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Abstract

User often go through the product reviews to get an insight into product quality and

its various features. As reviews are unstructured and voluminous, user faces many

difficulties to find the relevant information when he reads the several reviews. And due

to certain feature preferences, it becomes more cumbersome for a user to read the whole

review which could be hundreds in lines. In this dissertation, we propose an interactive

system to resolve these problems where user can extract the relevant reviews by few

interaction with the user interface. Also in our work, we improved the user experience

by providing more meaningful and relevant results by associating relationship between

different features to our model. At last, we constructed the feature ontology tree to

overcome existing information overload problem and provided a faceted navigation to

explore the reviews in more efficient manner.
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Chapter 1

Introduction

In todays highly competitive e-market, making online purchase is not an easy

task. With the availability of wide range of products and services, choosing a product

is very difficult for any user. To ease up the task, existing e-commerce websites (e.g.

flipkart, amazon, snapdeal etc.) provide various ways of exploring and narrowing down

the products to help users in making better decision. Usually these methods include

category exploration, product search and feature(or facet) selection. These

methods lead to small set of results where user can choose the right product. But even

if the user has find the right product for him, he has to make sure that quality and

features are good enough as per their specification. This is where they rely on the

reviews of the product.

Usually, reviews play an important role in decision making of product purchase.

Reviews generally describe the quality of products with respect to certain key terms.

These key terms are referred as feature or aspect of the product. For example, in a

camera product review, these features could be lens, zoom or picture quality. Analysing

these features and reviews help sellers to extract and identify the potential customers

behaviour as well as opinion on any product.

While making online shopping, for a single product, the feature preference varies

from user to user. Users generally focus on some subset of features when they make the

decision and to verify the quality of those features, they go through several reviews to

find out the relevant information about those features. Finding this relevant information

out of the pool of unstructured reviews is very difficult due to following limitations in

existing system:

• Existence of large number of unstructured text reviews for a single product due to

which going through all the reviews is difficult.

1
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• Filtering reviews based on set features is not developed in any existing state-of-

art-systems.

To overcome limitation 1, many researcher proposes various text summarization

techniques [1–3] to summarize the opinions of different features into a rating score mea-

sure. These ratings give information about quality of the feature in terms of positive or

negative score. The rating system have its own pitfalls i.e. it fails to answer the ques-

tion: “what is good or bad about this specific feature”. It just gives information

about “how much good or bad is this feature”.

To address this issue, an efficient system is needed that can extract and map the

features to their respective relevant review sentences(review snippets). In our work,

we refer this task as Aspect Based Review Extraction. Usually this task will extract

the relevant review sentences in which interested feature is present. For example, here

is the camera review:

“Battery life of camera is good. Lens and zoom the camera is not that great. Also

picture quality is not that good enough.”

If the interested feature is “lens” then aspect based feature extraction will give

you result as “ Lens and zoom of the camera is not that great.”. This static system

have one limitation also: It fails to capture semantic relationship between features.

Semantic relationship determines how two different objects are related to each other. It

provides meaning to overall information. Semantic relationship between features can be

important to the user as it enhance the understanding about the product while giving

the rich information about features and its related sub-features. In above example, lens,

zoom and picture quality are semantically related. In our work, we have included the

semantic relationship between features to improve the overall model which is our novel

work. E.g. for above example, interested feature “lens” will provide the result as:

“Lens and zoom the camera is not that great. Also picture quality is not that good

enough.”

For interested feature “lens”, above result represents a knowledge that “as lens

is not great picture quality is not good too”. We referred this review extraction process

as Semantic Aspect Based Review Extraction.

Our other novel work is that we have built a faceted navigation system for reviews

by leveraging the feature semantic relationship. Faceted navigation systems[4] provides

lot of benefits. One of the benefits that it provide is that it deals with information

overflow problem using exploratory search. Information overflow problem can exist in

our model as the number of features can be exist in hundreds. Hence all the feature
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can’t be shown to user at once. To show few features at any instance to the user, we

folded down the features by leveraging the feature semantic relationship into a feature

ontology tree. This tree will be exposed to user as a faceted navigation panel. User

can extract the semantically relevant reviews by selecting the interested feature. Also

user can narrow down the extracted result by exploring the relevant interested path in

feature hierarchy.



