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Abstract

Community Detection is the process of identifying a group of nodes in a graph that are distinguish-

able in some context. Two sources of information have been studied in detail by the community

namely: Edge Structure and Node Attributes. Most work only deals with one of the above meth-

ods. However there is some work in the recent years that use them to complement each other. In

this paper, we aim to add a new dimension to the problem namely, edge attributes. In addition to

using the aforementioned methods we add edge attributes to detect communities. Edge attributes

uncover micro-communities that might not be easily retrievable using Node attributes and Edge

Structure. Especially in social networks, edge attributes might constitute a large part of the in-

formation content. This information along with contextual information of the edge helps uncover

previously undisclosed communities. It also helps uncover disjoint and overlapping communities.

Our approach uncovers the related attributes that form the community.
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ABSTRACT
Community Detection is the process of identifying a group
of nodes in a graph that are distinguishable in some con-
text. Two sources of information have been studied in de-
tail by the community namely: Edge Structure and Node
Attributes. Most work only deals with one of the above
methods. However there is some work in the recent years
that use them to complement each other. In this paper, we
aim to add a new dimension to the problem namely, edge
attributes. In addition to using the aforementioned meth-
ods we add edge attributes to detect communities. Edge at-
tributes uncover micro-communities that might not be easily
retrievable using Node attributes and Edge Structure. Es-
pecially in social networks, edge attributes might constitute
a large part of the information content. This information
along with contextual information of the edge helps uncover
previously undisclosed communities. It also helps uncover
disjoint and overlapping communities. Our approach uncov-
ers the related attributes that form the community.

1. INTRODUCTION
Graph systems are irregular structures. They cannot be

modelled like a lattice and euclidean measure of distance
does not work on graphs. In a random graph, distribution
of edges in the graph is more or less homogeneous. Real
networks are almost always non-homogeneous. The graph
is usually divided into areas of high interaction and areas
of low interaction. This is also termed as the small world
problem, the fact that there are too many nodes in a graph
but the number of nodes a particular node connects to is a
small fraction of the total nodes in the graph.

It hence becomes important to be able to identify how
these high interaction areas or communities are formed and
how can we detect them. Even in our society, communi-
ties play a pivotal role in the understanding of the social
construct. Society is organized into families, friend cirlces
from school and work, villages, towns, religions, etc. Inter-

net has led to a notion of online communities where people
with similar interests come together without the geograph-
ical barrier. The increasing use of social media and net-
working is apparent and understanding these ’online’ social
communities is of interest.

The rest of the paper is divided into 6 sections: Literature
survey of the community detection approaches and methods,
Related Work to the paper and the proposed method, Mo-
tivation for choosing the problem statement, Model descrip-
tion, Experimental Evaluation of our approach and Conclu-
sion.

2. LITERATURE SURVEY

2.1 Types of Communities
The definition of ’Community’ is taken in context of the

problem that an approach is trying to solve. In this section
we go over the types of communities that the community has
tried to uncover using various methods. These are broad
classifications that can be interpreted in multiple ways as
well.

• Clique
A clique is defined as a Maximally Connected Compo-
nent(MCC) found as a subset of the graph.[8]

• n-clique
An n-clique is either a MCC or a group of nodes with
a minimum of n connections amongst each other.[9]

• k-Plex
A k-plex is a Completely Connected Component(CCC)
on all nodes of the set except for k nodes.[10,11]

• LS-set
An LS set is a weak form of community where for the
group of nodes the internal degree of nodes should be
greater than external degree.[13]

• Lambda set
In a Lambda set, edge set of any two vertices in the
sub graph is larger than the edge set of a vertex inside
the subgraph to a vertex outside the subgraph.[15]

• Fitness Measure
Inclusion of a node in the community depends on the
fitness measure of the node in context of a particular
community.[13]



• Modularity based communities
The connections between the nodes inside the sub-
graph should be dense as compared to the boundary
nodes.[14]

• Clusters
Communities arrived at using clustering methods.[20]

2.2 Community Detection Approaches
Several methods have been proposed to uncover commu-

nities in graphs. In this section we take a rundown some of
the common approaches taken for community detection.

• Graph Partitioning Methods

Graph partitioning is the process of converting a graph
into groups of vertices of a predefined size such that
the edges between such groups are minimal. Number
of edges between groups is called cut size

It is important in this method to know the number of
partitions and size of partitions beforehand as the triv-
ial solution for not knowing the number of partitions
is to have a single large cluster and trivial solution for
not having a fixed cluster size is to remove a single
node from the graph with minimum degree from the
graph[16].

