Reliable and Affordable Telecardiology Under

Resource Constraints
Bollepalli S Chandra

A Thesis Submitted to
Indian Institute of Technology Hyderabad
In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

WRAT AN T gavmEre

Indian Institute of Technology Hyderabad

Department of Electrical Engineering

August 2016



Declaration

also declare that I have adhered to all principles of academic honesty and integrity and have not
misrepresented or fabricated or falsified any idea/data/fact /source in my submission. T understand
that any violation of the above will be a cause for disciplinary action by the Institute and can also
evoke penal action from the sources that have thus not been properly cited, or from whom proper

permission has not been taken when needed.

MJAA.

D

(Signature)

. S.CHANDRA

(Bollepalli S Chandra)

EE€Er2MIBPI0000L

(Roll No.)



Approval Sheet

This Dissertation entitled “Reliable and Affordable Telecardiology Under Resource
Constraints” by Bollepalli S Chandra is approved for the degree of Masters in Technology from
[T Hyderabad.

(Dr. Soumya Jana) Adviser
Dept. of Elec. Engg.
[ITH

(Dr. Ketan P. I’)e'troja) Internal
' Dept. of Elec. Engg.
II'TH

—
L

(Dr. Phanindra Varma Jampana) External
Dept. of Chem. Engg.

1I'TH

(Dr. Phanindra Varma Jampana) Chairman
Dept. of Chem. Engg.
IITH




Abstract

Cardiovascular diseases (CVDs) are a leading cause of death accounting for more than 30% of global
deaths. Unfortunately, traditional CVD management practices, involving hospital visits and health
monitoring at professional facilities, are often too expensive or unavailable for various communities.
In this context, telecardiology systems that simply records and transmits user electrocardiogram
(ECG) signals to a professional diagnostic facility appears to be an attractive alternative. Con-
ventionally, such systems transmit entire data unaltered to a professional diagnostic center, achiev-
ing diagnostic accuracy of professional bedside setup. However, such high-accuracy comes at high
bandwidth cost. Further, conventional telecardiology system design ignores the infrastructural con-
straints in remote communities. In this backdrop, we proposed low-cost telecardiology solutions
to two practical scenarios that require efficient resource utilization. Firstly, we address the prob-
lem of remote resource constrained telecardiology. Specifically, to serve the remote communities
with severe infrastructural constraints (power and bandwidth), we propose a novel telecardiology
framework, where resource constraints, are met by compressively sampling ECG signals, identifying
anomalous signals, and transmitting only the anomalous signals. We propose compressive sampling
as a low-power alternative to traditional Nyquist sampling method, which also lowers bandwidth
requirement. Further, assuming ECG signals to be selfsimilar we design a practical compressive
classifier to reduce bandwidth requirement. Finally, we illustrate our method by designing such a
compressive classifier using ECG signals from the widely used PhysioNet database. Having demon-
strated the resource-constrained telecardiology, we now address the problem of reliable low-cost
telecardiology for continuous monitoring. Specifically, in subjects with heart conditions, continuous
monitoring to detect various arrhythmia that interfere with normal functioning of heart assumes
significance. In this context, monitoring using telecardiology systems appear attractive. However,
high-cost of monitoring using conventional telecardiology systems remains a major hurdle. In this
context, we propose a low-cost telecardiology framework that detects and transmits only anomalous
beats to diagnostic center, where all received beats are correctly (re)classified. In this framework,
high reliability is achieved by detectors with high sensitivity. We realized the desired high-sensitivity
detection using a dictionary learning approach. Finally, we compare our results with reported heart-

beat classifiers, and demonstrate the suitability of our approach in the context of telecardiology.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are a leading cause of death across economic strata. According
to World Health Organization (WHO), over 80% of world’s death due to cardiovascular diseases
(CVDs) takes place in developing and underdeveloped countries, where majority of the population
reside in remote villages [1]. Traditional CVD management, involving consultations, testing and
monitoring at medical facilities. An indispensable aid in diagnosing and managing cardiovascular
diseases is electrocardiogram (ECG) that records the electrical activity of heart. In certain scenarios,
including high-risk-patient care, ECG from a subject is continuously monitored to detect deviation
from normal sinus rhythm. However, practical difficulties arise when only a few general physicians
(or nurses), but no experts in cardiology, are available locally for on-site monitoring. In such
situations, need based transportation of experts, despite being both time consuming and expensive,
used to be the only recourse available in the past. With the advent of information technology,
telecardiology, possibly accompanied by automated diagnostic assists, is fast becoming an attractive
alternative [2,3]. Specifically, rather than physically relocating experts to the bedside of the patient,
ECG signal collected from the patient is electronically transported to experts, thereby increasing

overall responsiveness while bringing down cost.

