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ABSTRACT 

Majority of the concrete structural components in general are subjected to different 

load combinations. The internal forces acting on any section in general can be 

categorized into four basic actions. These are (a) Flexural moments, (b) Axial loads, 

(c) Shear forces and (d) Torsion. These actions may occur alone or in combination 

with others and they effect the structures in different ways under various conditions. 

Some of these combinations can include significant shear and torsion. The shear and 

bending forces acting maybe lateral (along Z- axis) or vertical (along Y-axis).  The 

action of all the sectional forces are shown in Fig.1.1. The behaviour of RC members 

under combinations of flexure, shear and axial load has been relatively well understood. 

Whereas, the behavior under shear and torsion are more complicated and the detailed 

studies conducted on these are very limited. There are several studies conducted to 

study the behavior under torsion and the earlier models developed could predict only 

the ultimate loads carried by the section. The latest model available is the Combined 

Action Softened Truss Model (CASTM), developed by Dr. Gary Greene Jr. in the year 

2006.  This research is aimed to study the existing CASTM and to improve upon the 

model using the latest stress-strain relationships for material components and also to 

incorporate the improved constitutive relationships for strains. 
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CHAPTER - 1 

INTRODUCTION  
  

Majority of the concrete structural components in general are subjected to different 

load combinations. The internal forces acting on any section in general can be 

categorized into four basic actions. These are (a) Flexural moments, (b) Axial loads, 

(c) Shear forces and (d) Torsion. These actions may occur alone or in combination 

with others and they effect the structures in different ways under various conditions. 

Some of these combinations can include significant shear and torsion. The shear and 

bending forces acting maybe lateral (along Z- axis) or vertical (along Y-axis).  The 

action of all the sectional forces are shown in Fig.1.1. The behaviour of RC members 

under combinations of flexure, shear and axial load has been relatively well understood. 

Whereas, the behavior under shear and torsion are more complicated and the detailed 

studies conducted on these are very limited. 

                       

Figure 1.1 Member subjected to combined section forces [Reference. 1] 

 

 



12 | P a g e   I I T H   

 

 

 

1.1. TORSION 

 

Torsion can be a significant action in many of the structural members. Torsion is 

exhibited in: (a) Curved bridges (b) Elevated guide ways and (c) Spandrel beams under 

gravity loads. During the occurrence of a seismic event, the column connectors, beams 

and columns of bridges with outriggers are subjected to cyclic torsion. This can also 

act in combination with other actions such as bending and shear. These conditions 

necessitates the study of effects of torsion and combination of torsion with other actions 

on various structural members. Reliable models should also be generated which can 

predict the member’s capacity and load-deformation response under these actions.   

 

 

 Figure 1.2 Torsion acting on outrigger bents [Reference. 2] 
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1.2. RESEARCH SIGNIFICANCE 
 

The study of torsional response of reinforced concrete structures became significant 

only in the 1960s, when computer analysis made it practical to calculate the torsional 

moments. There are several studies conducted to study the behavior under torsion and 

the earlier models developed could predict only the ultimate loads carried by the 

section.  Such models to predict the capacity under torsional loads were based on skew 

bending approach. Although these models could predict the torsional capacity at 

failure, they were deficient because they were only developed considering equilibrium 

conditions and therefore could not predict the member’s deformation.  Later, truss 

models were developed that could predict the envelope of the load-deformation 

response for members under pure torsion (Mitchell and Collins 1974; Hsu and Mo 

1985a) or combined actions including torsion (Rahal and Collins, 1995; Greene and 

Belarbi 2006).  

 The latest model available is the Combined Action Softened Truss Model 

(CASTM), developed by Dr. Gary Greene Jr. in the year 2006.  This research is aimed 

to study the existing CASTM and to improve upon the model using the latest stress-

strain relationships for material components and also to incorporate the improved 

constitutive relationships for strains.  

  The model is initially developed for a rectangular box section. The section was 

chosen primarily because they are commonly used in bridge decks. Box sections are 

preferred for its high torsional stiffness Moreover, horizontally curved bridges, the box 
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girders also have high ratio of strength to weight and also high ratio of stiffness to 

weight.  

 

  

a)singe cell box section b)multiple cell box section 

 

Figure 1.3 Types of Cross Sections for Bridge Girder   [Reference. 1]      

 

1.3. OBJECTIVES AND SCOPE  

 

The main objective of the study was to improve the existing Combined Action Softened 

Truss Model using latest available constituive models and predict the behavior of 

reinforced concrete members. The developed analytical model should be capable of 

predicting the behavior under any combination of loads including Torsion, Shear, 

Bending and Axial loads. The scope of this work includes (i) To develop combined 

action softened truss model using Matlab, (2) to validate the developed model using 

test data of different experimental studies conducted on reinforced concrete members 

under various loading conditions for both beams and columns.  

1.4. OVERVIEW OF THE THESIS 

 

In chapter 2 of the thesis, the background to the development of CA-STM is given. 

The behavior of concrete under torsion is explained in the first section. Then the 

various models developed prior to CA-STM for the prediction of behavior of RC 
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members under different loading conditions is introduced. The limitations of each of 

the models are also explained. Chapter 3 explains the development of mathematical 

formulations in the model. It also explains the procedure and the algorithm followed 

in the development of the model. Chapter 4 explains the validations done for the 

developed model. It also explains the details of experimental studies conducted on the 

specimens referred to. The conclusions are mentioned in chapter 5. 
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CHAPTER - 2 

LITERATURE REVIEW 

2.1. BACKGROUND TO BEHAVIOR UNDER TORSION  
 

2.1.1. Behaviour  of concrete in Pre -cracking stage 

 

Torsion induces shear stresses and causes warping of non-circular sections. The 

principal tensile and compressive stress trajectories spiral around the beam in 

orthogonal directions at 45° to the beam axis. One such line is shown in Fig 2.1. The 

principal tensile stress acts across the crack shown in Figure. Such a crack would 

develop in a concrete beam when the diagonal tensile stress reaches the tensile strength 

of concrete. Owing to the brittle nature of concrete such a crack would rapidly 

propagate inwards from the outer surface. This effectively destroys the torsional 

resistance of the member which is primarily contributed by the fibers in the outermost 

layers. This is the point corresponding to the ultimate torsional resistance of a plain 

concrete section. The same is considered to be the cracking torque for a reinforced 

concrete section.  Thus before cracking, an RC member behaves as if it were a 

homogeneous member and behaves elastically, and the shear stresses induced by the 

applied torque are resisted by the concrete alone. There are many theories developed 

to predict the cracking torque and twist (Hsu, 1968). 
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         Figure 2.1 Crack propagation of concrete sections subjected to torsion   [Reference. 3] 

 

2.1.2. Behavior  of concrete Post - Cracking:     

                        

The behavior of an RC member under torsion is significantly different before and after 

cracking. There are many theories to predict the effect of various loadings on RC 

members after cracking. These include Skew bending theory, diagonal compression field 

theory and Softened truss models. Each of the theories and their limitations are 

discussed in the following sub sections.  Torsion induces diagonal cracking along the 

member. After diagonal cracks are formed, it divides the member into a series of 

concrete struts. The shear from the applied torque is thereafter resisted by a truss, 

with the concrete in compression and the reinforcement in tension.  Twisting in a non-

circular member under torsion will also cause the initially plane surfaces to warp.  The 

warping induces a bending moment in the concrete struts in addition to the 

compressive forces. These concepts form the basis for the theories explained below. 

2.2. SKEW BENDING THEORY: 

Skew bending theories are used to predict the ultimate loads carried by the member. 

The theory uses equilibrium equations to calculate the loads acting at failure. The 

theory assumes that the cracks are formed in a helical pattern around the surface of 
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the member and create a skew failure surface with the compression zone inclined at an 

angle to the beam’s longitudinal axis. This creates a skewed surface of failure with the 

compression zone inclined at an angle to the longitudinal axis of the beam. The model 

assumes a failure mode from the two failure modes, Mode I and Mode II as shown 

below. 

 

Figure 2.2 Two modes of failure assumed in Skew Bending Theory [Reference. 2] 

 

Internal torsional and bending resistance was calculated by assuming a failure mode 

from the two mentioned above and then equilibrium equations were derived by 

summing moments about the failure surface. After cracking, the applied torque is 

resisted by a field of compressive stresses spiraling around the beam following the crack 

pattern. The resulting compressive forces inclined to the longitudinal axis induces 

tensile stresses in the longitudinal and transverse reinforcement.  