• Centrality measures

In centrality measures, each vertex is considered a data
point in space, several distance measures can be used
to model the distancce between the points. Several
methods are termed under centrality measures, [18,19].

Minimum k-clustering The diameter of the cluster is
the cost function here that is to be minimized. The
points are classified so that the diameter minimizes
itself.

k-clustering sum Similar to minimum k-clustering, but
the measure used here is the average distance between
all points in a cluster.

k-center Also known as k-means clustering a centroid is
iteratively computed to minimize the distance of every
point from atleast one cluster center.

k-median Similar to k-center except for the minimiza-
tion of median rather than average distance between
all points in a cluster.

• Hierarchical methods for centrality

Hierarchichal clustering techniques reveal the multi-
level struture of a graph. It is commonly used in social
network analysis and marketing. A similarity measure
is defined between vertices, after which every pair of
vertices are checked for similarity. In agglomerative
algorithms, clusters are merged if they have a high
enough similarity score while in divisive algorithms,
clusters are iteratively split by removing edges to im-
prove overall similarity score.[17]

• Modularity based methods

This is the most popular method of community de-
tection in the literature. Even for a small graph an
Exhaustive optimization is impossible due to a large
number of ways that can be used to paritition a graph.

Greedy Techniques. Newman proposed a greedy method
by starting with n vertices forming n clusters and adding
edges to the graph one-by-one. Edges are chosen to
maximize the increase of modularity of the graph. The
same is continued till adding any further edge results
in a decrease of modularity.[24]

Simulated Annealing. Guimera and Amaral use sim-
ulated annealing in the form of two types of moves,
local moves are when a single node is shifted from one
cluster to another and a global move that comprises
of merging or splitting of communities. All the moves
are done through a probabilistic model that uses noise
to guard against a local maxima.[25]

Extremal Optimization. Extremal Optimization is a
heuristic search procedure proposed by Boettcher and
Percus to achieve substantial gain in computer time at
the same accuracy as simulated annealing. The local
modularity of a vertex is obtainedthe value of the term
in the corresponding sum of local variables expressed
as the contribution of the global function at study. A
fitness measure is obtained by taking a ratio of the
local modularity by its degree.[26]

Spectral Optimization. Modularity is optimized using
the eigen values and eigen vectors of a special ma-
trix.[27]

• Spectral Partitioning methods

Spectral clustering covers all the methods that use the
eigenvectors of matrices to partition a graph into clus-
ters. [21]

• Divisive Algorithms

Edge centrality is the measure of the number of short-
est paths that an edge belongs to in a given graph. The
idea in divisive algorithms is that edges with very high
centrality values connect two communities. Thus such
edges are removed from the graph to uncover commu-
nities. This is done iteratively as edge centrality values
tend to change after every such edge is removed.[22,23]

• Random Walks

Random walks are also useful in finding communities
in graphs due to the higher percentage of paths lead-
ing into a community than out of the community. This
means that a random walker spends far more time in-
side the cluster than outside it. The average number
of nodes that a random walker has to cross to reach
from a node i to a node j is the distance from i to j, the
lower this distance is, the higher the probability that
these two nodes are in the same community. [29,30]

• Statistical inference methods

Statistical inference as Mackay puts it aims at deduc-
ing properties of data sets, starting from a set of ob-
servations and model hypotheses. If the data set is a
graph, the model, based on hypotheses on how vertices
are connected to each other, has to fit the actual graph
topology.[31]

• Multi-resolution methods

In general, multiresolution methods have a freely tun-
able parameter, that allows to set the characteristic



size of the clusters to be detected. The general spin
glass framework by Reichardt and Bornholdt is a typ-
ical example, where is the resolution parameter. The
extension of the method to weighted graphs has been
recently discussed.[33,34]

• Clique percolation methods

Clique percolation is based on the concept that cliques
are formed inside communities due to the high density
of edges inside the community. Also the boundaries
between communities having a low density of edges
are less likely to produce edges. A k-clique has been
mentioned earlier. If two k-cliques have k-1 common
edges, they are termed as adjacent k-cliques. A se-
quence of adjacent k-cliques froms a k-clique chain and
the largest connected subgraph formed by k-cliques is
the community for that graph.[32]

• Overlapping Community Detection methods A
community is defined as a part of the subgraph that
has a denser set of edges compared to the nodes around
it. This can be termed as optimizing a local function
with some measure around the edge density.
Iterative Scan performs a greedy optimization of the
function W, starting at a random seed and adding,
deleting edges or vertices till the function W cannot
be optimized any further.[35] Rank Removal removes
important vertices from the graph to disconnect the
graph into smaller components that are sparsely con-
nected. The importance of the vertex is determined
by its centrality score.[36]

• Heuristic methods Communities can also be found
by looking for non intersecting paths in a graph.

