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Abstract

Though Computational Fluid Dynamics (CFD) approach has proven itself as a cost-effective in

designing of missiles, CFD simulations cannot accurately estimate the experimental data due to such

reasons as unphysical sub-models, insufficient resolution, inaccurate boundary conditions, and initial

conditions, etc. To account the uncertainty due to such sources, Global Sensitivity Analysis (GSA)

approach is proposed in the current work of supersonic flow over cruciform missile of ogive-cylinder

fuselage-wings-fins configuration. The output parameters of interest considered are the coefficient

of rolling moment, the coefficient of drag, and coefficient of lift. A grid convergence study is done

to check grid independence and Grid Convergence Index (GCI) for these global coefficients, and

local mach number and stagnation pressure change field variables are estimated. A nominal case is

established. Global Sensitivity Analysis is performed by perturbation of the parameters from their

nominal case value after identifying the sources of uncertainty and the input variables with greater

influence on output global parameters are identified.
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Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) is increasingly being used for conceptual studies of prod-

uct design, and detailed product development. Its application throughout the evolution of advanced

tactical missiles is also notable. Role of CFD in development of a missile is explained by Frostbutter

et al. [2]. From starting of a missile development program to the final stage of integrating missile

into fleet, the process undergoes through many steps such as evaluation of alternate airframe, per-

forming wind tunnel tests, developing subsystems and hardware, and performing flight tests. CFD

is used to perform aerodynamic coefficient trade studies in the stage of airframe designing for the

primary observation by reducing cost of instrumentation. CFD does not eliminate the usage of wind

tunnel testing but instead provides supplementary test results which can be invaluable in all phases

of wind tunnel testing. For example, inviscid solution of CFD can be used to predict the pressure

and temperature distribution which is supportive for selection and location of instrument. Recent

CFD developments in multi-zone structured, unstructured, and adaptive grid refinement, comple-

mented by multiprocessor algorithms, have boosted the speed of simulations and hence reduced the

time required to obtain results. Agbaglah et al. [3] has demonstrated the reduction in time due to

parallelization and adaptive grid refinement with the example of the droplet simulation. The require-

ment of missiles for higher speed, greater manoeuvrability, and superior functionality in different

conditions with a reduced amount of designing time is also a reason for increase in demand of CFD.

Though CFD approach has proven itself as a cost-effective in designing of missiles, CFD simulations

cannot accurately estimate the experimental data due to such reasons as unphysical sub-models,

insufficient resolution, inaccurate boundary conditions, and initial conditions, etc. These sources

which can be divided into modelling and numerical in nature constitute to uncertainty in solution.

Thus, it is necessary to investigate these uncertainties.

1.2 Introduction To Uncertainty

Uncertainty is defined by ASME [4] as an inherent property of measurement technique or model

description and is due to lack of knowledge while the error is defined as the difference between the

exact value to a problem and the answer computed from a faulty method or simplified theory. This
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implies that the uncertainty is of probabilistic nature and error as deterministic nature. Though

there is the difference between uncertainty and error natures, we have used a more general definition

of uncertainty that includes error where they cannot be distinguished. The sources of uncertainty

and error are broadly categorized by Oberkampf et al. [1] into two distinct parts: (i) modelling

uncertainty and (ii) numerical uncertainty.

1.2.1 Uncertainty due to modelling

Modelling uncertainty arises due to the assumptions made in representing a particular physical

phenomenon in mathematical form, auxiliary physical models, and boundary conditions.

Sometimes assumptions are made such as continuum fluid, inviscid flow, incompressible flow, etc.

for the sake of simplicity. Fluids made up of discrete molecules are considered to be continuous, and

the assumption is coined as continuum hypothesis. Continuum hypothesis can introduce error in

cases of small scales and extremely high altitude applications. Low viscosity fluids can be assumed

to be inviscid; this may lead to the disagreement in actual value and result from inviscid solution.

Distinguishing term between compressible and incompressible flow is Mach number. Density is

considered to be constant in both space and time when Mach number is less than 0.3 which is

corresponding to 5% change in density. Incompressible flow assumption enables the decoupling of

energy equation with Navier-Stokes equations and continuity equation for CFD solution method, and

this results in a saving of computational efforts. But every time this assumption may not be true.

For example, water hammering is a phenomenon where compressibility effect on water is evident

due to the high pressure that is exerted on it. Near wall treatments of wall-bounded turbulent flows

and Boussinesq eddy viscosity assumption are also the sources of uncertainty in case of turbulent

flows.

The compressibility factor which is the ratio of the molar volume of a gas to the molar volume

of an ideal gas at the same temperature may deviate from unity due to the larger pressure and the

lower temperature. Thus to measure density, different equations of state can be used by considering

their individual advantages. Thermodynamic properties such as specific heat, thermal conductivity,

etc. may not be constant and their values may change with the change in temperature and pressure.

Different representative equations are available to consider effects of temperature and pressure on

such transport properties.

Boundary conditions such as wall roughness, far-field condition, pressure inlet, velocity inlet

as well as geometric representation of the boundaries are also the potential sources of uncertainty.

Wall-roughness affects boundary layer region of wall-bounded turbulent flows and it hence ultimately

affects the drag and heat and mass transfer on the walls. Examples are the flows over an airfoil,

ships, missiles, turbo-machinery, etc. Inlet boundary conditions subjected to error due to an error

in measurement techniques used. In the case of geometry, minute details of complex geometry is

usually ignored due to difficulty in modelling, and meshing such geometric features and also due to

non-availability of adequate computational resources. One can simplify three-dimensional geometry

into a two-dimensional geometry. Welding burr and small grooves can be ignored while creating

geometry. But these burrs and grooves can affect the boundary layer development and sometimes

can cause a considerable disagreement between experimental and computational data.
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1.2.2 Uncertainty due to numerical error

The numerical errors arises due to the numerical approach used in solving these mathematical

equations. A numerical approach used in solving Navier-Stokes equations, continuity equation and

energy equation is still under constant development. Different discretization schemes have been

proposed and each of these schemes has their own advantages and disadvantages such as divergence

issues, accuracy, and implementation problems. The importance of discretization error diminishes

with grid refinement. Again, convergence criterion can be of different types. It can be residual

convergence, coefficients convergence or total time. This also can produce uncertainty in solution.

Limited computational resources can influence the use of precision arithmetic. But for some

problems incorporating multiphase models, high thermal conductivity ratio, diverse length scales; it

is essential to use double precision solver and will be inappropriate if single precision solver used.

These uncertainty sources are tabulated as in Table (1.1).

Table 1.1: Sources of Uncertainty [1]

Sources Example

Modelling

Physical Modelling

(assumptions in PDEs)

Continuum assumption

Inviscid flow, Viscous flow

Incompressible flow

Transitional / Turbulent flow

Auxiliary Physical

Models

Equation of state

Thermodynamic properties

Transport properties

Chemical models, reactions and reaction rates

Boundary Conditions

Wall, e.g. roughness,

Open, e.g. far-field

Inlet conditions, e.g. pressure, temperature,

mach number

Geometrical representation

Numerical

Discretization and

Solution

Truncation error – spatial and

temporal terms

Convergence criterion

Round-off Error Finite – precision arithmetic

Simulation error (ξS) defined by Stern and Wilson et al. [5] is nothing but a difference between

the simulation result value (S) and the true value (T). Simulation error can be calculated by summing
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up modelling simulation error (ξSM ) and numerical simulation error (ξSN ).

ξS = S − T = ξSM + ξSN (1.1)

Simulation uncertainty (US) can be postulated in terms of modelling uncertainty (USM ) and

numerical uncertainty (USN ) as in equation (1.2):

US
2 = USM

2 + USN
2 (1.2)

From a design point of view, determining these uncertainties for the flow and or thermal simula-

tions are of prime importance. To determine the uncertainty, it is essential to identify the parameters

which affect the solution predominantly, and this can be done by Sensitivity Analysis.

1.3 Importance Of Sensitivity Analysis

One of the primary reason of increased interest in uncertainty management is its application in

risk-based design methods. As CFD is being widely used in aerospace industries, uncertainty has

been seen as an important research area. But to carry out the uncertainty analysis using methods,

like Monte Carlo simulations with a large number of sample points, is computationally expensive and

therefore not practical. Sensitivity analysis comes to rescue at this point in which extreme condition

approach is used here. Sensitivity analysis gives the insight to identify the set of parameters which

would be having a considerable effect on the result. Furthermore, these parameters can be used for

investigating the interdependency amongst them and for the total uncertainty. Parameters which

have marginal influence on the overall design objective can be dropped from further analysis. This

helps in part to mitigate computational cost.

