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Abstract 

The discovery of Piezoelectricity in Quartz in late 1880 by Curie brothers and its technological 

importance in various fields led to an intense research in this field up to the First World War. 

Post First World War another class of piezoelectric with perovskite structures was discovered 

and popularly known was BaTiO3. Later the most commercially used materials that ruled the 

field of piezoelectric based devices and applications was PbZr0.52Ti0.48O3 (PZT). It was 

commercially successful due to its superior piezo-coefficient and its high Curie temperature. 

Its importance and vast presence in today’s modern world can be estimated by this fact that all 

major ferroelectric and piezoelectric devices are made up of PZT based compounds. But the 

growing awareness about human health and environment led world familiar to the hazard that 

is present by using Lead. So, the need for an alternative lead free piezoelectrics arose. In 2009 

Liu and Ren reported a Lead free piezoelectric material with morphotrophic composition that 

have piezo-coefficient value higher than PZT. The compound is known as 

Ba0.85Ca0.15Zr0.10Ti0.9O3 (BCZT) solid solution.  

The main objective of our project is to mimic this morphotrophic phase composition of 

Ba0.85Ca0.15Zr0.10Ti0.9O3 (BCZT) solid solution through multilayer approach of two 

.5(Ba0.7Ca0.3TiO3) - .5(BaZr0.2Ti0.8O3) individual layers. As the composition is very much 

complex, pulse laser ablation was a suitable technique to deposit the films. Initially three 

distinct bulk targets BCT, BZT and BCZT were made of required stoichiometry by solid state 

synthesis route. Phase formation was confirmed by coupled ϴ-2ϴ X Ray Diffraction. These 

targets were then used to deposit polycrystalline films on platinum (111) coated silicon 

substrate in optimized conditions. Thin films phase were characterized by GIXRD. Then 

atomic force microscopy (AFM) and piezo-response force microscopy (PFM) study was done 

to know the surface morphology and ferroelectric behaviour of the films. To know the dc 

leakage behaviour of the thin films I-V measurements was performed at room temperature. Our 

study shows that the BCZT thin film deposited at 650 ͦC possess strong ferroelectric nature and 

least leakage current in compare to all other films.  
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Nomenclature 

BT-Barium titanate 

KDP-Potassium dihydrogen phosphate 

PZT-Lead zirconate titanate 

BCT-Barium calcium titanate 

BZT-Barium zirconate titanate 

BCZT-Barium calcium zirconium titanate 

MPB-Morphotropic phase boundary 

Tc-Curie temperature 

XRD-X ray diffraction 

GIXRD-Grazing incidence x ray diffraction 

PLD-Pulse laser deposition 

AFM-Atomic force microscopy 

PFM-Piezo-response force microscopy 

JCPDS-Joint committee on powder diffraction standards 

PVA-Polyvinyl alcohol 
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Chapter 1 

INTRODUCTION 

 

1.1 FERROELECTRICITY 

Materials which exhibits ferroelectricity possess spontaneous polarization and can switch their 

polarization direction on applying external electric field. They have a polarization hysteresis loop 

analogous to ferromagnetic materials with magnetic hysteresis. Non-centro symmetry in the crystal 

system is one of the essential criterion for a material to possess ferroelectric property [1]. The 

ferroelectric property of any material is temperature and crystal structure dependent. 

 

 

 

 

                                                       Fig 1.1 Hysteresis Loop[2] 

 

 

 

1.2 Origin of ferroelectricity 

 

The origin of ferroelectricity is due to three major factors: (1) Hydrogen bond (KH2PO4) (2) rattling of 

cation (BaTiO3) and (3) Lone pair effect (BiFeO3, PbTiO3). 
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(1) Hydrogen bond 

KH2PO4 (KDP) is a prototype crystal belonging to the family of hydrogen bonded ferroelectric 

materials. The PO4 tetrahedra units are interconnected by planar hydrogen bonds and ferroelectricity 

originates due to the position of proton in these Hydrogen bonds. Above Curie temperature, the H- 

atoms occupy with equal probability two symmetrical positions along the H-bond separated a distance 

ẟ, which characterizes the disordered phase. Below the critical temperature Tc≈122 K, the protons 

localize into one of the symmetric sites, thus leading to the ordered Ferroelectric phase. The proton 

configuration in this phase is shown below in Fig1.2; each PO4 unit has two covalently bonded and two 

H-bonded hydrogen atoms [3].        

