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Abstract

Understanding a watersheds vulnerability to environmental (climatic and land use)

change is crucial for managing such complex systems and is essential for water re-

sources management. However, obtaining projections of streamflow under changing

conditions across a variety of watersheds is challenging as every step of hydrologi-

cal modeling imparts uncertainty. These ubiquitous uncertainties in projections of

streamflow make it very challenging to provide useful information to water policy

makers and decision makers. In this study, we attempt to identify dominant controls

on watersheds vulnerability to climate and land use change independent of future

projections of climate change. We propose a definition of vulnerability that can be

used by a diverse range of water system managers and is useful in the presence of

large uncertainties in drivers of environmental change like extreme flow conditions,

as well as others that are relevant from the point of view of instream organisms.

We achieve these goals by using an exploratory modelling framework that pro-

vides approximate estimation of watershed vulnerability to change and allows user

to define their own definition of vulnerability. The framework uses a parsimonious

lumped model that simulates runoff at daily time steps to obtain the response of a

watershed under a range of climatic and land use scenarios. The simulated runoff is

used to compute four indicators - mean annual rainfall, indicators characterizing flood

and droughts, and an indicator representing health of instream organisms. These in-

dicators are classified in to different classes. Each class reflects a level of vulnerability

based on stakeholders defined thresholds of acceptable change. We then use classi-

fication and regression trees (CART) to identify the ranges of climate and land use

change that lead to different classes of the indicator.

In this way, we identify critical thresholds of climate and land use change that

result in a vulnerable range of a streamflow indicator across 77 watersheds of the

conterminous United States. Then, we use these thresholds to create a vulnerability

map of US that represents spatial distribution of vulnerability across United States.

This vulnerability map provides an understanding of physio-climatic settings of wa-

tersheds that are more or less vulnerable to precipitation and land use change. Such

vulnerability maps can help water resource administration in the planning for water-

sheds that will become vulnerable even under slight changes in precipitation or land

use and thus require more precise monitoring. We also employ Circos diagrams to

visualize dominant controls on watersheds vulnerability, i.e., whether climate change,

land use change, or hydrologic model parameters are more important in determining

the vulnerability of a watershed. We find that precipitation is a key dominant control
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for all the indicators considered in this analysis. We also find the flood indicator is

complicated in a way that is depends of many controls, snow related parameters in

the hydrologic model being one of them. In this way, we identify several interesting

links between a watersheds vulnerability to environmental change and its climate,

land use, and representative hydrologic model components.

vi



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Towards vulnerability based approaches for managing the impacts of

environmental change on water resources . . . . . . . . . . . . . . . . 1

1.2 Generating threshold projection as vulnerability maps for the United

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Methodology 4

2.1 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Hydrologic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Indicators of vulnerability . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Threshold identification via classification and regression trees (CART) 9

3 Study area and data 11

4 Results 13

4.1 The exploratory modelling framework . . . . . . . . . . . . . . . . . . 13

4.1.1 Sampling of climate and land use scenarios . . . . . . . . . . . 13

4.1.2 Identification of parameter ranges and behavioural parameter

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.3 Identification of critical thresholds . . . . . . . . . . . . . . . . 16

4.1.4 Threshold mapping . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Discussion & Conclusions 24

References 29

vii



List of Figures

2.1 Modelling framework implemented to estimate vulnerability and its de-

pendence on watershed’s physio-climatic properties. (a) First, a large

range of climate and land use change combinations are generated us-

ing an exploratory modelling framework. Next, each combination is

used to simulate runoff using a hydrological model that accounts for

parametric uncertainty. Indicators are calculated based on the sim-

ulated flow and classified into different vulnerability classes. At the

end, we use CART to estimate critical climate and land use change

combinations. (b) We apply exploratory modelling to a large num-

ber of watersheds and quantify critical climate and land use change

thresholds for each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A parsimonious hydrologic model structure used in the study which

simulates runoff on daily time steps. Land use is incorporated as per-

centage of deep rooted vegetation in the watershed. . . . . . . . . . . 7

3.1 Location of the watersheds used in the study. Each circle on the map

represents the centroid of the watershed. Dark colored watersheds are

removed from the analysis due to low (<0.1) runoff ratios. . . . . . . 12

4.1 Incorporating parametric uncertainty in the exploratory modelling frame-

work. First, a wide range of possible values is fixed for each parameter

based on literature review. Next, apriori parameter ranges are esti-

mated using watershed’s physical characteristics for selected parame-

ters. Finally, the behavioural range of parameters is arrived at using

NSE and percentage Bias criteria. . . . . . . . . . . . . . . . . . . . . 14

viii



4.2 Computation of critical threshold of change for precipitation and land

use using CART. The thresholds are calculated based on weighted av-

eraged of the threshold values on leaf (end) nodes that lead to vulner-

ability classes. Shown is a typical output of CART for a watershed–

indicator (mean annual runoff) combination. Red color denotes the

class of highest vulnerability in the indicator (C3) and red dashed line

represents the paths leading to C3 for this watershed. . . . . . . . . . 17

4.3 Critical thresholds for precipitation reduction that leads to the high-

est class of vulnerability (C3) for water availability, represented by

long term mean annual runoff, for each watershed. The size of the

circles corresponds to the precipitation reduction that causes a transi-

tion to the vulnerable regime, colors denote aridity index. Thresholds

are expressed as the ratio of critical precipitation values to historical

precipitation values, both are long term means. Higher size indicates

higher vulnerability as ratios closer to one or very small reductions in

long term precipitation can cause a transition to C3, and vice-versa. . 19

4.4 Same as Figure 6, but for land use change. Note that not all watersheds

showed land use as a significant control for water availability. Thus,

the number of circles are fewer as compared to Figure 4.3 . . . . . . . 20

4.5 Circos plots to visualize dominant controls for each indicator–watershed

combination. Controls are classified as – long term precipitation, land

use parameter, long term temperature, soil parameters, and routing

parameters. Each circos plot represents one indicator. The plot is cre-

ated by using the information of the hierarchy order of controls from

CART output of each watershed. Outer edges of the plot show each

control category and all watersheds represented by their serial num-

bers. The purple, blue, green, and red lines that connect watershed

controls and serial number, indicate a decreasing level of importance.

For example, for mean annual runoff, most important control is pre-

cipitation as it has the maximum number of purple lines connected to

the watersheds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



List of Tables

2.1 Indicator definition and classification . . . . . . . . . . . . . . . . . . 8

4.1 Feasible range for the hydrologic model parameters . . . . . . . . . . 15

A Information of watersheds used in the study. . . . . . . . . . . . . . . 27

B Ranges of parameters obtained from apriori parameter estimation for

all watersheds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

x



Chapter 1

Introduction

1.1 Towards vulnerability based approaches for man-

aging the impacts of environmental change on

water resources

Quantifying the hydrologic response of a watershed to changing climate and land use

is essential for managing the water dependent ecological and economic systems in a

region. There are now a plethora of studies that attempt to obtain the projections of

water resources under changing climate at various spatial and temporal scales [1, 2, 3,

4, 5, 6, 7, 8]. Many efforts in this direction have culminated in the understanding that

future water resources projections are ultimately dependent upon the projections of

the drivers of change (land use and climate change), the type of hydrologic model used,

parameter identification strategies adopted, and several such subjective decisions that

are made while using the hydro-climatic chain [9, 10, 11, 12, 13, 14, 15, 16].