Chapter 2

Problem Definition

In this chapter, first we will give some overview to product reviews, features and

existing state-of-art-system. Later we will define each problem definition in different

subsection.

2.1 Overview

In existing e-commerce websites(e.g. flipkart, amazon), product reviews are main-

tained to get products feedback. These reviews are usually submitted by the users in

unstructured text format. These reviews are generally centred towards various product

features and discuss about quality of those aspects. Product features are frequent over

review data as most of the reviews mentions these key terms frequently. These features

are usually represented by noun terms in unstructured text. For example, for a mobile

product, features could be processor, RAM, touchscreen etc.

When user go through the reviews, they usually search for these product features.

As the reviews, for a product, are voluminous and abundant, reading all the reviews

is cumbersome task. Existing e-commerce websites provide overall rating to product.

Overall rating measures quality of complete product rather than the quality of individual

features. Hence if the user wants to check quality of individual feature user need to go

through several reviews. While reviewing the several reviews, user often faces these two

problems:

• Existing e-commerce websites do ranking of the reviews. Limitation of top ranking

is that it sometimes do not provide information about non popular features.

4
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• Sometime reviews are described in way too much detail. Going through the com-

plete review is not relevant to user.

Due to both problems user has to read several reviews to have adequate knowledge

about certain feature. In our work, we will provide a way to find all the relevant infor-

mation about certain features. Also in our model, all the semantic relation knowledge

are included to improve the meaning of overall result.

2.2 Aspect Based Review Extraction

Assume review set R have thousands of reviews for certain product. Each review

Ri consists set of review snippets S = {r1, r2, r3, ...} having various features f from

feature set F = {f1, f2, f3, ...} . Our goal is to create < feature, review snippet >

mappings for each feature i.e. < fx, ry > which will help in order to extract the relevant

review snippet ry by selecting interested feature fx by user .

This process can be easily demonstrated as follow: For a mobile product here are the

two reviews:

“Touch screen of the mobile is great, but the battery life is very short.”

“This phone’s battery is not good. I have to charge the phone twice a day.”

Our system will generate < feature, review snippet > mappings as:

<touch screen, [ “Touch screen of the mobile is great” ]>

<battery, [ “but the battery life is very short”, “This phone’s battery is not good.” ]>

By choosing this feature the relevant feature “touch screen” extracted relevant review

will be:

“Touch screen of the mobile is great”

2.3 Semantic Aspect Based Review Extraction

Associating semantic relationship with aspect based review extraction to en-

hance semantic meaning of the extracted review snippets is our primary goal. As-

sume < feature, review snippet > mapping as < fi, Si > extracted from previous

result. If the interested feature is fi and it is semantically related to features in fea-

ture set Fs = {fj , fj+1, fj+2, ...m elements } whose respective relevant snippets are
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S = {Sj , Sj+1, Sj+2, ...m elements} then sementic aspect based review will generate

< feature, review snippet > mapping for interested feature fi as:

< fi, Sx > = < fi,
⋃j+m−1

k=j Sk
⋃
Si > where Sk ∈< fk, Sk > and Sk ∈ S and fk ∈ Fs

Example of semantic relations can be viewed as “camera flash is related to pic-

ture”. Here in the example camera flash and picture are related to each other by relation

“Related to”. In previous problem, the result miss out semantic relation and provide

only static reviews. This might lead to insufficient review extraction problem. For

example, here is a review of mobile:

“Shutter speed of camera is not good. Hence image taken for moving object is blurred.”

For above example, for interested feature “image” problem 1 will result as “Hence

image taken for moving object is blurred.”. This result lacks in one information that

why image are not good. By associating these semantic relations with problem 1 can

easily resolve the insuffient review extraction problem. As “Shutter speed” and “image”

are semantically related, our model will result the whole review for above example.

As automatic extraction of these relationships are difficult, we need an exist-

ing dataset for our model to extract these relationship. For our model, we have used

conceptNet[5] for semantic relationship extraction which we will discuss in later section.