 

 

   

 

 

 

 

Fig 1.2 Schematic view of KDP internal structure. Covalent bond and hydrogen bond are         

represented in solid and dashed lines [3] 

 

 (2) Rattling of B-cation in ABO3 structures 

Rattling of B-Cations could be found in perovskite structure having a formula unit of ABO3 type. The 

first ferroelectric perovskite material to be discovered was BaTiO3 (BT). The core of the cubic ABO3 

lattice is formed by an oxygen octahedron with a B4+ cation at the centre. The A2+ ions are at the corners 

of the unit cell which gives the neutrality and structural stability. The ferroelectric and piezoelectric 

property is acquired by this material below Curie temperature i.e. due to rattling of B4+ ion in the BO6 

octahedron. Above Curie temperature the material behaves as a para-electric [4]. 
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                   Fig 1.3 (a) Perovskite structure (b) Rattling of cation in BO6 octahedra [5] 

                        

(3) Lone pair effect 

This effect is found when the A cation of the perovskite crystal is substituted by either Lead (Pb2+) or 

Bi 3+ ion with respective B-cations. In the BaTiO3 phase the interaction between the oxygen and barium 

atom is completely ionic whereas in PbTiO3 there is a strong hybridization between lead 6s and oxygen 

2p states.[6] The electron lone pair is not symmetrically distributed around the Pb ion but is localized 

along the <111> direction in the PbTiO3 unit cell. This leads to the off centering of the titanium ion 

from the center of the unit cell due to charge repulsion. This gives rise to the strong ferroelectric property 

in this system [6]. 

 

 

 

1.3 PIEZOELECTRICITY 

 

The ferroelectric materials also have a interesting property known as Piezoelectricity. 

Piezoelectricty is the  ability of a material to get polarized under applied mechanical pressure and vice-

versa. 
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1.4 Piezoelectric coefficients 

 

DIRECT PIEZO-EFFECT : When a mechanical stress is applied to generate electric polarisation 

is known as direct piezo-effect. 

 

                                                        Pi= Ʃ gij σj  … (1) 

Here, gij is a second rank tensor known as piezoelectric strain constant expressed in nC/N. Because a 

piezoelectric ceramic is anisotropic, physical constants relate both to direction of mechanical or electric 

force. The subscripts i & j represent the direction of polarisation and strain respectively. Directions X, 

Y, Z is represented by the subscript 1, 2, 3 and shear about this axes are represented by the subscript 4, 

5, 6. 

 

CONVERSE PIEZO-EFFECT:  When an applied electrical field induces a strain in the material 

is known as converse piezo-effect. 

                                                         Ԑi = Ʃdij Ej … (2) 

 

The tensor dij is known as piezoelectric voltage constant whose unit is pm/V. 

 

                                   

                                       Fig 1.4 (a) Direct effect (b) Converse effect [7] 
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ELECTROMECHANICAL COUPLING FACTOR: It is the efficiency of the ceramic material 

to convert electrical energy into mechanical energy or vice-versa. 

 

                                         k2=
mechanical energy stored

electrical energy applied
         …….(3) 

 

Quartz was the first mineral in which Curie brothers (Pierre and Jacques curie) discovered the direct 

piezoelectric effect in 1880 but they did not predict the converse piezoelectric effect. In the following 

year 1881 Mr. Gabriel Lippman mathematically deduced from fundamental thermodynamic principles 

the converse piezoelectric effect [7]. The Curie’s later confirmed the existence of this effect. 

The first serious applications work on piezoelectric devices took place on World War 1. In 1917, 

P.Langevin and French co-workers began to design an ultrasonic submarine detector to detect or locate 

a distant submarine in the sea against German menace. It consist of thin single crystal quartz sandwiched 

between two steel plates.  Contemporarily another piezoelectric material Rochelle salt (RS) 

(NaKC4H4O6.4H2O) which was technically more efficient than Quartz at that span of time. But RS 

crystals are unstable and deteriorate easily either by dehydration or by dissolving in water. During the 

World War 2, the discovery of BaTiO3 as a high dielectric material replacing mica & TiO2 used in 

capacitors and subsequently its superior piezoelectric properties over Quartz and Rochelle Salt triggered 

an intense research and development in barium titanate ceramic family which led to the lead-titanium-

zirconium alloy (PZT) [7] .Today the most important piezoelectric materials that are technologically 

important are ferroelectric ceramics based on Pb-containing perovskites. But the growing concern over 

Lead toxicity towards environment and human health is driving to find an effective alternative material 

other than PZT. 

 

 

1.5 PIEZOELECTRIC MATERIALS 

Piezoelectric materials that are commercially more used are made up of quartz and lead based perovskite 

ceramics. But there are many other piezoelectric materials available such as barium titanate, lithium 

niobate, gallium orthophosphate, piezo-polymers (PVDF, polystyrene, polypropylene). Among all 

these known piezoelectric materials lead based perovskites ceramics exhibits superior properties and 

dominates the application. 
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1.5.1 Lead based piezoelectric materials  

Lead zirconium titanate (PZT) 

Lead zirconium titanate is a solid solution of PbTiO3 and PbZrO3. The solid solution Pb(ZrxTi1-x)O3 has 

the perovskite crystal structure with Zr-4+ ion substituted randomly at the Ti-4+ ion positions. This 

solution exhibits a very interesting ferroelectric and piezoelectric property when equal amount of 

PbTiO3 and PbZrO3 are present in the binary solid solution. The phase boundary that separates PZT 

crystal structure at almost equal amounts of PT and PZ is known as morphotrophic phase boundary. In 

the vicinity of the MPB a composition dependent phase transition occurs in which the Ti-rich tetragonal 

phase changes to Zr-rich rhombohedral phase having Tc>300⁰C which implies high operating 

temperatures for PZT ceramics. The Piezo coefficient d33 value is 600pC/N near the MPB [8]. It is due 

to same free energy of the tetragonal and rhombohedral phase in the vicinity of MPB which decreases 

the energy barrier for switching the polarisation direction vector and the number of polarisation 

directions also increases due to existence of both the phases [9]. 