1.4 Thesis Outline

• Chapter 2 details about the literature review done for the global sensitivity analysis, grid

convergence index, missile body simulation and the sources of uncertainty.

• Chapter 3 explains the missile dimensions, output quantities of interest and boundary condi-

tions.

• Chapter 4 discusses the sources of uncertainty in detail.

• Chapter 5 represents the nominal case results.

• Chapter 6 reports the grid convergence index and global sensitivity analysis.
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Chapter 2

Literature Review

The literature survey includes the understanding of the approach solving for sensitivity analysis,

of external flow over missile simulation, and identification of possible sources of uncertainty.

2.1 Approach For Sensitivity Analysis

A number of approaches to uncertainty and sensitivity analysis have been developed, including

differential analysis in which linear approximation - a partial derivative of flow with respect to pa-

rameters has been incorporated in Ref. [6] [7] [8]. For simulation-based design, Du and Chen [9]

use two approaches, namely, the extreme condition approach and the statistical approach, which

are developed to propagate the effect of uncertainties across a design system comprising interrelated

subsystem analysis. Using the extreme condition approach, an interval of the output from a series

of simulations is obtained, while the statistical approach provides statistical estimates of the out-

put. Local sensitivity analysis involves the local perturbation of model constants or variables and is

computationally expensive while Global Sensitivity Analysis (GSA) can be used for uncertainty in

the boundary conditions, models, model constants and other numerical parameters. GSA is carried

out by Pei et al. [10] for a diesel engine simulation to study the sensitivities of various modelling

constants and boundary conditions in a global manner in which the output results such as liquid

penetration length, ignition delays, combustion phasing, and emissions are intended. The experi-

mental uncertainty of wind tunnel experimentation is described by Rhode et al. [11] in which a range

of sources are considered such as measuring instrumental error, instrumentation asymmetries, and

flow-field non-uniformity and uncertainty calculated in this is with a baseline configuration. Uncer-

tainty is reported in terms of residual and sample variance. Residual is defined as the absolute value

resulted from the pressure coefficient of a performed experiment minus its average value calculated

from total performed experiments. Sample variance is then calculated from the residuals.

Celik et al. [12] have summarized the Grid Convergence Index (GCI) method which can be

applied to check grid independence. The method involves performing the simulation on three suc-

cessively finer grids and defining the error percentage on one of the grid. This extracted study of

GCI is thoroughly explained by Celik et al. [13]. Richardson Extrapolation (RE) is used to establish

a method for grid independent solution with the example of backward facing step. A similar ap-

proach is explained by Luis Eça [14] in which a procedure is presented for the numerical uncertainty
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in numerical approach for which exact solution is undetermined. This procedure is proposed by

considering the limitation in grid refinement. An attempt of grid independence check is done by

Abdol-Hamid et al. [15] for Ares I class of vehicle which is a two-stage rocket. Error estimation for

aerodynamic characteristics derived from iterative convergence grid refinement is presented in it.

In the present study, the extreme condition approach is implemented for GSA by avoiding in-

terdependence of parameters which may not be true in real. The parameters are perturbed from

base case value and their effects are observed on the targeted values. This GSA works as a selec-

tion method to highlight those parameters whose correctness and adjustments are most probable to

influence the predictions of a computational model.

2.2 External Flow Over Missile

GSA is carried out for supersonic flow a missile body. Khelil et al. [16] reported the numerical

evaluation of roll induced moment for a cruciform tactical missile, and the results are compared with

experimental data. Two configurations of the missile are considered which are a fuselage with four

fins and a fuselage with four fins, and four wings. Results are presented for different angle of attacks,

roll angles and mach numbers. The geometry of the missile has been taken from this literature. A

set of the input parameters from this work is considered in the present study of sensitivity analysis.

2.3 Identifying The Sources of Uncertainty

Identification of key parameters which would be possible sources of uncertainty is of prime im-

portance. A number of separate literature are available which contains the effects of the different

parameters. An overview of the sources of uncertainty for CFD is propounded by Oberkampf [1].

The sources include the parametric uncertainty and physio-chemical modelling uncertainty.

While performing CFD simulations with turbulence modelling for practical engineering geome-

tries, Reynolds Averaged Navier Stokes (RANS) based turbulence models are typically used. Several

RANS based turbulence models have been proposed which can be classified into multiple genres:

one-equation model, two-equation models, and Reynolds Stress Model can be used. Spalart and

Allmaras [17] have elucidated a model called Spalart Allmaras (SA) model which is one-equation

model. SA model has been used effectively for compressible flow conditions [18] [19]. Standard k –

ω model was proposed by Wilcox [20] which is a two-equation model. Menter [21] introduced k – ω

Shear Stress Transport (k – ω SST) model which is the modified version of standard k – ω model

and accounts for adverse pressure gradients effectively. Both models were compared by Coussirat et

al. [22]. These models consider the turbulent viscosity as isotropic and it leads to inaccurate com-

putation of rolling moment. Launder et al. [23] proposed Reynolds Stress Model (RSM) that helps

to capture anisotropic nature of the flow. Turbulence Intensity (TI) which is used to quantify the

turbulence in flow also affects the flow solution and effect of TI has been demonstrated by Shao-wu

LI et al. [24] for the airfoil flow simulation.

For fluid material which is air, in this case, transport properties like density calculation from an

equation of state, specific heat and viscosity are the possible parameters that can effect the solution

accuracy. Different physical models are developed for these properties. Redlich-Kwong Real Gas
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introduced by Redlich et al. [25] and Peng-Robinson equation of state stated by Peng et al. [ [26]

can be used in addition to ideal gas law equation of state. Molecular viscosity plays a key role

while solving for wall bounded flow and when drag force is considered. Sutherland’s law [27] along

with kinetic theory based viscosity models are suitable which are presented using the function of

temperature. Stephan et al. [28] has presented the model for the change in thermal conductivity

with respect to temperature and pressure. Thermal conductivity is articulated in terms of pressure

and temperature and polynomials are given for different ranges of pressure and temperature.

Rhode et al. [11] have performed various simulations considering uncertainty in measurements

in mach number, pressure, total temperature, and angles. It is done by introducing an error bound

of the measurement technique. The error in the measurement can be distinct for different types

of measurement techniques. Boundary conditions required for CFD solver can undergo uncertainty

and it has been explained through the experimental setup of a wind tunnel.

Numerical uncertainty can be due to convective flux type and discretization schemes used while

formulating the set of discretized equations. Convective fluxes can be computed by Roe Flux-

Differencing Splitting Scheme (Roe-FDS) proposed by Roe [29] and Advection Upstream Splitting

Method (AUSM) proposed by Liou et al. [30] with the applications in supersonic flow over NACA

airfoil and cylinder. Both methods are compared by Roe [29] and Lee et al. [31] which explains that

AUSM is superior to Roe-FDS in terms of convergence and bow shock but still introduces numerical

oscillations and pressure overshoots after the strong normal shock. Discretization schemes can be

of first order or second order or a hybrid scheme. Advantages of Monotonic Upstream-Centered

Scheme for Conservation Laws (MUSCL) is explained by Anderson et al. [32].
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Chapter 3

Problem Specifications

3.1 Background

A tactical missile comprises of many integrants such as airframe, propulsion system, flight control

system, guidance system, etc. From an aerodynamics point of view, airframe which houses all the

components has vital importance. This airframe can have two configurations as described in figure

(3.1):

• Configuration I : Ogive-cylinder fuselage-fins

• Configuration II : Ogive-cylinder fuselage-wings-fins

Configuration II can again be of two types: one with 0 degree relative angle between fins and

wings while other with some relative angle.

Again, tactical missiles can be classified on the basis of airframe structure as shown in figure

(3.2):

• Cruciform

• Planform

Cruciform missiles are those that have the fin surfaces in case of both configurations and wing

surfaces in case of configuration II at 90 degrees from each other. Planform missiles are those that

have these surfaces at 180 degrees.
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Figure 3.1: Tactical Missile Configurations

Figure 3.2: Types of Missile:
(a) Cruciform Missile, (b) Planform Missile
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The positioning of the missile can be defined by two quantities – angle of attack (α) and roll

angle (ϕ). Centreline of cylindrical body of the missile coincides with X-axis as presented in the

figure (3.3).