Typically, the resultant uncertainties in streaflow projections tend to be larger

than the required precision of these projections for planning purposes [17, 18]. The

presence of such large uncertainties warrants a shift in focus of problems formu-

lated for climate change adaptation from obtaining projections to understanding

what makes a watershed vulnerable to environmental change. In order words, un-

derstanding the expected sensitivity of a watershed to applied change is likely to be

more beneficial than obtaining wide estimates of possible future projections of change.

Past efforts at understanding watershed’s sensitivity to environmental change have

focused on using historically available streamflow and climate data to quantify the

sensitivity [19] or have applied experimental modelling approaches [20, 21]. In ei-

ther approaches, the sensitivity (or climate elasticity) is defined as the change in
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watershed’s response variable (streamflow) per unit change in climate.

For a complete understanding of watershed’s potential response to change, the link

between its sensitivity and physio-climatic setting needs to be explored. Recent efforts

include the work by [22], who attempt to relate watershed’s storage (approximated

through its streamflow recession dynamics) with its sensitivity. There are two ways in

which such relationships can be further generalized. First, sensitivity can be related

to watershed’s physio-climatic characteristics as opposed to a streamflow-based index,

thus enabling estimations of sensitivity for ungauged catchments. Second, a decision

maker is most likely interested in watershed’s vulnerability to transition into a pre-

defined streamflow regime, and not just its sensitivity to a unit change in climate or

land use. This requires defining vulnerability in a way that allows the decision maker

to guide the modelling process based on their perception of ranges of a hydrologic

indicator that are acceptable [23].

Here, we propose a modelling driven approach to quantify vulnerability that allows

decision makers to define a vulnerability metric based on their preferences. We build

upon recently developed bottomup or exploratory modelling approaches to achieve

this goal [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Exploratory modelling assesses the

response of a watershed to a large range of artificially applied changes in climate and

land use. Then, the relative change in hydrologic indicators of interest as compared

to their historical values are estimated across all climate and land use change scenar-

ios. The simulated change in these indicators can then be classified as vulnerable or

otherwise. A multi-tier classification is also possible [18]. Finally, by using appro-

priate search algorithms, the thresholds of change in climate and land use that lead

to vulnerability can be estimated. Thus, the maximum tolerable climate or land use

change beyond which the value of a hydrologic indicator is classified as vulnerable,

can be used as a proxy for watershed’s vulnerability to change.

1.2 Generating threshold projection as vulnerabil-

ity maps for the United States

In this study, we aim to perform an exploratory modelling analysis across a large num-

ber of watersheds across the conterminous United States to understand the vulnera-

bility of watersheds to change. We select watersheds with a significant hydro-climatic

gradient in order to perform the comparative analysis. We simulate the dynamic

response of a watershed across a large number of climate and land use change com-
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binations. Using these simulations, we quantify various hydrologic indicators that

determine water availability in the region, occurrence of flood and droughts, and also

the survivability of instream organisms. We then determine the critical thresholds of

climate and land use change for each indicator. These critical thresholds are a proxy

for vulnerability of watersheds to change. The spatial variability of these vulnerabili-

ties is then analyzed to identify the spatial distribution of vulnerable watersheds. We

also analyze the multidimensional dataset obtained from the exploratory modelling

exercise across 77 using Circos plots for interpreting complex controls on watershed

vulnerability to change.
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Chapter 2

Methodology

2.1 Modelling framework

We adopt the exploratory modelling framework proposed by [18] with modifications

in sampling strategies of the climate and land use space and parameter uncertainty

quantification (Figure 2.1a).

We begin by defining feasible ranges of climate and land use change, which is

shown by the cube in the left side of Figure 2.1a. The climate scenarios are a com-

bination of precipitation and temperature change scenarios while land use change is

represented as a parameter in the hydrologic model used in the analysis. To gener-

ate the climate scenarios, we use the delta change method in which mean of climate

variables (precipitation and temperature) are changed keeping higher order moments

fixed. Scenarios of land use change are implemented by changing a parameter repre-

senting the fraction of deep rooted vegetation cover in the hydrologic model between

0 and 1. These climates and land use change scenarios are then propagated through a

hydrologic model that incorporates parametric uncertainties. We discuss the method

for incorporating the uncertainties associated with parameter sets in Section 4.1.1.

Thus, the total number of streamflow simulations explored for each watershed can be

estimated as:

N = P × T × L × Θ

where, P is the number of precipitation change scenarios, T is the number of

temperature change scenarios, L is the number of land use change scenarios, and Θ

is the number of parameter sets considered.

Next, we estimate a hydrologic indicator of interest for each streamflow simu-

lation. Once the indicators are estimated, their values are classified into different

categories based on pre-specified thresholds. Here, we employ indicators that rep-
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Figure 2.1: Modelling framework implemented to estimate vulnerability and its de-
pendence on watershed’s physio-climatic properties. (a) First, a large range of cli-
mate and land use change combinations are generated using an exploratory modelling
framework. Next, each combination is used to simulate runoff using a hydrological
model that accounts for parametric uncertainty. Indicators are calculated based on
the simulated flow and classified into different vulnerability classes. At the end, we
use CART to estimate critical climate and land use change combinations. (b) We
apply exploratory modelling to a large number of watersheds and quantify critical
climate and land use change thresholds for each.
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resent water availability, hydrologic extremes, and ecologically relevant indices. We

chose these categories based on literature review, wherever information regarding

the critical ranges of the indicators was available. In absence of literature specified

critical thresholds, we estimated the percentage change in estimated indicator w.r.t

its historical values that are obtained by using observed stream flow data. These

changes are then categorized based on an assumed classification scheme. Note that

in a real application, these classes will be provided by the decision maker. Following

this, classification and regression trees (CART) identify the regions in the input space

that lead to vulnerable classes. This provides a way to estimate the critical values of

climate and land use changes that lead to vulnerability. For example, in Figure 2.1,

an indicator is classifying into four classes (each class represented with a color) and

using CART, the climate and land use combinations that lead to vulnerability can

be determined.

2.2 Hydrologic model

We use a spatially lumped form of a parsimonious rainfall runoff model that simulates

streamflow at daily time steps (Figure.2.2).

The model has a basic representation of land use in the form of percent of deep

rooted vegetation that can be altered to simulate land use change. The model struc-

ture is adopted from parsimonious structures suggested by [34], and used further by

[35]. The model comprises of a snow module, a soil moisture accounting module, and

a routing module. The snow module is based on the degree-day method that uses

three parameters to estimate snow storage and melt. The snow module takes in daily

precipitation and provides fluxes of daily melt and rainfall, which are then passed

on to the soil moisture accounting (SMA) module. The SMA module comprises of

multiple buckets in parallel configuration, and employs the saturation excess mecha-

nism of fill and spill to generate effective rainfall [36, 35]. Evapotranspiration is also

estimated in the SMA based on the parameters that determine the leaf area index and

percentage of deep rooted vegetation cover, with impact of phenology adopted from

[37]. The land use change parameter divides the watershed area into bare soil and

deep rooted forest cover, and evapotranspiration over each is estimated separately

[34]. For more details, readers are referred to [18].
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2.3 Indicators of vulnerability

We use three hydrologic indicators that represents average, low flow, and high flow

conditions in the watershed [Table 2.1].