The crack angle along a face of the member was either assumed to be 45° or was 

calculated based on the relative force that could be developed in the longitudinal and 

transverse reinforcement assuming yield stresses in both. The diagonally inclined 
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compressive stresses provides the shear flow around the section that equilibrates the 

applied torque. The major limitations of the skew bending theory are: 

 It neglects the compression softening of concrete under biaxial stresses, tensile 

strength of concrete and also the dowel action in the reinforcement.  

 The warping in the cross section due to torsion is also neglected. 

 The theory considers only equilibrium of forces. Hence it cannot predict the 

deformation response of the member. 

 The theory assumes that the transverse and longitudinal reinforcement has 

yielded and hence this theory cannot be applied to over reinforced sections. 

 

2.3. DIAGONAL COMPRESSION FIELD THEORY (CFT): 

CFT is the first theory to satisfy the equilibrium, strain compatibility and material 

laws. It was developed by Mitchell and Collins in 1974. The model idealizes the 

member’s cross section into a shear panel with the thickness equal to shear flow zone 

(based on Bredt’s thin tube theory to be explained later in next section). The 

equilibrium and compatibility are formulated for the shear panel.  

Compression field theory uses uniaxial stress-strain relationship for concrete. But 

when concrete is subjected to shear stresses, a biaxial tension-compression stress field 

is induced. This reduces the peak compressive stress in concrete. Hence the uniaxial 

stress-strain relationships over estimates the force developed in concrete. To 

compensate for this, CFT neglects the concrete cover and hence reduces the moment 

arm thereby producing less force. Hence the shear flow zone is assumed to be entirely 



21 | P a g e   I I T H   

 

contained inside the enclosed hoop reinforcement. This is based on the observation 

that the concrete at the corners of the cross section is under tension when subjected 

to torsional force. At high torsional forces the concrete will not have sufficient strength 

to prevent spalling. So the outside cross sectional dimensions are taken to the 

centerline of the transverse reinforcement.  

 

 

Figure 2.3. Cross section of shear panel and crack pattern developed under torsion 

[Reference. 1] 

 

The basic concept of CFT is that it uses smeared or average values of stresses and 

strains. This is because the parameters mentioned changes in value along the depth of 

the cross section and hence is averaged and taken as constant across the depth of shear 

panel.      Fig 2.3 shows the model of a shear panel. The angle of diagonal cracks α is 

taken as a variable in CFT.  Limitations of CFT are: 

 It neglects the compression softening of concrete under biaxial stresses. 

 The tensile strength of concrete is neglected and hence can be applied only to 

post- cracking. 
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2.4. SOFTENED TRUSS MODEL (STM) 

 

The model was developed by Hsu and Mo (1985). The basic concepts of Softened Truss 

Model and CFT are the same except for a few additional assumptions in STM for shear 

flow zone. The major difference is that STM incorporated compression softening of 

concrete under biaxial stresses. In STM the average stresses are assumed to occur at 

mid-depth of the shear flow zone as shown in Fig 2.4a. The area and perimeter of cross 

section are also calculated along the centerline of the shear flow zone. The STM defines 

failure at concrete crushing, which is assumed to occur when the principal compressive 

strain at the surface,𝜀𝑑𝑠, reaches -0.0035 mm/mm.  The equations for the compressive 

stress in softened concrete was developed by Vecchio and Collins in 1981 and later Hsu 

(1993) developed the formula for the softening coefficient. These equations shall be 

explained in detail in the forthcoming sections. The model however ignores the tension 

stiffening of concrete subjected to tension. 

                

 Figure 2.4   a) strain distribution          b) Compression softening of concrete 

    [Reference. 1] 

 

In STM and CFT, the strains along the direction of a stress are solely generated by 

that stress.  The strain generated by a stress acting in the normal direction due to the 
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Poisson effect is ignored.  As a result, the truss models described above cannot 

accurately predict the post-peak response.  

 

2.5. MODIFIED COMPRESSION FIELD THEORY (MCFT) 
 

The model was developed by Mitchell and Collins for torsion and then later modified 

by Rahal and Collins (1995) for combined loading. The model is an improvisation of 

the Compression Field Theory. MCFT incorporates the softening behavior of concrete 

when subjected to biaxial stresses and also the tension stiffening of concrete when 

subjected to tensile forces.  

The model idealizes the member to be composed of four wall panels instead of a single 

unit. The applied torsional moments and shear forces acts as shear stresses in each 

panel. It uses the strain compatibility conditions developed for CFT and also the 

equations for curvature of the concrete struts developed by Onsongo and Collins. The 

major difference between CFT and MCFT is the distribution of shear stresses along 

the shear flow zone. According to Bredt’s thin tube theory, the shear stress due to 

torsion is assumed to act uniformly in the shear flow zone. But Rahal and Collins 

modified this statement by assuming a triangular distribution of shear stress caused 

by torsion over the thickness of shear flow zone. The shear stress induced due to shear 

force was assumed to act uniformly over the width of the tube. However they could 

not provide experimental justification for the above mentioned distribution of stresses. 
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2.6. TENSION STIFFENED SOFTENED TRUSS MODEL 

(TS-STM) 

The TS-STM was developed by Gary Greene (2006), University of Missouri. The model 

is based on STM developed at the University of Houston. Here STM is revised to 

include the effect of concrete acting in tension known as tension stiffening. Concrete 

contributes to the tension capacity of the RC section even after cracking, but the 

tensile strength reduces drastically after cracking. The derivations will be explained in 

the next chapter. The strain compatibility equations are adopted from CFT. The 

torsion acting on the member is resisted by the shear stress acting uniformly over the 

shear flow zone as per Bredt’s thin tube theory.  
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CHAPTER-3 

COMBINED ACTION SOFTENED TRUSS MODEL 

3.1. INTRODUCTION  

 The model was proposed to predict the load-deformation behaviour of a pre-

stressed concrete member under torsion combined with bending and shear. The model 

was proposed by Greene (2006) and is an extension of TS-STM which was limited only 

to the case of pure torsion.  The model idealizes a given member as equivalent panels 

subjected to shear and normal stresses. The process of division of a given section into 

equivalent panels are explained in the section 3.2.   The effective thickness of each 

panel is equal to the depth of the shear flow zone in the panel. The definition of shear 

flow zone is explained in section 3.6. Equilibrium and strain compatibility is maintained 

in each panel.  Longitudinal strain compatibility is maintained at the center of the 

member cross section. Warping in the panel induces bending in the concrete struts. 

The formulations developed so far are applicable only to rectangular sections (solid 

and hollow). 

3.2. BASIC ASSUMPTIONS OF THE MODEL 

The following are the assumptions made in the formulations of the CA-STM: 

 The given rectangular member is divided into four walls, each of which can be 

idealized as RC shear panels. 

 The external applied loads on the member are distributed to each of the panels 

as uniform normal and shear stresses. 



27 | P a g e   I I T H   

 

 The truss model is used to model the RC member after cracking. i.e. the cracks 

separate the concrete into a series of diagonal struts that carry the compression 

and longitudinal and transverse reinforcements carry the tension or 

compression. 

 Concrete contributes to the strength in compression in the diagonal struts and 

also tension in the perpendicular direction due to the stiffening action. 

 The member is idealized to have only four shear panels and can be validated 

only for members subjected to bending along one axis combined with shear and 

torsion. 

 Any member under torsion can be modeled as a thin tube as in Bredt’s thin 

tube theory. In case of solid sections the core of the member does not contribute 

to the torsional resistance and hence neglected. 

 The model neglects the dowel action of the reinforcement and assumes a perfect 

bond between concrete and reinforcement. 

 They consider only in plane member stresses. Hence the bending moments and 

torsional moments should be distributed as shear and normal stresses in each 

panel. 
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3.3. MODEL CROSS SECTION  

The cross section of the model is shown in Fig 3.1. The wall thickness of each panel of 

the original section is given by 𝑡𝑖 where ‘i’ is the number of the wall panel. In case of 

a solid section the panel thickness is to be taken as 𝑏/2.  The member is first idealized 

as a thin tube. The thickness of the thin tube is the thickness of the shear flow zone. 

This shall be denoted as  𝑡𝑑 henceforth. The center line of the shear flow zone will 

form a rectangular section with dimensions ℎ0 and 𝑏0. The panels are numbered as 

shown in Fig 3 .1 (c).  

