
Detecting Concurrent Distributed Anomalies in

Multi-Domain SDN

Rohit Katiyar

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science & Engineering

June 2016

Acknowledgements

To start with, I would like to thank my adviser, Dr. Kotaro Kataoka for his valuable suggestion.

His constant guidance, patience and immense knowledge were very helpful. Next, I would like to

thank my NSA adviser Dr. Bheemarjuna Reddy Tamma and Practical Networking Group of IITH

(PRANET) for the friendly advice and words of encouragement. I am also thankful to my seniors

and friends for their motivation. Finally, I am grateful to my family for always believe in me.

iv

Dedication

To my family & friends

v

Abstract

Anomaly Detection is essential to understand the difference between normal and anomalous traffic.

An anomaly maybe something that disrupts the network or allows an attacker unwanted access to

modify or steal data. An anomaly in a network may occur at various layers. There are applica-

tion specific anomalies which attack a specific application or group of applications e.g., MAC layer

anomalies mostly DOS/DDOS attacks and anomaly at transport layer is SYN-Flood Attack. It’s a

very widely studied concept in both traditional and Software-defined Networking (SDN).

The accuracy of anomaly detection is directly dependent on network flow measurement, which

often introduces overhead in the network. This overhead is effected packet sampling rate that is

essential to detect anomalies. Using centralized SDN architecture, the overhead on traffic measure-

ment has been reduced to a certain extent. However, it still incurs a significant overhead and misses

a special set of anomalies stated as Concurrent Distributed Anomalies (CDA). Hence, domain spe-

cific distributed SDN controllers have been proposed with additional benefits of being cost effective,

scalable and reliable.

The main goal of this thesis is to define what can be considered an concurrent distributed anomaly

and how these anomalies are undetectable in centralized SDN architecture. This is achieved by

elaborating concurrent distributed anomalies scenarios and implementing detection technique using

multi-domain SDN architecture. The proposed solution scaled the network into multi-domain SDN

architecture. It comprises of two entities viz., a multi-domain SDN network and a CDA detector.

The network is divided into multiple non-overlapping SDN domains and each domain consists of

a SDN controller and a part of the network infrastructure. Detection of anomaly in one domain

is independent of detecting anomalies in other domains. This reduces the computational load at

centralized point of anomaly detection by distributing the traffic flow measurement among domains.

Hence, this helps in detecting anomalies across the domains.

We evaluated the system in the terms of sensitivity, scalability and responsiveness of the system.

The sensitivity, which came out to be 80% defines our design detects concurrent anomalies correctly.

This enables the system to achieve better responsiveness to detect CDA with lesser delay. The

solution was found to be scalable enough for deploying over large network. Our results shows that

distributed architecture helps in detecting CDA as compared to centralized architecture without

imposing additional overhead.

The proposed work can be used to detect coordinated attacks, which either caused the network

damage or trying to find vulnerability in the system for the larger attack later in the future. Thus,

this solution can be used for real-time early detection

vi

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

Nomenclature viii

1 Introduction 1

1.1 Anomaly Detection . 1

1.2 Main Objective . 2

2 Software Defined Networking 3

2.1 Overview . 3

2.2 OpenFlow Protocol . 3

2.2.1 Message Types . 4

2.2.2 Switch . 5

2.2.3 Controller . 5

3 Related Work 6

4 Proposed Work 7

4.1 Concurrent Distributed Anomalies (CDAs) . 7

4.1.1 What is CDAs . 7

4.1.2 Difficulty in Detecting CDAs . 7

4.2 SDN Domain Functionality . 9

4.2.1 Traffic Statistic Probe . 9

4.2.2 Anomaly Detection . 10

4.2.3 Anomaly Classifier . 10

4.2.4 Messenger Client . 11

4.3 CDA Detector Functionality . 12

4.3.1 Messenger Server . 12

4.3.2 Centralized Data Storage . 12

4.3.3 CDA Probe . 13

4.3.4 CDA Reporter . 13

4.4 Implementation . 13

vii

5 Experiments and Results 15

5.1 System Validation . 15

5.2 Performance Evaluation . 16

5.2.1 System Sensitivity . 16

5.2.2 Scalability . 17

5.2.3 Response Time . 19

5.2.4 Performance-Gain . 19

5.2.5 Complexity . 20

6 Discussion 21

6.1 System Improvement Heuristics . 21

6.1.1 Interpret Planned Anomalies . 21

6.1.2 SDN based network traffic knowledge . 21

6.1.3 System Usability . 21

6.2 Misc Topics in Security of SDN . 22

6.2.1 Bootstrapping Flow Aggregation for Anomaly Detection in SDN 22

6.2.2 Addressing problem of collaboration of hacked switches in SDN 23

6.2.3 Detection of Cache Pollution in ICN using SDN 25

7 Conclusion and Future Work 26

References 27

viii

Chapter 1

Introduction

1.1 Anomaly Detection

Anomaly detection in networks is stated as the prediction of anomalous traffic before it causes faults

in the network. This feature is essential to provide a reliable, quality of service (QoS) and efficient

load balancing scheme. The problem of network anomaly detection is of primary importance in

network security due to various reasons such as network intrusion, denial-of-service attacks, buffer

overflow attacks etc. Networks are targeted daily by attackers seeking to disrupt or disable them and

the traffic they generate are the most common anomalies in the network. When the bandwidth of

the network gets flooded by such anomalies, denial-of-service attacks may happen which eventually

degrades the quality of the network. For large organizations, continuous denial-of-service attacks may

result in the loss of several important functionality and thus lead to a decrease in the performance

of the organization’s services. Thus, it is very important to improve the accuracy of such anomaly

detection mechanisms.

To maintain network availability, the monitoring system must detect and diagnose potential

network problems and initiate appropriate recovery or mitigation actions. In traditional networks,

anomaly detection has been done using proper placement of Intrusion Detection System (IDS) [1].

Drawbacks of IDS are: low detection accuracy, unbalanced detection rate for different types of

attacks, high false positive and predefined policy based system with high computing power required

for operation [2].