 

 

                                          Fig 1.5 Phase diagram of PbZrO3-PbTiO3 [8] 

 

1.5.2 Lead free piezoelectric materials 

The most extensively studied lead free piezoelectric is barium titanate. But barium titanate piezo 

coefficients are very much less in compare to Lead based perovskites and its Curie temperature is only 

120 ͦ C which limited its further application at high temperatures. To enhance its properties numerous 
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studies have been done by substituting several elements at A-site and B-site position. Among them the 

most promising material is barium calcium zirconium titanate (BCZT). In this material the Ca 2+-ion 

occupies the Ba 2+ site and Zr 4+-ion occupies the Ti 4+-site. Also the binary solid solution of BCT-BZT 

possess a morphotrophic phase boundary similar to lead based binary solid solution. In BCZT 

composition near MPB researchers have found d33 value up to 620 pC/N but the Curie temperature is 

around 93 ͦ C only [10].  In this project we have aimed at fabrication of thin films of BCZT 

morphotrophic composition and study the piezoelectric properties. 

 

 

 

 

 

 

OBJECTIVE OF THE PROJECT 

 Preparation of BCT, BZT and BCZT bulk target by solid state synthesis 

 Optimization and fabrication of BCT, BZT and BCZT thin film by Pulse Laser Deposition 

 Multilayer approach to mimic Morphotropic Phase Boundary Features (Piezoresponse 

dielectric phase transition, Leakage current measurment) 

 Phase formation confirmation with the help of XRD 

 Morphological and Domain analysis with Atomic force microscopy and Piezoresponse force 

microscopy 
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Chapter 2 

 

LITERATURE REVIEW 

 

2.1 Barium Titanate (BaTiO3) 

Barium Titanate (BT) is the first ferroelectric perovskite ceramic to be discovered. The core of the 

essential cubic BT lattice cell is formed by an oxygen octahedron with a 4-valent titanium ion at the 

centre. The 2-valent barium ions are at the corner of the unit cell which gives the neutrality and structural 

stability as shown in fig2.1. The ferroelectric and piezoelectric property is acquired by this material 

below Curie temperature i.e. 120⁰C is due to rattling of Ti4+ ion in the TiO6 octahedron. Above 120°C 

BT is cubic and below, it transform successively to three ferroelectric phases: first to 4mm tetragonal, 

then to mm orthorhombic at about 5⁰C and finally to a 3m rhombohedral phase below -90⁰C. The polar 

axis in the three ferroelectric phases are in <001>, <110>, and <111> directions for tetragonal, 

orthorhombic and rhombohedral structures respectively as shown in fig2.2. [11] 

 

 

                                                    Fig 2.1 BaTiO3 crystal structure[12] 
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                                       Fig 2.2 Phase transition of BaTiO3 vs Temperature[13] 

 

 

2.2 Effect of Zr on BaTiO3 

The titanium tetra-valent ion can be substituted by Zirconium tetra-valent ion in the solid solution of 

barium titanate. The ionic radius of Zr4+ ion is 72pm [14]which is larger than the ionic radius of Ti4+ 

ion (60.5pm)[14] due to which there is an expansion of the perovskite lattice. It is also chemically more 

stable than titanium and there is a strong hybridisation between Zirconium and Oxygen atoms which 

increases the band gap of the material as a result it reduces the leakage current. The addition of 

Zirconium decreases the average grain size.  

With the addition of Zirconium the Curie temperature of the Barium titanate decreases. But there is an 

enhancement in dielectric values, increases both the saturation polarization and remnant polarization.  

The ferroelectric properties in the BaZrxTi1-xO3 system have been investigated for several concentration 

of Zr and the study shows that for the composition 0 ≤ x ≤ 0.1 ceramics shows normal ferroelectric 

behaviour. However for compositions 0.25≤ x ≤0.75 ceramics shows a relaxor behaviour. The relaxor 

region 0.25≤ x ≤0.75 can be further divided into two types: Type ɪ and type ɪɪ.  Type ɪ is Ti rich phase 

dominated by the polar BaTiO3 clusters and the Tm decreases with increase in Zr concentration. Type ɪɪ 

region is Zr rich phase dominated by non-polar BaZrO3 and the Tm remains almost constant with 

increase in Zr value [15]. The phase diagram of BaZrxTi1-xO3 based on the dielectric permittivity is 

shown below: 
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Fig 2.3 Phase diagram of BaZrxTi1-xO3 [15] 

 

 

2.3 Effect of Ca in BaTiO3 

 

 

 

 

 

 

 

 

 

 

Fig 2.4 Phase diagram of BaTiO3-CaTiO3. Left side top shows the lowering                                                  

of Curie temperature with increase of Ca conc[16] 
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The Ca2+ ion is substituted at Ba2+ ion in the solid solution of BaTiO3. The maximum solubility limit of 

Calcium in Barium titanate is 30% at 1600⁰C as shown below in the phase diagram [16]. The Curie 

temperature decreases with increase in Calcium concentration in the BaTiO3. By the incorporation of 

Ca ions at Ba ion position the unit cell volume decreases as ionic size of Ca2+(134pm)[14] is lower than 

the Ba2+ ions(161pm)[14]. To maintain the structural stability there is an octahedral tilt in the BO6 cage 

which will tend to increase the Ti off centering and an increase in saturation polarization is observed. 