3. RELATED WORK
Community detection can be viewed as a clustering prob-

lem where every node belongs to multiple communities. A
node shares connections with multiple other nodes and has
multiple attributes which leads to participation in multiple
communities. Traditionally, two sources of information have
been used, namely, Edge Structure and Node Attributes.
Node attributes can be user’s social network profile and edge
structure can be the friends that a user has.

However, community detection algorithms mainly focus
on one of the two sources only. Clustering algorithms mostly
use node attributes and community formation algorithms
resort to edge structure.

An algorithm may not produce optimal communities by
only focusing on one of these two sources. They can be com-
bined to give a better view of the communities underlying
in a social graph. For example, Attributes help can be use-
ful to find communities for a node with very few edges. In
the same way two nodes with identical edge structure may
belong to the same community even if one of the nodes has
no node attributes.

Recent approaches have used both these sources together.
These methods are still naive in adding the two sources as
they consider them as independent of each other. These pa-
pers use soft membership models that limit the membership
of a node in a community by using a common generator for
community membership.

A recent paper - the state of the art - tried to solve these
issues by using an efficient, scalable, hard modelled approach

for community detection. Their approach also encompassed
overlapping communities.

We try to model a method that encompasses overlap-
ping, disconnected communities leveraging contextual infor-
mation. Our model is scalable and is tested in the real world
large scale networks.

Our approach is based on a generative model for networks
with node & edge attributes. Our approach advances on
existing approaches and provides better accuracy as well
as scalability. Our approach detects overlapping communi-
ties by modelling hard node-community memberships. Soft
membership models take the assumption that nodes that
share multiple common communities are less likely to be
connected. We assume that communities may generate both
edge and node attributes and the network. This allows for
dependence between network and attributes.

To the best of our knowledge, CDSGEANI(this paper) is
the first paper that employs all the three sources of informa-
tion in a graph while also modelling contextual information.
CDSGEANI can detect overlapping, non-overlapping, hier-
archical as well as disconnected communities.

4. MOTIVATION

• In email networks, an email between two users can be
considered an edge, which has content in terms of the
text communicated between the two users. Clearly,
users with similar content of communication are much
more likely to belong to the same community than
those which do not. This observation also applies to
other forms of text or chat networks, or even (threaded)
community boards which enable interaction between
specific pairs of participants.[3]

• In social networking platforms, users may tag an im-
age with keywords. In such cases, it may be possible
to construct a network of both people and images in
which the edge content corresponds to the keywords
which are used for tagging. Such tags provide insight-
ful knowledge about the nature of the underlying com-
munity.[2]

• In social media, users may share authorship or brows-
ing behavior for the same content. In such cases,one
can create an actor-centric network in which edges are
placed between users that share the same content, and
the shared content is associated with that edge. Thus,
each content-based sharing may induce an edge be-
tween two participant nodes.[1]

5. MODEL DESCRIPTION
A lot of study went into understanding how to combine

multiple clustering formed using separate data points like
edges and nodes. We start this section with a brief overview
of Multi-view Clustering and continue to explain Consensus
clustering and then go on to propose our model.

5.1 Multi-view clustering
In some applications, the data space can be split into two

sets of dimensions that can each be used separately to learn



communities in itself. A well known example is that of the
web, where web pages can be classified either by the an-
chor text of inbound links as well as the content of the
web pages. Multi-view algorithms train two independent
hypotheses which bootstrap to provide labels for unlabeled
data. It has been shown that the disagreement of the two
independent theses serves as the bound on the error rate.
Multi-view clustering approaches use a classifier based on
some context of view one and senses the labels of the other
view to iteratively bootstrap each other.[5]

The co-EM algorithm[5] is a multi-view version of the EM
algorithm for semi-supervised learning. The authors try to
use the same algorithm in the unsupervised setting. The al-
gorithm runs E and M step on one view of the data and uses
the output as the initial estimations for the E step of the
next view. This is repeated iteratively until a convergence is
reached. This algorithm seldom converges, so special stop-
ping criteria are used to stop the iterations. [6,7]

Input:Unlabeled Data D = {(x(1)1 , x
(2)
1 ), ..., (x

(1)
n , x

(1)
n )}.

1. Initialize θ
(2)
0 , T, t = 0.(0)

E step view 2: compute expectaion for hidden variables

given the model parameters θ
(2)
0

Do until stopping criterion is met:

1. For v = 1...2:

(a) t = t + 1

(b) M step view v: Find model parameters θ
(v)
t that

maximize the likelihood for the data given the ex-
pected values for the hidden variables of view v of
iteration t-1.