Most of the anomaly detection in traditional networks is done using machine learning techniques

[3] which consist of following two steps:

• In the training phase, the behavior of the network is observed in an idle condition i.e., trusted

network and machine learning techniques are used to train the system for such normal behavior

• In the detection phase, this training is compared against the current behavior of the system,

and any deviations are triggered as potential attacks.

SDN [4] was proposed with a great functionality which changes the way that existing network archi-

tectures works in term of specializing device operation, intelligent packet forwarding and network

deployment to reach an intelligent network. In SDN architecture [4], the actions in data plane are

controlled by a programmable, logically centralized control plane, which can easily interact with

1

other network management systems. Anomaly detection on SDN introduces some benefits in terms

of easiness of deploying the monitoring points and flexible flow counting. This assists in acquiring

packet sampling rate of the network in a better way.

Previously, anomaly detection has been done on centralized SDN architecture [5], wherein the

network is programmed and controlled as a single entity. However, the centralized SDN controller

faces the issues of scalability, reliability and single point of failure. Hence, a suggestion to build a

logically centralized, but physically distributed control plane has been proposed [6]. This technique

enjoys the advantages of the distributed architecture meanwhile keeping the simplicity of the cen-

tralized system. In anomaly detection, collecting statistics is one of the core functionalities of the

controller. However, centralized statistic collection in SDN does not scale in some metrics, therefore

the system may not be able to pick out a set of short-lived anomalies which can be Concurrent Dis-

tributed Anomalies (CDAs). CDA includes malicious traffic which is generated by a group of nodes

simultaneously at multiple locations in the network. The collective impact of this event affects the

core network and makes it congested. This increases the overhead on centralized anomaly detector

which leads to failure in detecting CDA. The biggest difficulty of detecting CDA in centralized archi-

tecture is the latency in detection. As a result there is a delay between the cause and consequences

in the network. Thus, we use distributed architecture to solve this problem without introducing

additional load into the network.

1.2 Main Objective

The main goal of this work is to propose an architecture which detects concurrent distributed

anomalies. This architecture brings the advantage of fast computational at monitoring points that

lower down the overhead on the controller. In this architecture the network is divided into multiple

domains in which each controller detects anomalies generated in its vicinity(domain); which then

helps in the detection of distributed anomalies. The main contributions of this thesis are as follows:

• To solve the problem of detecting concurrent and distributed anomalies in feasible multi-

domain SDN architecture

• Evaluation of system in terms of efficiency, scalability and sensitivity with different distributed

attacks comprising of numerous hosts

2

Chapter 2

Software Defined Networking

2.1 Overview

Software Defined Networking (SDN) is a network paradigm as shown in Figure 2.1 which separates

the control plane from the data plane. This paradigm is different from traditional network in the term

of packet processing. In traditional, network nodes have capability to decide how to process incoming

packets. In SDN, those two tasks are decoupled. The switches forwarding the incoming packets

to external entity called controller. This external entity is taking a packet forwarding decision.

SDN provides a programmable network, in which the entire traffic can be adjusted dynamically or

controlled by the centralized program.

Open Networking Foundation (ONF) was founded in March 2011 which state SDN architecture is

dynamic, manageable, cost-effective and adaptable. The gole of this organization is the promotion

and adoption of Software Defined Networking through open standards development. Later, ONF

introduces OpenFlow protocol, which define the communication between switches and controllers

2.2 OpenFlow Protocol

The OpenFlow protocol cab be adopted as standard for SDN. This ensures communication using

control plane and data plane between the controller and OpenFlow-enabled switches. Each switch

maintain an internal flow table, which contains a set of rules called as Flow Rules. These rules is

used by switch to process incoming packets on the data plane. The controller is managed the flow

table, which takes the decision of adding, deleting or modify flows. To make this communication

secure , the controller and the switch are connected via a secure channel, usually TLS/SSL.

The flow table entry consists of the following components

• Header Field – This field is matched against the arriving packets

• Actions – This is applied to the matching packets

• Counters – This increments every time if a packet matches

3

Figure 2.1: SDN Architecture (source: ONF homepage)

2.2.1 Message Types

The OpenFlow specification defines three classes of messages:

Asynchronous

• Packet In: If an arriving packet does not match any flow table entry, a PACKET IN message

is sent to the controller

• Flow removed: A flow can be removed for different reasons, i.e. a timeout (hard timeout or

idle timeout)

• Port status: The switch should send this messages on port configuration changes

• Error: The switch notifies the controller of errors

Controller-to-Switch

Controller-to-switch messages are initiated by the controller. These message are generally one way

and switch may not give an answer. Six types are defined in the OpenFlow specification:

• Features: The controller sends a FEATURE REQUEST message on connection and the switch

answer with a FEATURE REPLY specifying its capabilities

• Configuration: The controller can set and request configuration parameters

• Modify-State: Messages that are used by the controller to create, modify or delete flows

4

• Read-State: The controller can request statistics from flow tables, ports or flow table entries

• Send-Packet: the controller may send packets and asked the switch to output them to a specific

port

• Barrier: Messages are used to request notifications for completed operations

Symmetric

Generally there are two types of symmetric messages are allowed in OpenFlow. HELLO messages

are exchanged on connection start-up, ECHO REQUEST and ECHO REPLY messages are used to

determine latency or bandwidth.

2.2.2 Switch

Open vSwitch is designed to perform one main task: in a hypervisor environment, it can be used

as a bridge to connect virtual machines with external networks. Normally, this is done by the

Linux bridge. However, Open vSwitch provides extended features. Open vSwitch may also be

used as a mere virtual switch, e.g. for testing network applications. The software Mininet, for

example, provides a local virtualized network on a single PC. Mininet uses Open vSwitch to simulate

OpenFlow-enabled switches. Besides virtual switches, ONF members are producing OpenFlow-

enabled hardware switches.