α – Angle made by free stream velocity field with positive X-axis measured in XY plane

ϕ – Angle made by wing and fin with the Y-axis measured in YZ plane

Z

𝜙

V∞

𝛼

Figure 3.3: Angles Representation:
(a) Angle of Attack, (b) Roll Angle

3.2 Forces and Rolling Moment

While flying through the air, missile undergoes aerodynamic forces as well as moment. The

rolling moment is an important factor for directionality.

3.2.1 Drag and Lift Forces

The forces experienced by missile are drag and lift forces which get generated due to skin-friction

of air and due to pressure variation across the missile body. Drag is a force parallel to the flow of

air while the lift is a force perpendicular to air flow. The drag force is the result of shearing action

of air due to its viscous nature and also of form drag created by the pressure differences upon the

surfaces. Lift is predominantly triggered by surface pressure differences.
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𝛼

𝐹𝐷

𝐹𝑁

𝐹𝐿

𝐹𝐴

Figure 3.4: Forces Resolution

Figure (3.4) represents the resolution of drag force (FD), lift force (FL), axial force (FA) and

normal force (FN ). Relations between these forces can be derived as follows:

FD = FA cos(α) + FN sin(α) (3.1a)

FL = FN cos(α)− FA sin(α) (3.1b)

These axial and normal forces on the surface are calculated in the direction specified by the unit

vector (−→a ) by summing up the dot product of specified direction vector with the pressure (
−→
FP ) and

viscous (
−→
FV ) force vectors.

FA = −→a ·
−→
FP +−→a ·

−→
FV (3.2)

Pressure force and viscous force can be calculated from the following Equations eqs. (3.3a)

and (3.3b):

−→
FP =

∫
−P
−→
dA (3.3a)

−→
FV =

∫
τw
−→
dA (3.3b)

Wall shear stress can be estimated from shear velocity (uτ) and density (ρ) as specified in equation

(3.4a). Furthermore shear velocity can be determined by separate equations for different turbulence

models and also it depends on the position of cell adjacent to wall surface. Equation (3.4b) provides

relationship between non-dimensional velocity and non-dimensional wall distance while having wall

adjacent cell centroid within laminar sublayer. If the centroid of wall adjacent cell exists within the
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logarithmic region of boundary layer, law of the wall is applied which is given by equation (3.4c).

uτ =

√
τw

ρ
(3.4a)

u+ = y+ (3.4b)

u+ =
1

κ
ln(E · y+) (3.4c)

u+ =
u

uτ
; y+ =

ρuτy

µ
; κ = Von Karman Constant; E = Constant (3.4d)

Enhanced wall functions accompanied by the combined effect of the laminar as well as turbulent

boundary layer can also be employed.

3.2.2 Rolling Moment

The rolling motion of missile is generated due to the vortices interaction with the wings and fins.

At a small angle of attack, flow separation is not inevitable and hence the vortices. But noteworthy

vortex shedding originates when the angle of attack increases. If the roll angle deviates from 0

(position ‘+’) or 45 (position ‘×’) degree, the interaction of vortices and the surfaces of fins and

wings initiates the rolling moment as forces on the surfaces act unsymmetrically. It reaches critical

at a roll angle of 22.5 degree.

Moment is the cross product of radial vector (−→ro ) from considered axis which central axis of

missile in the case of rolling moment and forces (
−→
FP and

−→
FV ) acting on the walls of missile.

−→
M = −→ro ×

−→
FP +−→ro ×

−→
FV (3.5)

3.3 Coefficients

The targeted values for the sensitivity analysis are coefficient of drag (CD), coefficient of lift

(CL) and coefficient of rolling moment (Cm). The formulae for their calculation are expressed by

equations 3.6a to 3.6c:

CD =
|FD|

1
2 ρ A u2

(3.6a)

CL =
|FL|

1
2 ρ A u2

(3.6b)

Cm =
|
−→
M |

1
2 ρ A u2 L

(3.6c)

Here A is cross-sectional area of fuselage and can be calculated by π
4D

2 where D is diameter of

fuselage. The targeted output values are these dimensionless coefficients (Cm, CD and CL) and the

sensitivity analysis is carried out for these coefficients.
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3.4 Geometrical Elucidation

The geometry of the missile has been taken from Khelil et al. [16]. The present study deals

with the cruciform missile with configuration II i.e. ogive-cylinder fuselage-wings-fins. Figure (3.5)

illustrates the geometrical dimensions of missile overall body, wing, and fin. All the dimensions are

stated in terms of D which is the diameter of missile fuselage and has been taken as 35 cm.

Figure 3.5: Geometrical Representation: (a) Missile Body Dimensions,
(b) Wing Dimensions, and (c) Fin Dimensions
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Figure 3.6: Missile Geometry

The wings in missile are located close to the center of gravity of missile and its deflection provides

lift for manoeuvring flight. The wings and fins are of the clipped delta type. The cross section

of wings is modified double wedge which consists the sharp leading and trailing edges. Fins are

comprised of the double wedge with both sharp leading and trailing edges. Sharp edges help to

maintain shock attachment, thereby reducing form drag and adverse pressure gradients.

Nose is of ogival shaped which is analogous to conical shape except that its planform shape is

improved by an arc of the circle instead of a straight line. The advantage of the blunter nose is that

it can withstand high thermal stresses which provide structural superiority over the conical nose.

3.5 Problem Definition

The flow of air over the missile is supersonic, turbulent. The diameter of fuselage cylinder (D)

is taken as 35 cm. Boundary conditions for the problem are taken from Khelil et al. [16] and are

mentioned in table (3.1):

Table 3.1: Boundary Conditions

Boundary Condition Value

Mach number (M) 2

Angle of attack (α) 21.7 degree

Roll angle (φ) 22.5 degree

Stagnation pressure (PT∞) 1.8 bar

Stagnation temperature (TT∞) 300 K
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The Reynolds number calculated on the basis of fuselage diameter can be given as

Re =
ρ u D

µ

= 8.0× 106
(3.7a)

Reference velocity, u = M ·
√
γ R TT∞ (3.7b)

Here, the specific gas constant of air (R) and adiabatic index (γ) are taken as 287.058 J/kgK

and 1.4 respectively. Viscosity and density of air are taken as 1.7894e−05 Pa· s and 1.225 kg/m3

respectively.

Static pressure (P∞) and static temperature (T∞) required for farfield boundary condition are

evaluated from isentropic flow relations (3.8a) and (3.8b).

P∞ = P∞

(
1 +

γ − 1

2
M2

)− γ/(γ−1)

(3.8a)

T∞ = T∞

(
1 +

γ − 1

2
M2

)−1
(3.8b)

From these relations, inlet static pressure (P ) and static temperature (T∞) come out to be

23004.81 Pa and 166.67 K respectively.

As this presented work mainly focuses on the sensitivity analysis in which the influence of different

parameters is considered, the experimental results are not intended to achieve. Also, the results can

not be compared with the experimental values since the distance of wing from the fore-body tip and

the fore-body geometrical description is unspecified in the source of geometry.

3.6 Essentials

All the simulations are run using a well-tested computational fluid dynamics software ANSYS

FLUENT 13.0.0.
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Chapter 4

GCI And Identification Of

Uncertainty Sources

In this chapter, brief discusses the methodology to encompass grid independence quantification,

identification of uncertain input parameters and their range to study the sensitivity analysis.

4.1 Grid Independence Study

CFD employs discretization to transform PDEs of continuum formulation into a set of algebraic

equations. Discretization error is governed by the meshing size used. It is subjected to the more

adverse condition if the mesh is not fine enough. But at the same instance, the grid should not be

too fine which ultimately intensifies the computational costs. Thus, it is imperative to investigate

the effect of grid size on results.

4.1.1 Richardson Extrapolation

Richardson [33] proposed the Richardson Extrapolation (RE) and it is applicable to develop the

formulae for Grid Convergence Index (GCI).

Suppose that the dependent output variable, ψ is a continuous and differential function of the

representative grid size (h). Discrete solution for ψ can be expressed in a series of h as in Equation

(4.1).