      

(a) Actual cross section (b) Thin tube model     (c) Model cross section for CASTM 

 Figure 3.1 Model cross sectional details  [Reference. 1] 

3.4. BACKGROUND FOR THE DEVELOPMENT OF 

CA-STM 

 

 The behavior of an RC member under torsion differs significantly before and after 

cracking.  Before cracking, the member is assumed to act homogeneous, and the shear 

stresses induced by the applied torque are resisted by the concrete alone.  After 

diagonal cracks are formed the member is divided into a series of concrete struts, and 

hence the shear from the applied torque is resisted by a truss, with the concrete in 

b 
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compression and the reinforcement in tension.  Twisting in a non-circular member 

under torsion will also cause the initially plane surfaces to warp.  

RC members before cracking is assumed as a homogeneous member. It is assumed to 

either behave elastically or plastically.  Many theories were developed to predict the 

cracking torque and twist, (Bredt 1896; Hsu 1968).  After cracking, the behavior was 

described by the truss models (Mitchell and Collins 1974; Hsu and Mo 1985a).  Truss 

models assume that the wall of a member can be analyzed as a shear panel with the 

addition of a bending moment in the concrete struts due to warping. Therefore, an 

important part of understanding models for RC members under torsion is the modeling 

of RC panels under shear. 

The analysis of shear panels includes the force equilibrium, strain compatibility and 

stress-strain relationships of concrete and reinforcement. The stress-strain relationship 

of concrete includes: 

 Softening of concrete when subjected to biaxial tension compression field. i.e. 

concrete under biaxial tension and compression has stresses and strains significantly 

lower than those under uniaxial compression. 

 Stiffening of concrete when subjected to tensile forces. The tension-stiffened 

response is related to the stress-strain response of concrete acting in tension. 
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3.5. BIAXIAL STRESS-STRAIN RELATIONSHIPS FOR 

CONCRETE 

3.5.1. Compression softening  

 When a normal strength plain concrete is subjected to uniaxial compression, the 

simple parabolic model for concrete can be used. But the same cannot be used when 

the member is subjected to biaxial compression-tension stresses. In such cases the 

parabolic stress-strain response usually over estimates the capacity of the section. The 

compression softening of concrete was discovered by Robinson and Demorieux in 1972. 

Later many models were developed to accommodate these changes in the behavior of 

concrete. When RC panels are loaded under shear, it is subjected to biaxial tension-

compression stress field. The compressive stress-strain response is different. Hence the 

parabolic stress-strain curve developed under uniaxial compression cannot be used. 

The model developed by Robinson and Demorieux scaled down the compressive stress 

with increase in strain. Their stress-strain relation is given by equation (2). The factors 

effecting the softening behavior could not be predicted by Robinson and Demorieux.  

The understanding of the behavior was studied in detail only when large scale testing 

of shear panels was made possible. The mathematical formulation for the various 

parameters controlling the softening was developed by Vecchio and Collins (1982) and 

Belarbi and Hsu (1991). 
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    Figure 3.2 Softened stress-strain relationship for concrete in compression [Reference. 1] 

 

The compressive stress given by parabolic model and softened model are given by 

equations (1) and (2). 

 

𝜎𝑑 = 𝑓𝑐
′ [2 (

𝜀𝑑

𝜀0
) − (

𝜀𝑑

𝜀0
)

2

]                                                                                (1) 

    𝜎𝑑 = 𝑘1𝜎𝑝 [2 (
𝜀𝑑

𝜀0
) − (

𝜀𝑑

𝜀0
)

2

]                                                     (2) 

 

In the above equations, 𝑓𝑐
′ is the compressive strength of concrete; 𝜀0 is the compressive 

strain at which peak compressive stress occurs; 𝜎𝑝 is the peak stress in the softened 

model. 𝜎𝑝 can be expressed as a function of  𝑓𝑐
′ and a softening coefficient, 𝜁.  𝑘1 is a 

parameter that will be discussed in section 3.9.2. The expression is given by equation 

(3). The earliest expressions for  𝜁  were proposed by Vecchio and Collins (1982) and 

Belarbi and Hsu (1991). The empirical relation given by Belarbi and Hsu has been 

adopted for the research.  It is given by equation (4). 

  

     𝜎𝑝 =      𝜁𝑓𝑐
′         (3) 

   𝜁  =
0.9

√1+600𝜀𝑟
        (4) 

'

cf

d

0

Non-

Softened  

Softened  
d
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3.5.2. Tension Stiffening 

Tension stiffened response is related to the stress-strain response of concrete loaded 

under tension. Early models based on Modified Compression Field Theory (MCFT) 

and Softened Truss Model (STM) neglects the tensile strength of concrete since they 

only have very small effect on the member’s peak strength. Later it was observed that 

the tensile response of concrete has a significant effect on the member’s load 

deformation response and hence cannot be neglected. The tension stiffened response of 

concrete is as shown below. 

 

Figure 3.3 Average stress-strain response of concrete in tension [Reference. 1] 

 

In case of a plain concrete member, the member behaves elastically when loaded under 

tension until the stress exceeds the tensile strength of concrete. After this point the 

concrete fails and the nature of failure is brittle. This is because the concrete cannot 

transfer tensile stresses across the cracks. The response in case of reinforced concrete 

is different after the stress exceeds the tensile strength of concrete. Once the cracks are 

formed perpendicular to the reinforcement, the steel carries the tensile stress. However, 

the stresses are still carried by concrete in between the cracks along with the 

reinforcement even though the contribution is very small. Thus the concrete 

cr
r

crf

r



33 | P a g e   I I T H   

 

surrounding the reinforcement will add to the stiffness of the member. This 

phenomenon is known as tension stiffening. Therefore, it can be seen that the stress in 

reinforcement will be a maximum at the cracks and reduces to a minimum between 

the cracks. Similarly in concrete, the stresses are zero at the point of cracking and 

maximum in between the cracks. 

 

3.5.2(a). Pre-Cracking: Before cracking, concrete can be assumed to obey Hooke’s 

Law. Hence the ascending portion assumes a linear relationship and is given by 

equation (5). Here 𝜎𝑟 and 𝜀𝑟 are the average tensile stress and strain in concrete 

respectively. 𝐸𝑐 is the modulus of elasticity of non-softened concrete. The equation is 

valid till 𝜎𝑟 becomes equal to 𝑓𝑐𝑟. The expression for 𝑓𝑐𝑟 given by equation (6) was 

developed by Gary Greene(2006). In the expression 𝐴𝑔 is the gross area of the cross 

section but it does not include the void of the cross section; 𝐴𝑐𝑝 is the total area inside 

the perimeter of the section; C is a constant whose value is derived to be 0.5 based on 

regression analysis. The sectional details are shown in Fig 3.4.  

 

𝜎𝑟 = 𝐸𝑐𝜀𝑟                                                (5) 

𝑓𝑐𝑟 = 𝐶
𝐴𝑔

𝐴𝑐𝑝
√𝑓𝑐

′       (6) 

𝐴𝑐𝑝 = 𝑏ℎ       (6a) 

𝐴𝑔 = (𝑏 − 𝑡4)𝑡1 + (ℎ − 𝑡1)𝑡2 + (𝑏 − 𝑡2)𝑡3 + (ℎ − 𝑡3)𝑡4   (6b)  
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Figure 3.4. Sectional details for the calculation of cracking stress of concrete 

[Reference. 1] 

 

3.5.2(b). Post–Cracking: The research uses the model developed by Greene (2006) 

to predict the post cracking behavior of RC members. He developed linear, parabolic 

and exponential relations to calculate stress-strain response after cracking. The 

parabolic expression is used because it provides a smooth transition between Softened 

Truss Model (STM) and Combined Action Softened Truss Model (CASTM). The 

expression is given by equation (7). In the equation for βr, εcr0is the strain at which 

the tensile stress becomes zero. This value is taken to be 0.007. The variation is shown 

by Fig 3.5.  ε𝑐𝑟 is the cracking strain of concrete which is approximately assumed to 

be 0.00014. 

σr = fcr(1 − 2β + β2)       (7) 

where   

βr =
εr−εcr

εcr0−ε𝑐𝑟
        (8) 

 

gA

 (Includes Void Area)cpA

 is perimeter around cp cpp A
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Figure 3.5 Normalized stress-tensile strain variation of concrete [Reference. 1] 

 

3.6. STRESS-STRAIN RELATIONSHIPS OF 

REINFORCEMENT 

 

The relationship for bare reinforcement is used in the CA-STM. An elastic-perfectly 

plastic model is used for predictions. 𝐸𝑠 is the modulus of elasticity of steel, 𝑓𝑠 is the 

stress acting on the reinforcement and 𝑓𝑠𝑦 is the yield stress of the reinforcement and 

𝜀𝑠 is the strain developed in the steel. The following equations are used for both 

longitudinal and transverse reinforcements. 