2.2.3 Controller

In SDN, the control plane is located in a special network component, called the controller. Since it is

purely software-based, available with many development group. In addition to commercial solutions,

many open source controllers are available. They differ mostly in the way the northbound API is

implemented. While the southbound API is standardized to a great extent, the interfaces on top of

the controllers are very different. The commonly used controllers are:

• Ryu: Ryu is a component-based software defined networking framework. Ryu provides software

components with well defined API that make it easy for developers to create new network

management and control applications

• Floodlight: The Floodlight Open SDN Controller is an enterprise-class, Apache-licensed, Java-

based OpenFlow Controller. It is supported by a community of developers including a number

of engineers from Big Switch Networks

• POX: Pox as a general SDN controller that supports OpenFlow. It has a high-level SDN API

including a queriable topology graph and support for virtualization

5

Chapter 3

Related Work

Traditionally, anomaly detection was achieved by deploying additional computing devices with IDS

capability in the backbone network. SDN infrastructure introduced faster mitigation by updating

the anomaly detection techniques. This has increased the research in the area of anomaly detection

in SDN infrastructure; to improve the efficiency and try to decrease the false alarm. The initial

studies focused on testing the anomaly detection methods which have been successfully deployed in

traditional networks and can now be deployed in SDN by using its advantages. Akbar Mehdi et al.

[5] have done an extensive survey of the existing methods on anomaly detection on legacy networks

and have extended them to SDN infrastructure. In this paper, many anomaly detection algorithms

were used to validate that these methods were suitable for low network traffic rates. K. Gliotis et al.

[7] proposed the solution by combining the functionality gained by sFlow [8] and Openflow [9] for

anomaly detection and mitigation in SDN environments. Zhang Ying [10] formulate the problem in

a different way and suggested a flow counting method with dynamic rule replacement algorithms for

anomaly detection in SDNs. The work done by Himura et al. is a statistics based anomaly detection

algorithm with automatic parameter tuning. Above mentioned researches feature regular network

monitoring to detect anomalies based on flow rules.

However, previous research only considered anomaly detection on centralized SDN infrastructure.

When a centralized system is further expanded to distributed domain, it gives many benefits such

as less overhead, load balancing, scalibility, privacy and flexibility. The work done in DISCO [11],

an extensible DIstributed SDN COntrol plane, manages its own network domain and communicates

with other controllers to provide end-to-end network services. In another research in ElastiCon

[12], an elastic distributed controller architecture contains a pool of controller which is dynamically

grown or shrunk according to traffic conditions and the load is dynamically shifted across controllers.

Hence, proposed solution is a first attempt to solve a problem of detecting concurrent distributed

anomalies. Since it uses distributed approach in solving these problems, its a novel method in itself.

6

Chapter 4

Proposed Work

4.1 Concurrent Distributed Anomalies (CDAs)

4.1.1 What is CDAs

CDAs are anomalies which are generated at logically or physically distributed locations at the same

time or in a predefined amount of time. They can be short-lived which often occur over a large period

of time. CDAs mainly consist of anomalies with ignorable impact which are undetectable. But when

caused at multiple locations simultaneously, they could become problematic to the network. As an

example, CDAs are activities which can be performed to search for vulnerability across the network.

This kind of activity if done at multiple locations simultaneously in very short interval are considered

as CDAs. A group of nodes, referred to as botnet, is remotely controlled by a botmaster and can be

used for malicious activity. The purpose of this group can be to increase the number of bots in the

group by trying to infect more number of users’. These kind of activities are important to detect

in order to save a far worse attack in the network. So, CDAs detection helps in early detection of

attacks.

4.1.2 Difficulty in Detecting CDAs

Suppose, a particular anomaly is generated at multiple locations in the network at a certain time.

Some of these anomalies are generated for a nominal amount of time and might get missed by the

detector. On the other hand, some of these anomalies may get detected with a certain delay due

to congestion in the network or overloading the controller. The detection of CDAs are difficult by

using existing centralized SDN architecture. Various difficulties in detecting CDAs in centralized

architecture are:

• Latency and sensitivity in detection leading to delay between the cause and observed behavior

in the network. The main reason for latency is increased congestion in control plane due to

short interval statistics in addition to normal traffic

• Degree of concurrency of the anomalies is increased beyond some threshold, which might lead

to the system failure to perceive the difference between anomalies generated by coordination

and other miscellaneous anomalies generated by attacks

7

Figure 4.1: Multi Domain SDN Architecture with CDA Detector

• Minimum number of flow rules required to detect CDA. If the amount of flow rules used for

monitoring is reduced, some concurrent anomalies could be missed

Technically, it is better if every flow rule is observed, but it is a very costly method. These issues

can be handled by proper placement of multiple traffic capturing points in the form of multiple

isolated domain-specific SDN controller architecture.

The basic architecture for CDA Detection is shown in Figure 4.1. It comprises of two entities

viz., a multi-domain SDN network and a CDA detector. The network is divided into multiple non-

overlapping SDN domains and each domain consists of a SDN controller and a part of the network

infrastructure.

8

All these SDN domains report the detected anomalies in its infrastructure to the CDA detector.

The CDA detector is a logically centralized system which communicates with all the domains in the

network. It collects the information about the detected anomalies from different domains within the

network.

4.2 SDN Domain Functionality

The network has multiple domains and each domain has the following stake holders:

4.2.1 Traffic Statistic Probe

The traffic statistic probe is designed on the simple match-and-count rules, installed and adjusted

by the controller on the switch. The switches can send traffic counters to the controller periodically.

If the statistics are collected in a large period, then the detection algorithms may miss frequent

short-lived anomalies. Similarly, if it is done over a short period, it can generate a lot of traffic to

the control plane, and overwhelm the controller. Our design provides flexibility to choose probing

intervals to collect data and it can operate on flexible short and long period intervals as compared

to centralized detection systems that work at only fixed intervals.