1.1 Existing telecardiology systems

A conventional telecardiology system, depicted in Figure 1.1, acquires and transmits user ECG to the
diagnostic center for professional diagnosis. A design framework for such systems has been presented,
albeit in broader contexts [2,4]. In this framework, telephone based ECG transmission and associated
clinical experience were investigated decades ago [5]. With growing ubiquity of mobile networks and
their ability to provide pervasive health care services [6], various mobile based telecardiology systems
have been reported [7,8]. In recent years, various ZigBee based wireless systems for monitoring of
elderly patients has also been presented [9]. To deliver telecardiology services in the remote and
rural communities with rickety networks, a method to encode ECG signals to ASCII characters to
communicate via SMS (short message service) has been reported [10].

Although, telecardiology is adopted in various generations of telecommunication technologies the
underlying architecture of telecardiology system remains unchanged. Though such schemes prove

to be effective in patient monitoring, they may not be directly suitable to the resource constrained
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Figure 1.1: Traditional telecardiology architecture.

context. Consider a conventional telecardiology architecture for remote communities, where ECGs
of remote users are transmitted over bandwidth constrained links to a diagnostic center staffed by
experts to accurately detect anomalous beats. Traditionally, the entire signal would be transmitted,
resulting in perfect reliability, albeit with the attendant high bandwidth requirement. In addition,
manual processing of entire record is both time consuming and ineffective. In this context, we intend
to tackle each of the problems to make the telecardiac management more efficient, and hence more
affordable.

1.2 Social context

In the present work, we seek to develop a CVD management scheme that would appeal even to
the economically disadvantaged communities. About 1.2 billion individuals live on less than US$
1.25 per day worldwide (about 276 million individuals in India alone), and have little discretionary
income. To such individuals, the cost of professional monitoring could often be prohibitive. Further
barriers to quality care could include travel and hospital expenses. Fortunately, high penetration
of mobile phones even in remote communities has mitigated such barriers in certain scenarios [11].
In this backdrop, we ask: Can the mobile network be leveraged to provide reliable PVC monitoring
at an attractive cost to the aforementioned communities living at the bottom of the economic

pyramid [12]?

1.3 Scope of the thesis

A conventional telecardiac system, depicted in Fig. 1.1, acquires and transmits ECG signals to a
diagnostic center, where a medical professional makes the diagnosis, and medical intervention is
initiated, when required. Note that ECG signals are acquired by sampling faster than the Nyquist
rate, which can practically be taken as about 500Hz [13]. In this framework, neither power nor
bandwidth constraint is considered. Conversely, in a practical scenario, where there are power and
bandwidth constraints, the aforementioned conventional scheme may not be appropriate. In this
backdrop, we identified two scenarios encountered naturally that require efficient utilization of power

and bandwidth resources.
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Figure 1.2: Motivating scenario for remote resource-constrained telecardiology.

1.3.1 Remote resource-constrained telecardiology

In the hilly northeastern part of India, cost of civic infrastructure development remains high due to
general inaccessibility and remoteness. Consequently, a large population segment only has limited
access to basic transportation, electricity, communication and healthcare. Generally, people are
organized in small communities, each relying on local resources. Several such communities sometimes
occupy one hill, but communities located across hills are often essentially isolated. In this context,
one would naturally ask: Can technology be leveraged to bring basic healthcare to such subsistence
communities?