2.4 Feature Ontology

Information overload is a common issue that user face with most of the information

retrieval system. In our system, user is presented with set of features F = {f1, f2, f3, ...}
extracted from previous step. Feature extraction could result in hundreds of features

which might lead to information overload when features set F is exposed to user.

To efficiently control features exposure at any instance, a feature ontology tree is

constructed. Feature ontology tree T = (V,E) is a feature relationship hierarchy where

each node vi represents a feature of product and directed edge ei = (vi, vj) represents

parent− child relationship or feature − subfeature relationship. Root of the tree is

the “domain” of the product.

Feature ontology tree leverages feature-feature relationship to fold down multiple

features into single feature as a child. Example of this feature-feature relationship can

be viewed as:

“focus is part of lens”
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From above example, we can deduce that focus and lens are related as child and

parent. Many user are unaware of these relationship between features and organising in

hierarchy improves the product understanding. Other advantage of organising features

in hierarchy is that it can be used for controlling the feature overflow information while

exposing features to user. Construction of this feature ontology tree was published in

research work[6]. Our algorithm is variation of their work which we will discuss in

algorithm section.

2.5 Faceted Navigation over reviews

Faceted navigation are generally used to control information overflow while explor-

ing abundant data. Faceted navigation[4] uses cataloguing technique to improve data

categorization using facets and provide exploration search over these data. Our work

can easily be mapped to faceted navigation solution as review snippets are categorized

using features. In our work, feature ontology tree is used as a faceted navigation panel

where each facet represents a feature of the product. User can easily browse through

reviews for find the relevant information by choosing the features from tree iteratively.

Extracted reviews snippets are either relevant to the feature selected or relevant to their

child. For example, for a camera product, choosing lens will give reviews about lens and

its child focus, picture etc. Initially domain of product and all the reviews are exposed

to user. User can narrow down the result using iterative selection of feature over tree

until he is satisfied with presented result.



Chapter 3

Related Work

Our work is relevant to two broad categories: faceted navigation, opinion search.

We will discuss each of these categories in separate section.

3.1 Faceted Navigation

Faceted navigation has been a popular research topic in past decade. Due to var-

ious advantages of faceted navigation, most of the researcher came up with faceted navi-

gation on various applications. Authors in [7] proposed faceted based interface for mobile

interface called FaThumb to browse large amount of information in mobile. FaThumb

uses an hybrid model using both keyword search and hierarchical facet metadata nav-

igation to prune out irrelevant data resulting satisfactory results. Faceted navigation

for wikipedia searches were proposed in work[8]. In their work, they arranged various

attributes templates called infobox templates into a ontology and provided a search in-

terface over RDF triplet knowledge base to extract the relevant information. In these

two faceted navigation, faceted hierarchy is manually built. Building manual faceted

ontology for reviews is a challenging task as it comes in abundance and unstructured

format. In our work, we will show how these hierarchy is created automatically.

3.2 Opinion Search

Other relevant research falls under opinion search[9]. In opinion search, based on

user’s query, relevant opinionated documents are extracted from document corpus. Rele-

vant documents are usually recognized using certain set of keywords which represents the

features of the documents. In paper[10], authors used noun and noun phrase extraction

8
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technique[11] to extract these features from user’s query and find relevant documents in-

volving these feature and their synonyms using similarity search. Opinionated sentences

from documents are later extracted using SVM supervised learning.

In similar area, in opinion mining, various feature extraction techniques are

discussed. In Hu’s work[1] using association rule mining technique, frequent features

are extracted from the product review. Researchers in work[12] came up with Opine

system which extracts product features by associating point−wise mutual information
scores to frequent noun phrases using unsupervised learning. Also other researches[2,

13] are related to sentence-level feature extraction. These approaches depends on text

patterns to extract the product features.

Our work leverages conceptNet[5] to build feature ontology tree. ConceptNet

database can be viewed as semantic network graph database which represent the real

world knowledge and common sense relations between various objects. Each node in con-

ceptNet is a concept which represents a real world object and edges represents semantic

relationship between various concepts. ConceptNet can be used in various artificial in-

telligent and text analytics applications to extract the semantic relationship and domain

sensitive information. Example of conceptNet relationship is:

“lens is part of camera”

“camera is capable of taking picture.”