Detection Method Anomaly Type Traffic Feature Parameter Example of heuristics

Signature Based

Anomaly
Type-1

Packet Count, TCP Header Flag

If the ratio of SYN/ACK
flagged packets is more than
20% then it is traffic generated by
SYN Flooding

Anomaly
Type-2

Source IP, Destination IP

If the request is an ICMP
packet and Destination IP
as same as the Broadcast IP
then it is traffic generated by
Smurf attack

Anomaly
Type-3

Packet Size, Packet Count

If packet size is more than
100bytes and if count ratio
more than 20% of total flow
then it is traffic generated by
Ping-of-Death attack

Anomaly
Type-4

Source IP, Destination IP,
Destination Port, Flow Size
and Packet Count

If a particular source IP is
sending a request for a range
of server port address on one
host or multiple host then
it is traffic generated by
Port Scanner

Anomaly
Unknown-1

The Parameter is not
classified into any above
categories

If the host cannot be classified
into any above categories,
then the event is classified into
Unknown category

Stastical Based

Anomaly
Type-5

N number of packet in a
window Pi is the probability
of each element in the window

Entropy(H) = −
�

i=1

Pi logPi

Anomaly
Type-6

Tranning data like Bandwidth

Classification and Clustering
based approach is used to
detects sudden changed
in the network

Anomaly
Unknown-2

Automatic Parameter Tuning Miscellaneous Anomalies

Table 4.1: Non-exhaustive list of anomalies used by the system based on sample heuristics

9

4.2.2 Anomaly Detection

Anomalies in the network are stated as the identification of sudden change in the network. This

sudden change has happened because of traffic generated by some attacks. So in this research

categorization of attacks has been done on the basis of existing detection techniques: signature

based and statistical based on the underlying approach adopted by each technique:

• Signature Based – Signature based anomaly detection methods are designed to detect anoma-

lies generated by known attacks. These attacks are recognized by the feature it affects in

the network which are identified as its signatures. Such systems require predefined rules or

knowledge of the anomalous traffic. In Table 4.1 the first four anomaly types belong to this

category and require parameters like header flag, flow size, packet count, etc. to identify the

signature of the malicious traffic whereas the last type is classified as unknown.

• Statistic Based – Network traffic varies with time or space and thus cannot be detected using

rule based approach. So learning techniques have been used to detect these kind of anomalies.

The above discussed categories are a part of a non-exhaustive list of anomalies that our system

can detect. In the Traffic Preprocessing functionality, we decide the input parameters to the anomaly

detection module are given in Traffic Feature Parameter of Table 4.1.

4.2.3 Anomaly Classifier

This module first labels the anomalies based on traffic features and then organizes and stores the

data in an efficient data structure.

• Anomaly Tagging – The nodes in the network face a plethora of malicious activities. So, there

is a need to categorize similar activities into groups in the form of tagged Anomaly Type as

shown in the Table 4.1.

• Data Organizer – The main function of the data organizer is to store the data in the best

possible way in order to get faster search and access time. The detected anomaly is stored in

a two-level data structure as shown in Figure 4.2.

The first level hashes the input where the key is the anomaly type and the value is a pointer to

the second level of sorted sets. The sorted set consists of Anomaly Type and the TimeStamp at

which the anomaly occurred. Deploying a hashing mechanism allows for flexibility in adding

more number of anomalies without changing the design of the system. Using sorted set helps

in retrieving the most recently detected anomaly.

10

Figure 4.2: Data Structure used in Data Organizer

4.2.4 Messenger Client

The messenger client is used to send the most recently detected anomalies with timestamp to a

messenger server running at the CDA detector. Message Passing Protocol with instant messaging

functionality can be used for this purpose to obtain faster response time. The sample message type

are given below

< ControllerID = ”MACAddress” >

< AnomalyType >Type-1< /AnomalyType >

< TimeStamp >YYYY:DD:MM:HH:MM:SS< /TimeStamp >

< AnomalyType >Type-2< /AnomalyType >

< TimeStamp >YYYY:DD:MM:HH:MM:SS< /TimeStamp >

< /ControllerID >

11

4.3 CDA Detector Functionality

Logically, the detector is used to combine the information from multiple domains. The role of this

detector is to report concurrent anomalies in the various network domains with the help of the

following logical entities.

4.3.1 Messenger Server

Messenger server accepts packets from the messenger client on the SDN domain using an instanta-

neous message passing protocol and forwards the same to the centralized data storage module.

4.3.2 Centralized Data Storage

The centralized data storage works in a similar fashion to the data organizer in each domain of

the network. In this two-level design, the first level hashing maintains the controller record where

the key is a unique controller ID and value is a pointer to second level of hashing as shown in

Figure 4.3. On the second level, system stores Anomaly Type as the key and a pointer to sorted set

as the value. The sorted set consists of Anomaly Type and the TimeStamp at which the anomaly

occurred. Deploying a hashing mechanism allows for flexibility in adding any number of controllers,

viz., domains to the network without changing the design of the system and the network.

Figure 4.3: Centralized Data Storage in CDA Detector

12

4.3.3 CDA Probe

This module compares the timestamp of detected anomalies against the current timestamp of the

system with a permissible difference between the two timestamps, while accounting for system

and network overheads. The timestamp of the detected anomalies can be retrieved by visiting every

sorted set from the last level of hashing present in the Centralized Data Storage as given in Algorithm

1.

4.3.4 CDA Reporter

The reporter informs the network administrator of the detected CDAs after getting the information

from the CDA probe which is done by calling CDA Probe with given Controller ID and polling time

Pt. Concurrent distributed anomalies are detected by taking the intersection of the output of the

CDA probe with the Controller ID of each domain.

4.4 Implementation

Our implemented prototype design comprises of two main components: SDN Domain and CDA

Detector.

