
Optimizing Service Chain ID Generation for Flow

Rule Compression

Om Prakash Nirankari

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2016

Acknowledgements

First of all, I would like to express my sincere gratitude to my guide Dr. Kotaro Kataoka for his
guidance, valuable feedback and immense knowledge. Without his constant motivation, support and
encouragement, I would not have been able to write this thesis.

I would also like to thank all my fellow lab mates for the valuable discussions and fun we had. I
am also grateful to Mr. Prakash Pawar who helped in my thesis work. Special thanks to Mr. Uttam
Dhabas, Mr. Sandeep R. B. and Mr. Naman Grover.

Finally, I would like to thank friends and family for providing me with unfailing support and
continuous encouragement.

iv

Abstract

Service Chain define the order in which a packet will go through middleboxes. Service Chaining
provides opportunities for network and service providers to implement their services and policies
with finer granularity of an individual user or an application. Software defined Networking (SDN)
provides programmable and flexible way for implementing Service Chaining. SDN switches uses
Ternary Content Addressable Memory (TCAM) for storing flow rules that decides the forwarding
actions. A significant amount of research has been done on Service Chaining implementation but
not satisfactory in terms of TCAM exhaustion, scalability and demand modification in middlebox
software.

However, the increasing number of Service Chains and middleboxes will introduce a larger number
of flow rules and more consumption of TCAM, whose capacity is limited due to high cost and
power consumption. The flow compression techniques have been proposed for reducing the TCAM
consumption but they are not applicable to flow rules related to service chaining related flow rules.
Service Chain (SC-ID) is used to uniquely identify a service chain in a network. The packet tagging
uses this SC-ID to encode the service chain context. The flow rule consumption by the SC-ID tags
in the network is proportional to the number of middleboxes present service chains. SC-IDs flow
rules can be merged at the switches connected to middleboxes to reduce the TCAM consumption.

This thesis proposes to compress the flow rules for service chaining by optimizing the generation
of SC-IDs. The naive approach for generating SC-IDs for N service chains will take N ! which is
computationally not feasible. A Greedy Algorithm for generating SC-IDs is proposed. Our proposed
solution 1) makes service chain IDs aggregatable based on Common Forwarding Actions (CFAs)
among the service chains, and 2) reduces the number of flow rules at each SDN switch to execute a
larger number of forwarding actions for service chaining.

The evaluation results showed that the proposed algorithm can reduce up to 76% of the flow
rules using the randomly generated 4000 service chains for 7 middleboxes. The time complexity of
the proposed algorithm is polynomial.

The proposed algorithm suggests the effective placement of middleboxes in the given network to
reduce the to-and-fro movement of packets. The flow rule compression also helps in performance
gain of software switches like Open-vSwitch (OVS) which does not have TCAM by reducing the
L1 and L2 caches misses. Our solution is beneficial for both hardware switches as well as software
switches. Dynamic addition of new service chains in the network is not supported by our proposed
solution. It creates a trade-off between to use the newly added service chains without flow rule
compression or re-generate the SC-IDs for all the service chains again. Because the generation of
Service Chain ID does not interfere the other flow rule compression techniques, our algorithm can
also be used as a plug-in to the other Service Chaining mechanisms to optimize their ID generation.

The proposed solution is using greedy approach that does not guarantee the optimal solution in
all cases. As a part of future work, other heuristic solutions can be proposed for SC-IDs generation.

v

Contents

Declaration . ii
Approval Sheet . iii
Acknowledgements . iv
Abstract . v

Nomenclature vi

1 Introduction 1
1.1 Software Defined Networking (SDN) . 1
1.2 Service Chaining . 1
1.3 Ternary Content Addressable Memory (TCAM) . 1

2 Related Work 2

3 Need for Flow Rules compression in Service Chaining 3

4 Compressing Flow Rules for Service Chaining 4

5 Greedy Algorithm for SC-ID Allocation 7
5.1 Finding CFAs and Forming Node Pairs in the Tree 7
5.2 Generating the Service Chain IDs for Flow Rule Compression 8