In first example, “part of” is the relationship between concepts lens and cam-

era. Similarly for second example, “capable of” is the relationship between camera and

picture. Our work is adaptation of Mukhargee’s work[6]. In their work, they proposed

feature ontology tree construction algorithm to build feature hierarchy. They have used

this tree to efficiently feature and sentiments to user. Our goal is different from them i.e.

to solve information overload problem while presenting features to user and enhancing

understanding of product attributes and their relationships. Our work is different in

two aspects. First is we have proposed edge type concept to built a directed feature

ontology tree. In [6] information of parent-child relation is missing due to undirected

tree. Other difference is that we chose BFS exploration for our tree expansion model

and provided inner class priority order to enhance feature ontology tree construction.

BFS exploration provide shortest path to relevant concepts which is beneficial for effi-

cient and consistent tree construction. These aspects will be further explained in next

chapter.



Chapter 4

Proposed System Architecture

Figure 4.1 shows our faceted navigation system architecture for reviews. Our

proposed solution system consist three modules: Candidate feature generation, feature

ontology tree construction, mining feature review mappings. Input to the system are

product reviews collected from various datasets. Each of these reviews are exists in

unstructured text format. Hence, raw review inputs are first cleaned and tagged into

linguistic parts(nouns, verb etc) using brill part-of-speech tagger[14]. Later in our

first module, nouns are extracted and pruned out from tagged data to generate candidate

features. Candidate features determines potential features of the product extracted from

review corpus. These features are usually represented by noun terms in unstructured

text and can be easily extracted from tagged data. In our third module, we hierarchize

the candidate feature as a feature ontology tree. Nodes of these ontology tree represents

features of the product. At last, we generate feature and review snippet mappings and

store it to our database. Feature ontology is presented to user as a faceted navigation

panel and user interactively narrows down the reviews and relevant snippet by exploring

the facets. Each modules are explained in details as separate subsections.

4.1 Candidate Feature Set Generation

In order to construct feature ontology tree, candidate features are extracted from

the review corpus. In our work to achieve these we used two different approaches:

association rule mining[1] and tf-idf pruning. These approaches helps in pruning

out the irrelevant nouns and generates a set of candidate features. Association rule

mining extract the frequent nouns patterns occurred in review corpus. These frequent

nouns are again pruned out using compact pruning technique to generate features. This

10
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Figure 4.1: Faceted Navigation System Architecture for Reviews

technique is only able to extract frequent features and left out the infrequent features

which occurs very less in review corpus.

Tf -Idf statistically measures term importance over the set of documents. This

term importance are measure by two units: term frequency and inverse document

frequency. Term frequency determines how frequent a term is occurring in a document

whereas IDF defines how rare a term is to set of documents. Candidate feature or

noun can be easily extracted from review corpus by applying certain tf − idf threshold.

Advantage of applying tf − idf pruning is it includes the infrequent feature in the

candidate feature set. By these two approaches, we will create two sets of candidate

features and apply other modules separately on both sets. Later we will evaluate the

final results in evaluation section.

4.2 Feature Ontology Tree Construction

Feature ontology gives information about how features are correlated with each

other. We can resolve feature information overload problem using this feature ontology

tree by presenting top level features at a time. User can explore the other subfeatures

by their relevant top level features. Root of the ontology tree is the domain name

of the product. The domain can be easily extracted from the candidate features by

extracting the most frequent feature from the candidate features. Nodes in the tree are
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the features of the product and an edge between features f1 → f2 determines parent to

child relationship.

To build feature ontology tree we leveraged ConceptNet database to extract

semantic relationship between feature to other feature. ConceptNet provides various

many semantic relationship. Out of which, we selected 12 relations to built our ontology

tree. Also ConceptNet has one to many relationship between various domains. Hence

there is big chance of topic drift while expanding ontology tree. For example, “Camera

is relatedTo lens”, “lens is madeOf glass”, “glass is relatedTo window”. Here camera

and window are related as per conceptNet but window doesn’t belong to camera domain.