SDN Domain topologies have been built by using Mininet [13] to emulate Open VSwitch [14]

with virtual hosts and on the top we have written applications using python based Ryu [15], an

open source OpenFlow controller. The modules involved in these domains are: 1) Traffic Statistic

Probe, 2) Traffic Preprocessing, 3) Anomaly Detection, 4) Anomaly Classifier and 5) Messenger

Client as shown in Figure 4.1. The Messenger has two instances running on client side and server

side respectively. This messenger uses XMPP to ensure instant communication. The client side

instance which is running on all SDN domains network is encapsulating the data (anomalies with

its type and timestamp at which it occurs) and at server side it decapsulates the data. Messenger is

fast as required since it uses XML format while encapsulation. E.g.: suppose a specific SDN network

found multiple anomalies with respect to time so the same information is encapsulated as

13

< ControllerID = ”MACAddress− 1” >

< AnomalyType >Type-1< /AnomalyType >

< TimeStamp >YYYY:DD:MM:HH:MM:SS< /TimeStamp >

< AnomalyType >Type-2< /AnomalyType >

< TimeStamp >YYYY:DD:MM:HH:MM:SS< /TimeStamp >

< /ControllerID >

< ControllerID = ”MACAddress− 2” >

< AnomalyType >Type-1< /AnomalyType >

< TimeStamp >YYYY:DD:MM:HH:MM:SS< /TimeStamp >

< AnomalyType >Type-2< /AnomalyType >

< TimeStamp >YYYY:DD:MM:HH:MM:SS< /TimeStamp >

< /ControllerID >

in an XML tagged packet. Now if the first tag reaches the messenger server it will not have to

wait for the entire packet to be received and processed. Instead it will start processing the packet

with the help of tags. In this way, having an XML based packet is fast and instant. Data organizer

and centralized data storage have been built using Redis server [16].

Algorithm 1: Concurrent Distributed Anomaly Probe

Input: Polling Time Pt, Controller ID Id
Output: List of Distributed Anomalies L

procedure CDA Probe ()
Address to HashTable-II A1 = HashTable-I(Id)

� HashTable-I Controller ID
Address to Sset S1 = HashTable-II(A1)

� HashTable-II Anomaly Type
for each entry in S � Sset(S1) do:

if Pt < CurrentTime-S.TimeStamp then

L Add(S.Anomaly Type)
else

break
end procedure

14

Chapter 5

Experiments and Results

In this section, we evaluate the performance of the system in two steps. First, checking the cor-

rectness of the system prototype using an emulated SDN based multi-domain testbed i.e., system

validation. Second, reporting the performance of the system with the help of various metrics like

sensitivity, response time, efficiency, scalability, etc.

5.1 System Validation

Our experimental testbed is built on top of Mininet, which emulates a network of Open VSwitches

and it consists of two SDN domain specific controllers that are connected to system integrator.

For validating the correctness of the system we require some malicious activities running on the

system. There are existing open source tools available which generate anomalous traffic. But here

we describe specific SDN based attacks on control plane by running malicious applications on the

controller. These applications control the way in which packets would be forwarded to the hosts in

the network. In normal function, a switch sends a PACKET IN message to the controller because no

flow rule matches for the destination host. But the attacker modifies the flow rules of user’s trying

to use the FTP service by monitoring the request and response of PACKET IN and PACKET OUT

messages generated by the switches. The attack is carried out by ordering the switch to forward

the packet to the controller for every packet with destination port number 20 and not installing the

flow rules on the switch for the same.

The traffic generated by this attack can be detected as Anomaly A by the domain-specific con-

troller. If the same anomaly happens simultaneously on many domains in the network, the system

integrator detects it as planned anomalies thereby validating the system. Since the attacker aims to

congest the network with dubious flow rules, the anomaly detection algorithm identifies the amount

of traffic generated by the controller to be different from the normal behavior of the controller. This

is detected as anomalous behavior of the system thereby validating it.

15

5.2 Performance Evaluation

We consider real traffic data taken from the MAWI traffic repository [17] for evaluation purposes

and a detection algorithm which is available using Weka [18], a tool with a collection of supervised

and unsupervised machine learning algorithms for data mining tasks. We use NetMate for the flow

statistics for network traffic which help in calculating the sensitivity of the data. In some cases

random anomalies have been generated on the prototype architecture which serves as a proof of

concept. Performance of the proposed system has been evaluated based on the following parameters

5.2.1 System Sensitivity

The sensitivity of the system can be defined as the ratio of True Positive (TP) and sum of TP and

False Negative (FN) where TP is defined as the number of planned anomalies detected correctly

within polling time and FN is defined as the number of planned anomalies that went undetected

within polling time. So, on average the sensitivity rate of our system is given as

Sensitivity =
TP

TP + FN

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 4 6

R
a

ti
o

Time (ms)

TP

FN

Sensitivity

Figure 5.1: Sensitivity of CDA Detector

16

For example, Domain A, Domain B and Domain C detected Anomaly Type-T1 at time t and

reported the same to the system integrator. Now polling has been done on integrator and found

Anomaly Type-T1 at Domains A and B but not on Domain C because of polling time being less than

desired. This leads to system integrator not being able to detect anomalies on all three domains.

This case can be dubbed as false negative case. Now if we increase the polling time, we are able to

detect it at all three domains leading to the true positive case.

As shown in the Figure 5.1, we test our system on random generated data with five anomalies

at three different polling times by keeping 20 controllers. With increasing polling time, the TP and

the sensitivity of the system increase and FN decreases. Finally we achieved almost 80% sensitivity

by keeping a moderate polling time.

5.2.2 Scalability

Scalability in distributed systems is an important point for evaluating the system. Thus, we evaluate

this measure by expanding the number of domains in our system. In our experiment, we have two

variables viz., anomaly types and number of domains.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

S
e

n
s
it
iv

it
y
 R

a
ti
o

Number of Controllers

Figure 5.2: Scalability with constant anomalies

We perform trials to test the scalability by varying the number of participating domains. The

number of domains range from 5 to 20 and the number of anomalies are kept constant at 5. These

experiments are performed by generating all the five types of anomalies randomly with equal prob-

ability in each domain. Using this technique we are ensuring that the same type of anomalies are

17

generated at multiple domains simultaneously. As shown in the Figure 5.2, the scalability varies

between 60-80% by increasing the number of controllers. The reason behind this is that with less

number of domains, the possibility of generating same type of anomalies is low. So we get limited

scalability. On the other hand, we achieve more accuracy by deploying more number of controllers,

with the amount of anomalies as compared to the number of controllers.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

S
e

n
s
it
iv

it
y
 R

a
ti
o

Number of Anomalies

Figure 5.3: Scalability with constant controller

In another scenario we performed an experiment by keeping the participating domains constant

at 20 and varying the type of anomalies from 5 to 20. We observed that the efficiency of the system

reduces with increasing number of anomalies with respect to a constant number of controllers as

shown in in Figure 5.3. Based on the above discussion, we provide a bound on our system scalability

by considering the real-time behavior of the network.