At first glance, any feasible option would appear expensive. However, on closer inspection, one
detects an opening. Although civic infrastructure is essentially nonexistent, interestingly (due to
its geostrategic location), the region has a well developed defense infrastructure. In fact, each of a
large number of hilltops has a small defense installation equipped with transmission and reception
hardware, thus creating a vast communication network. Noting that such network is primarily meant
for strategic communication, we reframe the aforementioned question: Can we enable affordable
healthcare delivery by making sparing use of those existing communication links?

To proceed, we assume that each hill with one or more communities has a communication facility
as shown in Fig. 1.2. We further assume that the communities are not connected to the electric grid,
and experience electric power constraints. However, the strategic communication facility is fitted
with its own adequate power source (power generator, solar power, or such like), and connected
to a diagnostic center either directly or via multiple hops. In this backdrop, the objective is to
make as little demand as possible on bandwidth over such links, and on the power available to the
communities, while ensuring a certain level of healthcare service. From the economic angle, we also

must require only marginal amount of additional infrastructure to make the scheme practical.
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Figure 1.3: Motivating scenario for reliable low-cost telecardiology for continuous monitoring.

1.3.2 Reliable low-cost telecardiology for continuous monitoring

As alluded earlier, we seek to provide a low-cost telecardiology solution for individuals with average
daily income of about US$ 1.25. Consider an individual living at the economic threshold of this
target population segment, who suffered heart attack in the recent past, and was successfully treated
(see [14] for various treatment options). Post treatment, monitoring of the subject over long intervals
has now assumed clinical significance as mentioned earlier. In this context, we shall investigate the
cost associated with continuous monitoring using conventional telecardiology (depicted in Figure
1.3).

Considering a sampling rate of 360Hz and word length of 11 bits (also used in MIT/BIH arrhyth-
mia database [15]), one would generate about 1.78MB of data per hour. Communicating the entire
data to the diagnostic center would cost about US$ 27 per hour at the rate of US$ 1.5 per 100KB
of data usage. At this rate, the cost of ten-hour monitoring would amount to US$ 2.7. which is
clearly unaffordable and subject would consider using such service for monitoring as non essential.
In this backdrop, the objective is to provide reliable monitoring at cost that the user find little or

no incentive to forgo it.

1.4 Contribution and organization

The rest of the thesis is organized as follows. In Chapter 2 we address the problem of CVD manage-
ment in power and bandwidth constrained communities. Specically, we propose a two-tier telecardi-
ology system where automated classification is performed on the ECG signals, and only anomalous
signals are transmitted for further diagnosis and intervention, thereby saving bandwidth. Addition-
ally, we propose compressive sampling as a low-power alternative to traditional Nyquist sampling
method, which also lowers bandwidth requirement. Finally, we illustrate our method by designing
such a compressive classifier using ECG signals from the widely used PhysioNet database. Specifi-
cally, we demonstrate that an average down sampling factor of three leads to desirable classification

performance in terms of both sensitivity and specificity while substantially saving both power and



bandwidth. The results of this chapter have been published in the following conference paper [16].

B. S. Chandra, C. S. Sastry and S. Jana, “Telecardiology: Hurst exponent based anomaly de-
tection in compressively sampled ECG signals,” in IEEE 15th International Conference on e-Health
Networking, Applications & Services (Healthcom), pp. 350-354, October, 2013.

In Chapter 3, we provide a reliable telecardiology solution for continuous monitoring at low
bandwidth cost. Specifically, we propose a detector at the user end so that only beats found to be
anomalous are transmitted to a diagnostic center, where all received beats are correctly (re)classified.
In this framework, high reliability is achieved by detectors with high sensitivity. Having laid the
design framework, we then realize desired high-sensitivity detection using a dictionary learning
approach. Specifically, using patient records from the MIT-BIH arrhythmia database, we detect
ventricular ectopic beats (VEBs), which are known to be precursors to various serious arrhythmic
conditions in the heart. We compare our results with performances a large set of reported heartbeat
classifiers and demonstrate the suitability of our approach in the context of telecardiology. The
results of this chapter have been published in the following conference paper [17].

B. S. Chandra, C. S. Sastry and S. Jana, “Reliable low-cost telecardiology: High-sensitivity
detection of ventricular beats using dictionaries,” in IEEE 16th International Conference on e-Health
Networking, Applications € Services (Healthcom), pp. 305-310, October, 2014.