 

 

2.4 Barium calcium zirconium titanate (BCZT) 

In order to match the high piezoelectric coefficient that is found in Lead based ferroelectric materials, 

Wenfeng Liu and Xiaobing Ren in 2009 successfully reported a non-Pb piezoelectric system BZT-BCT 

which possess a Morphotropic Phase boundary similar to lead based compounds having a piezoelectric 

coefficient of 620pC/N at MPB which is even higher than Pb based materials. But the Curie temperature 

is 93Cͦ which is very much less than lead based materials. There is a tri-critical point in the BZT-BCT 

system at x=0.35 and T=57 ͦC where the polarisation anisotropy vanishes due to similar free energy 

[10]. The phase diagram for BZT-BCT is shown below: 

 

 

 

     

 

 

 

 

 

 

        Fig 2.5 Phase diagram of BCZT [17] 
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Chapter 3 
 

EXPERIMENTAL 

Pulse Laser Ablation is the deposition technique that had been used to deposit thin films. Prior to 

depositing thin films separate bulk target materials had been prepared for BCT, BZT and BCZT 

(0.5BCT – 0.5BZT) through solid state synthesis route. The films for the respective targets were 

deposited under optimum conditions. Later on XRD, AFM, PFM, V-I measurment and dielectric 

characterization were done on the films. 

 

3.1 Preparation of BCT target 

The starting raw materials to prepare BCT target were BaCO3, CaCO3 and TiO2. The chemical reaction 

that occurs is given below: 

                        7BaCO3 + 3CaCO3 + 10TiO2 → 10Ba0.7Ca0.3TiO3 + 10CO2↑ 

Steps involved: 

1. All the chemical powders were taken in their stoichiometric ratios. They were mixed and hand 

ground for 5hours in agate motor. 

 

2. Calcination-The mixed powder was poured in an alumina crucible and kept inside a muffle 

furnace for phase formation at 1350 ͦC for 4hours. The calcination profile is shown below: 
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3. The phase formation of the calcined powder was studied by X Ray Diffraction technique. 

4. The calcined powder was again hand ground for 10hrs in agate motor. Later it was mixed with 

PVA(Polyvinyl alcohol) binder and pressed into a pellet of 20mm diameter at a pressure of 

4Tons for 1min using a hydraulic press. 

 

5. Sintering- The pellet was sintered at 1500 ͦC in muffle furnace for 5hours for densification. It 

was hold at 300 ͦC for 1hour for complete removal of binder. The sintering profile is shown 

below: 
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3.2 Preparation of BZT target 

 

The starting materials to prepare BZT target were BaCO3, ZrO2 and TiO2. The chemical reaction that 

occurs is 

                 5BaCO3 + ZrO2 + 4TiO2 → 5BaZr0.2Ti0.8O3 + 5CO2↑ 

 Steps involved: 

1. All the chemical powders were taken in their stoichiometric ratios. They were mixed and hand 

ground for 5hours in agate motor. 

 

13 



2. Calcination-The mixed powder was poured in an alumina crucible and kept inside a muffle 

furnace for phase formation at 1350 ͦC for 4hours. The calcination profile is shown below: 

 

 

3. The phase formation of the calcined powder was studied by X Ray Diffraction technique. 

 

4. The calcined powder was again hand ground for 10hrs in agate motor. After that it was mixed 

with PVA(Polyvinyl alcohol) binder and hydraulically pressed into a pellet of 20mm diameter 

at a pressure of 4Tons for 1min. 

 

5. Sintering- The pellet was sintered at 1500 ͦC in muffle furnace for 5hours for densification. It 

was hold at 300 ͦC for 1hour for complete removal of binder. The sintering profile is shown 

below: 
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3.3 Preparation of BCZT target 

The starting materials to prepare BZT target were BaCO3, ZrO2, CaCO3 and TiO2. The chemical 

reaction that occurs is 

0.85BaCO3 + 0.15CaCO3 + 0.10 ZrO2 + 0.90 TiO2→ Ba0.85 Ca0.15 Ti0.9 Zr0.1 O3 + CO2 ↑ 

Steps involved: 

1. All the chemical powders were taken in their stoichiometric ratios. They were mixed and hand 

ground for 5hours in agate motor. 

 

2. Calcination-The mixed powder was poured in an Alumina crucible and kept inside a muffle 

furnace for phase formation at 1350 ͦC for 4hours. The calcination profile is shown below: 
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3. The phase formation of the calcined powder was studied by X Ray Diffraction technique. 