Hence to control topic drift, authors in [6] proposed categorization of the relations into

three classes(table 4.1): Heirarchical relations, Synonym relations, Functional

relations and also proposed evaluation order H > S > F .

Relation Class Relations Priority

Heirarchical Relations HasA, PartOf, MadeOf, LocatedNear 1

Synonym Relations Synonym = DefinedAs > DerivedFrom 2
> IsA > RelatedTo

Functional Relations UsedFor, CapableOf, HasProperty 3

Table 4.1: Relation Class and Priority Order(“>” and “=” shows inner class priority
order)

Algorithm proposed in work[6] missed out one information: how will we decide

that a featurenew will be a parent or a child of the featureold. For example, in accor-

dance to algorithm mentioned in [6] , “lens is partOf camera” will result in undirected

edge (lens,camera) in ontology tree. Hence due to undirected edge it is unclear that

which one of them is a parent or a child. Correct parent-child relationship is the ne-

cessity of our model. To resolve this, we proposed the concept of edge type in our

model.

Edge Type Relations

Top to Bottom Relation(TBR) HasA, LocatedNear, MadeOf
UsedFor, CapableOf, HasProperty

Bottom Up Relation(BUR) PartOf, DerivedFrom

Bidirectional relations(BDR) Synonym, DefinedAs, RelatedTo, IsA

Table 4.2: Edge types and Relations List

For our purpose, edge type will provide the information of the new feature f as

being a parent or a child. Edge type is decided based on semantic relationship. We

classified relations into three edge types: Top to bottom relation(TBR), Bottom
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to up relation(BUR) and Bidirectional relations(BDR). Relations belongs to these

edge types is described in table 4.2.

Algorithm 1: Construction of feature ontology tree

Input : Candidate Feature Set D = {〈N, f〉} where
N=candidate feature set,
f=frequency count of each candidate feature
Relation List H,S, F

Output: Feature Ontology Tree G
1 Graph G = (V,E) where V=Vertex Set and E=Edge Set
2 Initialize V=φ and E=φ ,Initialize Queue=Q
3 domain d1 =max frequency candidate feature
4 Q.enqueue(d1)
5 visited[d1]=true
6 for each relation set R in {H,S,F} do
7 while Q is not empty do
8 Concept c = Q.dequeue()
9 V1 = Extract all nodes connected to concept c in concept-net iff rnew ∈ R

10 if vi ∈ V1 and vi ∈ N and vi /∈ visited then
11 if vi /∈ G then
12 Add vertex vi to V
13 if rnew ∈ TBR or rnew ∈ BDR then
14 Add edge (c, vi) to E

15 else
16 Add edge (vi, c) to E

17 else
18 Get parent p and old relation rold between parent p and concept c
19 if priorityrnew > priorityrold then
20 Update parent of vi to new parent c

21 Q.enqueue(vi)
22 visited[vi]=true

23 Merge the nodes in G iff relation ∈ {Synonym, DefinedAs}

TBR relations shows parent to child relationship whereas BUR exhibits the

property of child to parent relationship. BDR relations are special case where it exhibits

both the property of TBR relations and BUR relations. Depending on these edge types

parent and child are decided. For example:

“lens is partOf Camera”

“Camera is capableOf taking pictures”

“focus is related to lens”

In the first example, lens and camera has bottom up relationship hence edge ( lens

← camera ) is added to ontology tree. Similarly for next two example edge ( camera →
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picture ) and ( focus ↔ lens ) is added to ontology tree as they have top to bottom and

bidirectional relationship respectively. For bidirectional edges, we have two possiblity

to add edge(e.g. f1 ↔ f2: f1 ← f2 or f1 → f2). Any of them can become subfeature

of other feature. Hence to maintain tree coherency, i.e. edges only direct from top to

bottom, we will make feature f1 as subfeature iff feature f2 is present in tree G and vice

versa.