Table 2.1: Indicator definition and classification

No. Indicator Description Class definition
1 Mean annual runoff Mean annual flow (normal-

ized by catchment area) ,
MA41 [38]: This indica-
tor represents general water
availability.

Reduction in streamflow
C1: 0% to -25%
C2: -25% to -50%
C3: <-50%
C4: >0%

2 Flood Mean number of high flow
events per year (an upper
threshold of 3 times median
flow over all years), FH6 [38]
: It represents frequency of
high flow

Flood flow
C1: 0% to 25%
C2: 25% to 50%
C3: >50%
C4: <0%

3 FPIFR Proportion of index flow
(Median August discharge
divided by mean annual dis-
charge) removed. [38]

Index flow removed
C1: <0.2
C2: 0.2 to 0.4
C3: >0.4

4 Drought Streamflow Drought Index
(SDI) [39].

Based on ranges of SDI
C0: SDI ≥0.0
C1: -1.0 ≤ SDI <0.0
C1: -1.5 ≤ SDI <1.0
C1: -2.0 ≤ SDI <1.5
C4: <-2.0

These are mean annual flow, frequency of flooding, and duration of low flow,

respectively. Definition frequency of flooding is adopted from [38]. Drought indicators

is defined based on stream flow drought index (SDI) [39]. Based on SDI, hydrologic

drought classified in 5 categories 0 to 4. This index needs only streamflow for its

estimation as it is based on the cumulative volume of stream flow for overlapping

period of three, six, nine, and twelve months within a hydrologic year [39]. In addition,

a hydrologic indicator that relates fish population to streamflow (FPIFR) is also used.

The indicator is proportion of index flow removed, where index flow is specified as

median August discharge divided by the mean annual discharge [40, 41].

A watershed’s vulnerability to environmental change is defined on the basis of

relative change in indicator magnitude in a change scenario as compared to the his-
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torically observed indicator value. For example, based on the assumption that mean

annual flow is a proxy for water availability in the watershed, it is assumed to be-

come vulnerable if its values fall below historically observed values. Once the values

decrease beyond a threshold, the vulnerability class is changed. In this way, four

vulnerability classes are defined for mean annual runoff. Reductions in mean annual

runoff as compared to historical value is classified as C1, C2, or C3, with each class

spanning a range of successive 25% reductions. Increases in mean annual runoff is

classified as C4. Similarly, we classify frequency of flooding into four classes. Suc-

cessive relative increases are assigned to classes C1, C2, and C3 while decreases are

assigned to C4 (Table 2.1). For FPIFR and the drought indicator, we use pre-defined

class definitions from past literature. Class definitions of the drought indicator were

acquired from [39]. Drought indicator is classified into five classes C0–C4 based on

the values of streamflow drought index(SDI). C0 represents no drought and C4 indi-

cates extreme drought. Class definition for FPIFR are adopted from [41], who classify

FPIFR into three classes – C1, C2, and C3. C1 is proportion of index flow removed

which can cause reduction in 10% initial fish population.

2.4 Threshold identification via classification and

regression trees (CART)

Each indicator class is a result of possible combinations of climate change, land use

change, and parameter sets. Classification and regression trees (CART) allow us

to identify the space of climate, land use and hydrologic model parameters that

lead to vulnerable classes of indicators. CART is a binary recursive partitioning

algorithm that divides multiple variable input space into subspaces and each subspace

is related to an output indicator class [42]. To implement CART, we use the statistical

classification and regression tree package in R, ”rpart” [43]. ’rpart’ also performs a

tenfold cross validation of the CART trees to ensure that the final structure of the

trees is not over-fitted to the data. The output of CART provides a series of logical

yes/no type decisions such that the input space that results in a certain class of

indicators is identified. We use CART to relate categories for all four indicators to the

input space of climate, land use, and parameter sets. This enables us to identify the

ranges of input variables that lead to a high vulnerability of the indicator of interest.

Thus, critical thresholds are estimated as the values of climate (precipitation and

temperature) or land use change that lead to a vulnerable class for a given hydrologic

9



indicator.
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Chapter 3

Study area and data

We implement the CART analysis to identify critical thresholds for climate and land

use change across 77 watersheds in the conterminous United States (Figure 3.1).

The hydro meteorological data sets used in this study were developed as part of the

Model Parameter Estimation Experiment (MOPEX) [44]. These watersheds represent

the largest set of watersheds from the MOPEX database with an overlapping period

of 10 years for the streamflow data from 1959-1968 [45]. All watersheds are reference

watersheds, i.e., they are classified as minimally impacted in the Falcone database [46].

Three primary criteria are used to identify reference watersheds: a quantitative index

of anthropogenic modification within the watershed based on GIS derived variables,

visual inspection of every stream gage and drainage basin from recent high resolution

imagery and topographic maps, and information about man-made influences from

USGS Annual Water Data Reports. We found seven watersheds in this database

with historical runoff ratio less the 0.1, and removed them from further analysis as

the hydrologic model employed in this analysis is not likely to represent the hydrologic

processes in these semi-arid watersheds adequately. A summary of watershed related

information is provided in appendix Table-A. Watershed characteristics for a priori

parameter identification are obtained from the Falcone database [46].
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Figure 3.1: Location of the watersheds used in the study. Each circle on the map
represents the centroid of the watershed. Dark colored watersheds are removed from
the analysis due to low (<0.1) runoff ratios.
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Chapter 4

Results

We begin the result section by presenting the implementation details of the ex-

ploratory modelling framework (Section 4.1) such as the sampling of climate and

land use scenarios (Section 4.1.1), parameter uncertainty estimation method (Section

4.1.2), and method for estimation of critical thresholds (Section 4.1.3). This is fol-

lowed by the first main result - the spatial mapping of vulnerability of watersheds to

climate and land use change for mean annual flow for the conterminous US (Section

4.1.4).

4.1 The exploratory modelling framework

4.1.1 Sampling of climate and land use scenarios

We generate a large number of climate combinations using delta change method

which is describe in section 2.1. Precipitation scenarios are generated by varying the

precipitation time series within -40% to +60% of its historical value, and temperature

change scenarios are generated by adding 0 ◦C to 12 ◦C of temperature increases to the

historical time series. The precipitation and temperature change values are selected

such that they are wide enough to incorporate the maximum change over a long time

period as reported in the fifth assessment report of the International Panel for Climate

Change [47]. We vary the parameter representing land use between 0 to 1 (completely

bare soils to full vegetation cover). Precipitation, temperature, and land use changes

are applied in increments of 10%, 1 ◦C, and 0.1, respectively. This results in 1859

combinations of potential climate and land use changes (13× 13× 11). Each scenario

is further combined with uncertain hydrologic model parameters as described next.
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Figure 4.1: Incorporating parametric uncertainty in the exploratory modelling frame-
work. First, a wide range of possible values is fixed for each parameter based on
literature review. Next, a priori parameter ranges are estimated using watershed’s
physical characteristics for selected parameters. Finally, the behavioural range of
parameters is arrived at using NSE and percentage Bias criteria.