ψExt = ψh + C1h+ C2h
2 + C3h

3 + · · · (4.1)

The exact value of the variable can be attained if the grid size tends to zero which is challenging

to solve using available computational facilities. Error between the extrapolated value (ψExt) and

the approximate output value of variable (ψh) on the finite grid size avoiding the higher order terms

can be given as:

ξ = ψExt − ψh = C hn +O(hn+1) (4.2)

Here, n accounts for the apparent order of accuracy depends on the discretization schemes used

for the simulations and C is a constant. Consider three different grids with grid sizes (h1, h2 and
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h3) which are corresponding to fine, coarse and coarser grids respectively (h1 < h2 < h3). The

output values on these grids are ψ1, ψ2 and ψ3 respectively. Equations 4.3a to 4.3c represent the

error formulae for the grids.

ξ1 = ψExt − ψ1 = C h1
n (4.3a)

ξ2 = ψExt − ψ2 = C h2
n (4.3b)

ξ3 = ψExt − ψ3 = C h3
n (4.3c)

Subtracting equation (4.3a) from (4.3b) and (4.3b) from (4.3c) and rearranging the equations

after taking log on both sides.

n =
1

ln(r21)

∣∣∣∣∣ln
∣∣∣∣ψ32

ψ21

∣∣∣∣− ln

(
r32

n − s
r21n − s

)∣∣∣∣∣ (4.4)

where, r21 =
h2
h1

; r32 =
h3
h2

(4.5a)

ξ21 = ξ2 − ξ1 = ψ2 − ψ1; ξ32 = ξ3 − ξ2 = ψ3 − ψ2 (4.5b)

s = sgn

(
ξ32
ξ21

)
(4.5c)

Equation (4.4) along with equations 4.5a to 4.5c gives the apparent order of scheme, n. Its value

must be within the range of order of accuracy used in discretizing the flow field.

It is inconvenient to calculate the refinement factor (r) from the grid sizes (h), as it grid size

may not be uniform for entire domain. Roache [34] has elucidated the refinement factor as stated

by equation (4.6) for any dimensional (d) study.

r21 =

(
N1

N2

) 1
d

; r32 =

(
N2

N3

) 1
d

(4.6)

Here, sgn is signuum function. Implication of signuum function is to extract the sign of the

real number. It signifies when the convergence is of oscillatory type. Oscillatory convergence is the

decrease of error with an alternating sign that is when ξ21 and ξ32 having alternating signs. It may

take place due to the insufficient grid resolution in the required region of flow for a particular grid

size.

sgn

(
ξ32
ξ21

)
=


−1 if

(
ξ32
ξ21

)
< 0

0 if
(
ξ32
ξ21

)
= 0

1 if
(
ξ32
ξ21

)
> 0

(4.7)

Uncertainty due to grid sizes can be reported using numerous methods. Extrapolated value for

a variable can be obtained by implementing Richardson extrapolation and indicated in equation

(4.8a). Approximate relative error (ξ21a ) and extrapolated relative error (ξ21Ext) can be estimated
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using equations 4.8b and (4.8c) respectively.

ψ21
Ext =

r21
n · ψ1 − ψ2

r21n − 1
; ψ32

Ext =
r32

n · ψ2 − ψ3

r32n − 1
(4.8a)

ξ21a =

∣∣∣∣ψ1 − ψ2

ψ1

∣∣∣∣ (4.8b)

ξ21Ext =

∣∣∣∣∣ψ21
Ext − ψ1

ψ21
Ext

∣∣∣∣∣ (4.8c)

4.1.2 Grid Convergence Index

GCI proposed by Roache [35] is an another measure to express the error due to grid refinement.

Ching-Fang et al. [36] have implemented GCI for airfoil performance calculations and shown GCI

to be a good measure with an advantage of non-integer grid refinement. GCI for fine grid solution

can be determined by equation (4.9)

GCI21fine =
FS · ξ21a
r21n − 1

(4.9)

FS is the factor of safety and it should be greater than one. GCI was originally proposed by

Roache [35] with FS = 3 which is advantageous since it relates any grid convergence study (with

any n and r) to the one with a grid doubling (r = 2) and a second order method (n = 2). But it

can be safely taken as 1.25 as given in [12].

Sometimes it is impractical to use fine grid due to limited resources or time. Therefore, the use

of a coarse grid solution is cheap to run by having just one fine grid solution for reference. For such

purpose, coarse grid GCI can be defined by,

GCI21fine =
FS · ξ21a · r21n

r21n − 1
(4.10)

4.1.3 Steps to Calculate GCI

The current work follows the steps mentioned below:

a. Generate the meshes with fine (N1), coarse (N2) and coarser (N3) cell nodes such that (r21)

and (r32) should be close to 1.3 i.e. 30% grid size difference between consecutive meshes.

Three meshes should have same the distribution of cell nodes.

b. Perform the simulations for three meshes and report the output variable which are the coef-

ficient of rolling moment, the coefficient of drag and coefficient of lift for the current work of

missile aerodynamics.

c. Calculate the apparent order of scheme, n.

d. Report the extrapolated values using equations (4.8a).
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e. Report the uncertainty due to the grid using equations (4.8b), (4.8c) and (4.9) or (4.10).

Equation (4.9) can be used if the fine mesh is affordable to use for the further work or else

equation (4.10) can be used.

4.2 Geometrical Sensitivity

Geometrical sensitivity parameter here is the distance of wings from the fore-body tip (κ). The

distance κ is not given in literature [16]. It is taken as 23D/3 and is perturbed by 2D/3.

𝜘 = 21𝐷/3

𝜘 = 23𝐷/3

𝜘 = 25𝐷/3

Figure 4.1: Geometrical Sensitivity

4.3 Turbulence Modelling

Air flow over the missile is supersonic and hence, the shock phenomenon should be considered

while using turbulence model. Shock exhibits the adverse pressure gradient in the flow.

As Large Eddy Simulations (LES) and Direct Numerical Solution (DNS) necessitates high compu-

tational effort, it is inconvenient to use for the industrial problems. Nevertheless, Reynolds-Averaged

Navier-Stoke (RANS) approach provides a solution with far less computational effort. But at the

same time, there is a compromise with the accuracy of results. This section deals with the introduc-

tion to the advantages of certain turbulence models as well as the effect of another parameter such

as turbulent intensity (TI).
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4.3.1 RANS and Boussinesq Approximation

In turbulent flow, field variable such as velocity, pressure, and temperature become a random

function of space and time. Therefore, they can be separated into two viz., mean (time-averaged)

and fluctuating components.

u = ui + u′i ; P = P + P ′ ; T = T + T ′ (4.11)

By taking the time average of continuity equation, Navier-Stoke equation, and energy equation,

a set of three equations is arrived.

For the compressible flow, these field variables can be Favre-averaged which is nothing but a

density-weighted averaging.

u = ũi + u′′i ; P = P̃ + P ′′ ; T = T̃ + T ′′ (4.12a)

where, ũi =
ρui
ρ

; P̃ =
ρP

ρ
; T̃ =

ρT

ρ
(4.12b)

By taking the Favre-average of continuity equation, Navier-Stoke equation, and energy equation,

a set of three equations arrives.

∂ρ

∂t
+
∂(ρũi)

∂xi
= 0 (4.13a)

∂(ρũi)

∂t
+
∂(ũjρũi)

∂xj
= − ∂P

∂xi
+
∂σij
∂xj

+
∂τij
∂xj

(4.13b)

∂(ρẼ)

∂t
+
∂
[
ũjρ(Ẽ + P/ρ)

]
∂xj

=
∂
(
σij ũi + σiju

′′
i

)
∂xj

− ∂

∂xj

(
−cpµ̃
P r

∂T̃

∂xj
+ cpρu

′′
j T
′′ − ũiτij +

1

2
ρu
′′
i u
′′
i u
′′
j

)
(4.13c)

Viscous stress tensor (σij) is given by,

σij = 2µ̃

[
S̃ij −

1

3
δij
∂ũk
∂xk

]
(4.13d)

and the Reynolds stress term (τij) based on Boussinesq approximation can be expressed as,

τij = 2µ̃t

[
S̃ij −

1

3
δij
∂ũk
∂xk

]
− 2

3
ρkδij (4.13e)

where δij is Kronecker delta and is equal to one if i = j and zero otherwise. Strain rate tensor (S̃ij)

is,

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(4.13f)

The Reynolds stress term comprises of the turbulent viscosity µ̃t. The turbulent viscosity is
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then modelled with different models with their own advantages and disadvantages. Considering the

compressible flow with adverse pressure gradients in shock region, the Spalart Allmaras model, and

k − ω model are suitable.