 

 

For  𝜀𝑠 < 0.002  𝑓𝑠 = 𝐸𝑠𝜀𝑠       (9) 

 

For 𝜀𝑠 ≥ 0.002  𝑓𝑠 = 𝑓𝑠𝑦              (10) 
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3.7. BREDT’S THIN TUBE THEORY 

When torsion acts on an RC member, it induces shear stress within the member. 

Bredt’s thin tube theory is used to model the flow of shear stress over the cross section 

of an RC member when subjected to torsion. The main concept is to assume that the 

shear flows around the outside of the cross section. Hence the entire cross section of 

the member is idealized as a thin tube. The shear flow is assumed to be constant within 

the thin tube.  

 

 

Figure 3.6 Representation of a thin tube under Torsion 

 

In Bredt’s thin tube theory, the constant shear stress 𝜏, can be converted to a shear 

flow, 𝑞, by multiplying by the tube’s thickness,ℎ (i.e. 𝑞 = 𝜏 × ℎ).  The shear stress 

circulating around the section develops an internal torque, T, given by Equation 11, 

where 𝑑𝑡 is the length of a wall element and 𝑟0 is the moment arm from the centerline 

of the shear flow to the center of the twist.  The product 𝑟0𝑑𝑡 is twice the area of the 

shaded triangle as shown in Fig 3.6.  Integrating around the entire tube yields Equation 

[12], where 𝐴0 is the area inside the shear flow centerline. Combining these two 

Centerline of Shear Flow: 

Perimeter is 0p  and enclosed area is 

0A  0r

Tdt

dt

 q dt
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equations yields Equation [13], a simple expression for the torque developed in a thin 

tube.  An approximate thickness of the thin tube, or shear flow zone, is given by 

Equation [14]. 

𝑇 = 𝑞 ∫ 𝑟0𝑑𝑡      (11) 

     

∫ 𝑟0𝑑𝑡 = 2𝐴0      (12) 

Therefore, 

𝑇 = 2𝐴0𝑞       (13) 

𝑡𝑑 =
3

4

𝐴0

𝑝0
       (14) 

3.8. DISTRIBUTION OF APPLIED LOADS 

The various forces acting in an RC member is shown in Fig 3.7. Since the model 

assumes that the member is subjected only to in-plane forces, the torsional and bending 

moments are converted into equivalent shear and normal stresses respectively. The 

stresses acts over the area of the thin tube within the section. The thickness over which 

the shear stresses act is known as the shear flow zone and is represented by 𝑡𝑑.  

 

Figure 3.7. Generic Forces acting on the RC Section 
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Y-axis 

Z-axis 

X-

axis 

Nx 

My 

Vz 



38 | P a g e   I I T H   

 

As shown in Fig 3.7, the torsion applied induces a positive shear flow ,𝑞 (𝑞 =
𝑇𝑥

2𝐴0
). 

The flow is shown in Fig 3.8 (a). The shear stress due to the shear force flows parallel 

to the applied force. i.e. 𝑉𝑦 (𝑞𝑦 =
𝑉𝑦

2ℎ0
) induces shear flow in panels 1 and 3. Similarly 

𝑉𝑧 (𝑞𝑧 =
𝑉𝑧

2𝑏0
) induces shear in panels 2 and 4. Since the shear due to both shear and 

torsion are assumed to be uniform over the shear flow zone, they can be summed up 

to get the net stresses acting on each panel. The net forces are shown in Fig 3.8 (b). 

The shear stress can be calculated by equation (19). 

 

  

(a) Shear stress due to torsion    (b) Net shear acting on each panel             

Figure 3.8 Distribution of Shear force and Torsional moment in each panel 

[Reference. 1] 

𝑞1 =
𝑇𝑥

2𝐴0
+

𝑉𝑦

2ℎ0
    (15) 

𝑞2 =
𝑇𝑥

2𝐴0
+

𝑉𝑧

2𝑏0
    (16) 

𝑞3 =
𝑇𝑥

2𝐴0
−

𝑉𝑦

2ℎ0
    (17) 

𝑞4 =
𝑇𝑥

2𝐴0
−

𝑉𝑧

2𝑏0
    (18) 
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𝜏𝐿𝑇,𝑖 =
𝑞𝑖

𝑡𝑑,𝑖
     (19) 

The applied bending moments and normal forces are distributed as normal stresses 

(𝜎𝐿) in the shear panels along the longitudinal axis of the member. The stresses are 

calculated such that the resultant normal force will generate a bending moment about 

the centerline of the member. The axial force can be derived by summing up the 

resultant forces on each panel. Equations (20), (21) and (22) gives the expressions for 

bending moments and axial force in terms of normal stress 𝜎𝐿,𝑖 of each panel. 

 

Figure 3.9 Distribution of bending moments and normal force in panels 2 and 4 [Ref:1] 

𝑀𝑦 = [𝜎𝐿,3(𝑡𝑑,3ℎ0) − 𝜎𝐿,1(𝑡𝑑,1ℎ0)](
𝑏0

2
)    (20) 

𝑀𝑧 = [𝜎𝐿,4(𝑡𝑑,4𝑏0) − 𝜎𝐿,2(𝑡𝑑,2𝑏0)](
ℎ0

2
)    (21) 

𝑁𝑥 = 𝜎𝐿,1(𝑡𝑑,1ℎ0) + 𝜎𝐿,2(𝑡𝑑,2𝑏0)+𝜎𝐿,3(𝑡𝑑,3ℎ0)+𝜎𝐿,4(𝑡𝑑,4𝑏0) (22) 

 

3.9. EQUILIBRIUM AND STRAIN COMPATIBILITY  

Equilibrium and strain compatibility is maintained in each panel. The longitudinal 

direction in the panel (𝐿-axis) is aligned to be parallel to the centerline of the member, 

b 

b0 / 2 

b0 / 2 

Resultan

t force 

 

  

 

Normal 

stress 

,2 2L A

,4 4L A

,2L

,4L

,2dt

,2dt

Vertical 

Section 

Cut  

Longitudin

al 

Centerline  



40 | P a g e   I I T H   

 

and the transverse direction of the panel (𝑇-axis) is aligned to be perpendicular to the 

member’s centerline.  The proposed model assumes a wall panel has an orthogonal grid 

of reinforcement in 𝐿  and 𝑇 directions and has cracks at an angle 𝛼 to the 𝐿 -axis. .  

The cracks are normal to the principal tensile stress, and the principal tensile and 

compressive stresses act in the 𝑑 and 𝑟 directions.   

The alignment of the axes are shown in Fig 3.10.  The cracks divide the panel into a 

series of concrete struts, which allows the panel to act as a truss such that the concrete 

is under compression and the reinforcement is under tension or compression. The model 

includes three equilibrium equations and the three compatibility equations for an RC 

panel under in-plane membrane stresses.  The Equilibrium and strain compatibility 

equations are given in the equations (23) to (28). 𝐴𝐿,𝑖 is the area of longitudinal 

reinforcement in each panel and 𝐴𝑇 is the transverse reinforcement. 

 

Figure 3.10 RC membrane element with the coordinate axes [Reference. 3] 

𝜎𝐿,𝑖 = 𝜎𝑑,𝑖𝑐𝑜𝑠2𝛼𝑖 + 𝜎𝑟,𝑖𝑠𝑖𝑛2𝛼𝑖 + 𝑓𝐿,𝑖 (
𝐴𝐿,𝑖

𝑡𝑑,𝑖𝑝0
)    (23) 

𝜎𝑇,𝑖 = 𝜎𝑑,𝑖𝑠𝑖𝑛2𝛼𝑖 + 𝜎𝑟,𝑖𝑐𝑜𝑠2𝛼𝑖 + 𝑓𝑇,𝑖 (
𝐴𝑇

𝑡𝑑,𝑖𝑠
)    (24) 
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𝜏𝐿𝑇,𝑖 =  (−𝜎𝑑,𝑖 + 𝜎𝑟,𝑖)𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖 . 𝑠𝑖𝑔𝑛(𝑞𝑖)    (25) 

𝛾𝐿𝑇,𝑖 = 2(−𝜀𝑑,𝑖 + 𝜀𝑟,𝑖)𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖 . 𝑠𝑖𝑔𝑛(𝑞𝑖)    (26) 

𝜀𝐿,𝑖 = 𝜀𝑑,𝑖𝑐𝑜𝑠2𝛼𝑖 +  𝜀𝑟,𝑖𝑠𝑖𝑛2𝛼𝑖      (27) 

𝜀𝑇,𝑖 = 𝜀𝑟,𝑖+𝜀𝑑,𝑖-𝜀𝐿,𝑖        (28)  

3.10. STRESS-STRAIN DISTRIBUTION IN  CONCRETE 

3.10.1.  Strain Distr ibution :  

The model assumes that the shear stress (𝜏𝑙𝑡) due to shear force and torsion acts 

uniformly over the thickness of the shear flow zone given by Bredt’s thin tube theory. 