6 Evaluation 12
6.1 Proof of Concept (PoC) Implementation . 12
6.2 Network Setup for Evaluation . 13
6.3 Evaluation Results . 13

6.3.1 Effect of increasing service chains over fixed number of middleboxes 13
6.3.2 Effect of increasing the number of middleboxes over fixed number of service

chains . 13
6.3.3 Effect of increasing the number of middleboxes over different service chain sets 13
6.3.4 Time taken to generate SC-IDs . 14

7 Discussion 17

8 Conclusion and Future Work 19

References 20

vi

Chapter 1

Introduction

1.1 Software Defined Networking (SDN)

SDN separates the control plane from data plane of a network device. This separation of control
plane provides us new opportunities for programming, managing, scaling and monitoring in the way
we want. The control plane of SDN is centralized. SDN uses OpenFlow protocol for communication
between switches and controller.

1.2 Service Chaining

In Network Function Virtualization (NFV), Service Chaining is a key technique to service providers
for applying and enforcing policy to the specific traffic. In Service Chaining, a packet has to travel
through a set of middleboxes in a pre-defined order as described in its service and network policies.
An example for a service chain can be like, data from a host should go through middle boxes in the
sequence Traffic Shaper - IPS/IDS - Content Filtering - WAN accelarator- Firewall. In traditional
networks, Service Chaining implementation requires manual configuration on switches, routers and
middleboxes, which is complex, rigid and error-prone. Software Defined Networking (SDN) provides
programmable and flexible way for implementing Service Chaining. SDN uses OpenFlow protocol
for communication between switches and controller.

1.3 Ternary Content Addressable Memory (TCAM)

TCAM is used in switches/routers for increasing the speed of route lookup, classifying and forwarding
the packets. On SDN switches, flow rules describe the forwarding actions being stored in TCAM.
The size of TCAM is limited and cannot be increased beyond an extent due to its high power
consumption and cost. TCAM supports three states 0, 1 and X (don’t care/masked). Once the
TCAM is exhausted, the network performance will start to degrade with introducing packet loss.
Optimizing the usage of available TCAM is interesting and challenging problem to scale Service
Chaining. The optimization of TCAM consumption is done using the proper utilization of "don’t
care" state.

1

Chapter 2

Related Work

FlowTags [4] introduces simple extensions to middleboxes for operating additional tags, carried in
packet headers. Position [8] uses Destination MAC Address for Service Chaining implementation.
OpenSCaaS [9] uses Source MAC Address to encode service chain context. Network Service Header
(NSH) [5] pushes an additional header to implement Service Chaining. Steering [1] does smart
encoding of the forwarding rules using the pipelining feature introduced in OpenFlow v1.1. SPFRI [6]
proposed a double tagging approach using VLAN+MPLS label for Service Chaining. Roberto et. al
[7] proposed to use 1) VLAN for tunneling the packets and handling the mangling middleboxes, and
2) Flow Identifier to implement Service Chaining. These proposals so far have provided a way for
implementing Service Chaining. But our focus is how to generate the aggregatable and compressible
tags that carry service minimum context to reduce the TCAM consumption and to maintain Service
Chaining still functional.

The flow rule compression technique has been proposed using prefix aggregation (e.g. IP address)
and trie data structure [10]. This technique combines nodes of the tree to reduce flow entries. Angelos
et. al [11] proposed algorithm for dynamic aggregation of the flow rules considering QoS of the traffic.
The non-prefixed based flow rule compression technique is used for Access Control List rules [12].

2

Chapter 3

Need for Flow Rules compression in
Service Chaining

A significant amount of research has been done on Service Chaining implementation [1–7], but
not satisfactory in terms of TCAM exhaustion, scalability and demand modification in middlebox
software.
Some techniques on flow rule compression have been proposed [10–12]. In the Service Chaining
implementation, packet tagging techniques are used to identify a service chain and to indicate the
corresponding action to be taken (go to the next middlebox). Lang et. al’s technique [10] uses prefix
property i.e. IP address. One non-prefix based compression technique was proposed for ACL rule
compression, namely Bit Weaving algorithm [12]. However, these techniques can compress only the
flow rules that are already assigned to handle the service chains.