4.1.2 Identification of parameter ranges and behavioural pa-

rameter sets

Parametric uncertainty is incorporated in analysis using by using a three step process

for uncertainty identification (Figure 4.1).

We begin with a literature survey to identify the feasible range of each parameter.

The model has a total 13 parameters including one representing land use. Then,

we compute a priori parameter ranges for six of these parameters (Sb, Fc, LAImin,

LAImax, ASS, ABF) while others are fixed at their full range (Table 4.1) [34, 48, 35,

49, 18]. A priori parameter ranges are estimated by two different ways: by using

observed physical characteristics of watersheds obtained from Falcone database (for

Sb, Fc, LAImin, LAImax), and, by recession curve analysis using historical streamflow

data for recession parameters (ASS, ABF) (See [18] for more details). The a priori

range for land use is fixed at the historically observed land use values. The a priori
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ranges for parameters of each watershed are listed in appendix Table-B

Table 4.1: Feasible range for the hydrologic model parameters

Parameters Description Feasible ranges Units
lower upper

Soil Sb maximum depth of soil
store.

0 2000 mm

B shape factor of distribution
bucket.

0 7 [-]

Fc threshold storage parameter 0 1 [-]
Kd deep recharge coefficient

from the upper saturated
zone to the deep store

0 0.5 [-]

Vegetation % Veg fraction of catchment area
covered by deep rooted veg-
etation

0 1 [-]

LAImax maximum Leaf Area Index 0 6 mm
LAImin minimum Leaf Area Index 0 6 mm
Cei maximum canopy intercep-

tion
0 0.49 mm

Routing ASS recession coefficient for sat-
urated soil

0.05 0.5 day−1

ABF recession coefficient for
groundwater

0.001 0.05 day−1

Snow Ddf degree day factor 0 20 mm ◦C−1 day−1

Tth Threshold factor for snow
formation

-5 5 ◦C

Tb base temperature for snow
melt

-5 5 ◦C

Next, we generate 50000 parameter sets using the Latin hypercube sampling

method by assuming uniform distribution of parameters within a priori ranges. We

further constrain these parameter sets by testing their ability to reproduce magnitude

and variability of historically observed streamflow, quantified through Nash Sutcliffe

efficiency(NSE) and volumetric bias. Parameter sets producing NSE greater than

0 and a percentage volumetric bias within 25% are accepted as behavioural. Af-

ter identifying the behavioural parameter sets, we select top 50 sets based on NSE

performance (or the number producing a positive NSE if less than 50 sets produce

positive NSE). In this manner, we end up with a maximum of 92,950 (1859 x 50)
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combinations of climate, land use, and parameter sets for each watershed. Note that

for watershed USGS gauge ID:011355500, we are unable to identify any parameter set

that satisfies the aforementioned conditions. Thus, we exclude this watershed from

further analysis, reducing the total number of watersheds we analyses to 69.

4.1.3 Identification of critical thresholds

Once we identify the ranges for climate and land use change along with uncertainty

estimates for hydrologic model parameters, we run the hydrologic model to simulate

the streamflow and estimate the hydrologic indicators of interest. This is followed

up by categorization of these indicators based on predefined class definitions. Then,

CART is used to partition the input space of climate, land use, and parameters to

identify regions that lead to vulnerable values of hydrologic indicator. The CART

output is then used to estimate the critical values of the input variables.

A typical output from CART analysis for War Eagle Creek watershed near Hindsville,

AR, USGS gauge ID 07049000, is shown in Figure 4.2.

The figure outlines the process of estimating the critical values of precipitation

change that lead to vulnerable class C3 for mean annual runoff for this watershed.

We term this value the critical precipitation change threshold for mean annual runoff

to transition to C3. We begin by identifying all leaf (end) nodes that result in a

vulnerable class (C3). Then, the values of precipitation change that lead to the

vulnerable class are noted along with the total number of simulations that belong to

each end node. The critical threshold is then calculated as the weighted average of

precipitation change values resulting in the end nodes with vulnerable class, using

the number of simulations of each end node as weights. For the example watershed in

Figure 4.2, the critical precipitation change threshold estimate turns out to be 0.757.

Note that this value is expressed as a multiplier on the historical precipitation and

represents a 24.3% reduction in precipitation. We thus conclude that if precipitation

falls below this threshold, the mean annual runoff is likely to transition to a vulnerable

regime, which in this case represents a reduction greater than 50% of the historical

value.

When expressed as a ratio, values of critical precipitation change threshold close

to one indicate a more vulnerable watershed for mean annual runoff. For example,

if two watersheds display a critical precipitation change threshold of 0.6, and 0.9,

respectively, the second watershed is more vulnerable to climate change for mean

annual runoff. This is because a smaller reduction in precipitation would be required
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C1       C2      C3     C4

Class: Change in streamflow
C1:      0% to -25% 
C2:      -25% to -50
C3:      < -50%
C4:      > 0%

M : %Deep-rooted 
vegetation

Precipitation

Historic Precip
ΔP =

a. Precipitation threshold
Avg. threshold for node-3 :
(0.75×2631+0.85×28363) / (2631+28363) = 0.84

Pthreshold  = (0.75×26005+0.84×2275) / (26005+2275) 

              
=  0.757

b. Landuse threshold
Mthreshold  =  0.550
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ΔP>=0.75
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ΔP>=0.95
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ue
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Calculation of critical thresholds

Where, 

    
is the number of samples of class 3 at leaf node 𝑖 

    is the precipitation threshold for leaf node 𝑖

𝑁  is the total number of end leaf nodes where class-   

    3 has highest probability.

Weighted averaged precipitation threshold for tree:

Figure 4.2: Computation of critical threshold of change for precipitation and land
use using CART. The thresholds are calculated based on weighted averaged of the
threshold values on leaf (end) nodes that lead to vulnerability classes. Shown is a
typical output of CART for a watershed–indicator (mean annual runoff) combination.
Red color denotes the class of highest vulnerability in the indicator (C3) and red
dashed line represents the paths leading to C3 for this watershed.
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to cause this watershed to transition to a vulnerable regime. We also found that

temperature appeared in the CART output less frequently than precipitation and

thus focus on precipitation change to represent climate change in the watersheds.

The critical land use change threshold is estimated as 0.55 from Figure 4.2 on

similar lines. This number is the fraction of deep-rooted vegetation cover in the

watershed above which mean annual runoff transitions to a vulnerable regime. Recall

that the land use parameter is varied from 0 to 1 (bare soils to full coverage of deep-

rooted vegetation). Thus a land use threshold of 0.55 implies that if more than 55% of

the watershed is covered by deep rooted vegetation, the increased evapotranspiration

is likely to reduce the mean annual runoff by more than 50% thereby cause it to

transition to the vulnerable class. It is important to stress here that this land use

change threshold is applicable only for the range of precipitation changes (15% to 25%

reductions) that lead to the node containing land use change as the split parameter.