The strain distribution is as given below in Fig 3.11. The principal compressive strain 

at the exterior surface of concrete is given by 𝜀𝑑𝑠,𝑖  and the principal compressive 

strain at half the depth of 𝑡𝑑 is given by 𝜀𝑑,𝑖 in the given figure.  

 

(a) 𝑡𝑑 < 𝑡𝑖   (b)𝑡𝑑 = 𝑡𝑖  (c) average stress distribution 

Figure 3.11. Shear Stress and strain distribution in concrete over the shear flow zone  

[Reference. 1] 
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When 𝑡𝑑 < 𝑡𝑖 as in Fig 3.11 (a), the compressive strain, 𝜀𝑎will reduce to zero at the 

depth of shear flow zone. But when the depth of shear flow zone is equal to the 

thickness of the wall, there will be the presence of a compressive strain at 𝑡𝑑. 𝜀𝑑,𝑖 is 

calculated as the average of 𝜀𝑎 and 𝜀𝑑𝑠,𝑖. Equation (30) gives the expression to 

calculate the curvature in each panel. 

𝜀𝑑,𝑖 =
(𝜀𝑑𝑠,𝑖+𝜀𝑎,𝑖)

2
       (29) 

𝛹𝑖 =
−(𝜀𝑑𝑠,𝑖−𝜀𝑎,𝑖)

𝑡𝑑,𝑖
       (30) 

3.10.2. Stress Distr ibution: 

The model uses the concept of smeared stresses or average stresses similar to STM. 

The stress distribution in the concrete strut is as shown in Fig 3.11 (c). The average 

stress is calculated as per equation (2), where 𝑘1 is the ratio of average stress to peak 

stress in the respective panels considered. The equations for 𝑘1 are given by (31a) and 

(31b). 

For 𝜀𝑎,𝑖< 𝜀𝑑𝑠,𝑖  

𝑘1,𝑖 = [
𝜀𝑑𝑠,𝑖

𝜀0
(1 −

𝜀𝑑𝑠,𝑖

3𝜀0
) −

𝜀𝑎,𝑖
2

𝜀𝑑𝑠,𝑖𝜀0
(1 −

𝜀𝑎,𝑖

3𝜀0
)] (

𝜀𝑑𝑠,𝑖

𝜀𝑑𝑠,𝑖−𝜀𝑎,𝑖
) (31a) 

For 𝜀𝑎,𝑖= 𝜀𝑑𝑠,𝑖  

𝑘1,𝑖 =
(2𝜀𝑑𝑠,𝑖𝜀0−𝜀𝑑𝑠

2 )

𝜀0
2       (31b) 
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3.11. STRAIN COMPATIBILITY AMONG PANELS 

The strain compatibility in panels are maintained by several conditions. The 

longitudinal strains are related to the strain along the center line of the member. The 

panels develop longitudinal and transverse curvature and these in addition to the 

member’s twist, contributes to the total curvature of each panel.  

3.11.1. Longitudinal and Transverse curvature in panels:  

 The normal strains in the longitudinal and transverse directions of each panel, 
,L i  

and 
,T i , are calculated using Equations (27) and (28).  The difference in longitudinal 

strain between Panels 1 and 3 causes the curvature about member’s y-axis which is 

given by 𝝋𝑳,𝟏𝟑.  Also, the difference in transverse strain between the these two panels 

causes a transverse curvature, 𝝋𝑻,𝟏𝟑 , about the member’s z -axis. Fig 3.12 shows these 

curvatures. The difference between the longitudinal and transverse strain in Panels 2 

and 4 causes the curvatures 𝛗𝐋,𝟐𝟒  and 𝝋𝑻,𝟐𝟒. The equations for transverse curvatures 

are given by equations (32) and (33). The longitudinal curvatures can also be calculated 

similarly. 

 

Figure 3.12 longitudinal and transverse curvatures in panels 1 and 3 [Reference. 1] 
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1 
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𝜑𝑇,13 =
(𝜀𝑇,1−𝜀𝑇,3)

𝑏0
       (32) 

      

𝜑𝑇,24 =
(𝜀𝑇,2−𝜀𝑇,4)

𝑏0
       (33) 

 

3.11.2. Longitudinal strain compatibility among panels:  

 The section is idealized as a thin tube and the strain at the center of the tube is given 

by 𝜀𝐶𝐿. The longitudinal strains in each panel are then correlated with the center line 

strain and the longitudinal curvatures. The longitudinal strain is calculated long the 

center line of each panel. 

 

Figure 3.13 Longitudinal strain compatibility [Ref. 1] 

𝜀𝐿,1 = 𝜀𝐶𝐿 + 𝜑𝐿,13 (
𝑏0

2
)       (34a) 

𝜀𝐿,2 = 𝜀𝐶𝐿 + 𝜑𝐿,24 (
ℎ0

2
)       (34b)  

𝜀𝐿,3 = 𝜀𝐶𝐿 − 𝜑𝐿,13 (
𝑏0

2
)       (34c) 

𝜀𝐿,4 = 𝜀𝐶𝐿 − 𝜑𝐿,24 (
ℎ0

2
)       (34d) 
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3.11.3. Twist on concrete strut: 

For a closed section, the total warping displacement around the perimeter must be 

zero. The expression for twist can be derived by relating it to the shear strain in each 

panel. The shear strain in a panel is taken to be a constant. Equation (35) gives the 

expression for twist under combined loading in a rectangular section 

𝜃 = [(𝛾𝐿𝑇,1 + 𝛾𝐿𝑇,3)ℎ0 + (𝛾𝐿𝑇,2 + 𝛾𝐿𝑇,4)𝑏0]
1

2𝐴0
    (35) 

3.11.4. Curvature of concrete strut: 

The compressive strut is inclined to the direction of principal compressive stress at an 

angle equal to 𝛼. The curvature in a compressive strut depends on curvature along 

longitudinal and transverse directions, 𝜑𝐿,𝑖 and  𝜑𝑇,𝑖  as well as the angle of twist 𝜃, of 

the member given by equation (35).  The curvature in the wall panel and concrete 

strut is shown in Fig 3.14.  In a rectangular member, the exterior surface of the wall 

is a plane surface before twisting.   As a torsional moment is applied, the wall becomes 

a hyperbolic surface.  The warping causes a maximum curvature in the wall equal to 

the member’s unit twist,  , along a plane inclined 45° from the member’s longitudinal 

axis as shown in Fig 3.14.  In Panel 1, the transverse curvature will be a maximum 

along the side of the panel and the longitudinal curvature will be a maximum along 

the top of the panel as shown in Fig 3.14.  
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Figure 3.14 curvature in concrete strut [1] 

 The curvature due to, 𝜑𝐿,𝑖, 𝜑𝑇,𝑖, and   can be calculated along any inclined plane 

using Mohr’s circle. The equation for curvature is given by equation (36). 