Service Chaining for a set of given middleboxes can generate a large number of permutations.
For example, per-user and per-application service chains with variety of middleboxes can lead to
generate large number of flow rules. The current available implementation techniques [1–7] add at
least one flow rule per switch for each service chain. So, in order to support variety of service chains
with limited TCAM resource, the compression of service chains is necessary.

3

Chapter 4

Compressing Flow Rules for Service
Chaining

Packet tagging is a popular approach in Service Chaining implementation to encode service chain
context in the packets. Service Chain ID (SC-ID) is used to indicate to which service chain a partic-
ular packet (frame) belongs. Single Tagging techniques puts service context along with forwarding
actions the next middlebox in the same tag. Double Tagging separates SC-ID and forwarding actions
into two different tags. The double tagging approach is scalable as it can support 2N service chains
for given N-bit service tag field. The flow rule compression will be the most effective when a packet
carries both of SC-ID and the next middlebox information in the separate maskable fields.

In this thesis, we propose to use double tagging for the Service Chaining implementation as shown
in Figure 4.1. The double tagging allows a packet to carry the service context and next middlebox
into two different tags say inner tag and outer tag. The service chain ID part will remain fixed in
the inner tag while the next middlebox will keep on changing in the outer as a packet traverses.
Therefore, at a particular switch, multiple service chains having the same next middlebox can be
aggregated at the level of flow rules, and TCAM consumption can be reduced.

Figure 4.1: Double Tagging Approach

For implementing the double tagging approach, Vlan_tci and Destination MAC Address field of
OpenFlow [13] protocol can be used as the inner and the outer tags respectively. Both fields are
maskable as per OpenFlow v1.3.

There are three segments as per Figure 4.2 i.e. Ingress Segment, Service Segment and Egress
Segment. The ingress switch (SWI) and egress switch (SWE) are the entry and exit points for
inbound and outbound traffic. At the ingress switch, depending upon five-tuple rule the inner tag is
assigned to a packet. At the egress switch, the inner tag is removed from the packet. In the service
segment, middleboxes running on hypervisors apply services and functions to the packets.

4

Figure 4.2: Service chain segments

The possible number of service chains with N different middleboxes is (Tsc)
Tsc =

∑N
i=1

NCi * (i!) =
∑N

i=1
NPi

A service chain with K middleboxes will have K different forwarding actions requiring at least
K flow rules at the switches on the service chain path. The Total number of flow rules required to
implement N ! service chains with K middleboxes will be at least of order N! * K. To implement the
service chains of N! order by keeping TCAM consumption still low the compression of flow rules is
necessary. The common sequence of middleboxes among different service chains helps in compression
of flow rules.

Considering the example in Figure 4.2, two service chains S1 (A-B-C) and S2 (A-B-D) have one
common sequence of middleboxes (A-B). Switch (SW4) executes a common forwarding action to the
packets of S1 and S2. SC-ID is maskable, the multiple SC-IDs can be merged into a single flow rule
in the flow table denoted as Figure 4.3.

Figure 4.3: Compression of SC-IDs

The compression applied on the inner tag is for the switches that are connected to middleboxes.
On rest of the switches in service segment the compression on the outer tag i.e. used for forwarding
can be applied using existing TCAM compression techniques.

The number of common forwarding actions between the given set of service chains keep on
In a network, the total number of service chains is known in advance, preprocessing those will

5

yield the common forwarding actions among various service chains. This common forwarding action
can be used as a heuristic to assign SC-IDs, to the service chains, using that Service Chaining can
achieve the maximum flow rule compression on the switches.

6

Chapter 5

Greedy Algorithm for SC-ID
Allocation

The naive approach to determine the optimal SC-IDs for a given set of service chains is to try out all
possible patterns and to figure out the best assignment. The maximum number of service chains with
n-bits field is 2n. The naive approach for 2n service chains requires to examine (2n)! combinations
to get the optimal assignment of SC-IDs. Even with a 12-bits field, trying out all 4096! assignments
is not practical to implement. Greedy Algorithm is proposed for the quick approximation to the
optimum.