4.1.4 Threshold mapping

We begin by discussing the spatial variability of critical precipitation change and land

use thresholds for mean annual runoff that is a proxy for the overall water availability

in the watersheds (Figure 4.3 & Figure 4.4). Figure 4.3 shows the critical threshold

of precipitation change, where each circle represents a watershed and the magnitude

of critical threshold is represented by size of circle.

Increasing size of circles indicates increasing vulnerability, as value closer to 1 are

more vulnerable. We cluster critical precipitation change thresholds into 4 groups

with ranges 0.55–0.70, 0.70–0.80, 0.80–0.90, and 0.90–1.05 with 21, 30, 8, and 10

watersheds falling in each group, respectively. We also find that watersheds with

lower aridity index tends to be less vulnerable to precipitation change and vice versa.

The spatial patterns also emphasize that watersheds in close proximity can also have

significantly different critical thresholds.

On analyzing the critical threshold for land use, we find that only 40 watersheds

show CART output with land use leading to vulnerable class C3. We show the

spatial variation of these land use thresholds in Figure 4.4, where, the size of each

circle represents vulnerability of a watershed to land use change. On categorizing the

land use thresholds using the ranges 0.25–0.35, 0.35–0.45, 0.45–0.55, and 0.55–0.65,

we find 4, 6, 21, and 9 watersheds fall into these classes, respectively. We also notice

that watersheds with lower aridity index seem more vulnerable to land use change.

Another source of information regarding the control of watershed properties on
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Figure 4.3: Critical thresholds for precipitation reduction that leads to the high-
est class of vulnerability (C3) for water availability, represented by long term mean
annual runoff, for each watershed. The size of the circles corresponds to the pre-
cipitation reduction that causes a transition to the vulnerable regime, colors denote
aridity index. Thresholds are expressed as the ratio of critical precipitation values to
historical precipitation values, both are long term means. Higher size indicates higher
vulnerability as ratios closer to one or very small reductions in long term precipitation
can cause a transition to C3, and vice-versa.
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Figure 4.4: Same as Figure 6, but for land use change. Note that not all watersheds
showed land use as a significant control for water availability. Thus, the number of
circles are fewer as compared to Figure 4.3
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critical climate or land use change threshold is provided in the CART output. Each

tree presents a hierarchy of controls for each indicator-watershed combination. Vi-

sualization the outputs of the all trees would be challenging, so here we resort to

Circos diagrams for circular representation of tabular data of vulnerability for better

understanding and visualization (Figure 8) (see also [50]). Impact of different controls

on watersheds vulnerability are shown by Circos diagrams created by the Circos tool

which is developed by [51].

Circos uses a circular ideogram layout to facilitate the display of the relationships

between a pair of variables represented through their position on a circle, by the use

of ribbons or chords. Ranking of controls is estimated for each indicator across all

watersheds based on the hierarchy of controls from the CART output. For example,

if CARTs first node is precipitation, we assign precipitation as primary control for

that particular indicator-watershed combination. Similarly, we determine secondary,

tertiary and higher order controls. Thus, primary splits are assumed to have a higher

impact on watershed vulnerability as they provide maximum information gain while

splitting the space of indicator responses [42].

In this way, controls for each indicator are plotted in separate chord diagrams

(Figure 8). On the outer periphery of the circles in the Circos diagram, we present

controls (dark blue) and watersheds (black) considered in study. Each CART output

is a result of varying the climate and land use in the watershed in the presence

of parametric uncertainties. Thus, we consider six controls: precipitation change,

temperature change, land use change represented by a model parameter, followed by

parameters related to snow, soil, and routing, respectively. A total of 69 watersheds

are shown in the chord diagram. The color of strips inside the circle represent the

order of splits as obtained from the CART output. For mean annual runoff, all the

watersheds have precipitation as the primary as well as secondary split indicating

that it is a main control on mean water availability in a basin. A few watersheds have

land use change on their secondary splits and several have it on their tertiary split,

indicating that it is the second most important control on this indicator. The impact

of hydrologic model parameters related to snow, soil and routing, have negligible

impact on mean annual runoff. A small number of watersheds also show temperature

as the tertiary control.

As opposed to mean annual runoff, the flood indicator shows a far more diverse

range of controls. Precipitation is a dominating control for this indicator too, but

here land use change emerges as a primary control for a significant number of water-

sheds. Hydrologic model parameters related to soil, and routing emerge as tertiary
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controls for several watersheds. We can also find snow related parameters appear-

ing as secondary and tertiary controls for a significant number of watersheds. We

thus hypothesize that this is likely due to the role of snow melt in inducing flood

response for some watersheds. Overall, we find that the controls on flood indicator

are very complex. The FPIFR and drought indicators are related to low flow and

show similar controls. From their Circos diagrams, we find that the primary control

on these indicators is precipitation change followed by land use change. For FPIFR,

hydrologic parameters related to soils and routing also have significant. FPIFR seems

to be more affected by land use change than the drought indicator as indicated by

the higher number of watersheds showing land use change as a secondary indicator

for FPIFR.
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Figure 4.5: Circos plots to visualize dominant controls for each indicator–watershed
combination. Controls are classified as – long term precipitation, land use parameter,
long term temperature, soil parameters, and routing parameters. Each circos plot
represents one indicator. The plot is created by using the information of the hierarchy
order of controls from CART output of each watershed. Outer edges of the plot show
each control category and all watersheds represented by their serial numbers. The
purple, blue, green, and red lines that connect watershed controls and serial number,
indicate a decreasing level of importance. For example, for mean annual runoff, most
important control is precipitation as it has the maximum number of purple lines
connected to the watersheds.

23



Chapter 5

Discussion & Conclusions

In this study, we have attempted to identify dominant controls on watersheds vulner-

ability to climate and land use change. The spatial variability of the identified critical

thresholds across the United States gives an understanding of watersheds vulnerable

to precipitation and land use change. The vulnerability map can help water resource

administration in the planning of those watershed who will become vulnerable even

slight change in precipitation or land use and required more precise monitoring.

We find that the vulnerabilities of watershed to environmental change varies a lot

even if watersheds are situated near to each other. The vulnerability map for critical

precipitation thresholds for mean annual runoff also shows that watersheds with lower

aridity index are less vulnerable to precipitation change. In other words, we find that

watershed with lower aridity index are less likely to transition into vulnerable regime

with small change of precipitation in watershed and thus are more resilient to climate

change. On the other hand, the vulnerability map for land use change thresholds does

not show the same pattern. The analysis of land use change thresholds across the

study watersheds shows that most watersheds will become vulnerable if percentage

of deep rooted vegetation cover in a watershed exceeds 45%. Similarly, vulnerability

maps for other indicators can be developed using the stakeholder based definition for

critical threshold of the respective indicator.