4.3.2 Spalart Allmaras Model

Spalart Allmaras model [17] is one-equation model and holds good applicability in wall-bounded

flows. It includes the wall function in the case of insufficient mesh resolution. Modification [37]

in the turbulent production term reflects the effect of both vorticity and strain tensors. Spalart

Allmaras model is expressed by equations (4.14a) to (4.14k).

∂(ρν̃)

∂t
+
∂(ujρν̃)

∂xj
= Cb1S̃ρν̃ − Cw1fwρ

(
ν̃

d

)2

+
1

σν̃

 ∂

∂xj

(
(µ+ ρν̃)

∂ν̃

∂xj

)
+ Cb2 ρ

(
∂ν̃

∂xj

)2


(4.14a)

The turbulent viscosity (µt) is calculated from:

µt = ρν̃fv1 (4.14b)

The supplementary equations are:

fv1 =
χ3

χ3 + Cv1
3 ; χ =

ν̃

ν
(4.14c)

S̃ = S +
ν̃

k2d2
fv2 (4.14d)

S =
∣∣Ωij∣∣+ 2 ·min(0,

∣∣Sij∣∣− ∣∣Ωij∣∣) ; fv2 = 1− χ

1 + χfv1
(4.14e)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
; Ωij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(4.14f)

fw = g

(
1 + Cw3

6

g6 + Cw3
6

)1/6

(4.14g)

g = r + Cw2(r6 − r) ; r =
ν̃

S̃k2d2
(4.14h)

Cw1 =
Cb1
k2

+
1 + Cb2
σν̃

(4.14i)

and constants are:

Cb1 = 0.1355 ; Cb2 = 0.622 ; σν̃ =
2

3
; Cv1 = 7.1 (4.14j)

Cw2 = 0.3 ; Cw3 = 2.0 ; k = 0.4187 (4.14k)
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4.3.3 Standard k − ω Model

Standard k − ω model [20] [38] gives close agreement of flow prediction with the experimental

results for the cases of free shear flows and wall-bounded flows. It comprises of two transport

equations: (a) for k – the turbulent kinetic energy; and (b) for ε – the specific dissipation rate.

∂(ρk)

∂t
+
∂(ujρk)

∂xj
= τij

∂ui
∂xj
− β∗fβ∗ρωk +

∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

]
(4.15a)

∂(ρω)

∂t
+
∂(ujρω)

∂xj
=

γω

k
τij

∂ui
∂xj
− βfbρω2 +

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂ω

∂xj

]
(4.15b)

The turbulent viscosity (µt) is calculated from:

µt =
ρk

ω
(4.15c)

The supplementary equations are:

fβ∗ =

1 if χk 6 0

1+680χk
2

1+400χk
2 if χk > 0

(4.15d)

χk =
1

ω3

∂k

∂xj

∂ω

∂xj
(4.15e)

β∗ = 0.09

(
4/15 + (Ret/Reβ)4

1 + (Ret/Reβ)4

)
; Ret =

ρk

µω
(4.15f)

fb =
1 + 70χω
1 + 80χω

; χω =

∣∣∣∣ΩijΩjkSki(0.09 ω)3

∣∣∣∣ (4.15g)

The constants are as follows:

σk = 0.5 ; σω = 0.5 ; Reβ = 8.0 (4.15h)

4.3.4 SST k − ω Model

Shear Stress Transport k − ω model [39] is the blending of standard k − ω and k − ε model.

Standard k − ω is activated in the near wall region while k − ε is activated the region away from

wall by invalidating the k−ω model. This is done to take the advantages of both models and makes

it more accurate in the near-wall region as well as in far-field region. SST k − ω model consists a

crossed diffusion derivative term in the transport equation of ω. The formulations for the model are

expressed by equations (4.16a) to (4.16i):

∂(ρk)

∂t
+
∂(ujρk)

∂xj
= G̃− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(4.16a)

∂(ρω)

∂t
+
∂(ujρω)

∂xj
=
α

νt
G̃− βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσw2

ω

∂k

∂xj

∂ω

∂xj
(4.16b)
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The turbulent viscosity (µt) is calculated from:

µt =
ρa1k

max(a1ω, SijF1)
(4.16c)

The supplementary equations are:

G̃ = min

(
τij

∂ui
∂xj

, 10ρβ∗k ω

)
(4.16d)

σk = F1/σk1 + (1− F1)/σk2 ; σω = F1/σω1 + (1− F1)/σω2 (4.16e)

F1 = tanh
(

Φ1
4
)

; Φ1 = min

max( √
k

0.09ωy
,

500µ

ρy2ω

)
,

4ρk

σω2D
+
ω y2

 (4.16f)

D+
ω = max

(
2ρ

1

ωσω2

∂k

∂xj

∂ω

∂xj
, 10−10

)
(4.16g)

F2 = tanh
(

Φ2
2
)

; Φ2 = max

(
2

√
k

0.09ωy
,

500µ

ρy2ω

)
(4.16h)

and constants are:

σk1 = 1.176 ; σω1 = 2.0 ; σk2 = 1.0 ; σω2 = 1.168 ; a1 = 0.31 (4.16i)

4.3.5 Turbulent Intensity

Turbulent intensity (I) is the ratio of the root mean square of turbulent velocity fluctuation (u′)

and the mean velocity (u). Turbulent intensity is required to found out the boundary conditions for

the turbulent variables like ν̃, k, and ω.

I =
u′

u
(4.17a)

where,

u′ =

√
1

3

(
u′i

2 + u′j
2 + u′k

2
)

; u =

√
ũi

2 + ũj
2 + ũk

2
(4.17b)

For the case of external flow, I can be in the range of 0.5% to 1.5% and the sensitivity of I has

been studied by Shao-wu LI et al. [24].

4.4 Viscosity Model

The molecular viscosity of the fluid is the temperature dependent quantity and here the viscosity

of air is modelled using Sutherland’s law, kinetic theory, and power-law.
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4.4.1 Sutherland’s Law

Sutherland’s three coefficient law [27] provides the relationship between the molecular viscosity

(µ) and absolute temperature (TT ) as follows:

µ = µref

(
TT
TTref

)3/2(
TTref + S

TT + S

)
(4.18)

where for air,

µref = reference viscosity = 1.716× 10−5 kg/m·s
TTref = reference stagnation temperature = 273.11 K

S = Sutherland’s constant = 110.56 K

Sutherland’s law computes viscosity moderately for the wide range of temperature. It is valid

only for ideal gas law.

4.4.2 Viscosity Modelling Using Kinetic Theory

Viscosity can be defined by the kinetic theory [40].

µ = 2.67× 10−6 ·
√
MwTT
σ2ωT ∗

(4.19)

where,

T ∗ = kTT

ε = dimensionless reduced temperature

Mw = molecular weight (g/mol)

σ = the collision diameter (Angstroms)

ω = the collision integral

4.4.3 Power-Law Viscosity Model

Power-law viscosity formula with three coefficients is expressed as:

µ = µref

(
TT
TTref

)n
(4.20)

where for air,

µref = reference viscosity = 1.716× 10−5 kg/m·s
TTref = reference stagnation temperature = 273.11 K

n = 2/3

4.5 Thermal Conductivity Model

The thermal conductivity of air is 0.0242 W/m·K and can also be defined by the function of

temperature. The models used here are kinetic theory and polynomial.
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4.5.1 Thermal Conductivity Modelling Using Kinetic Theory

The thermal conductivity defined using kinetic theory is given as:

k =
15R

4Mw
µ

(
4 · cp ·Mw

15R
+

1

3

)
(4.21)

where,

R = universal gas constant

cp = specific heat capacity at constant pressure

4.5.2 Thermal Conductivity Using Polynomial Of Temperature

Another approximation for the thermal conductivity calculation is given by the polynomial func-

tion of temperature:

k = A1 +A2 · TT +A3 · TT 2 + · · ·+A8 · TT 7 (4.22)

Figure 4.2: Thermal Conductivity as the Function of Temperature

The temperature polynomial used in the study is up to 7th degree and the coefficients taken from

Stephan et al. [28] are as follows:

A1 = −6.7× 10−5; A2 = 9.4× 10−5; A3 = 4.6× 10−8; A4 = −4.3× 10−10;

A5 = 9.6× 10−13; A6 = −1.1× 10−15; A7 = 6.1× 10−19; A8 = −1.4× 10−22

4.6 Specific Heat

The specific heat of air at constant pressure is 1006.43 J/kg·K. Kinetic theory and piecewise

polynomial function of temperature are used to define the specific heat.
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4.6.1 Specific Heat Using Kinetic Theory

Kinetic theory formulation for the specific heat is:

cp =
R

2Mw
(f + 2) (4.23)

Here, f is the number of active degrees of freedom and is equal to 5 for air.