𝛹1 = 𝜃𝑠𝑖𝑛2𝛼1 − (𝜑𝐿,13)𝑐𝑜𝑠2𝛼1 − (𝜑𝑇,13)𝑠𝑖𝑛2𝛼1    (36a) 

𝛹2 = 𝜃𝑠𝑖𝑛2𝛼2 − (𝜑𝐿,24)𝑐𝑜𝑠2𝛼2 − (𝜑𝑇,24)𝑠𝑖𝑛2𝛼2    (36b) 

𝛹3 = 𝜃𝑠𝑖𝑛2𝛼3 + (𝜑𝐿,13)𝑐𝑜𝑠2𝛼3 + (𝜑𝑇,13)𝑠𝑖𝑛2𝛼3    (36c) 

𝛹4 = 𝜃𝑠𝑖𝑛2𝛼4 + (𝜑𝐿,24)𝑐𝑜𝑠2𝛼4 + (𝜑𝑇,24)𝑠𝑖𝑛2𝛼4    (36d) 

3.12. SHEAR FLOW ZONE INDEX (𝒁𝒊) 

 The geometry of the shear flow zone is described using the variables 

𝜀𝑑𝑠,𝑖, 𝜀𝑎,𝑖, 𝛹𝑖 , 𝜀𝑑,𝑖, 𝑡𝑑,𝑖  and 𝑡𝑖.   The variables 
,d it  and 

,a i  can be defined by the depth 

into the wall (for dt t ) or the distance along the inside surface (for dt t ).  Point a  

is defined as the depth into the member where the principal compressive strain is zero 

when dt t  or the point where the strain profile intersects the inside surface of the wall 

for dt t  as shown in Fig. 3.15.  An index iz , is introduced to describe the location of 

a .  The variables 
,d it  and 

,a i  can then be expressed in terms of iz . 

,13T


45

Outside Face of 

Panel 1 

,13L
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Figure 3.15 shear flow zone index with variation of strain distribution [Reference. 1] 

The index iz  can vary from 0 to 300.  For Case I, dt t  and iz  varies from 0 to 200, 

and the distance from the outside surface to point a  is proportional to the value of iz

.  For this case, 
,d it  is proportional to iz  and 

,a i  equals zero.  A value of 200 for iz  

(Case II) indicates that dt t  and 
,a i  equals zero.  For Case III, a  is located along the 

inside surface and dt t .  The index iz  varies from 200 to 300, and 
,a i  increases as a 

linear function of iz  until 
, ,a i ds i  Case IV occurs when iz  equals 300 and 

, ,a i ds i   

indicating a uniform strain in the compressive strut.  Expressions for 
,d it  and 

,a i  are 

given by Equations (37) and (38), and Fig 3.15 illustrates the four cases for a  as 

described previously.   

For 0 < 𝑧𝑖 ≤ 200 

0iz 

 Varies

0

d

a

t

 

 (Case II)a

200iz 

300iz 200iz 

 (Case I)a
 (Case III)a

 (Case IV)a

 Varies

d

a

t t





Compressive Strain 

Distribution 

Inside Surface of 

Panel 
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𝑡𝑑,𝑖 = 𝑧𝑖 (
𝑡𝑖

200
)      (37a) 

𝜀𝑎,𝑖 = 0       (38a) 

For 200 < 𝑧𝑖 ≤ 300 

𝑡𝑑,𝑖 = 𝑡𝑖       (37b) 

𝜀𝑎,𝑖 = (𝑧𝑖 − 200) (
𝜀𝑑𝑠,𝑖

100
)     (38b) 

 

3.13. DISTRIBUTION OF LONGITUDINAL REINFORCEMENT 

An important consideration in idealizing the walls of a member as panels is the 

method used to distribute the longitudinal reinforcement.   

 Symmetric reinforcement: In a member where the longitudinal reinforcement 

is symmetrically arranged around the cross section, the total area of 

reinforcement is distributed equally into each wall panel.   

  Asymmetric reinforcement: The method used to distribute the longitudinal 

reinforcement in a member with an asymmetric arrangement is more complex.  A 

portion of the total cross-sectional area of the longitudinal reinforcement must be 

distributed to each wall panel.  The method developed was to distribute equal areas 

to each panel. The method was chosen for the CA-STM because equal area distribution 

is inherently used in the TS-STM for the case of a member under pure torsion with 

symmetrical reinforcement.  By using the equal area method in the CA-STM, the 

predictions of load-deformation behavior made by the TS-STM and CA-STM should 
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be similar for this case. Fig 3.16 shows the idealization for distribution of longitudinal 

reinforcement.  

 

Figure 3.16 Idealization of RC section for distribution of longitudinal reinforcement 

[Reference. 1] 

 Assuming uniform stress in reinforcement, the bottom wall has more reinforcement and 

can generate more force in its longitudinal steel than in the top wall with less reinforcement, 

as shown in Fig 3.17. 
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Figure 3.17 Equal force assumption for distribution of longitudinal reinforcement 

[Reference. 1] 

 

The force in the two side walls would then be equal to the average of the force in the 

top and bottom walls.  Based on the uniform stress concept, the average of the 

reinforcement in the top and bottom walls, which is equal to one-quarter of the total 

area of longitudinal reinforcement, would need to be distributed to each side wall.  The 

reinforcement in the bottom and top walls is then one-quarter of the total area of 

longitudinal reinforcement, plus or minus half the difference in reinforcement, 

respectively. The corner reinforcement is distributed into the middle regions of the four 

panels and are given by the equations 39(a) to 39(d). Then the middle reinforcements 

are again distributed to the four panels as given by equations 40(a) to 40(d). 

 

𝐴′𝐿,1 =
1

2
𝐴"𝐿,1 +

1

2
(𝐴"𝐿,12 + 𝐴"𝐿,14)     39(a)  

𝐴′𝐿,2 =
1

2
𝐴"𝐿,2 +

1

2
(𝐴"𝐿,12 + 𝐴"𝐿,23)     39(b)  

𝐴′𝐿,3 =
1

2
𝐴"𝐿,3 +

1

2
(𝐴"𝐿,23 + 𝐴"𝐿,34)     39(c)  
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𝐴′𝐿,4 =
1

2
𝐴"𝐿,4 +

1

2
(𝐴"𝐿,14 + 𝐴"𝐿,34)     39(d) 

𝐴𝐿,1 =  
𝐴𝐿

4
+

1

2
(𝐴′𝐿,1 − 𝐴′𝐿,3)      40(a) 

𝐴𝐿,2 =  
𝐴𝐿

4
+

1

2
(𝐴′𝐿,2 − 𝐴′𝐿,4)      40(b) 

𝐴𝐿,3 =  
𝐴𝐿

4
+

1

2
(𝐴′𝐿,3 − 𝐴′𝐿,1)      40(c) 

𝐴𝐿,4 =  
𝐴𝐿

4
+

1

2
(𝐴′𝐿,4 − 𝐴′𝐿,2)      40(d) 

3.14. ADDITIONAL EQUATIONS 

The angle αi is eliminated from the equilibrium equations by expressing it in terms 

of 𝜀𝑑,𝑖, 𝜀𝑟,𝑖, 𝜀𝐿,𝑖 and  𝜀𝑇,𝑖 in each panel. This is given by equations (41) and (42). 

The direction of spirals caused by positive Tx  is considered as the positive direction 

of αi.  

 

𝑐𝑜𝑠2𝛼𝑖 =
𝜀𝑟,𝑖−𝜀𝐿,𝑖

𝜀𝑟,𝑖−𝜀𝑑,𝑖
      (41) 

𝑠𝑖𝑛2𝛼𝑖 =
𝜺𝐿,𝒊−𝜺𝑑,𝒊

𝜺𝑟,𝒊−𝜺𝑑,𝒊
      (42) 

 

The variables describing the shear flow zone are A0, p0, b0 and h0 and are given by 

equations (43),(44), (45) and (46). 

𝐴0 = 𝑏0ℎ0       (43) 

𝑃0 = 2(𝑏0 + ℎ0)      (44) 

𝑏0= 𝑏 − (
𝑡𝑑,1+𝑡𝑑,3

2
)      (45) 

ℎ0 =  ℎ − (
𝑡𝑑,2+𝑡𝑑,4

2
)      (46) 
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3.15. METHOD OF SOLUTION OF CA-STM 

The total number of unknown variables in the equations derived for the CA-STM 

exceeded the total number of CA-STM equations by six.  This means that six variables 

needed to be selected and then the remaining variables could be solved using the 

equations of the CA-STM.  For example, a purely “force-controlled” procedure could 

be used where all six possible loads could be specified (𝑻𝒙, 𝑽𝒚, 𝑽𝒛, 𝑴𝒚,  𝑴𝒛 and 𝑵𝒙).  

However, this approach could cause difficulties in finding a solution if the selected 

loads were greater than the peak loads that could be predicted by the CA-STM.  

Another problem in using a force-controlled procedure is that two possible solutions 

could be found for the same selected loads: one pre-peak and one post-peak.  

Alternately, a purely “displacement-controlled” solution could be used and six variables 

relating to strain or displacement could be specified.  However, the loads predicted by 

this method would be arbitrary and would make using and validating the model 

difficult. 