(c) E step view v: compute expectation for hidden

variables given the model parameters θ
(v)
t .

2. End For v.

return combined θ = θ[t− 1](1)Uθ
(2)
t

5.2 Consensus clustering
The problem we faced with multi-view clustering was that

the views need to be on the same data space. An example
would be to have a partition on the node attributes and use
them to bootstrap each other iteratively.

Our problem was a little different, one clustering is to be
done in the node space and the other one in the line graph
space or edge space. Thus there arose a need to look further.
A way to combine already clustered data into an agreeable
cluster.

Consensus clustering[6] especially deals with the problem
of combining multiple clusters of a dataset without accessing
the original attributes. It is termed as a ensemble clustering
problem. Three consensus functions are used in the paper[6].

1. Cluster Similarity Partitioning Algorithm (CSPA).
Pairwise similarity is used to establish a relationship
between the ensemble of clusters. Pairwise similarity is
calculated based on the fact that two nodes belonging
to the same community denotes a stronger connection
between them.

2. HyperGraph Partitioning Algorithm (HGPA).
This algorithm estimates the maximal mutual infor-
mation with a constraint of the minimum cut. The

problem is posed as a partitioning problem of a hyper-
graph where the hyperedges are made of clusters.

3. Meta-CLustering Algorithm (MCLA).
A hypergraph is created with nodes as clusters and a
partitioning algorithm is applied on the same.

5.3 Proposed Methodology
We develop a probabilistic model that combines edge &

node attributes with edge structure and community mem-
berships. Our model is based on these intuitions.

• Nodes in the same community are likely to be con-
nected.

• Communities may overlap.

• Number of communities common between two nodes
increase the edge probability.

• Nodes in the same community mostly share common
attributes.

We assume that there are N nodes in the network G, each
node has K attributes and C communities. We denote the
network by G, the node attributes by X (Xuk is the k-th
attribute of node u) and community memberships by F. We
assume for community memberships F, every node u has a
positive affiliation weight Fuc ∈ [0,∞).IfFuc = 0, node u
does not belong to community c.

Modeling the edges. We consider these three intuitions
here:

1. Node-Community affiliation(F ) affects the likelihood
that a pair of nodes is connected.

2. The effect of every affiliation is different.

3. These effects are independent of one another.

To establish this, we build an affiliation network, where
the graph G(V,E) is developed from affiliations Fuc. We
assume that two nodes u,v belonging to a community c are
connected with the probability:

Puv(c) = 1− exp(−Fuc.Fvc).

Here for any u,v if Fuc or Fvc are 0 then Puv(c) = 0.
For u,v to be disconnected, nodes u and v should not be

connected in any community c.

1− Puv =
∏
c

(1− Puv(c)) = exp(−
∑
c

Fuc.Fvc).

Thus,

Puv = 1− exp(−
∑
c

Fuc.Fvc).

Auv ∼ Bernoulli(Puv).

Modeling Node Attributes. Community affiliations
can also be used to model node attributes.

Our intuition here is that, based on a node’s community
affiliations we can predict the value of each of the node’s at-
tribute values. Thus we regard F as the input to the logistic
model with associated logistic weight factor Wkc (for each
attribute k and community c).



Quk =
1

1 + exp(−
∑

cWkc.Fuc)

Xuk ∼ Bernoulli(Quk).

where Wkc is a real valued logistic model parameter for
community c and attribute k. The value of Wkc is the rele-
vance of each attribute k to the community c.

5.4 Algorithm

Input: A graph G, with Edge Attributes E and Node
Attributes N.

1. Create a Line Graph L from the original Graph. Note
that Node attributes of Line Graph, LN = E.

2. Form clusters on N and LN using any clustering algo-
rithm.

3. Convert the clustering on LN into clusters of N by
using a majority vote node inclusion policy.

4. Run Ensemble Clustering to find a consented cluster-
ing on the dataset.

6. EXPERIMENTAL EVALUATION
Twitter data is available in three versions, namely: Spritzer,

Sprinkler and Garden Hose which are 1%,10% and 100% of
all the tweets. The first version is free for use.

1% of all tweets on twitter accumulates to around 120000000
tweets or 120 million tweets over a single month. We will
try to access the Garden Hose version if possible.

This will test its scalability and considering every tweet as
an edge will garner tremendous information from the edge
attributes namely tweet text and hashtags.

7. CONCLUSION
This paper, when ready, will present a new source of infor-

mation extraction from social graphs and will be excellent
for community detection. Dynamic communities that form
momentarily can be captured very well with this approach.
This approach will open new avenues for community detec-
tion in social graphs.
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