In addition to edge types, we have used BFS exploration for our ontology expan-

sion. We extract relevant concepts from conceptnet by providing the product domain

initially and connect the features edges based on edge type in BFS manner. We repeat

the process of each subfeature until tree expanded up to predefined threshold height

h. Benefits of BFS exploration is that it provides shortest distance to relevant concepts

from product domain in minimum depth expansion. In case of many to many relation

edge conflict H > S > F order evaluation is followed. Also, to cluster the all the

relevant synonyms at single respective feature, we defined inner priority order within

synonym relation class as mentioned in 4.1. In conflicting case, edge in ontology tree is

added for higher priority relation and deleting the lower priority relation edge. Finally

we will merge all the synonyms to remove the redundant information from the tree. Our

complete algorithm is described in algorithm 1.

4.3 Mining Feature review mapping

After creating feature ontology tree, we mine all the < feature, review snippet >

mapping as a transaction file. Each transaction file represent a mapping between a

single feature to corresponding reviews and it is created for each features individually.

In our model, we stored these files into the nosql database ( e.g. couchdb, mongodb ).

These transaction files are later queried for exploring the reviews iteratively based on

consumer interaction on the interface. Structure of each transaction file and reviews are

mentioned as follows:

Transaction File:

{ id: <Feature ID>, Feature: <Feature Name> , review: <List of reviews > }

Review:

{ revId: <Review Id>, lineId: <LineNumber> , Value: <Corresponding Review Line>

}



Chapter 5

Experimental Setup and Results

In this chapter, we will discuss about various evaluation parameters and result generated

from our model. We divided this chapter into three section: Dataset, System Setup and

result. Each of these sections are explained as follows.

5.1 Dataset

In our work, we used 4 product review published in Bing and Liu’s work[1]. These

product reviews 4 different domains ie camera, phone, music jukebox and dvd player.

Features of each review lines are already annotated in the product review dataset. We

have used these features as ground truth for our precision recall evaluation. Number of

reviews and features in each product domain are mentioned in following table:

To extract semantic relationship between features and to build feature ontology, we have

used ConceptNet semantic network database[5]. ConceptNet have lot of domains and

various concepts are interconnected to each other using various relations.

5.2 Implementation and System Setup

To setup each system module, we have divided the system into three main module

for implementation purpose: Backend system, Databases and user interface. Back-

end system is our main model which deals with generation of feature ontology tree and

< feature, review snippet > mappings. Input to the this module is unstructured review

text as per Bing’s dataset format. This module includes preprocessing of data, candidate

feature generation, feature ontology tree generation and < feature, review snippet >

15



List of Tables 16

mapping generation. To implement our backend system, we have used python pro-

gramming language. After each of these processes, two results are generated: feature

ontology tree as Json file, < feature, review snippet > as multiple documents in our

NoSQL database.

For our work, we have used CouchDb database as NoSQL database to store < feature,

review snippet > mapping. CouchDb is a document based NoSQL database. As

name suggests, benifit of using couchDb is it stores the data as a document and provide

distributed architecture to retrieve the data. Each document in couchDb represent single

< feature, review snippet > mapping. We have used javascipt to retrieve data from

couchDb.

To develop our user interface, we have used javascipts and bootstrap library to build an

interactive UI. This UI have two panels: faceted navigation panel, review panel. Using

javascipt, extracted json file is converted into collapsible feature tree. Faceted navigation

panel expose this feature tree to user and expanded based on user interaction. By last

user interaction, relevant review snippets are extracted and shown in review panel.

5.3 Results

For our work, we have used three kinds evaluation to evaluate our model. Each of these

evaluations are discussed as follows:

5.3.1 Percentage of relevance to Original features in ConceptNet

Our feature extraction process is highly dependent on ConceptNet. In our model, can-

didate feature is considered irrelevant if it is not present in ConceptNet. ConceptNet

has lot of concepts but there is a chance that any tagged feature might not be present

in it. We have checked that if an original feature exist in conceptNet as a concept and

calculated percentage of original features mapped to any concept in ConceptNet. For or

dataset, we have noticed that most of missing features are noun phrases that doesn’t ex-

ist in conceptNet. The relevance percentage of original feature that exist in conceptNet

of each domain in mentioned in table 5.1.