The method of solution developed for the CA-STM uses a combination of the 

force-controlled and displacement-controlled methods described previously and allows 

the model to calculate predicted load-deformation responses under specified ratios of 

torque to bending, shear, and axial load.  
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The following algorithm solves the system of equations comprising the CA-STM 

for one point on the load-deformation response curve.  The entire response from zero 

torque to the peak torque can be calculated by varying 𝜺𝒅𝒔,𝒊 from near zero to a 

limiting value that causes the peak torque, or that causes 𝜺𝒅𝒔,𝒊 to exceed 0.0035 

mm/mm, whichever is smaller.  An 𝜺𝒅𝒔,𝒊 value of 0.0035 mm/mm or greater is defined 

as the ultimate concrete compression strain.   

 

3.15.1. SOLUTION PROCEDURE 

Given:  

 Cross sectional details: height (h), breadth (b) and thickness of each wall 

(𝑡𝑖). 

 Reinforcement details: Area of longitudinal reinforcement (𝐴𝐿,𝑖), area of 

transverse reinforcement (𝐴𝑇) and spacing of transverse reinforcement (s). 

 Reinforcement mater ial properties: 𝑓𝐿𝑦, 𝑓𝑇𝑦 and 𝐸𝑠. 

 Concrete mater ial properties: 𝑓′𝑐, 𝜀0, 𝜀𝑐𝑟 and 𝜀𝑐𝑟0. 

Initial Calculations: 

The calculations of those variables that are constant throughout the process are made 

in this step of the solution procedure. It includes the cross sectional calculations (𝐴𝑐𝑝, 

𝐴𝑔) and calculating the concrete cracking stress (𝑓𝑐𝑟 , 𝐸𝑐) and yield strains (𝜀𝐿𝑦 , 𝜀𝑇𝑦) 

using equations (6a), (6b), (6), (5) and (10). 

 

 



54 | P a g e   I I T H   

 

Solution Algor ithm: 

i. Select a value of 𝜀𝑑𝑠,𝑖 and the ratios of  𝑀 𝑇𝑥
⁄ , 

 𝑉
𝑇𝑥

⁄  𝑎𝑛𝑑 
 𝑁

𝑇𝑥
⁄ . 

ii. Assume values of 𝜀𝐶𝐿, 𝜑𝐿,13 and  𝜑𝐿,24. 

iii. Assume values of  𝜀𝑑𝑠,2, 𝜀𝑑𝑠,3, 𝜀𝑑𝑠,4 and  𝑇𝑥. Then calculate the forces and 

moments from the assumed ratios in step (i).  

iv. Assume the value of  𝜃. 

v. Assume values of 𝜀𝑟,𝑖 𝑎𝑛𝑑 𝑧𝑖. 

vi. Calculate the shear flow zone parameters (A0, p0, b0 and h0) using equations 

(43), (44),  (45),  and (46) resp., Stresses in reinforced concrete (𝜎𝑑,𝑖, 𝜎𝑝,𝑖, 𝑘1, 

𝜁) using equations (2), (3), (31a), (31b) and (4) resp., strains 𝜀𝑎,𝑖, 𝜀𝑑,𝑖, 𝜀𝐿,𝑖 and 

𝜀𝑇,𝑖 using equations (38a), (38b), (29), (34a), (34b), (34c), (38a), and (28). Then 

calculate 𝜎𝑇,𝑖 using equation (24). Then calculate 𝛹𝑖 from equations (30) and 

(36a), (36b), (36c) and (36d). 

vii. Compare 𝛹𝑖 obtained from (30) and (36). If the difference is not within the 

tolerable limit, adjust the value of 𝑧𝑖 and repeat the steps v to vii until 

convergence is obtained. If the value of  𝜎𝑇,𝑖 is not close to zero within a 

tolerable limit, modify the value of 𝜀𝑟,𝑖 and repeat the steps v through vii 

until convergence is obtained. 

viii. Calculate 𝛾𝐿𝑇,𝑖 and 𝜃 from Equations (26) and (35).  If the difference between 

the assumed and calculated value of 𝜃 is not within a tolerable limit, then adjust 

the assumed value and repeat Steps iv through viii until convergence is 

obtained. 
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ix. Calculate 𝑞𝑖 from Equations (15), (16), (17) and (18) and 𝜏𝐿𝑇,𝑖 from Equations 

(19) and (25).  If the difference between the two values for 𝜏𝐿𝑇,𝑖 is not within a 

tolerable limit for Panels 2, 3, and 4, then adjust the assumed values of  and 

𝜀𝑑𝑠,2, 𝜀𝑑𝑠,3 and 𝜀𝑑𝑠,4 and repeat Steps iii through ix until convergence is obtained.  

Also, if the difference between the two values for 𝜏𝐿𝑇,𝑖 is not within a tolerable 

limit for Panel 1, then adjust the assumed value of 𝑇𝑥 and repeat Steps iii 

through ix until convergence is obtained. 

x. Calculate𝑓𝐿,𝑖, 𝜎𝐿,𝑖, M and N from Equations (10), (23), (20), (21) and (22).  If 

the difference between the calculated and selected values of M and N are not 

within a tolerable limit, then adjust the assumed values of 𝜑𝐿 and 𝜀𝐶𝐿 

respectively, and repeat Steps ii through x until convergence is obtained. 

xi. Calculate 𝛼𝑖. 
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Given : Dimensions, Reinforcement details and Material properties

Calculate 𝐴𝑐𝑝,𝐴𝑔, 𝑓𝑐𝑟, 𝐸𝑐, 𝜀𝐿𝑦 𝑎𝑛𝑑 𝜀𝑇𝑦

Select 𝜀𝑑𝑠,1, ⁄𝑀
𝑇𝑥

= 0, ⁄𝑉
𝑇𝑥

= 0 ⁄𝑎𝑛𝑑 𝑁
𝑇𝑥

= 0 for pure torsion. Assume 

suitable ratios in other cases

Assume 𝜀𝐶𝐿, 𝜑𝐿,13 and  𝜑𝐿,24

Assume 𝜀𝑑𝑠,2, 𝜀𝑑𝑠,3, 𝜀𝑑𝑠,4 and  𝑇𝑥

Assume 𝜃

Assume 𝜀𝑟,𝑖 𝑎𝑛𝑑 𝑧𝑖

Calculate normal stresses,strains and curvature

Is 𝛹𝑖 close?

Is  σ𝑇,𝑖=0?

Calculate γ𝐿𝑇,𝑖 and 𝜃

Is 𝜃 close? 

Calculate 𝑞𝑖 and τ𝐿𝑇,𝑖

Is  τ𝐿𝑇,𝑖
close

Calculate stresses in rft., Moments and axial force

Are M and 
N close?

End
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CHAPTER-4 

VALIDATION OF RESULTS AND DISCUSSION  

4.1. INTRODUCTION : 
 The CA-STM can predict the full load-deformation response of reinforced 

concrete and pre-stressed concrete members under torsion combined with other loading 

actions.  The model gives predictions of twist, concrete and reinforcement strain, and 

curvature from before cracking up to peak torque. The CA-STM model was formulated 

following the given algorithm in Matlab. The developed model was then validated for 

various cases of combined loads. The load combinations used are mentioned below:  

4.1(a). Pure Torsion: The specimens tested by Lampert and Thurliman and 

McMullen and Warwaruk were used for the validations. The specimens differed in their 

cross sectional details and material properties. All the specimens chosen had hollow 

sections.  

4.1(b).Torsion combined with Shear : The shear force applied on the member is 

expressed as a fraction of the applied torsion. Rahal and Collins conducted 

experimental studies on RC members subjected to combined torsion and shear. These 

results were used for the validation of CA-STM under the same load combination. The 

validations for different ratios of Torque to shear (T/V) are presented in section 4.3.  

4.1(c). Torsion combined with shear , bending and axial force: All the loads 

acting on the member is expressed as a fraction of the applied torsion. The specimens 

tested by Tirasit is used for the validation of results. Four specimens were chosen. All 

the specimens had same cross sectional details. They only differed in the ratio of 
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applied torque to moment (T/M) and torque to lateral force (T/V). The validation for 

each of the above mentioned cases are explained in sections 4.2, 4.3 and 4.4. 

4.2. RESPONSE OF MEMBERS UNDER PURE TORSION  

4.2.1. McMullan and Warwaruk Specimens:  

 

McMullan and Warwaruk tested RC specimens under pure torsion. The testing was 

done for two series each having the same cross sectional dimensions of 150mm x 300mm 

and a wall thickness of 45mm each. The length of the specimens were 3.0 m. The 

compressive strength of concrete used was 34 MPa and the yield strength of steel used 

was 360 MPa. 