18

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10 20 30

A
n

o
m

a
ly

 D
e

te
c
ti
o

n
 T

im
e

 (
m

s
)

Number of Trials

Centralized

Distributed

Figure 5.4: Response Time of anomaly detection in Centralized Architecture and Distributed Ar-
chitecture.

5.2.3 Response Time

The response time of the system is measured by detecting concurrent distributed anomalies on

centralized architecture and distributed architecture. The graph in Fig. 5.4 and 5.5 shows the

response time of a centralized system with respect to a distributed system for anomaly detection in

domain and CDA detection respectively. The result have shown designed architecture detect CDAs

in lesser time.

5.2.4 Performance-Gain

The performance of the distributed system can be defined in terms of gain in performance while

extending from centralized to distributed design. The time elapsed between the beginning and end

of execution on a centralized system is given as Tc. In the same way Td is defined for distributed

system. So, the ratio of time taken to solve a problem on a centralized system to the time required

to solve the same problem on a distributed system is given by

Performance−Gain =
Tc

Td

The bar chart shown in Figure 5.4 and 5.5 points out the experimental scenario where five

anomalies are simultaneously generated on both the architectures. The gain in performance of the

architecture is found by using summation of response times of centralized system and distributed

19

 0

 2

 4

 6

 8

 10

 12

 14

10 20 30

C
D

A
 D

e
te

c
ti
o

n
 T

im
e

 (
m

s
)

Number of Trials

Centralized

Distributed

Figure 5.5: Response Time of CDA Detection Algorithm in Centralized Architecture and Distributed
Architecture.

system calculated using the above formula. It was found to be 1.16, 1.26 and 1.37 respectively for

given number of trials.

5.2.5 Complexity

The time complexity of CDA detector is O(logn) as it uses the two stage hashing data structure

followed by a sorted set in which first level hashing provides variability to the number of domains.

In the same way, the second level hashing provides change in the type of anomalies with respect to

a particular domain.

20

Chapter 6

Discussion

6.1 System Improvement Heuristics

6.1.1 Interpret Planned Anomalies

In our scenario we defined planned anomalies as those that occur at the same time across all the

domains. We can also define planned anomalies in a different way like each domain may be generating

different anomalies at the same time as a result of different attacks.

6.1.2 SDN based network traffic knowledge

We would be focusing on improving the system by gaining the domain knowledge of various attacks

that are specifically carried out in the SDN network. This knowledge helps us to understand the

behavior of anomalous traffic and makes it easier to select the features for the prediction algorithms.

The goal of feature selection is to filter the dataset to retain relevant attributes.

Sometimes, network faced unexpected behavior. For example, suppose in an NFV environment

some service suddenly goes down. As a result NFV launches a virtual service on a different location

in the network. This leads to a deviation from normal traffic pattern in the network and it is

classified as anomalous traffic by the existing detector. Thus, having detailed knowledge of SDN

network increases the efficiency and improves the system.

6.1.3 System Usability

This system can be used in detecting concurrent malicious activities generated by the software

simultaneously. Others problem such as blocking malicious hosts, saving bandwidth at core and

concurrent anomalies.

21

6.2 Misc Topics in Security of SDN

6.2.1 Bootstrapping Flow Aggregation for Anomaly Detection in SDN

Detecting non-application layer anomalies involves counting flow statistics by intermediate devices.

In large networks this may overload the centralized management system. Thus, most common ap-

proaches use sampling and aggregation of flow rules to reduce the amount of load. But the extent

to which flows must be sampled is a crucial point. Poor aggregation methods are very likely to

miss important anomalies and a large sampling frequency may overload the system. Thus, a fine

balance is required between the overhead and the accuracy of the system so as to minimize aggre-

gation/sampling footprint. Approaches have been suggested that use Software Defined Networking

(SDN) and take advantage of its flexibility to dynamically update the rules of aggregating flows

to reduce the loss of missing anomalies. But most of the existing methods perform aggregation

on a single parameter and thus are biased to high false positive results that impose extra load to

counteract them or possibly higher false negative results that miss out important anomalies in the

system.

Our key motive is to validate a model that improves the accuracy of an anomaly detection system.

Towards this, we bootstrap the flow aggregates from the network based on multiple parameters. For

each of the parameters a linear prediction is applied to calculate the set of aggregates for anomaly

detection. Based on these predictions, an appropriate rule replacement method is used to get the

final set of flow aggregates for each parameter. We apply a greedy approach to predict anomalies by

choosing the parameter that replaces highest number of rules that detect anomalies. This stacking

of dynamic rule replacements with the bootstrapped multi-parameter aggregates help in improving

the accuracy of a real-time anomaly detection system dependent on the attributes of the network.

Aforementioned task can be done easily on Software-Defined Networking (SDNs) based on Open-

Flow (OF) protocol exports control programmability of switched substrates. As a result, rich func-

tionality in traffic management, load balancing, routing, firewall configuration etc., that may pertain

to specific flows they control can be easily developed. Implementing this method on current legacy

networks is not possible since changing configurations for updating rules requires manual configura-

tion of routers. Hence, the SDN paradigm is used so that its programmability inside controller makes

it possible to dynamically update rules. It allows us to provide specification for multi-parameter

bootstrapping on network flow measurements.

Network anomaly detection is of utmost importance especially when it concerns critical high secu-

rity system architectures which requires constant monitoring. To have a accurate tool to measure

anomaly is hence very important. Hence new approaches and efforts are made to find more accurate

results for anomaly detection. Our approach considers multiple parameters for detecting anomaly

so that accuracy will increase significantly while introducing a very slight extra load on system.