Finally, in Chapter 4, we summarized our contribution and discussed about the extension of the

present work towards practical deployment.



Chapter 2

Remote resource-constrained

telecardiology

A conventional telecardiac system, depicted in Figure 1.1, acquires and transmits ECG signals to
a diagnostic center, where a medical professional makes the diagnosis, and medical intervention is
initiated, when required. Note that ECG signals are acquired by sampling faster than the Nyquist
rate, which can practically be taken as about 500Hz [13]. In this framework, neither power nor
bandwidth constraint is considered. Conversely, in a scenario, where there are power and bandwidth
constraints, the aforementioned conventional scheme may not be appropriate. In the face of band-
width constraint, it would be natural to compress the recorded ECG data before transmission. At
the receiver, one would then perform corresponding decompression. Unless compressed excessively,
correct clinical diagnosis can be made based on the recovered data. However, if there is also a power
constraint, this approach may not be suitable because executing effective compression algorithms
generally requires significant power.

Interestingly, if there are both bandwidth and power constraints, one can make use of compressive
sampling (CS) [18,19]. In this approach, the data can be sampled at an average rate far below the
Nyquist rate, while allowing near-perfect reconstruction. This happens because CS reconstruction
algorithms exploit signal sparsity rather than bandwidth limitation. Such low rate of sampling
allows for low power operation while saving bandwidth. Of course, optimally designed compression
algorithms would achieve higher overall compression compared to compressive sampling due to severe
structural constraints put on the latter. Rather than compressing the signal with the aim of faithful
reconstruction, and then classifying it based on the reconstructed signal, one can theoretically make
the classification, and then transmit the classifier index. However, a classification accuracy matching
human abilities would be difficult to achieve, would require intensive computation, and hence is
infeasible in the face of power constraints. As an engineering middle ground, we seek to only
differentiate between anomalous and normal signals. Assuming perfect classification, one need to
send only the anomalous signals to the diagnostic center. In view of the report that only about 30%
of the cases are anomalous [1], one could reduce the bandwidth requirement to the same percentage.

Motivated by this observation, we propose a telecardiology system, depicted in Fig. 2.1, which
acquires compressively sampled ECG data, classifies those into anomalous and normals signals, and

transmits the former to the diagnostic center in real time for possibly immediate response. The



Real time

data transfer
Compressively Transmission Diagnostic
> Sensed signal of anomalous 42._ center
acquisition signals
Classification ECG data
and Storage > bank
of ECG data Offline data transfer

Figure 2.1: Proposed telecardiology model based on compressive sampling.

diagnostic center has the option of storing such anomalous data. If one wishes to eventually store
all ECG data in a bank, one can transfer the entire data, including both anomalous and normal, to
the data bank. In order to classify ECG signals, various signal processing techniques such as wavelet
transform, and fractal analysis have been applied on ECG signals. A number of researchers make use
of wavelets to estimate the characteristic points of ECG signals (P, Q, R, S, and T). These parameters
are further exploited to identify the anomalies [20,21]. Other researchers attempt to detect anomalies
based on fractal dimension and measures of self similarity such as Hurst exponent [22], [23]. We take
reduction in self similarity as an indicator of anomaly, and use it to differentiate certain anomalous

signals from the normal ones.

2.1 Telecardiology Solution

In this work, we shall confine ourselves to cardiac healthcare. Specifically, we wish to promptly

intervene in a developing cardiac crisis within power and bandwidth resource constraints.

2.1.1 Assumptions

To achieve this end, we assume two minor investments: Each community is (i) furnished with a
portable ECG device, and (ii) connected to the strategic communication facility via a dedicated
local link (either wired and wireless). Also, medical professionals are available only at a remote
diagnostic facility, and not locally (Figure 2.1). Further, ECG data are collected periodically, as
well as in critical health situations. The goal is to respond to abnormalcy in a timely manner.! In
a nutshell, we seek a tele-cardiology solution that requires (i) low power operation of portable ECG

machines, and (ii) low requirement for bandwidth over the strategic communication links.