 

4. The calcined powder was again hand ground for 10hrs in agate motor. After that it was mixed 

with PVA (Polyvinyl alcohol) binder and hydraulically pressed into a pellet of 20mm diameter 

at a pressure of 4Tons for 1min. 

 

5. Sintering- The pellet was sintered at 1500 ͦC in muffle furnace for 6hours for densification. It 

was hold at 300 ͦC for 1hour for complete removal of binder. The sintering profile is shown 

below   
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                          NOTE: Separate crucibles were used for preparation of each targets. 

 

 

 

 

3.4 Deposition of BCZT/BZT/BCT thin films on Pt(111)/TiO2/SiO2/Si substrate 

BCZT, BZT and BCT thin films were deposited on platinum coated silicon substrate using Pulse Laser 

Deposition technique. 

Pulse Laser Deposition 

Pulse Laser Deposition is a versatile technique which is vastly used to deposit materials of complex 

stoichiometry especially multi-component oxides. The schematic view of a PLD system is shown below 

in fig3.1:  
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Fig 3.1 PLD Set up[18] 

In this schematic diagram the rotary pump and the turbo pump( high vacuum pump) is not shown which 

is a pre-requisite to create vacuum in the chamber before deposition. 

Process 

A high power pulsed laser is focused onto the rotating target material (can be of multi-target system) 

inclined at 45 degree with respect to target normal and when the laser fluence exceeds the ablation 

threshold for the material, the material locally melts. Chemical bonds are broken and the backward 

thrust experienced by the melt results in a forward ejection of the species called as plume which is a 

mixture of neutral atoms, molecules, ions and solid debris. The plume expands towards a substrate 

surface in vacuum under a reactive atmosphere which is not always essential before getting deposited. 

The sample stage holder is usually provided with a heating arrangement for optimizing thin film 

nucleation and growth conditions[18]. The other control parameters that affect the quality of the films 

are as follows: 

a) Density and composition of the target material 

b) Laser energy density 

c) Pulse frequency 

d) Pressure in vacuum chamber and the type of gas 

e) Target to substrate distance 

f) Substrate temperature 

g) Cooling rate 

h) Substrate choice 
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Chapter 4 

 

Characterization techniques 

The characterisation techniques that had been used for the analysis of the samples involves   X-Ray 

Diffraction (XRD), Grazing Incidence XRD (GIXRD), Atomic Force Microscopy (AFM), Piezo-force 

Microscopy (PFM), V-I characterisation. 

 

      4.1 X-RAY DIFFRACTION 

X-ray diffraction is commonly used to study crystal structures and atomic spacing. The   use of X-

rays is very specific because the inter-planar distance in crystals act as a diffraction grating for X-

ray wavelength. This technique is basically based on the principle of Bragg’s law which is 

                                                       2dsinϴ = nλ 

Where d= inter-planar spacing in crystal 

             ϴ= angle of diffraction 

             λ= wavelength of X-ray (common X-ray target source is CuKα=1.5418Å) 

The Figure 4.1 geometrically represents the X-ray reflection phenomenon in crystals: 

 

 

 

 

Fig 4.1 Schematic detailing the Braggs reflection condition [19] 
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This law states that the Bragg reflected ray undergoes a constructive interference whenever the 

Bragg’s condition is satisfied[20]. By scanning the sample for required 2ϴ angles, all possible 

diffraction directions can be achieved due to random orientation of the crystals. And we know 

that each element has its own specific d-spacings ,so by comparing with standard reference 

patterns i.e JCPDS files we can determine the phases. 

 

 

4.2 GRAZING INCIDENCE XRD 

 

Conventional ϴ-2ϴ scanning is not suitable for analysing thin films as it generates a very weak 

signal from the film and an intense signal from the substrate. 

The schematic for GIXRD is shown below: 

 

        Fig. 4.2 Schematic explaining the grazing incidence of X-ray and diffraction pattern[21]. 

 

In the GIXRD, incident rays is fixed at small grazing angle ω and 2ϴ scanning is done. As a 

result the diffraction pattern becomes very much surface sensitive and intensifies the film 

signal. The signals coming from the substrate can be minimised by varying the grazing 

angle[21]. 
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4.3 ATOMIC FORCE MICROSCOPY 

 

Atomic force microscopy works basically on the basis of Lennard-Jones potential as shown below: 

 

 

 

Fig 4.3 Variation of Lennard Jonnes Potential with respect to interatomic distance[22] 

 

The schematic instrumental set up generally used can be shown as: 
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Fig 4.4 Schematic of AFM and its operating modes [23] 

 

 

The main components of AFM is (a) Tip & Cantilever (b) Piezo scanner (c) Photo diode detector (d) 

Laser (e) Feedback control & computer. 

The common use of AFM is to analyse surface morphology. It acts on the basis of Lennard –Jones 

potential which can be mathematically formulated as 

                                                       V(𝑟) = 4Ԑ [(
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6
] 

The first term 4Ԑ (
𝜎

𝑟
)

12
 and the second term -4Ԑ(

𝜎

𝑟
)

6
 represents the Repulsive and Attractive potential 

respectively. Here Ԑ is the depth of the potential well, σ is the finite distance where inter particle 

potential is zero and r is the separation between the two particles. 