Finally, we employ Circos diagrams for each indicator to visualize dominant con-

trols on the indicators vulnerability to climate and land use change. Mean annual

runoff, an indicator of average water availability in a watershed, shows a very distinct

pattern of control: long term precipitation is a dominant control for all watersheds.

This indicates that the sensitivity of water availability in streams is most dependent

on precipitation change (among controls such as precipitation change, temperature

change, and hydrologic model parameters). Another important control on mean an-
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nual runoff that was identified using Circos plot is the long-term land use change.

This control, however, ranked lower than precipitation change in most watersheds.

We show that Circos plots are especially useful to identify secondary and tertiary

level controls on the watersheds vulnerability such as temperature change, soil and

routing related parameters of the hydrologic model, etc. For example, we show that

for mean annual runoff, temperature is only a moderate control for the watersheds.

We also find that the flood indicator is one of the most complex indicator that depends

on a large range of controls. Apart from precipitation and land use change, hydrologic

model parameters describing soils, routing characteristics and snow formation and

melt are significant drivers of watershed vulnerability to flooding.

There are a few methodological choices that can be further improved in order to

strengthen the results obtained here. First of all, landuse change is simulated via a

single parameter in the hydrologic model. We know that land use change has complex

impacts on hydrologic properties and this rather simple representation is likely to

limit the generality of our results related to vulnerability of indicators to land use

change [52, 53, 54]. In addition, catchments are heterogeneous systems and using a

lumped model is likely to hide the potential diverse response within a catchment to

change drivers. For example, [21] pointed out that the degree of sensitivity varies

with elevation even in a small catchment.

Finally, our simulated climate change scenarios merely represent a mean change

in climate properties while in reality catchments around the world are undergoing

change in both frequency and mean values of precipitation [IPCC], [47]. Thus, a

weather generator that allows us to sample different hydrologically relevant climatic

properties such as duration of dry consecutive dry/wet days, frequency of wet/dry

spells, in addition to the mean values of climate variables would allow us to provide

assessment of vulnerability of watersheds to changings in characteristics of the climate

[55]. Nevertheless, several results from our analysis are in agreement with previous

literature, which lends a degree of validity to this analysis.

Our framework can be used as a tool for comparative hydrologic analysis to iden-

tify sensitivity of watershed to various watershed physio climatic characteristics based

on stockholders definition of vulnerability.
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ID USGS ID Basin name Area (km2) Avg. elevation (m) M.A. P (mm) M.A. Q (mm) M.A. PE (mm)

01 01138000 Ammonoosuc River near Bath, NH 1023 138 1018 500 824
02 01514000 Owego Creek near Owego NY 479 250 849 515 869
03 01543500 Sinnemahoning Creek at Sinnemahoning, PA 1774 235 927 459 982
04 01548500 Pine Creek at Cedar Run, PA 1564 238 869 410 939
05 01606500 South Branch Potomac River near Petersburg, WV 1686 295 876 331 1102
06 01611500 Cacapon River near Great Cacapon, WV 1748 139 831 263 1137
07 01663500 Hazel River at Rixeyville, VA 738 88 980 337 1159
08 01664000 Rappahannock River at Remington, VA 1603 77 956 311 1158
09 01667500 Rapidan River near Culpeper, VA 1212 74 1008 299 1138
10 02016000 Cowpasture River near Clifton Forge, VA 1194 307 950 349 1132
11 02018000 Craig Creek at Parr, VA 852 302 929 349 1113
12 02030500 Slate River near Arvonia, VA 585 73 973 290 1206
13 02143000 Henry Fork near Henry River, NC 215 272 1322 546 1225
14 02472000 Leaf River Nr Collins, MS 1924 60 1349 464 1438
15 02479300 Red Creek at Vestry, MS 1142 6 1498 602 1481
16 03069500 Cheat River near Parsons, WV 1870 485 1258 789 1007
17 03070000 Cheat River at Rowlesburg, WV 2432 417 1256 800 1018
18 03114500 Middle Island Creek at Little, WV 1186 192 1002 416 1149
19 03155500 Hughes River at Cisco, WV 1173 185 989 397 1176
20 03161000 South Fork New River near Jefferson, NC 531 810 1362 706 1011
21 03164000 New River near Galax, VA 2955 673 1198 563 1060
22 03173000 Walker Creek at Bane, VA 774 508 894 336 1092
23 03180500 Greenbrier River at Durbin, WV 344 823 1132 498 965
24 03182500 Greenbrier River at Buckeye, WV 1399 636 1098 486 1047
25 03186500 Williams River at Dyer, WV 332 669 1316 859 1028
26 03213000 Tug Fork at Litwar, WV 1305 285 997 341 1176
27 03237500 Ohio Brush Creek near West Union OH 1002 156 962 370 1102
28 03238500 White Oak Creek near Georgetown OH 565 184 978 323 1076
29 03281500 South Fork Kentucky River at Booneville, KY 1870 196 1169 478 1230
30 03346000 North Fork Embarras River near Oblong, IL 824 139 921 231 1134
31 03473000 S F Holston River near Damascus, VA 785 546 1201 528 1114
32 03490000 N F Holston River near Gate City, VA 1738 365 1055 440 1174
33 03504000 Nantahala River near Rainbow Springs, NC 134 937 1961 1373 1150
34 03574500 Paint Rock River near Woodville AL 829 174 1447 776 1276
35 05408000 Kickapoo River at La Farge, WI 689 238 782 227 929
36 05412500 Turkey River at Garber, IA 4002 193 792 213 946
37 05502040 Hadley Creek at Kinderhook, IL 188 143 949 236 1067
38 05507500 Salt River near Monroe City, MO 5776 159 916 231 1116
39 05514500 Cuivre River near Troy, MO 2339 137 902 207 1131
40 05555500 Vermilion River at Lowell, IL 3310 153 815 174 1046
41 05584500 La Moine River at Colmar, IL 1696 150 897 224 1063
42 05585000 La Moine River at Ripley, IL 3349 131 905 217 1067
43 06191500 Yellowstone River at Corwin Springs MT 6775 1549 700 425 780
44* 06441500 Bad R near Fort Pierre,SD 8151 435 431 17 1083
45* 06847000 Beaver Creek near Beaver City, Nebr. 5387 660 500 7 1240
46 06885500 Black Vermillion R Nr Frankfort, KS 1062 337 814 120 1130
47 06888500 Mill C Nr Paxico, KS 824 293 862 177 1146
48 06892000 Stranger C Nr Tonganoxie, KS 1052 244 954 221 1137
49 06928000 Gasconade River near Hazelgreen, MO 3237 258 983 228 1201
50 07049000 War Eagle Creek near Hindsville, AR 681 356 1083 371 1276
51 07056000 Buffalo River near St. Joe, AR 2147 171 1083 366 1194
52 07057500 North Fork River near Tecumseh, MO 1453 178 997 390 1252
53 07058000 Bryant Creek near Tecumseh, MO 1476 175 997 267 1252
54 07067000 Current River at Van Buren, MO 4318 135 1010 333 1241
55 07068000 Current River at Doniphan, MO 5278 98 1023 398 1256
56 07072000 Eleven Point River near Ravenden Springs, AR 2927 89 1055 308 1281
57 07197000 Baron Fork at Eldon, OK 808 214 1064 258 1250
58* 07222500 Conchas River at Variadero, NM 1355 1351 369 7 1372
59 07252000 Mulberry River near Mulberry. AR 966 132 1180 426 1264
60 07261000 Cadron Creek near Guy, AR 438 113 1182 545 1331
61 08171300 Blanco Rv Nr Kyle, TX 1067 189 816 103 1498
62* 08189500 Mission Rv at Refugio, TX 1787 0 830 63 1547
63* 08340500 Arroyo Chico Nr Guadalupe, NM 3600 1805 247 5 1264
64* 09430500 Gila River near Gila, NM 4828 1419 491 28 1310
65 11080500 Ef San Gabriel R Nr Camp Bonita CA 219 478 784 319 1078
66 11138500 Sisquoc R Nr Sisquoc CA 728 190 403 82 1376
67 11213500 Kings R Ab Nf Nr Trimmer CA 2466 305 800 559 848
68* 11224500 Los Gatos C Ab Nunez Cyn Nr Coalinga CA 248 325 428 21 1332
69 11281000 Sf Tuolumne R Nr Oakland Recreation Camp CA 225 854 978 429 1121