Greedy Algorithm proposed for SC-ID generation is based on the heuristic of Common For-
warding Action (CFA) among various service chains. To illustrate the algorithm, the example
dataset is shown in TABLE 5.1.

Table 5.1: Service Chain Dataset Example

Service Chain #VM1 #VM2 #VM3 #VM4 #VM5 #VM6
S1 A B C D E
S2 E F G H
S3 E F G
S4 A B C D
S5 E F G H I
S6 F G H I
S7 A B C
S8 A B C D E F

The proposed algorithm uses binary tree data structure. The height of tree is determined by the
total number of service chains. The binary tree is initialized with leaves pointing to the respective
service chains in the given order as shown in Figure 5.1.

5.1 Finding CFAs and Forming Node Pairs in the Tree

Greedy algorithm performs three steps at each level of the tree except the root, starting from the
leaf level. The first step is to determine the CFAs between nodes at a level of the tree. In the second

7

Algorithm 1 Greedy Algorithm for SC-ID Generation
1: Input: Set of Service Chains.
2: Output: Service Chain ID’s for the given Service Chains.
3: Height of tree (H)=log2 (Number of Service Chains).
4: Create a binary tree with height H.
5: Attach Service Chains to the leaves of the tree in the given order.
6: for i = H to 1 do
7: Find CFAs among all the nodes at level i.
8: Form Node Pairs on basis of most CFAs between them.
9: Move CFAs from Node Pair to parent node.

10: end for
11: Assign bit 0 and 1 to left edges and right edges of tree respectively.
12: Traverse tree from to root to leaves taking values on tree edges in order to generate SC-IDs.

Figure 5.1: Tree after Initialization

step, the two nodes having the most CFAs form a node pair by swapping operation in the binary
tree. The swapping of nodes happens along with the subtrees of the participating nodes. The node
pairs formed at leaf level along with their CFAs is shown in TABLE 5.2. The third step involves
the movement of CFAs to their parent node from each node pair formed in the step two. Figure 5.2
shows the update tree after the first iteration of all the three steps at Level 3 (Leaf Level).

5.2 Generating the Service Chain IDs for Flow Rule Compres-

sion

The resultant tree after completion of the algorithm is shown in Figure 5.3. Swapping of nodes 5
and 6 at tree Level 2 happened along with their subtrees during the iteration of line number 7, 8 and
9 in Algorithm 1. The edges of the tree are marked bit values 0 or 1 depending upon its connection
to the left or the right child. SC-IDs are generated by performing the traversal of the tree from the

8

Table 5.2: Node Pairs and CFAs Formed at Level 3 (Leaf Level)

Node Pair Service Chain Pair Common Forwarding Actions (CFAs)
(8, 15) (S1, S8) A#B, B#C, C#D, D#E
(12, 13) (S5, S6) F#G, G#H, H#I
(11, 14) (S4, S7) A#B, B#C
(9, 10) (S2, S3) E#F, F#G

Figure 5.2: Tree after 1st Iteration of Loop in Greedy Algorithm (Line number 7, 8 and 9 in Algorithm 1)

root to the leaf. Bit string formed by the path from the root to a leaf determines the SC-ID for the
corresponding service chain pointed by the leaf. Finally TABLE 5.3 shows the list of SC-IDs to the
given service chain dataset.

Table 5.3: Generated Service Chain IDs for Example Dataset

Service Chain Service Chain ID
S1 000
S2 110
S3 111
S4 010
S5 100
S6 101
S7 011
S8 001

5.4 shows the generated SC-IDs before and after compression at the switch connected to the
middlebox A.

The number of flow rules saved by masking SC-IDs, Nsaved, can be calculated from the following
formula.