 

 

 

 

 

 

Table 4.1 Cross Sectional Details of McMullen and Warwaruk Specimen 

Cross sectional dimensions      :  B = 150 mm,  H = 300 mm 

series Top steel (long.) 
Bottom steel 

(long) 
Transverse steel 

1 #2 10mm  #2 19mm 10mm @ 83mm c/c 

2 #2 19mm   #2 19mm 10mm @83mm c/c 

 

Figure 4.1 Cross sectional details of McMullan and Warwaruk Specimens 

300 mm 

150 mm 150 mm 

300 mm 

#2 10mm 
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The results obtained for the torque-twist behavior of series 1 and series 2 by the developed 

model for CASTM are in good agreement with the experimental results obtained by 

McMullen and Warwaruk. Series 2 with higher reinforcement at top showed an 

improvement by 35% in the experimental studies. The same could not be predicted by 

CA-STM which showed only an increase by 15%. The degree of rotation was predicted 

with higher accuracy to the experimental data.

   

(a) Series 1      (b) Series 2                                                

Figure 4.2: Validation of Improved CASTM with Experimental Data under Pure Torsion 

4.2.2. Lampert and Thurliman Specimens:  

 

 The testing was done for square specimen with a wall thickness of 80mm each. The 

length of the specimens were 3.9 m. The concrete compressive strength was 26 MPa 

and the yield strength of steel used was 390 MPa. 
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Figure 4.3 Cross Sections of Lampert and Thurliman Specimens 

Table 4.2 Cross Sectional Details of Lampert and Thurliman Specimen 

Cross sectional dimensions       : (500 x 500) mm 

Series Top steel 

(long.) 

bottom steel 

(long) 

transverse steel 

1 #3  16mm #11 16mm 10mm @ 100mm c/c 

                

The analytical and experimental results were closely consistent in terms of degree of 

rotation and stresses in the reinforcements. However the cracking torque predicted by 

the CA-STM model was higher than the experimental observations. Also the stiffness 

predicted by the model was lower than the experimental observation. 
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                    Figure 4.4 Validation of CASTM Model for Pure Torsion 

4.3. TORSION COMBINED WITH SHEAR (RAHAL AND 

COLLINS) 
The experimental study was conducted on seven RC beam specimens. The specimens 

were divided into two series based on the difference in concrete cover. Series 1 and 2 

had 3 and 4 numbers of specimens respectively with varying ratios of torque to shear. 

The specimens used were 6m long with two 3m long transverse wing beams. The 

difference in forces acting on the wing beams resulted in a torsion in the test region. 

The schematic representation of the experimental setup is shown in Fig 4.5.  

Table 4.3: Specimen details of series 1 and series 2 

Ser ies 1 Ser ies 2 

Dimensions          :       600mm x 

300mm 

Dimensions        :       640mm x 340 

mm 

Transverse reinforcement :     11mm 

𝜙 @ 125mm c/c 

Transverse reinforcement    :     

11mm 𝜙 @ 125mm c/c 

No. of specimens   :        3 No. of specimens :        4 
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Figure 4.5: Experimental setup of the specimen [Ref. 4] 

 

(a) Series 1     (b) Series 2 

Figure 4.6: Cross sectional details of the specimens 
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(a) Torque/Shear = 0     (b) Torque/Shear = 1.3 

 

(c) Torque/Shear = 0.01 

Figure 4.7: Comparison of results for Series 1 
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(a) Torque/shear = 0.16    (b) Torque/Shear = 0 

    
 

 

(c)Torque/ Shear = 1.3           (d) Torque/Shear = 0.08 

Figure 4.8: Comparison of results for series 2 
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The results obtained from CA-STM was in good agreement with the experimental 

results. The proposed model predicted higher stiffness than the experimental results. 

The peak values of torsion and shear forces obtained showed a variation of less than 

10% from the experimental observations. The values of deformations were accurate 

with the experimental data. 

4.4.  TORSION COMBINED WITH AXIAL FORCE AND         

BENDING MOMENT 
The specimens used for the validation of a member subjected to the combination of 

the forces above were the RC columns tested by Tirasit (2006).  The columns were 

tested for various combinations torque, shear and bending moment. The height of the 

column was 1.75m. The reinforcement ratio was 1.27%.  A constant 160 kN was applied 

to maintain a normal stress of 1 MPa on the cross section.  

 

Figure 4.9 Cross section of Tirasit column 

Table 4.4 Details of the RC columns (TP-96, TP-98 and TP-99) 

Cross sectional dimensions                         :         B = 400 mm,  H = 400 mm 

Concrete compressive strength 31.5 MPa 

Yield strength of longitudinal reinforcement 354 MPa 

The analytical results matched closely with the experimental results. The peak torque 

was predicted accurately. However the stiffness of the member before cracking was 

400 mm 

#16 13 mm φ 

400 mm 
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under predicted by the model. The peak torque and degree of rotation was predicted 

accurately with a variation of less than 3%. Thus the model is very efficient in 

predicting the behaviour of members subjected to bending, torsion and shear to a high 

degree of accuracy. 

    

(a) T/M = 0.38, T/V= 0.49     (b) T/M = 0.80, T/V = 0.86 

 

    (c) T/M = 1.25, T/V = 1.47 

Figure 4.10: Behavior of RC column under combined torsion and bending 
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Table 4.5 Comparison of results obtained with experimental data 

Specimen nomenclature       Peak Torque Twist 

Texp Tcalc Texp/Tcal

c 

Θexp Θcalc Θexp/ 

Θcalc 

McMullen and Warwaruk Specimens (T) 

Series 1 13.2 15.4 0.86 2.760 3.86 0.715 

Series 2 18.2 19.9 0.91 3.310 3.55 0.933 

Lampert and Thurliamnn Specimens (T) 

T-3 106 96 1.10 2.300 2.33 0.987 

Rahal and Collins Specimens (T + V) 

RC 1-2 ( T/V = 0 ) 0 0 1.00 0.0035 0.0017 2.03 

RC 1-3 ( T/V = 1.31 ) 136.8 122.1 1.12 3.000 1.63 1.84 

RC 1-4 ( T/V = 0.01 ) 0 0 1.00 0.0009 0.0009 1.044 

RC 2-1 ( T/V = 0.16 ) 83.3 92.1 0.90 1.512 1.011 1.495 

RC 2-2 ( T/V = 0 ) 0 0 1.00 0.0038 0.0008 0.447 

RC 2-3 ( T/V = 1.22 ) 136.1 127.1 1.07 1.400 1.36 1.029 

RC 2-4 ( T/V = 0.08 ) 53.2 54.1 0.98 0.688 0.994 0.692 

Tirasit Specimens (T + V + M) 

TP-096 (T/M = 0.38, T/V= 0.49) 50.928 51.5 0.989 0.545 0.941 0.579 

TP-098(T/M = 0.80, T/V = 0.86) 70.478 69 1.021 1.097 0.922 1.189 

TP-099(T/M = 1.25, T/V = 1.47) 
79.707 79.8 0.998 1.074 1.14 0.942 

Average  

COV 

0.92  

11.99% 

1.071  

 20.6% 
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS  

5.1. CONCLUSIONS 

The Combined Action Softened Truss Model was studied and it was implemented 

in Matlab using the latest available constitutive behaviour. The accuracy of the 

model was validated with test data for three major load combinations. 

(a) Pure Torsion: The model could predict the behavior of members under 

pure torsion reasonably well. The values of peak torque were predicted 

to an accuracy of 96%.  The predictions for twist was relatively less 

accurate upto 88%. The lower predictions of twist could be due to the 

limitations in strain relationships used for the formulations. 

(b) Torsion combined with Shear: The peak torque prediction was highly 

accurate for the case of torsion combined with shear. The values varied 

by less than 3% on an average values from the experimental data. 

However, the degree of twists predicted were very low in comparison to 

the experiments. The variations in some cases were as high as 40%. 

(c) Torsion combined with shear and bending: The model worked accurately 

for the prediction of peak torque in this case with an error of less than 

1%. The degree of rotation was also predicted reasonably with an error 

of less than 10%. 
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5.2.  SCOPE FOR FURTHER WORK: 
The developed model can be further improved by considering bi-axial effect using the 

formulations of softened membrane model.  Moreover, the effect of cyclic loading also can be 

included. 
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