70# 11355500 Hat C Nr Hat Creek CA 420 1311 1227 313 1019
71 11532500 Smith R Nr Crescent City CA 1590 24 2686 2133 1050
72 12358500 M F Flathead River near West Glacier MT 2914 954 1116 928 763
73 12413000 Nf Coeur D Alene River at Enaville ID 2318 640 1108 753 894
74 13337000 Lochsa River Nr Lowell ID 3051 443 1291 896 835
75 13340500 Nf Clearwater River at Bungalow Ranger Station ID 2586 683 1537 957 854
76 14101500 White River Below Tygh Valley,Oreg. 1080 265 760 329 937
77 14232500 Cispus River near Randle, WA 831 372 2010 1432 832

M.A. = mean annual
* = Watershed removed, runoff ration < 0.1
# = Watershed removed, no parameter set produces NSE >0

Table A: Information of watersheds used in the study.
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ID USGS ID

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

01 1138000 0 12.22704 310 872 0.265 0.722 0.035579 0.156145 0.017771 0.021777

02 1514000 0 6.2458 306 859 0.265 0.722 0.043073 0.186071 0.007022 0.009227

03 1543500 0 7.9792 330 930 0.204 0.56 0.057408 0.196417 0.005843 0.035326

04 1548500 0 6.86652 306 858 0.225 0.611 0.0276 0.131921 0.003745 0.011609

05 1606500 0 6.13036 255 715 0.225 0.611 0.019338 0.122623 0.004286 0.009612

06 1611500 0 6.03572 223 626 0.183 0.5 0.021073 0.110809 0.003005 0.008359

07 1663500 0 5.36328 313 879 0.285 0.78 0.024524 0.105462 0.007127 0.010629

08 1664000 0 4.68336 313 876 0.285 0.78 0.019207 0.080578 0.002839 0.010548

09 1667500 0 4.79184 358 1003 0.285 0.78 0.024211 0.07797 0.011533 0.023306

10 2016000 0 7.83216 221 618 0.204 0.56 0.02361 0.100001 0.006681 0.017158

11 2018000 0 6.37448 247 692 0.224 0.611 0.030845 0.106316 0.008289 0.019007

12 2030500 0 8.75112 356 1000 0.306 0.833 0.021063 0.10079 0.011229 0.017353

13 2143000 0 6.86696 336 942 0.285 0.778 0.048124 0.161928 0.026657 0.064391

14 2472000 0.5 9.88832 375 1050 0.306 0.833 0.027481 0.16287 0.004434 0.013645

15 2479300 0.5 8.57836 381 1067 0.285 0.778 0.02899 0.115484 0.007829 0.019957

16 3069500 0 8.46072 250 701 0.225 0.611 0.079732 0.272717 0.016562 0.038479

17 3070000 0 7.81944 243 680 0.225 0.611 0.064511 0.260856 0.010598 0.031818

18 3114500 9 5.34424 250 702 0.265 0.722 0.022733 0.13807 0.001604 0.005186

19 3155500 0 5.40644 245 695 0.265 0.722 0.026432 0.140267 0.001582 0.004446

20 3161000 0 5.23724 356 998 0.265 0.722 0.043081 0.105708 0.018673 0.047598

21 3164000 0 4.85712 352 988 0.265 0.723 0.037687 0.114855 0.014055 0.027477

22 3173000 0 5.5628 279 781 0.225 0.611 0.024066 0.094826 0.006672 0.011218

23 3180500 0 7.2706 236 663 0.204 0.556 0.040757 0.190844 0.003852 0.019285

24 3182500 0 6.95412 235 656 0.204 0.556 0.044959 0.188474 0.007334 0.011495

25 3186500 0 8.77724 258 725 0.245 0.667 0.074897 0.244868 0.01019 0.016059

26 3213000 0 5.53516 276 774 0.204 0.556 0.039699 0.110225 0.01227 0.029752

27 3237500 0 3.5816 304 854 0.285 0.778 0.0165 0.112836 0.003358 0.005948

28 3238500 0 1.50316 376 1055 0.367 1 0.029633 0.121546 0.00266 0.008589

29 3281500 0 5.2422 245 685 0.265 0.722 0.032509 0.152908 0.00295 0.010232

30 3346000 0 1.029 381 1067 0.367 1 0.015521 0.073177 0.00282 0.013033

31 3473000 0 5.10284 290 814 0.245 0.667 0.036357 0.134467 0.010941 0.023753

32 3490000 0 4.67592 280 783 0.245 0.667 0.035748 0.14784 0.004969 0.013829

33 3504000 0 5.911 346 970 0.265 0.723 0.080578 0.162394 0.030514 0.047114

34 3574500 0 5.7902 243 680 0.245 0.667 0.050638 0.252672 0.007678 0.014482

35 5408000 0 2.7668 278 780 0.326 0.89 0.023649 0.115273 0.01151 0.03083

36 5412500 0 0.69396 357 1000 0.367 1 0.01544 0.054232 0.003218 0.006131

37 5502040 0 1.95936 381 1067 0.408 1.11 0.030736 0.122481 0.006255 0.016266

38 5507500 0 0.91844 380 1064 0.306 0.833 0.013702 0.087733 0.000928 0.00308

39 5514500 0 1.42624 361 1011 0.306 0.833 0.013434 0.066811 0.001135 0.004746

40 5555500 0 0.1146 381 1067 0.346 0.945 0.016763 0.057306 0.003041 0.011177

41 5584500 0 0.99816 318 1067 0.387 1.06 0.016505 0.081104 0.001051 0.004159

42 5585000 0 1.33416 381 1067 0.387 1.06 0.015875 0.073742 0.002409 0.003535

43 6191500 0.5 8.88468 305 855 0.143 0.389 0.019338 0.075167 0.005507 0.015386

44 6441500 0 0.00756 230 645 0.347 0.945 0.002621 0.013884 0.000256 0.000578

45 6847000 0 0.003 378 1060 0.408 1.11 0.000938 0.004333 0.00026 0.001386

46 6885500 0 0.41608 375 1052 0.306 0.833 0.008543 0.041513 0.00119 0.002453

47 6888500 0 1.12756 261 732 0.265 0.722 0.010617 0.049041 0.005216 0.008292

48 6892000 0 1.0274 360 1008 0.346 0.944 0.014462 0.076442 0.001512 0.005457

49 6928000 0 3.44332 360 1009 0.183 0.5 0.019858 0.071708 0.002131 0.003507

50 7049000 0 3.8712 293 820 0.204 0.556 0.027829 0.117023 0.003725 0.007225

51 7056000 0 5.88428 291 815 0.225 0.611 0.034855 0.13253 0.002795 0.005929

52 7057500 0 4.9406 334 938 0.204 0.556 0.016052 0.061916 0.005126 0.014191

53 7058000 0 4.62456 364 1021 0.204 0.556 0.01502 0.057126 0.003705 0.005447

54 7067000 0 6.32288 357 1000 0.204 0.556 0.023457 0.066938 0.00245 0.006782

55 7068000 0 6.4624 357 1002 0.204 0.556 0.01609 0.071212 0.008394 0.037073