Nsaved =
∑H−1

i=0 [(X=(Ci-
∑0

j=i−1 Cj)) * 2H-i - X]

9

Figure 5.3: Resultant Tree at the End of Greedy Algorithm

Figure 5.4: Masking of Generated SC-IDs

In the above formula, Ci denotes the total number of CFAs at the ith level of resultant tree. At a
particular level of the tree, the subtraction of ancestor node’s CFAs is necessary to avoid duplication
of CFAs into the result. The position of a CFA in the tree at a particular level determines the
number of entries that can be masked into a single entry.

The time complexity of Greedy Algorithm is O (M2 * L * log2 M) where M is equal to the
number of service chains and L is the maximum length of a service chain. The space complexity of
Greedy algorithm is O (M * L) .

Finding CFAs among service chains step dominates in time complexity of Greedy Algorithm. To
support the very high number of service chains Map-Reduce version of algorithm is given.

10

Algorithm 2 Determines CFAs among given service chains using Map-Reduce

1: function Map1(Key, Service chains with SeqNo)
2: for each Service chain do
3: Get the Service_SeqNo
4: Create a Service_tuple(#VM1,#VM2)
5: Pass to REDUCE1(Service_tuple, Service_SeqNo)
6: end for
7: end function

8: function Reduce1(Service_tuple, Service_SeqNo)
9: Create Service_SeqNo_list=null;

10: for each Service_tuple do
11: Get the Service_SeqNo
12: Service_SeqNo_list.add(Service_Id
13: Write to temp_output1 (Service_tuple, Service_SeqNo_list)
14: end for
15: end function

16: function Map2(Service_tuple , Service_Seq_list)
17: n=Service_SeqNo_list.size()
18: for i = 1 to n− 1 do
19: x=Service_SeqNo_list.get(i)
20: for j = 1 to n do
21: y=Service_SeqNo_list.get(j)
22: Service_SeqNo_tupe=(x,y)
23: Pass to REDUCE2(Service_SeqNo_tupe , Service_tuple)
24: end for
25: end for
26: end function

27: function Reduce2(Service_SeqNo_tupe , Service_tuple)
28: sum = 0;
29: for each Service_SeqNo_tuple do
30: sum = sum+ 1
31: Write to output (Service_SeqNo_tuple, Sum)
32: end for
33: end function

11

Chapter 6

Evaluation

6.1 Proof of Concept (PoC) Implementation

In OpenFlow v1.3, the two fields Vlan_tci and Destination MAC Address are maskable and
are used as the inner and outer tags respectively for Service Chaining implementation. The size of
Vlan_tci field is 12 bits supporting 212 different service chains. The Vlan_tci keeps the SC-ID
intact when the packet passes through middleboxes.

Followings are the three cases considered in the PoC implementation for evaluating the proposed
algorithm:

1. No Compression: The SC-ID field is non maskable and the flow rule compression does not take
place. The number of flow rules (N) required by SC-IDs in this case is equal to the summation
of middleboxes in each service chain.

2. Sequential ID Generation with Compression: SC-IDs are assigned sequentially to the service
chains. The existing solutions for service chaining mentioned in Related work do not focus
on the ID generation, thereby uses sequential allocation. To calculate masked entries in the
sequential ID generation, a binary tree is formed similar to one used in Greedy algorithm.
However, in the binary tree, only CFAs between adjacent nodes are moved to the parent node
without any swapping of the nodes. The number of flow rules (SE) saved by masking is cal-
culated using the formula Nsaved mentioned in Chapter 5. The total number of flow entries
consumed for this service chaining implementation is N -SE.

% Reduction in F lowRules = SE
N ∗ 100

3. Greedy ID Generation with Compression: Greedy algorithm proposed in Chapter 5 is used to
generate SC-IDs. The number of saved flow entries (GE) is calculated using tree formed by
Greedy algorithm. The total number of flow entries required by service chains is N -GE.