As the tip scans the surface of the sample, according to the topography of the sample the tip will suffer 

deflection which is detected by the laser beam deflection in the photodiode which is initially aligned 

and fixed at a particular set point. The error generated by the deflection in the photodiode will be sent 

to the feedback loop system which will try to again bring the tip at the fixed set point with the help of 

Piezo scanner attached with the cantilever and tip. Thus by measuring this deflection, the surface 

morphology of the sample can be obtained. 
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4.4 PIEZORESPONSE FORCE MICROSCOPY 

 

Piezoresponse force microscopy (PFM) is used for imaging domain patterns in a ferroelectric material. 

It works based on the converse piezoelectric effect, which is when a voltage is applied to a piezo 

material a strain will be generated in the material.  

It is a variant of atomic force microscopy which is operated in a contact mode with an applied A.C 

voltage applied to the conductive tip which exceeds locally the coercive field of the sample. In response 

to the applied electric field the sample locally expands or contracts according to the polarisation 

direction or domain direction. The electromechanical deformation is transmitted sensitively by the 

cantilever bending to the position sensitive photodiode. The error that is produced in the photodiode is 

then demodulated by the lock in amplifier (LIA) and imaging is done [24, 25] .The schematic diagram 

for PFM is shown below in fig4.5:  

 

  Fig4.5 Schematic for contact mode PFM[24]                        Fig 4.6 Polarisation dependence on                                                                                                               

                                                                                                       sample strain on + bias at tip [25] 

 

 

 

4.5 V-I Characterisation 

To study the Current-Voltage behaviour (V-I) or the leakage current all the films were fabricated in 

metal –insulator-metal configuration. The delay time is 0.5sec and holding time is null. The top and 
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bottom electrode are Platinum. Circular dots of 500µm size were deposited on top of films by E-beam 

evaporation technique as shown below in figure4.7: 

 

 

 

 

 

 

 

 

          Fig4.7 Platinum circular dots of 500µm size deposited by E beam evaporation technique 
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Chapter 5 

 

RESULTS AND DISCUSSIONS 

5.1 Structural characterisation of BCZT, BZT and BCT bulk and their polycrystalline 

thin   films with XRD 

 BCZT, BCT and BZT powders were calcined at 1350 ͦC and densified in the form of pellets by sintering 

at 1500 ͦC in air. The bulk structural characterisation was done by XRD operating in a coupled ϴ-2ϴ 

mode in Bragg–Brentano geometry.  

 

BCZT Target 
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Fig5.1 Powder diffraction pattern of BCZT target 

The coupled ϴ-2ϴ X -Ray Diffraction of the bulk BCZT target at room temperature confirms the phase 

purity as shown in fig5.1. There is no impurity phase present. The (200) peaks splits into three 

distinguished peak which is unique for orthorhombic structures. The peak splitting is shown below in 

fig5.2. The lattice parameters calculated are c=4.020Å, b=4.010Å and a=4.000Å. 
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                                              Fig5.2 BCZT peak splitting at (200) plane 
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                                                Fig5.2 Powder diffraction pattern of BZT Target 

The bulk BZT Target coupled ϴ-2ϴ X -Ray Diffraction at room temperature confirms the phase purity 

as shown in fig5.2. The peak splitting of (200) planes into doublet shows the characteristic of tetragonal 

crystal system. The peak splitting of (200) planes is shown below in fig5.3. The lattice parameters 

calculated are c=4.044Å, a=b=4.036Å.  
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Fig5.3 Peak splitting of (200) planes 

BCT Target 

The bulk BCT target analysed with XRD at room temperature confirms the phase formation, however, 

a minor impurity phase of calcium titanate was also observed (seefig5.4). The impurity percentage was 

calculated to be 4%. The peak splitting of (200) planes into doublet shows the characteristic tetragonal 

crystal structure. The peak splitting of (200) planes is shown below in fig5.5. Calculated lattice 

parameters are a=b=3.958Å, c=4.000Å. 
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                                                Fig5.4 Powder diffraction pattern BCT Target 
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Fig5.5 BCT Tetragonal splitting at (200) planes 

 

 

 

 

 

Deposition of thin films using pulse laser ablation technique 

The sintered BCZT, BZT and BCT pellets are used as a target material in PLD to deposit polycrystalline 

thin film on platinum (111) coated silicon substrates. Before deposition, the substrate were heated in 

propanol up to 60 ͦC for cleaning purpose. The optimized condition under which polycrystalline films 

are formed are shown below in Table 5.1: 

 

 

 

27 



Table 5.1: Table detailing the various growth parameters utilized for BCZT/BCT/BZT and 

bilayer using PLD 

Parameters      BCZT       BZT        BCT   BCT/BZT 

Base pressure 

(mbar) 

 

     5 x 10-5 

 

      5 x 10-5 

 

      5 x 10-5 

 

      5 x 10-5 

Laser beam 

energy 

 

      250mJ 

 

      300mJ 

 

      300mJ 

 

      300mJ 

Laser repetition 

rate 

 

        5Hz 

 

        5Hz 

 