LOf course, we envisage tiered responses. At one end of the spectrum, minor aberrations can simply be addressed
by medical advice, whereas at the other end, a serious condition such as heart attack may require deployment of air
ambulance. Assuming that serious heart conditions arise infrequently, an air ambulance service, albeit expensive per
deployment, may prove cost-effective as a healthcare measure for the geographically-dispersed remote population at
hand.



2.1.2 Proposed architecture

Within our framework, let us first consider classical tele-cardilogy. ECG signals are acquired, sam-
pled, digitized, and transmitted to the diagnostic center, where the diagnosis is performed and
response is formulated. Assuming a nominal sampling rate of 500 Hz [13], and word length of 12
bits, this requires 6000 bps. Although such bandwidth requirement is not high for an individual,
total ECG data carried by the system could be substantial. Therefore, can one reduce the required
bandwidth? Further, can one reduce operating power for portable ECGs?

Fortunately, the answer to both the above questions is yes, and the key to it lies in the sparsity
properties of ECG signals. Specifically, uniform sampling of ECG signals warrants sampling faster
than Nyquist rate, and empirically, one starts losing clinically important features below 500 Hz [13].
However, sparsity in the wavelet domain allows one to compressively (nonuniformly) sample the
same signals at a lower average rate, and faithfully reconstruct from such samples. Assuming an
effective downsampling ratio of k, one would reduce the effective bandwidth requirement by a factor
of k. Assuming k = 3, one therefore would require only 2000 bps. Also, in the sampling circuitry,
assuming that the power consumption is proportional to effective sampling rate, one would operate
with only a third of original power.

At this point, note that one needs to respond to only anomalous cases, which consists of a
small fraction (about 30%) of ECG signals [1]. If one could separate the anomalous signals from
the normal ones, only the former would need to be transmitted leading to further savings. So, a
classical telecardiology system fitted with a perfect classifier would operate at 1800 bps. Finally, if its
compressively (nonuniformly) sampled cousin is fitted with a perfect classifier, then the bandwidth
drops to only 600 bps (assuming affective downsampling by a factor of 3).

The next natural question is: Where do we classify? At the portable ECG machine itself, or
just prior to transmission over the strategic link? Although the first option appears attractive at
the first glance, note that such classification is computationally complex and hence power intensive,
and may not be feasible due to power constraint. On the other hand, the option of classifying at
the strategic installation suffers from no such constraints.

Summarizing, we propose an architecture, where compressively sampled ECG signals are acquired
at a low effective rate, and classified based on such compressive samples prior to transmission to the
diagnostic center. Although attractive from both bandwidth and power considerations, a practical
issue arises: classifiers are generally not perfect, especially, those operating on compressively samples.
So, one would like to analyze and optimize the performance of compressive classification. In other

words, efficient design of the proposed system boils down to efficient design of compressive classifiers.

2.1.3 Classification using Compressive Samples: Design Criteria

An ideal classifier should classify all normal signals as normal, and all anomalous signals as anoma-
lous. However, real classifiers are generally imperfect, with respect which all signals are divided into
four subsets — (i) True positives: signals that are anomalous and classified as anomalous; (ii) True
negatives: signals that are normal and classified as normal; (iii) False positives: signals that are
normal and classified as anomalous; (iv) False negatives: signals that are anomalous and classified

as normal. Further, a classifier performance is characterized in terms of sensitivity and specificity:



cptoe _ number of true positives
SenSItIVIty "~ number of true positives + number of false negatives’
Spe(ﬂﬁmty _ number of true negatives

number of true negatives + number of false positives®

Although high sensitivity and high specificity are both desirable, these quantities enjoy an inverse

relationship. Therefore, we seek a suitable tradeoff.

2.2 Theoretical Foundation

In this section, we provide brief accounts of various theoretical building blocks, and their interrela-

tionship.

2.2.1 Self similarity

A signal {z(t) : t € (—00,00)} is said to be self-similar with Hurst self-similarity exponent H, if and
only if {c"Hz(ct) : t € (—o0,00)}, {z(t) : t € (—00,00)}, V ¢ > 0 and t € (—00,00) have same
distributions, which is referred to as the scaling property of the process x. For a general self-similar
process, the parameter H measures the degree of self-similarity. For random processes suitable
for modeling self similar data, H measures of the speed of decay of the tail of the autocorrelation

function.