% Reduction in F lowRules = GE
N ∗ 100

12

6.2 Network Setup for Evaluation

The proof of concept is verified with linear topology (15 switches) created with Mininet 2.2.0 [14],
enabling Floodlight 1.1 [15] as SDN controller, and Open vSwitch(OVS) version 2.3.1 [16] as SDN
switch on mininet VM. Middleboxes are implemented with libpcap for imposing various types of
middlebox behavior on the network traffic. With the 12-bits Vlan_tci as the inner tag, 4096 service
chains are available. The half of service chains in the dataset is generated randomly and the other
half are obtained for their reverse direction of the chains. 7 middleboxes can generate approximate
7!=5040 service chains, the least possible value for middleboxes that exceeds the capacity of the
inner tag using Vlan_tci. The results shown are averaged over five iterations of experiments.
The proposed compression of SC-IDs takes CFAs among service chains as heuristic, that does not
reflect the actual path between the middleboxes and does make the Greedy Algorithm topology
independent.

6.3 Evaluation Results

6.3.1 Effect of increasing service chains over fixed number of middleboxes

Figure 6.1 and 6.2 show the comparison results of the three implementations of the flow rule com-
pression in the number and percentage. Figure 6.1 shows that even if the flow rule compression
is attempted, the sequential ID generation does not reduce the number of flow rules significantly.
In contrast, the compression with the proposed SC-ID generation exhibits the maximum of 76%
reduction of the flow rules as shown in Figure 6.2.

7 middleboxes can generate 7!=5040 service chains, as per results choosing less number of service
chains from 5040 available combination, will have less number of CFAs and hence less compression.
For 200 service chains i.e. the % Reduction is reduced to 28% in comparison to 76% for 4000 service
chains. This shows that the actual compression ratio of flow rules depends upon the number of CFAs
upon service chains.

6.3.2 Effect of increasing the number of middleboxes over fixed number
of service chains

Given the fixed number of service chains, the effectiveness of compression is compared between the
sequential and proposed algorithm. The increasing number of middleboxes introduces the degra-
dation of compression efficiency of proposed algorithm as shown in Figure 6.3. This is because
the increase in the number of middleboxes decreases the number of CFAs. However, the compari-
son shows that the proposed approach always shows the better performance even if the number of
middleboxes gets reasonably large in a service chain.

6.3.3 Effect of increasing the number of middleboxes over different ser-
vice chain sets

Figure 6.4 shows that having a bigger ID space is reasonable to accommodate the more number of
service chains with higher efficiency of flow rule compression.

13

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 1000 2000 3000 4000

T
o
ta

l
N

u
m

b
e
r

o
f
F

lo
w

 R
u
le

s

Number of Service Chains

No Compression
Sequential

Greedy

Figure 6.1: The number of Flow Rules for 7 Middleboxes using different ID generation and compression
schemes

6.3.4 Time taken to generate SC-IDs

The step of finding CFAs dominates in time complexity of the proposed algorithm. The increase in
service chains for the fixed number of middleboxes produces more CFAs resulting in the longer time
consumption as shown in Figure 6.5.

14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000

%
 R

e
d
u
c
ti
o
n
 i
n
 F

lo
w

 R
u
le

s

Number of Service Chains

Sequential
Greedy

Figure 6.2: Ratio of Flow Rule Reduction against the increasing number of Service Chains for 7 Middleboxes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20 22 24 26 28

%
 R

e
d
u
c
ti
o
n
 i
n
 F

lo
w

 R
u
le

s

Number of Middleboxes

Sequential
Greedy

Figure 6.3: Ratio of Flow Rule Reduction against the increasing number of Middleboxes for 4096 Service
Chains

15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20 22 24 26 28

%
 R

e
d
u
c
ti
o
n
 i
n
 F

lo
w

 R
u
le

s

Number of Middleboxes

4096 Service Chains

3072 Service Chains

2048 Service Chains

1024 Service Chains

Figure 6.4: Ratio of Flow Rule Reduction for the different number of Service Chain Sets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Service Chains

7 Middleboxes

28 Middleboxes

Figure 6.5: Comparison of Time Taken for Generating Service Chain IDs

16

Chapter 7

Discussion

Placement of middleboxes The placement of middleboxes in the network impacts the to-and-fro
movement of the packets. Our proposed algorithm suggests the effective placement of middleboxes
for implementing service chains. The CFAs, which are nearer to the root of the tree, appear in the
more number of service chains. The middleboxes present in those CFAs can be placed on the same
hypervisor or switch to further reduce the to-and-fro movement of packets.