4.6.2 Piecewise Polynomial

Specific heat can also be defined as the function of temperature. The piecewise polynomial is

used to derive the formula for the specific heat of air and is given by (??).

cp =

A1 +A2 · TT +A3 · TT 2 + · · ·+A8 · TT 7 if 100K < TT < 1000K

B1 +B2 · TT +B3 · TT 2 + · · ·+B8 · TT 7 if 1000K < TT < 3000K
(4.24)

The coefficients are,

A1 = 1.16× 103; A2 = −2.37× 101; A3 = 1.49× 10−2; A4 = −5.04× 10−5;

A5 = 9.93× 10−8; A6 = −1.11× 10−10; A7 = 6.54× 1014; A8 = −1.57× 10−17;

B1 = −7.07× 103; B2 = 3.37× 101; B3 = −5.81× 10−2; B4 = 5.42× 10−5;

B5 = −2.94× 10−8; B6 = 9.24× 10−12; B7 = −1.57× 10−15; B8 = 1.11× 10−19

4.7 Static Temperature Sensitivity

The static temperature estimated from stagnation pressure and stagnation temperature can also

lead to uncertainty as the measurement techniques for these quantities may have an error. Rhode

et al. [11] explained that the particular wind tunnel can have ±0.1% error in the measurement of

stagnation pressure for the range of 0 − 137 bar and that for stagnation temperature is ±2.2 K in

the range of 70 K to 1500 K. Here static pressure is considered to be constant.

Uncertainty in the free stream static temperature (wT ) is evaluated by equation (4.25a).

wT =

[(
∂T

∂TT
wTT

)2

+

(
∂T

∂PT
wPT

)2
]1/2

(4.25a)

given that the static temperature is expressed by,

T = TT

(
PT
P

)−(γ−1)/γ
(4.25b)

where the uncertainty in stagnation pressure and stagnation temperature are,

wTT
= 2.2 K ; wPT

= 1.8× 102 Pa (4.25c)

26



and free stream boundary conditions are,

PT = 1.8 bar ; TT = 300 K ; P = 23004.81 Pa (4.25d)

The derivatives are calculated as,

∂T

∂TT
=

(
PT
P

)−(γ−1)/γ
= 1.8 (4.25e)

∂T

∂PT
= TT

(
1− γ
γ

)(
PT
P

)(1−2γ)/γ
1

P
= 2.6455× 10−4 (4.25f)

The uncertainty in static temperature (wT ) is therefore equal to ±3.96 K over T = 166.67 K.

4.8 Convective Flux Type

The inviscid fluxes in Navier-Stokes equation can be evaluated on each face of cells by using two

approaches: (a) Roe Flux Difference Splitting scheme (Roe-FDS) [29], and (b) Advection Upstream

Splitting Method (AUSM) [30]. AUSM+ is designed to calculate the inviscid fluxes accurately on

the faces in the case of grid aligned to the geometry. But it is still under development if it is not

aligned.

4.9 Order of Discretization Scheme

The first order upwind, second order upwind and third order MUSCL schemes are the alternatives

for discretization of all the flow variables which are pressure, u-velocity, v-velocity, w-velocity, and

temperature and the turbulent viscosity.

4.10 GSA Parameters

The Global Sensitivity Analysis is the process of perturbation of each input uncertainty parameter

individually from its nominal value and examining its effect on output result. It is called as global

since the output parameters considered which are coefficient of rolling moment (Cm), coefficient of

drag (CD) and coefficient of lift (CL) are globally defined quantities.

The nominal case is derived from the best possible settings for the problem and from the nominal

values. The table (4.1) summarizes the nominal case values of input variables with their perturba-

tions from the above discussed theory. Out of nine parameters, the first seven are of type modelling

uncertainty while last two are of type numerical uncertainty.
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Table 4.1: GSA Parameters

No. Uncertainty Sources Perturbation #1 Nominal Case Value Perturbation #2

1. Geometrical Parameter (κ) 21D/3 23D/3 25D/3

2. Turbulence Model Standard k − ω Spalart Allmaras SST k − ω

3. Viscosity Model Kinetic Theory Sutherland Power Law

4. Thermal Conductivity Kinetic Theory
Constant

(0.0242 W/m· K)

Polynomial

5. Specific Heat Kinetic Theory
Constant

(1006.43 J/kg· K)

Piecewise Polynomial

6. Static Temperature 166.67− 3.96 K 166.67 K 166.67 + 3.69 K

7. Turbulence Intensity 0.5% 1% 1.5%

8. Inviscid Flux Type Roe-FDS AUSM –

9. Discretization Scheme Order 1st Order 2nd Order 3rd Order
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Chapter 5

Nominal Case

This chapter explains the nominal case setup with the meshing and its results. The qualitative

comparison of the nominal case results also made with Khelil et al. [16].

5.1 Mesh Generation

Missile body is enclosed with the computational domain of hemispherical inlet and cylindrical

farfield as shown in figure (5.1). The radius of hemisphere is equal to 80D which is about 28 m. The

tip of nose is situated at the coordinate (0, 0, 0).

Figure 5.1: Missile with Computational Domain
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The effect of farfield boundary condition is diminished due to the domain with such a quiet large

hemispherical diameter.

The streamlined structured mesh is created for the domain. The radial edge from the missile

surface is divided into 96 nodes with first node adjacent to fuselage wall is 4e−05 m from the wall and

1.3 as the advancement outward ratio up to tip of the wing and fins. The advancement is exponent

after the wings and fins tip. The nose edge and fuselage edge is divided into 38 and 266 intervals in

the lengthwise distance. The circumferential edge of fuselage cylinder is having 160 nodes is divided

such a way that it is dense near surfaces of the wings and fins. The domain after the missile is

having the edge divided into 66 intervals. y+ value corresponding to 4e−05 m cell distance from is

equal to about 8. The total number of nodes of the nominal case mesh is 5, 316, 960.

Figure 5.2: Meshing of Missile Body
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Figure 5.3: Meshing of Computational Domain

5.2 Solver Settings

The flow over missile is supersonic and as a consequence of this, the double precision density

based solver is used as pressure based solver is suitable for the flow regime with mach number

equal to around 0.9. The transient implicit formulation is used. The flow is simulated initially by

considering it as inviscid and then switched to turbulent.

The parameters for nominal case are mentioned in the table (4.1). Low Reynold damping Spalart

Allmaras turbulence model with strain/vorticity based production is used. The density of air is

calculated by ideal gas law since the farfield only works with the ideal gas law. The inlet boundary

condition is pressure farfield accompanied by pressure outlet for pressure. The angle of attack

(α = 22.7 degree) is defined in XY-plane and hence X-component and Y-component for flow direction

are taken as 0.929133 and 0.369747 respectively. The inlet boundary conditions for the turbulence

variables are calculated by the turbulent intensity and hydraulic diameter which is the diameter of

fuselage in this case. The operating pressure is nullified.

The gradient required for calculating the cell face values, diffusion terms, and velocity gradients
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are computed by Green-Gauss node based evaluation as it more accurate than Green-Gauss cell based

and least square based evaluation technique at the expense of relatively more computational effort.

Second order implicit formulation is used for the transient term. The courant number is taken as

0.1 and under-relaxation factors for the transport variables are set as 0.5. Differentiable flux limiter

with the cell-to-cell limiting is used for smooth field variable variation as the flow undergoes with

the shock.

The convergence criteria is limit out to be based on residuals of continuity, momentum, energy

and turbulence equations. It is set to be 1e−04 for inviscid and then deduced to 1e−03 for turbulence

flow due to slow convergence of density based solver. The coefficient of rolling moment, coefficient of

drag and coefficient of lift are monitored for each time step. Flow is initialized from inlet boundary

condition values. The time step is described as 0.1 sec and the maximum iterations per time step

are 400.

5.3 Nominal Case Results

The values of coefficients and contour plots are extracted and the normalized total pressure

change contours are compared with the literature.

5.3.1 Values of Coefficients

The convergence of three coefficients against the time is plotted in the figure (5.4). The steady

graphs for Cm, CD and CL from around 2 sec to 4.5 sec evident the convergence of inviscid flow

solution. While reaching residual criteria for convergence, the coefficients appears to be converged

and these converged values of the coefficients are reported in the table (5.1).