2.2.2 Compressive sampling

Compressed Sensing (CS) aims at recovering high dimensional sparse vectors based on few linear
measurements [24]. It refers to a problem of an economical recovery of an unknown signal z from
its linear measurements < x,¢; > with ¢; € R™, j = 1,2,...,n. Here < x,¢; > represents the
inner-product of  over ¢;. Signal recovery from measurements can be formalized as the following
optimization problem:

min ||allg  subject to Pa =y, (2.1)
«

where @ is the matrix whose rows are ¢;. The special case of compressive sampling arises when such
the process of linear measurement reduces to keeping n nonuniformly spaced samples, and leaving
out the rest m — n ones. In this case, the measurement matrix ® has rows with all entries zero
except one entry of one, and the locations of those unity entries are distinct.

Signal recovery when the number n of measurements is much smaller than signal length m is of
particular interest. Indeed, exact recovery is possible if (i) ® satisfies restricted isometry, and ii) the

coherence parameter (i), which is the maximum off-diagonal entry in ®7® (see e.g. [25]), is small.

2.2.3 Wavelet representation

A wavelet is a little wave that is both localized and oscillatory. The representation of a function
in terms of wavelet basis, generated by dyadic scales and integer translates of wavelet involves a

low frequency block and hierarchical high frequency blocks. A framework through which compactly



supported, orthogonal sufficiently regular and real wavelets are constructed is called multiresolution

analysis (MRA) [26]. A signal z € L? has the following wavelet representation:

2= cirbirt Y dixtik (2.2)

kez > Tk

n (2.2), ¥ x(t) = 2%1&(2% — k), cjr = (z,¢s%) and dj = (z,1;) with (.,.) denoting the
standard L? - innerproduct operation. The function ¢, called scaling function, captures the residue

arising out of truncation of the level parameter j from going to —oo.
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Figure 2.2: Time plots of various ECG signals. Plots indicate that the normal ECG signal exhibits
self similar behavior.
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Figure 2.3: Wavelet coefficients of ECG signals in Fig. 2.2. Plots indicate that ECG signals are
sparse in wavelet domain. It may be seen that most of the wavelet coefficients of Normal ECG signal
are almost zero.

Since wavelet transform is linear, it can be represented as a matrix vector multiplication [27] in
discrete setting. For example, if z € R", the wavelet coeflicients ¢ are represented by the matrix
equation ¢ = Wz and the reconstruction formula is given by x = W7 ¢, where W is wavelet transform
matrix. A broad family of natural signals have been found to admit sparse representation (with few
nonzero coefficients) in suitable wavelet domains. Figs. 2.2 and 2.3 illustrate such sparsity for

representative ECG signals.

2.2.4 Recovering wavelet coefficients from compressive samples

Suppose R is a row restriction matrix that picks the rows of the wavelet reconstruction matrix in

tune with the compressed measurements, that is, Rz = RW7Tc. Then the wavelet coefficients may

10



be reconstructed from the following optimization problem:
¢=argmin | c|; subject to || Rzt — RW7c|2<¢, (2.3)

provided c is suffciently sparse, and size of Rc and RW7 satisfy aforementioned sparse recovery

properties.

2.2.5 Estimating Hurst exponent from wavelet coefficients

Using the properties of wavelets and self-similar function, [28,29] observe that whenever a data set
satisfies scaling property, their wavelet coefficients also satisfy the same property, that is, for any

integers j, m, n, k such that j = m + n, we have

n(2H+1)

djx=2""2 dpy provided f(27") = 27" f(1). (2.4)

The equality in the above equation holds in the sense of distribution. Computing the energy F;, at

jth scale, of wavelet coefficients and using (2.4), we get

EJ = NLJZ|dJ’k|2

2—n(21]'-€l+1) 9 —n(2H+1) (2.5)
=2 D ldnal? =2 B
k
The above equation would result in the following ‘energy scale’ formula
logy E; = —j(2H + 1) + log, Ey. (2.6)

The scales over which the plot is straight line are determined first to identify the scale interval over
which the self-similarity possibly holds. Then from the slope of the line H is computed.