How does software switches take the advantage of flow rule aggregation? The proposed
flow rule compression works greatly when the switch is attached to a middlebox. However, in the
cloud computing environment, hypervisors of VMs may have a software switch like OVS that does
not have TCAM. The performance evaluation of OVS conducted by Emmerich et. al [17] showed
that the increasing number of flow rules introduces the degradation of forwarding throughput due
to the increase of L1 and L2 cache misses on a CPU core. Although the testing result was about
the case of forwarding traffic from Physical NIC to Physical NIC through OVS, we assume this
result will also apply to the scenarios involving Virtual NICs. In this case, the proposed flow rule
compression still benefits the performance on the packet forwarding on software switches as well as
the resource management on hypervisors.

Applicability of the compressed SC-ID generation If a hardware switch is not attached to
middleboxes, do we have a chance to get benefit of the proposed algorithm? We have observed the
existing and emerging demands on the variety of service functions and their possible shapes, including
QoS, Network Slicing, Docker-based middleboxes and etc. especially in 5G deployment scenarios.
Such demands introduce great chances where an intermediate hardware switches in a segment turns
to be attached to various actual or pseudo middleboxes at anytime. By well planning the SC-IDs
and its ID space, the current SDN deployment, using both software and hardware switches, can
mitigate the impact of dynamic change of service function trends in a scalable manner in terms of
flow rule and TCAM resource management.

Finding the effective length and number of service chains for a given network TCAM
consumption is affected by parameters like the length of service chains, the number of service chains
and the CFAs pattern among those service chains. The proposed algorithm helps in finding effective
size of service chains i.e. whether a very long service chain would remain as it is or be broken into

17

shorter ones to achieve the higher flow rule compression ratio and the less number of flow rules as
total.

The current implementation is using 12-bits vlan_tci field. The proposed algorithm can be
extended to support longer SC-IDs. However, is having much more number of service chains realistic?
In the case of longer tags, the time consuming step of finding CFAs can be done through parallel
algorithms or Map-Reduce framework [18] instead of simple loops. We have also implemented the
algorithm for finding CFAs using Hadoop. Figure 7.1 shows the time taken for finding CFAs at the
leaf level for 28 middleboxes using Hadoop v2.6.0 over single node cluster. Even if finding CFAs can
be done within the polynomial time, the benefit of having a very large number of service chains is
highly doubtful expecting the demand for very short response time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10000 20000 30000 40000 50000

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of Service Chains

Figure 7.1: Time Taken to Find CFAs at Leaf Level for 28 middleboxes using Hadoop Framework

Dynamic addition of new service chains The proposed Greedy algorithm doesn’t consider the
dynamic change in the number of service chains or middleboxes. To set up the new service chains
dynamically, the unused ID space can be used meanwhile. Once the benefit of compressing the new
service chains becomes more than the cost of rerunning the algorithm for all the service chains, then
we can remove the existing service chains and assign the new SC-IDs all over again. This introduces
the trade-off between to use the existing bit field space without compression or to regenerate new
IDs for all the service chains.

Well planning the use of ID space, i.e. managing the number of bits in the inner tag for immediate
use and for the future, will also mitigate this trade-off. The IDs for only new service chains can be
generated without involving the existing ones. Even if the effectiveness of compression may not be
optimal, the cost and impact of reinstalling the flow rules at the switch can be much less.

Avoidance of bandwidth saturation Our approach considers only the shortest path for for-
warding to a middlebox. Therefore, the aggregation of traffic multiple flows over a single path may
lead to bandwidth saturation. In the presence of multiple paths, the bandwidth saturation can be
avoided by considering the same middlebox as multiple pseudo instances in the algorithm via the
available paths. As a trade-off, aggressive use in the combination scenario of multi-path and sparse
middlebox deployment may result in less flow rule compression.