22

6.2.2 Addressing problem of collaboration of hacked switches in SDN

The Software-defined Network (SDN) architecture relies on the assumption that all the SDN switches

in the network obey the commands of the controller. However, if someone compromises an SDN

switch using physical access or harmful patches, it can cause malicious activities in the network and

can even bring the entire network down. Therefore, detection of compromised SDN switches is a

major concern. In this paper, we propose a solution for detecting a compromised switch with the

collaboration of other trusted switches.

This enables a network manager to discover the compromised switch present between the trusted

switches and find a possible solution for mitigation. Our implemented prototype validation system

works on the network simulation using only the required features of the OpenFlow 1.0 specification

enabled on Mininet and Ryu controller. Its effectiveness can be verified by varying the number of

switches in the network.

A traditional computer network is a hierarchical one which is suited to client-server computing.

But recent advancements in computing such as virtualization and cloud computing need a robust

network which can sustain dynamically changing traffic patterns. This gave to a new network

architecture called Software Defined Networking or SDN. The idea here is to make the network

programmable. As already pointed out, the data plane and control plane are separated and the

control plane is centralized. Which implies that the network admin has full control over the aspects

of the network. So, any new functionality can be added over existing network easily. This can

increase the robustness of system considered as a whole in scenarios like load distribution on various

servers. Thus, SDN takes a major leap in network architecture design.

Despite being a promising architecture for future, there are various concerns about security in

SDN. Some of these either did not exist before or were hard to exploit in traditional architecture.

Consider the Denial of Service attack. Distribution of logic gave an inbuilt defense mechanism to

network against Dos attacks. An individual server on a network could still be brought down but

whole network got prevented from being affected . However, centralization of control has turned

the tables. A powerful DoS attack on SDN controller would handicap the network [?]. Even if the

traffic is not directed on the controller, unnecessary traffic could slow down the functioning of the

network.

Another major concern is that the switches in SDN are dumb entities which in case of any

unknown packet take information from the controller about the action to be taken, yet they are

important enough that someone who has access to it acquires the ability to break havoc on the

entire network. Not much work has been done in the area of security in SDN. Researchers have

talked about authentication and secure channel but the assumption of one master controller and

slave switches bowing to it has always been relied upon. Owing to which the security in SDN can

get compromised in many situations.

Suppose one has physical access to the switch. In this case, a backdoor can be implanted to the

network using this switch which will lead to undesirable consequences. The cracker can remotely

control the entire activity of the switch which was ideally supposed to be done according to the

rules set out by network admin using the controller. Switch can be accessed in a different way also.

Consider the case of virtualised networks. Here, switches run over actual end hosts. These hosts can

belong to a traditional IP network. If these systems are targeted by the bad guys, then the SDN

23

switch which is just an application running on it is no longer safe. These may look like traditional

problems but corresponding traditional methods which have been extensively used in past to deal

with them cannot be applied directly to SDN because they assume switches to be intelligent which

is not true in case of SDN.

After getting the control over the switch, though the hacker virtually control of every aspect

of network related to that switch. The unwanted activities can take certain forms[?]. It might be

forwarding the packet to the incorrect port. Say, the controller wanted the packet with a certain

match to be forwarded to port 1 but rather than it, the hacker might drive the packet toward port

2. Or perhaps even worse case might be to duplicate the packet on all of the ports bringing in

unwanted network traffic. Also, the content of packet can be changed.

Similar attack models were considered in previous works on this area but they have not been

much effective in handling the cases where multiple compromised switches are there. The situation

gets worse where these cracked switches are in collaboration with each other. The problem in this

is unreliability on the results obtained by the test. So, the initial solutions to compromised switch

detection consider a special scenario by not considering all the cases and thus making a questionable

assumption. In this paper, we consider this exact problem of detection of compromised switches in

case there exists a collaboration among them. We offer a tactful method in which rather than adding

all of the previously unaccounted cases at once, which might turn the problem into an unsolvable

one, we consider a bigger subset of cases at once and thus relatively generalizing the scenario. The

case which would not be taken here is not left ignored forever and a probabilistic mechanism has

been described to account for the same.

We use OpenFlow based SDN. OpenFlow is a standard which allows experimental protocols to

be run on a network. It is the first standard communication interface designed between control

and forwarding layers of an SDN architecture. It allows direct access to and manipulation of the

forwarding plane of network devices. Ryu controller has been used. Ryu is a component based

software based software defined networking framework. It provides well defined API for developers

to build network management and control applications. It supports many communication protocols

including OpenFlow. The effectiveness and efficiency of the approach was tested for different network

graphs. The simulation was carried out on Mininet. We use the word good switch or a healthy switch

for a normal functioning switch and a bad switch for a compromised one. Also, we assume that bad

switches can have some intelligence which they owe to malware or any other way which helped crack

that switch. Using this intelligence, they can carry out intelligent bad activities such as making

their collaboration.

24

6.2.3 Detection of Cache Pollution in ICN using SDN

Information Centric Networking (ICN) is categorized as a content-driven architecture. In this

paradigm, each node has a unique DNS style naming convention and hosts contents rather than

having a dedicated server. ICN differs from host-centric architecture in terms of data independence

from location, storage, application and transportation thereby enabling in-network caching and repli-

cation. This brings benefits like better scalability with respect to information demand and improved

efficiency. Some of the widely used types of ICN architectures are Named Data Networking (NDN)

[19], Content Centric Networking (CCN) [20], Data Oriented Network Architecture (DONA) [21],

Network of Information (NetInf) [22] among the few.

ICN achieves universal caching with the help of following motives: uniform, i.e., applied to

all content delivered by any protocol; democratic, i.e., published by any content providers; and

pervasive, i.e., available to all network nodes [23]. Normally, the new cache decision policies store

the most recent requested content in their storage. Sometimes this data might be an unpopular

content which can degrade its performance if held for a long period of time. This can lead to

compromise in the performance of ICN.

