leaning Instability’, an example of which is 
the famous Leaning Tower of Pisa. Fig. 8 depicts structures whose height, H, is (i) ignored (H = 
0), (ii) a medium low rise structure with H < B and (iii) high rise structure with H > B, where B is 
the width/diameter of the structure. It can be shown experimentally and/or analytically that 
stability or bearing capacity decreases with increased height of the structure, and therefore, is 
maximum in case (i) and minimum in case (iii). Studies by Hambly [18, 19]  (1985, 1990), 
Cheney etal. [20] (1991), Lancelotta [21] (1993) and Potts [22] (2003) quantify the effect of the 
height of the structure on its stability, somewhat akin, to that of buckling of long columns. 
Incidentally, the buckling of long slender columns is controlled by the flexural stiffness of the 
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structure and not the strength of the material. Considering the response of the ground to be 
represented by Winkler springs (Fig. 9), the leaning instability criterion can be derived as 
 

Fig. 8  Structures with different heights, H, relative to their width/diameter, B 

Fig. 9  Model for leaning instability of tall structures on compressible ground 

ℎ𝑒𝑤𝑒

𝑟𝑒
2 = 1  (24) 
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where he is the limiting height of the structure, we = W/(A.ks)–the average settlement and re = Ie/A, 
A – the area of the foundation. Interestingly, for the Leaning Tower of Pisa, the height to center of 
gravity, average settlement, radius of foundation and radius of gyration are 18 m, 1.33 m, 10 m 
and 5 m, respectively, thus, giving the ratio he.we/re

2 = 0.96, which is close to the critical value. In 
advanced modelling, the time-dependent response of the ground is represented by Kelvin–Voigt 
model as in Fig. 10. 

Fig. 10  Kelvin–Voigt model for time-dependent behaviour of ground 

The influence of the compressibility of the ground in inducing tilt or rotation of the structure is 
illustrated by Potts [22] (2003) and shown in Fig. 11. A tall structure 60 m high and 20 m in 
diameter resting on ground with undrained shear strength,  su, of 80 kPa is analyzed. An initial tilt 
of 0.5° is imposed which is most likely for wide structures. The responses of the structure on (i) 
very stiff, (ii) moderately stiff and (iii) soft ground, with the ratio of shear stiffness to undrained 
shear strength, G/su, of 1000, 100 and 10, respectively, are presented in Fig. 12. The tall structure 
on very stiff ground fails at a weight of 130 MN, while those on moderately stiff and soft ground 
fail at 110 and 60 MN respectively. The failure of the tower on very stiff ground is almost similar 
to rigid-plastic at extremely small rotations while the rotation at failure increases with increasing 
softness of the ground. The practice of using deep foundations such as piles, helps in reducing 
settlements and rotation to very small values, thus, increasing the stability of tall structures. 

GEOSYNTHETIC-REINFORCED FOUNDATION BEDS 

Soft ground, widespread throughout the world especially along deltaic and coastal regions, 
possesses undesirable geotechnical properties, such as, high natural water content (close to liquid 
limit), high compressibility, low undrained shear strength and hydraulic conductivity. When 
constructing shallow foundations in such deposits, the common practice is to improve the load–
settlement response of soft ground by placing a layer of compacted granular material on top. The 
granular fill serves as a platform for machinery to operate, functions as a relatively stiff base and 
distributes the applied load over a wider area onto underlying soft ground. Meyerhof [23] (1974) 
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proposed a theory to estimate the ultimate bearing capacity of footings in a two-layered system of 
dense granular fill over soft ground based on punching failure mechanism (Fig. 13). The punching 
shear resistance depends on the relative thickness and angle of shearing resistance of granular fill 
below the footing. 

Fig. 11  Geometry for numerical investigation of leaning instability of tall structure (Potts [22], 
2003) 

The performance of the system can be enhanced further by reinforcing the granular fill with a 
layer of geosynthetic (Fig. 14).The geosynthetic reinforcement mobilizes axial resistance against 
pullout (Fig. 15) as it gets pushed down due to the punching of the footing through the granular 
fill. This downward push (Fig. 16) causes the reinforcement to be pulled down transversally and 
triggers additional stresses to be mobilized beneath the reinforcement. Madhav and Umashankar 
[24, 25] (2003a,b) proposed a Winkler type model for the analysis of inextensible sheet 
reinforcement embedded in linear/non-linear subgrade and subjected to transverse end force (Fig. 
17). Transverse displacement of reinforcement in dense granular fill generates pullout resistance 
larger than purely axial pullout resistance. Abhishek et al. [26] (2015) extended this approach 
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further to model a strip footing in a geosynthetic-reinforced foundation bed over soft, 
compressible ground stabilized with granular trench. The transverse resistance mobilized by the 
reinforcement increases the bearing capacity of the footing over and above the contribution by 
axial resistance alone. 

Fig. 12  Rotation of tall structure with increase in its weight (Potts [22], 2003) 

Fig. 13  Failure mechanism for footing in dense sand over soft clay (Meyerhof [23], 1974) 

Fig. 14  Schematic of footing on geosynthetic-reinforced foundation bed over soft compressible 
ground 
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Fig. 15  Mechanism of axial pullout resistance by geosynthetic (Abhishek etal. [26], 2015) 

Fig. 16  Forces due to transverse displacement of geosynthetic (Abhishek etal. [26], 2015) 

Fig. 17  Schematic of (a) reinforcement subjected to transverse force, (b) mechanical model, (c) 
deformed profile and (d) forces on an element of reinforcement (Madhav and 

Umashankar [24,25], 2003a, b) 



Modelling Ground–Foundation Interactions | 105 

 

CONCLUDING REMARKS 

Structure–Foundation–Ground interaction is one unique field or topic which concerns both 
structural and geotechnical engineers. The importance of the topic can never be over-emphasized. 
Most geotechnical problems are very sensitive to foundation geometry (length, diameter, spacing), 
flexural stiffness, etc. Even basic parameters such as bearing capacity of shallow foundations, 
ultimate axial and lateral load capacities of deep/pile foundations, are influenced by the foundation 
characteristics. The paper summarizes basic modelling approaches for foundation–ground 
interactions, a leaning instability approach for tall structures on compressible ground, and analysis 
of geosynthetic-reinforced foundation beds. Consideration of height of tall structure rather than 
just the foundation leads to an interesting and unique failure state that is governed by stiffness of 
ground rather than strength. 
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