Since undefined geometrical parameter (κ), the value of coefficient of rolling moment can not be

compared with its value given by Khelil et al. [16] which is extracted from graph and approximately

equal to 0.84.

These values of coefficients are considered for GSA and the percentage change over these values

for all the cases of GSA are evaluated to compare their effect.
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Figure 5.4: Convergence of Cm, CD and CL

Table 5.1: Nominal Case Result for Coefficients

Coefficients Nominal Case Result

Coefficient of rolling moment (Cm) 0.79592939

Coefficient of drag (CD) 5.666157

Coefficient of lift (CL) 12.48928

33



5.3.2 Contour Plots

The contours of mach number are plotted for sections of missile. The figure (5.5) shows the mach

number contours for the horizontal plane which is the plane Y = 0. The shock midway of the body

is due to the presence of wing and same can be seen near tip region of the tail. The unsymmetrical

Figure 5.5: Mach Number Contours at Plane Y = 0

Figure 5.6: Prandtl-Meyer Expansion and Bow Shock at Plane Y = 0
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contours about the axis and after the midway is caused by the existence of roll angle (φ) which is

equal to 22.5 degree. The maximum mach number reached is about 3.2 while its minimum is around

0.1 in the region past the fuselage. The figure (5.6) exhibits the Prandtl-Meyer expansion after the

nose section in the plane Y = 0 and it is evident from the steady upsurge in mach number which is

to 2.2. The flow upstream to nose shows the bow shock.

The mach number contours for the vertical plane or plane Z = 0 is shown in figures (5.7) and

(5.8). Here, the unsymmetrical mach contours are originated ahead of the wings region due to the

angle of attack while both angle of attack and roll angle are responsible for unsymmetrical mach

contours from the wings region. The mach number is reduced to about 0.05 from free-stream mach

number of 2 after the bow shock ahead of nose.

The figure (5.9) presents the contours of normalized stagnation pressure change in the plane

Z = 0 behind the fuselage base with velocity vectors. The normalized stagnation pressure is defined

as the ratio of difference between free stream stagnation pressure (PT∞) and the local stagnation

pressure (PT ) to the free stream stagnation pressure (PT∞) i.e. equal to
(
PT∞−PT

PT∞

)
. The flow

circulation associated with its reattachment are encountered zone next to the fuselage base. The

decrease in pressure causes the flow to be recirculated region past the fuselage.

Figure 5.7: Mach Number Contours at Plane Z = 0
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Figure 5.8: Bow Shock at Plane Z = 0

Figure 5.9: Circulation and Reattachment at Plane Z = 0

The vortices formed due to the presence of roll angle given can be observed from the stagnation

pressure change. The figure (5.10) shows the contours of normalized stagnation pressure change for

the different sections along the axis of the missile. The vortices evolution can be seen throughout

the length of the missile. The symmetrical pattern of the contours up to the wings become antisym-

metric when flow passes through the wings portion. The two vortices structure formed over fuselage
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interacts with the vortices resulted due to wings and the severity of unsymmetrical vortices magnify

in downstream flow passing the wings. This triggers the rolling moment about the central axis of

the missile.

Figure 5.10: Sectional Contours Of Normalized Stagnation Pressure Change

5.3.3 Comparison of Contours

The figures (5.11) and (5.12) demonstrates the comparison of contours of stagnation pressure

change
(

= PT∞−PT

PT∞

)
between Khelil et al. [16] and simulation results. The contours are plotted for

the sections X = 4D, 7.5D, 10D, 11D, 13D, and 15D. An appropriate similarity is found in the

two results.
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Khelil, et al., 2001 Simulations

Figure 5.11: Contours Comparison of Pressure Change
at Planes X = 4D, 7.5D, 10D
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Khelil, et al., 2001 Simulations

Figure 5.12: Contours Comparison of Pressure Change
at Planes X = 11D, 13D, 15D
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A qualitative comparison between Khelil et al. [16] and simulation results is made in figure (5.13).

The values of the normalized stagnation pressure change are extracted from the circumference of a

circle of the radius equal to 30 cm and the cross-section considered here is X = 7.5D. The positions

of peaks of pressure change are almost same for both the results.

Figure 5.13: Plot for Comparison of Pressure Change Contours
at Plane 7.5D and R = 30 cm
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Chapter 6

GCI And GSA Results

In this chapter, the results of grid convergence study and sensitivity analysis are presented.

The strategy used for all simulations is identical to the nominal case in which inviscid solution is

simulated followed by the turbulent flow.

6.1 GCI Results

The three grids required to calculate the Grid Convergence Index (GCI) are created. The number

of intervals on each edge of the nominal case mesh is reduced by 30% and increased by 30% to

generate the coarse mesh and finest mesh respectively. The advancement ratios of intervals are kept

constant so that the consistency in three grids is preserved. The number of cells of generated meshes

are 13.14, 5.32 and 2.58 million for the finest, fine and coarse grids respectively.

The refinement factors, r21 and r32 calculated from equations (4.6) are equal to 1.35 and 1.27

respectively. The factor of safety (FS) taken here is equal to 1.25. The GCI over the fine grid is

reported since it is practical to perform GSA simulations on the mesh of 5.32 million cells for the

available computational facility.

6.1.1 GCI For Global Output Parameters

Coefficient of rolling moment (Cm), coefficient of drag (CD) and coefficient of lift (CL) are the

prime targets of the problem and are considered for GCI calculations.

The table (6.1) shows the calculations of apparent order of accuracy (n), extrapolated values

(ψ21
Ext), conventional error (ξ21a ), extrapolated error (ξ21Ext), and GCI over fine and finest grids for all

the three coefficients. The coefficient of rolling moment undergoes the oscillatory convergence and

coefficients of drag and lift shows monotonic convergence. The uncertainty due to the grid in the

coefficient of rolling moment is 10.97% GCI for the fine grid while it is 5.20% for the finest mesh.

The uncertainty in coefficients of drag and lift are 0.27% GCI and 0.66% GCI respectively for the

fine grid while considering finest grid, they are of 0.10% GCI and 0.41% GCI. As expected, the GCI

exhibits high uncertainty due to the grid in the case of fine mesh as compared to the finest mesh for

all of the three coefficients. It can also be observed that coefficient of rolling moment is much more

affected by the grid density as compared to lift and drag coefficients in this problem.
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Table 6.1: GCI Estimation For Global Output Parameters

Cell Count Cm CD CL

Finest 13, 146, 260 0.76077806 5.658244 12.46448

Fine 5, 316, 960 0.79592939 5.666157 12.48928

Coarse 2, 583, 616 0.78087258 5.670096 12.5009

n 2.49 3.49 1.59

ψ21
Ext 0.72914463 5.653967 12.423924

ξ21
a 4.62% 0.14% 0.20%

ξ21
Ext 4.33% 0.08% 0.33%

GCI12
fine 10.97% 0.27% 0.66%

GCI21
finest 5.20% 0.10% 0.41%

6.1.2 GCI For Local Field Variables

GCI is also estimated for the local field variables such as mach number (M) and normalized

stagnation pressure change
(

= PT∞−PT

PT∞

)
. The local variables are calculated from area-weighted

integration of the points along a line. Figure (6.1) shows the line from which values are extracted

Figure 6.1: Line Drawn In Space To Evaluate Local GCI
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and it is parallel to the axis of the missile. The points are twenty in number and placed equidistant

except with last two points. The length of the line is equal to the length of missile (= 16D) with

the end coordinates (0, 0.175, 0.175) and (5.6, 0.175, 0.175).

Table (6.2) shows the estimation of GCI on fine mesh for mach number. The apparent order

of accuracy (n) for local variables is varying in a wide range and is also observed by Celik and

Ozgur [13]. The maximum GCI spotted for mach number is 6.00%. Similarly, the table (6.3) gives

the GCI estimation for normalized stagnation pressure change. Some points demonstrate a very

high GCI for pressure change which might be because of the very low apparent order of accuracy.