5.3.2 Feature Extraction Evaluation

For our model, We have used precision and recall score to evaluate feature extraction

process. We have taken annotated features from dataset as ground truth to calculate
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Domain Nouns Existence Feature Existence

Camera 0.43 0.67

Phone 0.49 0.73

Jukebox 0.40 0.75

DVD Player 0.46 0.74

Table 5.1: Existence of product review concepts in ConceptNet

precision-recall scores. Our feature extraction depend on two threshold parameters:

support-threshold in Association rule mining, tf-Idf score threshold. Each of these

threshold are independent to each other. In our work, we are only able to finish the

Tf-Idf based model. As we discussed that most of the noun phrases are missing in the

conceptNet. To reduce this problem at some extent, we have considered noun phrases

as feature whose part of word belongs to any feature and connected this noun phrases as

child of those feature. This process significantly improved our precision and recall score

in the model. Our result for each domain in mentioned in table 5.2. Precision recall

curves are mentioned in figure 5.1, 5.2, 5.3 and 5.4 with respect to different domain.

Domain Threshold(Tf-Idf) Precision Recall

Camera 0.0013 0.69 0.47

Phone 0.0016 0.65 0.49

Jukebox 0.0004 0.49 0.43

DVD Player 0.0013 0.89 0.18

Table 5.2: Precision Recall Score for each domain with respect to Tf-Idf threshold

Figure 5.1: Precision Recall Curve - Camera Product
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Figure 5.2: Precision Recall Curve - Phone Product

Figure 5.3: Precision Recall Curve - Jukebox Product

Figure 5.4: Precision Recall Curve - DVD Player Product



List of Tables 19

Domain Nodes in Graph Hierarchical Synonym Functional

Camera 334 4 114 0

Phone 304 4 116 8

Jukebox 503 7 249 0

DVD Player 112 0 14 0

Table 5.3: Irrelevant Features with respect to Relation classes(with noun phrase
extension)

Domain Nodes in Graph Hierarchical Synonym Functional

Camera 116 4 63 0

Phone 134 4 76 7

Jukebox 171 7 118 0

DVD Player 76 4 52 2

Table 5.4: Irrelevant Features with respect to Relation classes(without noun phrase
extension)

5.3.3 Topic Drift vs Relation Class measure

To measure topic drift, we have counted irrelevant features with respect to each relation

class. Number of irrelevant features is directly proportional to topic drift in any domain.

By counting the irrelevant features, we have noticed that most of the irrelevant feature

belongs to Synonym classes. Also most of the irrelevance feature comes from relation

’IsA’ and ’RelatedTo’. It is difficult to overcome this issue as most of the relations in

feature tree belongs to ’RelatedTo’ relation. Following table represents the topic drift

for each domain with respect to each relation class(table 5.3 and 5.4):



Chapter 6

Snapshot

Here we will show all our User Interface snapshots. We have two main Panel: Faceted

Navigation Panel and Review Panel. Each of these snapshots are shown in each subsec-

tion.

6.1 User Interface

Here is the snapshot of complete user interface 6.1:

Figure 6.1: Complete User Interface
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6.2 Faceted Navigation Panel

Snapshot 6.2 represents a feature ontology tree generated at tf-idf threshold 0.00519 for

“camera” product domain.

Figure 6.2: Faceted Navigation Panel for Camera Product
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6.3 Review Panel

Snapshot 6.3 shows that the reviews are extracted for interested feature “lens”. In our

review it includes all the review snippet which include lens as well as its child(focus,

focus lock, lens barrel, lens cap).

Figure 6.3: Extracted semantically meaniningful reviews for “Lens” feature



Chapter 7

Conclusion

In our work, we have proposed “Faceted navigation” for a product reviews exploration

which is our novel work. As user faces lot of issues while making online purchase, our

research can help user to improve the exprience of online shopping. In this dissertation,

we have proposed a system architechture which extracts and build faceted navigation

panel automatically which is an challenging task in relevant research area. Also we have

proposed novel method to extract semantically meaningful information while extracting

the reviews snippet from reviews. We have improved the existing model[6] for building

feature ontology tree to improve product understanding by considering parent-child re-

lationship between features. At last we would like to say that our research problem has

combined two broad fields(faceted Navigation and text retrieval techniques) together to

achieve our goal.
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