        5Hz 

 

        5Hz 

Oxygen 

pressure (mbar) 

 

    1.3 x 10-1  

 

    1.3 x 10-1 

 

     1.3 x 10-1 

 

    1.3 x 10-1 

Number of 

pulses 

 

      6000 

 

      6000 

 

        6000 

 

        150 

Substrate 

temperature 

 

650 ͦC 

 

    675 ͦC 

 

675 ͦC 

 

675 ͦC 

 

 

GIXRD of the BCZT, BZT, BCT and bilayer BCT/BZT polycrystalline films are shown below. 
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                                   Fig5.6 Grazing incidence x ray diffraction pattern BCZT Film 
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                                      Fig5.7 Grazing incidence x ray diffraction pattern BZT Film 
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                                          Fig5.8 Grazing incidence x ray diffraction pattern BCT Film 
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                Fig5.9 Grazing incidence x ray diffraction pattern BCT/BZT Bilayer 

 

In summary all the films grown on top of platinum coated silicon is polycrystalline in nature and there 

is no impurity phase present in BCZT and BZT films. The peak that appears apart from the parent phase 

as shown in the GIXRD plot arises from the platinum substrate. In BCT film phase formation is not so 

evident. BCT/BZT bilayer shows phase pure perovskite film but this can be attributed to BZT film only 

as phase formation of BCT film is not clear. 

 

 

 

5.2 Surface morphological studies of thin films by using Atomic force microscopy 

The surface morphology studies of the deposited thin films were done by using atomic force microscopy 

in tapping mode. The scan area is 4µm2. Analysis of individual films are detailed as follows: 

 

 

 

 

BCT 

BZT 

Substrate 
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                        Fig5.10 AFM study of BCZT, BZT, BCT and BCT/BZT bilayer films 

 

 

 

BCZT Film 

The root mean square surface roughness of the BCZT film deposited at 675 ͦC is around ~ 3.3 nm. 

Clearly some island growth could be seen in the AFM image whose size is approximately 164nm. 

BZT Film 

The root mean square surface roughness of the BZT film deposited at 675 ͦC is around ~ 14.5nm. It is 

evident from the AFM image that the grain size is very much coarser in compare to other films. The 

average grain size is around 200nm. 

BCT Film 

The root mean square surface roughness of the BCT film deposited at 675 ͦC is around 6.69nm. The 

average grain size is around 100nm. 

Morphological studies 

BCZT BZT BCT BCT/BZT 

Roughness-14.5nm Roughness-2.08nm Roughness-6.69nm Roughness-3.33nm 
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BCT/BZT Bilayer 

The root mean square surface roughness of the BCT/BZT bilayer film deposited at 675 ͦC is around 

2.08nm. The average grain size was around 80nm. There is a clear sign that in compare to BCT and 

BZT individual films the bilayer surface roughness had reduced and also the grain size of the BZT film 

which is at the top layer. 

 

In summary BCT/BZT bilayer is having the least surface roughness of ~ 2.1nm and the highest surface 

roughness is of BZT film of 14.5nm. Also when BZT film is deposited on top of BCT film the surface 

roughness have reduced to 2.08nm and even the grain size distribution. 

 

5.3 Piezoresponse of BCT, BZT, BCT/BZT and BCZT films 

The piezoresponse force microscopy was done in contact mode. The scan area is 4µm2. Analysis of 

individual thin film samples are detailed as follows: 

BCT Film  

 

 

 

 

 

 

 

 

 

 

                                         Fig5.11 Piezoresponse behavior of BCT thin film 
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It is clear from the PFM image there is no out-of-plane and in-plane contrast. So there is no domain 

formation. It is evident from the phase switching behaviour as there is no 180 degree switching and 

hence the film might not possess FE characteristics. The single point measurements show a noisy 

butterfly strain loop. Thus it can be said that in BCT thin films fabricated in this study ferroelectric 

behaviour is absent.  

 

 

BZT Film 

 

 

 

 

 

 

 

 

 

 

                                        

                                    Fig5.12 Piezoresponse behavior of BZT thin film 

 

In BZT films there is no contrast in out of plane and in plane measurement. But in single point 

measurements a clear butterfly loop is obtained. The phase switching behaviour of 180 degree is also 

evident. The d33 value of this BZT film is 5.8pm/V. Thus the BZT film unambiguously possess a weak 

ferroelectric nature. 
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BCT/BZT Bilayer film 

In bilayer BCT/BZT film the top layer BZT film is deposited on BCT film. As PFM is a surface sensitive 

measurement, Piezoresponse is expected to be dominated by the BZT film. As observed it is clear from 

the PFM image below that it is mimicking the individual BZT film nature. There is no contrast in out-

of-plane and in-plane measurement. However, a clear butterfly strain loop and feeble 180 degree phase 

switching is observed. 