Security is an inbuilt characteristic of ICN architecture. Still they are prone to attacks. Attacks

belong to various categories. Some of these include but are not restricted to packet sniffing, cache

pollution, breaching privacy by breaking keys and routing attacks. Classifying the attacks is neces-

sary because every attack requires a separate detection and mitigation mechanism and categorizing

the attacks provides with a way to assess the impact of the same.

Caching attack in ICN can be of the following types: (1) Bogus announcements (2) Random

or unavailable content requests and (3) Cache pollution. In (1), the attacker sends false updates

regarding the content on the network which leads to the router being overwhelmed and not able to

send the latest updated content to the requesting node. With the attack (2), attacker sends request

for unavailable content at a rate greater than the converging rate of the router leading to denial

of service. Finally, attack (3) can be described as polluting the cache with unpopular content. An

unpopular content refers to a content that is not frequently requested. This attack may require prior

knowledge of popularity of the content in the network.

Since most of the existing solutions of caching related attacks are designed for a dedicated cache

server and may not work in ICN because all nodes can enable caching we need a dedicated solution

for caching related attacks. So in this paper we are discussing caching attacks in ICN in which the

attacker replaces the content in the cache server with unpopular content. ICN with SDN brings

the added advantage of SDN as it helps in controlling the network characteristics with the help of

programs.

The motivation of this research is to use SDN control plane to obtain a deciding parameter to

distinguish between popular and unpopular content in ICN. This prevents the problem of cache

poisoning in ICN by using advantage of SDN. Obtaining these parameters in ICN was a challenging

task, thus, by using SDN these metrics can be calculated in an efficient manner. This research can

be contribution by providing following functionalities:

• To provide a new solution for cache decision policy of replacing popular content with random

content and

• To solve the problem of cache poisoning in ICN over SDN.

25

Chapter 7

Conclusion and Future Work

We propose a Concurrent Distributed Anomaly Detection mechanism. It relies on a CDA detector

which comprises of multi-domain isolated SDN networks. This detector system gathers up the logical

data i.e., without any user traffic flow, for detecting anomalies from isolated domain controllers of

SDN. We demonstrated how it can efficiently detect the anomalies in isolated environments and

later instantly detects concurrent anomalies in distributed environments. In future we planned to

focus on designing of algorithms with more complex concurrent distributed anomalies definition.

26

References

[1] K. Leung and C. Leckie. Unsupervised Anomaly Detection in Network Intrusion Detection

Using Clusters. In Proceedings of the Twenty-eighth Australasian Conference on Computer

Science - Volume 38, ACSC ’05. Australian Computer Society, Inc., Darlinghurst, Australia,

Australia, 2005 333–342.

[2] T. Lappas and K. Pelechrinis. Data mining techniques for (network) intrusion detection systems.

Department of Computer Science and Engineering UC Riverside, Riverside CA 92521.

[3] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou. Specification-

based Anomaly Detection: A New Approach for Detecting Network Intrusions. In Proceedings

of the 9th ACM Conference on Computer and Communications Security, CCS ’02. ACM, New

York, NY, USA, 2002 265–274.

[4] D. Kreutz, F. M. V. Ramos, P. Veŕıssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig.

Software-Defined Networking: A Comprehensive Survey. CoRR abs/1406.0440.

[5] S. A. Mehdi, J. Khalid, and S. A. Khayam. Revisiting traffic anomaly detection using software

defined networking. In Recent Advances in Intrusion Detection. Springer, 2011 161–180.

[6] A. Tootoonchian and Y. Ganjali. HyperFlow: A distributed control plane for OpenFlow. In

Proceedings of the 2010 internet network management conference on Research on enterprise

networking. 2010 3–3.

[7] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris. Combining Open-

Flow and sFlow for an Effective and Scalable Anomaly Detection and Mitigation Mechanism

on SDN Environments. Comput. Netw. 62, (2014) 122–136.

[8] P. Phaal, S. Panchen, and N. McKee. InMon Corporation’s sFlow: A Method for Monitoring

Traffic in Switched and Routed Networks .

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer

Communication Review 38, (2008) 69–74.

[10] Y. Zhang. An Adaptive Flow Counting Method for Anomaly Detection in SDN. In Proceed-

ings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’13. ACM, New York, NY, USA, 2013 25–30.

27

[11] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributed multi-domain sdn controllers. In

Network Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014 1–4.

[12] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards an elastic distributed

SDN controller. ACM SIGCOMM Computer Communication Review 43, (2013) 7–12.

[13] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid Prototyping for Software-

defined Networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in

Networks, Hotnets-IX. ACM, New York, NY, USA, 2010 19:1–19:6.

[14] O. vSwitch. Production Quality, Multilayer Open Virtual Switch. http://openvswitch.org/

2016.

[15] Ryu. SDN Framework. http://www.osrg.ryu.com/ 2016.

[16] R. Labs. Redis. http://redis.io/ 2015.

[17] K. Cho, K. Mitsuya, and A. Kato. TRAFFIC DATA REPOSITORY AT THEWIDEPROJECT

.

[18] M. L. G. at the University of Waikato. WEKA. http://www.cs.waikato.ac.nz/ml/weka/

2016.

[19] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley, C. Papadopoulos, L. Wang,

and B. Zhang. Named Data Networking. SIGCOMM Comput. Commun. Rev. 44, (2014) 66–73.

[20] V. Jacobson, M. Mosko, D. Smetters, and J. Garcia-Luna-Aceves. Content-centric networking.

Whitepaper, Palo Alto Research Center 2–4.

[21] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica. A

data-oriented (and beyond) network architecture. In ACM SIGCOMM Computer Communica-

tion Review, volume 37. ACM, 2007 181–192.

[22] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl. Network of Infor-

mation (NetInf)–An information-centric networking architecture. Computer Communications

36, (2013) 721–735.

[23] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox. Information-centric

Networking: Seeing the Forest for the Trees. In Proceedings of the 10th ACM Workshop on

Hot Topics in Networks, HotNets-X. ACM, New York, NY, USA, 2011 1:1–1:6.

28