18

Chapter 8

Conclusion and Future Work

This thesis proposed an approach for optimizing the generation of service chain IDs for compressing
flow rules for scalable Service Chaining. The key ideas are 1) finding Common Forwarding Actions
(CFAs) among multiple service chains and 2) generating the optimum and maskable service chain
IDs in order to effectively compress the flow rules for packet forwarding on service chaining. The
evaluation results showed that the proposed approach can reduce the flow rules up to 76%, and
we also studied how the efficiency of compression may become even higher or low according to
the available size of ID space and other properties of service chains. As an approach of flow rule
compression, the optimization of service chain ID has not attracted much attention compared with
the regular packet forwarding in SDN. Our approach will be promising to achieve a significant
reduction of the number of flow rules on the existing and potential packet tagging approaches on
Service Chaining.

As a part of future work, we can explore other heuristics for the service chain ID generation.
Several points raised in Discussion chapter will be interesting to explore with implementing Service
Chaining in the live networks. Making our algorithm as an open source API will also be contributing
so that the other Service Chaining mechanisms can offload the task of ID generation to our approach.

19

References

[1] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Patneyt,
M. Shirazipour, R. Subrahmaniam, C. Truchan et al., “Steering: A software-defined network-
ing for inline service chaining,” in Network Protocols (ICNP), 2013 21st IEEE International
Conference on. IEEE, 2013, pp. 1–10.

[2] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying middlebox policy
enforcement using SDN,” in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4.
ACM, 2013, pp. 27–38.

[3] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein, “Enforsdn: Network
policies enforcement with sdn,” in Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on. IEEE, 2015, pp. 80–88.

[4] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: Enforcing network-wide
policies in the presence of dynamic middlebox actions,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 19–24.

[5] P. Quinn, R. Fernando, J. Guichard, S. Kumar, P. Agarwal, R. Manur, A. Chauhan, M. Smith,
N. Yadav, B. McConnell, and C. Wright., “Network service header,” Internet-Draft draft-quinn-
nsh-03, IETF Secre-tariat, July 2014.

[6] P. Pawar and K. Kataoka, “Segmented proactive flow rule injection for service chaining using
sdn,” in 2nd IEEE Conference on Network Softwarization 2016, pp. 38 – 42.

[7] A. S. Roberto Bifulco, Anton Matsiuk, “Ready-to-deploy service function chaining for mobile
networks,” in 2nd IEEE Conference on Network Softwarization 2016, pp. 175 – 183.

[8] J. J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer, “Position: Software-
defined network service chaining,” in European Workshop on Software Defined Network
(EWSDN). IEEE, 2014, pp. 139 – 140.

[9] W. Ding, W. Qi, J. Wang, and B. Chen, “Openscaas: an open service chain as a service platform
toward the integration of sdn and nfv,” IEEE Network, vol. 29, pp. 30–35, May 2015.

[10] B. Leng, L. Huang, X. Wang, H. Xu, and Y. Zhang, “A mechanism for reducing flow tables in
software defined network,” in 2015 IEEE International Conference on Communications (ICC),
June 2015, pp. 5302–5307.

20

[11] J. S. Angelos Mimidis, Cosmin Caba, “Dynamic aggregation of traffic flows in sdn,” in 2nd IEEE
Conference on Network Softwarization 2016, pp. 136 – 140.

[12] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix approach to compressing
packet classifiers in tcams,” IEEE/ACM Transactions on Networking, vol. 20, pp. 488–500,
April 2012.

[13] “Openflow protocol,” http://www.openflow.org.

[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for software-
defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, ser. Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

[15] “Floodlight openflow controller,” http://www.projectfloodlight.org/floodlight/.

[16] “Open virtual switch,” http://openvswitch.org/.

[17] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance characteristics of virtual
switching,” in Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on, Oct
2014, pp. 120–125.

[18] “T. white. hadoop: The definitive guide. yahoo press, 2010 pdf.”

21