 

  

 

 

 

 

 

 

 

 

 

                                      Fig5.13 Piezoresponse behavior of BCT/BZT bilayer film 

 

 

Thus the bilayer BCT/BZT film is showing weak ferroelectric behaviour. The d33 value measured is 

6.5pm/V. 
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BCZT Film 

 

 

  

 

 

 

 

 

 

 

 

                                             Fig5.14 Piezoresponse of BCZT thin film 

 

In BCZT film there is a strong contrast in the in-plane measurement in compare to out-of plane. The 

ferroelectric domain formation is clearly evident from the in-plane response. The 180 degree phase 

switching is observed with saturation. This shows a strong evidence for the presence of ferroelectric 

nature in BCZT thin films. The measured d33 value of BCZT film is 20.8pm/V. 

 

                                                 

                                            Fig5.15 Butterfly curve for BCZT thin film 
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5.4 V-I characterization 

To study the Current-Voltage behaviour (V-I) or the leakage current all the films were fabricated in 

metal –insulator-metal configuration. The delay time is 0.5sec and holding time is null. The top and 

bottom electrodes were platinum. Circular dots of 500µm size were deposited on top of films by E-

beam evaporation technique. As the thickness of individual films were different, the voltage was 

converted into Electric field. The current was converted into current density taking the diameter of the 

circular dots as 500µm. The thickness of the individual films are listed in the Table. 

Table 5.2: Table detailing the thickness of BCZT/BCT/BZT and bilayer deposited using PLD 

FILM BCT BZT BCZT BCT/BZT 

THICKNESS 535.1nm 476.86nm 445.9nm 150nm 

 

The Current density vs Electric field of the individual films measured are shown below: 

 

 

1000 10000 100000
1E-6

1E-5

1E-4

-4 -2 0 2 4
1E-12
1E-11
1E-10
1E-9
1E-8
1E-7
1E-6
1E-5
1E-4

J
(A

/c
m

2
)

V

BCT

 

 

J
(A

/c
m

2
)

E(V/cm)

BCT
 

 

 

                                             Fig5.16 Leakage current character of BCT film 
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                                           Fig5.17 Leakage current character of BCT film 
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                                             Fig5.18 Leakage current character of BCZT film 
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                                            Fig5.19 Leakage current character of BCT/BZT film 

 

 

5.5 Leakage current comparison 

 

Table 5.3: Leakage current density vs electric field measurment for BCZT, BCT, BZT and bilayer films 

deposited using PLD 

 

 

 

E(kV/cm) BCT 

J (A/cm2) 

BZT 

J (A/cm2) 

BCZT 

J (A/cm2) 

BCT/BZT 

J (A/cm2) 

10 1.31*10-5 2.77*10-6 7.4*10-10 4.3*10-8 

25 3.76*10-5 6.27*10-6 1.5*10-9 1.15*10-7 

50 8.78*10-5 1.35*10-5 2.86*10-9 2.36*10-7 

75 1.50*10-4 2.12*10-5 3.46*10-9 3.87*10-7 
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Fig5.20 Leakage current vs electric field comparison for BCT, BZT, BCZT and BCT/BZT bilayer 

film 

 

The above leakage current comparison shows that the BCZT film is having the least leakage current 

and the leakage current value in bilayer BCT/BZT is improved in compare to its individual films. 
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Chapter6 

 

Summary and conclusions 

6.1 Summary 

In this thesis we have synthesized three bulk BCT, BZT and BCZT targets by solid state route and 

fabricated thin films by optimizing the conditions to deposit polycrystalline thin films on platinum (111) 

coated silicon. The objective of the work was to mimic BCZT solid solution Morphotropic phase 

composition via multilayer approach through BCT and BZT multilayer deposition. The bulk structural 

characterisation was done by coupled ϴ-2ϴ X Ray Diffraction and the thin films were characterised by 

GIXRD. The surface morphological studies were done by Atomic Force Microscopy in tapping mode 

and the ferroelectric nature was analysed by piezoforce microscopy in contact mode. The conclusion 

made are listed as below: 

6.2 Conclusions: 

 Phase pure BCZT and BZT targets were synthesized by solid state synthesis and polycrystalline 

films of their respective targets were achieved by Pulse Laser Ablation Technique. 

 BCT target was synthesized with calcium titanate present as an impurity phase with 4% and 

film phase formation was not so evident. 

 Bulk XRD analysis shows BCZT as an orthorhombic crystal structure and BCT and BZT as a 

tetragonal crystal system. 

 The crystal structures of the thin film samples could not be verified from the powder diffraction 

pattern due to the weak intensity. 

  Surface morphological studies shows bilayer BCT/BZT film is having the least surface 

roughness value of 2.08nm. Individual layers of BCT and BZT shows a surface roughness value 

of 6.69nm and 14.5nm which is larger than the bilayer. 

 The BCZT solid solution film shows a very strong ferroelectric behaviour in comparison to 

other films. 

 The leakage current density is minimum for BCZT solid solution film. 
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Future work 

1. BCT polycrystalline thin film fabrication conditions need to be optimized. 

2. In the grown BCT/BZT bilayer film interfacial effect of MPB composition is not so evident, so 

the thickness of both the films need to be optimized. 

3. To achieve the piezo-coefficient value of BCZT thin film, multilayer or superlattice structure 

need to be fabricated.  

4. Leakage conduction mechanism for all the films need to be analysed.  
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