56 7072000 0 4.86192 310 872 0.245 0.667 0.010757 0.042557 0.005419 0.008481

57 7197000 0 3.33572 310 953 0.225 0.611 0.020989 0.07265 0.004233 0.009389

58 7222500 0 1.87296 255 714 0.306 0.833 0.003203 0.007704 0.000284 0.00093

59 7252000 0 7.5112 266 747 0.225 0.611 0.038927 0.184329 0.002294 0.006594

60 7261000 0 6.30308 205 574 0.225 0.611 0.033282 0.181029 0.003295 0.004527

61 8171300 0.5 7.72348 224 629 0.245 0.667 0.006152 0.02304 0.001442 0.003983

62 8189500 0 0.58296 310 872 0.265 0.722 0.008912 0.036877 0.001364 0.003862

63 8340500 0 2.95272 291 817 0.285 0.778 0.002059 0.012444 0.000147 0.001018

64 9430500 0 4.3506 267 750 0.225 0.611 0.001991 0.006002 0.000791 0.002405

65 11080500 0.5 8.07024 152 426 0.143 0.389 0.011163 0.081193 0.003991 0.027592

66 11138500 0 5.12776 132 372 0.306 0.833 0.001917 0.028929 0.00027 0.002382

67 11213500 0.5 8.86104 308 865 0.143 0.389 0.020656 0.150054 0.004909 0.018084

68 11224500 0 1.9664 212 595 0.285 0.778 0.00577 0.020251 0.001551 0.003217

69 11281000 0.5 19.11028 327 918 0.225 0.611 0.036522 0.135997 0.003386 0.015681

70 11355500 0.5 16.60176 312 875 0.225 0.611 0.025034 0.052713 0.01551 0.023702

71 11532500 0.5 16.83636 249 700 0.225 0.611 0.104577 0.708138 0.006403 0.017167

72 12358500 0.5 16.05776 310 872 0.184 0.5 0.041778 0.171636 0.011268 0.023894

73 12413000 0.5 20.21824 372 1042 0.184 0.5 0.049911 0.180239 0.007186 0.013014

74 13337000 0.5 18.82644 250 701 0.204 0.556 0.045206 0.211898 0.008259 0.026454

75 13340500 0.5 16.81392 325 911 0.204 0.556 0.066364 0.200987 0.018093 0.034445

76 14101500 0.5 11.31032 270 760 0.265 0.722 0.019507 0.0607 0.008024 0.020055

77 14232500 0.5 17.13952 344 965 0.225 0.611 0.086241 0.268891 0.035902 0.061366

LAI Sb Fc ASS ABF

Table B: Ranges of parameters obtained from a priori parameter estimation for all
watersheds.
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[1] C. J. Vörösmarty, P. Green, J. Salisbury, and R. B. Lammers. Global water

resources: vulnerability from climate change and population growth. science

289, (2000) 284–288.

[2] D. Legesse, C. Vallet-Coulomb, and F. Gasse. Hydrological response of a catch-

ment to climate and land use changes in Tropical Africa: case study South

Central Ethiopia. Journal of Hydrology 275, (2003) 67–85.

[3] N. W. Arnell. Climate change and global water resources: SRES emissions and

socio-economic scenarios. Global environmental change 14, (2004) 31–52.

[4] G. Sun, S. G. McNulty, J. M. Myers, and E. C. Cohen. Impacts of climate

change, population growth, land use change, and groundwater availability on

water supply and demand across the conterminous US. AWRA Hydrology &

Watershed Management Technical Committee .

[5] A. A. Anandhi, N. N. Omani, I. Chaubey, R. Horton, D. Bader, and R. Nanjun-

diah. What changes do the CMIP5 climate models predict for South Asia and

what are some potential impacts on managed ecosystems and water resources.

In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Con-

ference Proceedings. American Society of Agricultural and Biological Engineers,

2015 1–4.

[6] G. Watts, R. W. Battarbee, J. P. Bloomfield, J. Crossman, A. Daccache, I. Du-

rance, J. A. Elliott, G. Garner, J. Hannaford, D. M. Hannah et al. Climate

change and water in the UK–past changes and future prospects. Progress in

Physical Geography 39, (2015) 6–28.

[7] J. Henderson, C. Rodgers, R. Jones, J. Smith, K. Strzepek, and J. Martinich.

Economic impacts of climate change on water resources in the coterminous

29



United States. Mitigation and Adaptation Strategies for Global Change 20, (2015)

135–157.

[8] C. Chen, S. Hagemann, and J. Liu. Assessment of impact of climate change on

the blue and green water resources in large river basins in China. Environmental

Earth Sciences 74, (2015) 6381–6394.

[9] A. W. Wood, L. R. Leung, V. Sridhar, and D. Lettenmaier. Hydrologic impli-

cations of dynamical and statistical approaches to downscaling climate model

outputs. Climatic change 62, (2004) 189–216.

[10] C. Tebaldi, R. L. Smith, D. Nychka, and L. O. Mearns. Quantifying uncertainty

in projections of regional climate change: A Bayesian approach to the analysis

of multimodel ensembles. Journal of Climate 18, (2005) 1524–1540.

[11] H. G. Hidalgo, M. D. Dettinger, and D. R. Cayan. Downscaling with constructed

analogues: Daily precipitation and temperature fields over the United States.

California Energy Commission PIER Final Project Report CEC-500-2007-123 .

[12] C. Dobler, S. Hagemann, R. Wilby, and J. Stötter. Quantifying different sources

of uncertainty in hydrological projections in an Alpine watershed. Hydrology and

Earth System Sciences 16, (2012) 4343–4360.

[13] T. Bosshard, M. Carambia, K. Goergen, S. Kotlarski, P. Krahe, M. Zappa, and

C. Schär. Quantifying uncertainty sources in an ensemble of hydrological climate-

impact projections. Water Resources Research 49, (2013) 1523–1536.
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