Table 6.2: GCI For Local Mach Number Over A Specified Line

No. Finest Fine Coarse n ψ21
Ext ξ21

a ξ21
Ext GCI12

fine

1 1.999889 2.000156 2.001704 7.6498 1.99986 0.01 0.00 0.02

2 1.967092 1.976331 1.961994 1.672 1.952914 0.47 0.73 1.49

3 2.070796 2.071503 2.063391 10.0412 2.070759 0.03 0.00 0.04

4 2.127274 2.124633 2.123135 1.0219 2.134632 0.12 0.34 0.59

5 2.206263 2.205137 2.081235 19.692 2.206266 0.05 0.00 0.06

6 1.865779 1.815673 1.733212 2.73 1.905267 2.69 2.07 6.00

7 1.972659 1.945268 1.941259 5.0217 1.980455 1.39 0.39 2.23

8 2.12656 2.086018 2.100462 3.0141 2.154124 1.91 1.28 4.00

9 2.079709 2.060795 2.107191 3.5033 2.08987 0.91 0.49 1.75

10 2.053664 2.040434 2.080472 4.3694 2.058545 0.64 0.24 1.10

11 2.035528 2.031327 2.048524 5.6366 2.036477 0.21 0.05 0.32

12 2.313499 2.321442 2.26486 8.001 2.312708 0.34 0.03 0.47

13 2.499948 2.512915 2.439864 6.996 2.498137 0.52 0.07 0.74

14 2.560414 2.567085 2.506833 9.0192 2.559936 0.26 0.02 0.35

15 2.460558 2.474072 2.426959 4.9608 2.45662 0.55 0.16 0.89

16 2.527822 2.534562 2.447757 10.5418 2.527525 0.27 0.01 0.35

17 2.526266 2.488429 2.332952 6.2786 2.533045 1.50 0.27 2.21

18 1.915609 1.913304 1.810654 15.9418 1.915628 0.12 0.00 0.15

19 1.865643 1.855769 1.761455 9.6432 1.866221 0.53 0.03 0.70

20 1.984203 1.977848 1.929111 8.7601 1.984697 0.32 0.02 0.43
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Table 6.3: GCI For Local Pressure Change Over A Specified Line

No. Finest Fine Coarse n ψ21
Ext ξ21

a ξ21
Ext GCI12

fine

1 0.000238 0.000177681 0.000028 4.2774 0.0003 25.49 8.90 44.08

2 0.002703 0.003248155 0.002078 2.9591 0.0023 20.17 16.41 42.83

3 0.035199 0.035916567 0.033226 5.2640 0.0350 2.04 0.53 3.21

4 0.095152 0.097113431 0.089385 5.4751 0.0947 2.06 0.50 3.20

5 0.165227 0.17198628 0.399142 14.7790 0.1651 4.09 0.05 5.18

6 0.732097 0.74644357 0.758151 0.0901 0.2086 1.96 250.89 91.83

7 0.717038 0.72480458 0.685941 6.4900 0.7157 1.08 0.18 1.58

8 0.620304 0.64278495 0.585991 3.6239 0.6089 3.62 1.88 6.83

9 0.564596 0.58901465 0.530271 3.4237 0.5510 4.33 2.47 8.42

10 0.495129 0.52085412 0.489796 0.7066 0.3862 5.20 28.20 33.99

11 0.429632 0.45377898 0.428023 0.2402 0.1066 5.62 303.08 101.01

12 0.27113 0.28120351 0.244812 5.1100 0.2684 3.72 1.03 5.92

13 0.182811 0.19114447 0.174375 2.7010 0.1761 4.56 3.79 10.26

14 0.155952 0.15890867 0.162562 1.6438 0.1513 1.90 3.06 6.09

15 0.135226 0.13948882 0.187923 10.3447 0.1350 3.15 0.15 4.13

16 0.140807 0.14770043 0.197656 8.5333 0.1402 4.90 0.41 6.63

17 0.173587 0.1873033 0.208655 2.5181 0.1614 7.90 7.52 18.63

18 0.187377 0.18214703 0.280942 12.1796 0.1875 2.79 0.07 3.58

19 0.229751 0.21979374 0.29261 8.1140 0.2307 4.33 0.41 5.94

20 0.237745 0.22415 0.274568 5.2206 0.2413 5.72 1.49 9.03

The values of mach number for three grids and GCI over the fine mesh are plotted in the figure

(6.2). Similarly, the pressure change values and GCI are plotted in the figure (6.3). A shaded plot is

shown in figure (6.2) gives region for the uncertainty region due to the grid. The shaded plot could

not be shown for pressure change since some of the points are having wide range of uncertainty and

hence are skipped.

The points corresponding to disperse plots or the large difference between the values of three

grids are having larger GCI than those with a small difference.
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Figure 6.2: Local GCI Evaluation For Mach Number On Specified Line

Figure 6.3: Local GCI Evaluation For Normalized Stagnation
Pressure Change On Specified Line

GCI calculated for points can also be used to identify the regions where the grid refinement is

required and this approach is successfully used by Ching-Fang et al. [36].
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6.2 GSA Results

After GCI study, the simulations are performed for Global Sensitivity Analysis (GSA) on the fine

mesh. Table (6.4) shows the effectiveness of perturbations of nine input parameters on the global

output variables (Cm, CD, and CL).

Table 6.4: GSA Results

Parameter Perturbations Cm CD CL

Geometrical Parameter (κ)
21D/3 0.83268369 5.648708 12.44292

25D/3 0.79442892 5.753036 12.64808

Turbulence Model
Standard k− ω 0.87426188 5.859763 12.76505

SST k− ω 0.78237749 5.64544 12.51797

Viscosity Model
Kinetic Theory 0.79580182 5.666393 12.48912

Power Law 0.79561599 5.666621 12.48872

Thermal Conductivity
Kinetic Theory 0.79585377 5.666196 12.48935

Polynomial 0.79586964 5.666114 12.48917

Specific Heat
Kinetic Theory 0.7972854 5.66943 12.49683

Piecewise Polynomial 0.79469752 5.6594 12.47386

Static Temperature
166.67–3.96 K 0.79582206 5.665207 12.49014

166.67+3.96 K 0.79395001 5.665918 12.48679

Turbulence Intensity
0.5% 0.79081323 5.658112 12.4777

1.5% 0.79435294 5.67198 12.49798

Flux Type Roe–FDS 0.77002 5.65645 12.45026

Discretization Scheme Order
1st Order 0.68164467 5.988331 13.12935

3rd Order 0.76662402 5.687919 12.51823

The output values obtained from perturbations are compared for GSA on the basis of absolute

percentage change from the corresponding nominal case output value. Figures (6.4), (6.5) and (6.6)

illustrates the plots for percentage change for coefficient of rolling moment, drag coefficient and lift

coefficient.
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Figure 6.4: GSA For Cm

Figure 6.5: GSA For CD
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Figure 6.6: GSA For CL

The figure (6.4) shows that Cm is affected by geometrical uncertainty, turbulence model, inviscid

flux type and order of discretization scheme constituting more than 1% difference from the nominal

value. Other input parameters including the viscosity, thermal conductivity, specific heat modellings,

turbulent intensity and temperature uncertainty contribute less for altering the coefficients. The

same trends are observed for CD and CL.

It is also evident from the charts that k − ω models also disagree with Spalart-Allmaras model

though both are considered to be an adequate approximation for the aerospace applications or

external wall-bounded flows with the adverse pressure gradient. Turbulence intensity has about

0.64% change in Cm from the nominal value. As expected, coefficient values from the first order

scheme deviate from the nominal case values more. But the third order scheme is also seen to more

effective which is about 3.68% in the investigation of Cm.
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Chapter 7

Conclusions and Future Scope

A systematic methodology is propounded for Grid Convergence Index (GCI) and Global Sensi-

tivity Analysis (GSA).

Uncertainty due to the grid is quantified by using GCI. It is reliable to use GCI for reporting

the grid uncertainty for the practical problems where the computational power is limited. Here GCI

has been defined on 5.3 million cell mesh as it is computationally affordable to use.GCI for global

output quantities Cm , CD and CL are 10.97%, 0.27% and 0.66% respectively. GCI can also be used

to estimate the grid sensitivity on local field variables. Thus, GCI is constructive to recognize the

mesh that should be used by giving its error.

GSA is used to identify the input parameters leading the effect on output result. Geometrical

uncertainty, turbulence models, inviscid flux type and the order of discretization scheme have a

substantial influence on the global output parameters which is more than 1% of nominal case values.

Turbulent intensity also constitutes a small but considerable influence. Effect of physical properties

modelling can be securely ignored as the solution is unaltered.

These influential input parameters can be scrutinized for detailed uncertainty estimation for

future work. The interdependency of these uncertain input parameters can be significant in the

worst case scenario and is essential to examine for reporting the uncertainty. A separate study can

be done in which GCI can be used to control localized grid to improve the solution.
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