After recovering the wavelet coefficients from Rz, the restricted measurements, we adopt the
method of energy-scale for computing the Hurst exponent for the classification of ECG signals for

their normal and/or anomalous behaviors.

2.3 Experiments and results

Having laid the theoretical groundwork, now we turn to understanding ECG anomalies, and experi-
mentally investigating how effective Hurst exponent is differentiating anomalous signals from normal

ones.

2.3.1 ECG anomalies

Anomaly in the ECG signal arises from abnormal electrical activity in the heart. A large hetero-
geneous group of conditions, where the heart beat is either too fast or too slow, and may be either
regular or irregular, are described as cardiac arrhythmia. Further, a subclass of conditions that
start in the atria are called Atrial or Supraventricular (above the ventricles) arrhythmias. Anal-

ogously, ventricular arrhythmias begin in the ventricles. Arrhythmias originating in the atria are
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Table 2.1: Hurst exponents for normal ECG signal

Patient: | 16265 | 16272 | 16273 | 16420 | 16483 | 16539 | 16786 | 17052 | 17453 | 18177 | 18184 | 19088 | 19090 | 19830

S1 0.413 | 0478 | 0.487 | 0.155 | 0.500 | 0.319 | 0550 | 0.388 | 0.545 | 0.559 | 0.482 | 0.401 | 0.408 | 0.515
s2 0.539 | 0426 | 0.465 | 0.305 | 0.522 | 0.539 | 0.528 | 0.459 | 0.443 | 0.512 | 0.434 | 0.487 | 0.345 | 0.509
s3 0.385 | 0431 | 0.571 | 0.500 | 0.563 | 0.546 | 0.505 | 0.568 | 0.447 | 0.491 | 0.363 | 0.438 | 0.345 | 0.468
s4 0.413 | 0.511 | 0.351 | 0.437 | 0.564 | 0.502 (0.589> 0.363 | 0.478 | 0.311 | 0.443 | 0.546 | 0.375 | 0.455
S5 0.460 | 0459 | 0.508 | 0.479 | 0.529 | 0.325 | 0522 | 0.426 | 0487 | 0.443 | 0.465 | 0.526 | 0.194 | 0.509
s6 0.487 | 0512 | 0.362 | 0.539 | 0.495 | 0.449 | 0.436 | 0.555 | 0.507 | 0.308 | 0.341 | 0.471 | 0.289 | 0.458
s7 0.538 | 0.554 | 0.288 | 0.368 | 0.402 | 0.525 | 0.514 | 0.393 (0.595>| 0.458 | 0.481 | 0.307 | 0.362 | 0.531
s8 0.431 (0.583) 0.462 | 0.405 | 0.476 | 0.429 | 0.500 | 0.263 | 0.540 | 0.144 | 0.364 | 0461 | 0.343 | 0.453
s9 0.477 | 0403 | 0.524 | 0.447 | 0.521 | 0.409 | 0.445 | 0.413 | 0.477 | 0.468 | 0.288 (0.586>] 0.364 | 0.512
510 0.445 | 0505 | 0.470 | 0.311 ((0.585 0.397 | 0.531 | 0.528 | 0.399 | 0.381 | 0.520 | 0.485 | 0.405 | 0.538
s11 0.506 | 0.500 | 0.528 | 0.298 | 0.576 | 0.403 | 0.527 | 0.313 | 0.566 | 0.489 | 0.480 | 0.523 | 0.421 | 0.443
S12 0.464 | 0553 | 0.459 | 0.300 | 0.481 | 0.465 | 0.475 | 0.577 | 0.528 | 0.523 | 0.502 | 0.496 | 0.374 | 0.546
s13 0.451 | 0576 | 0.502 | 0.437 | 0.480 | 0.355 | 0.478 | 0.505 | 0.512 | 0.521 | 0.472 | 0.496 | 0.444 | 0.284
S14 0.342 | 0525 | 0.475 | 0511 | 0.366 | 0.458 {{0.509 0.447 | 0.418 | 0.510 | 0.448 | 0.431 | 0.386 | 0.552
S15 0.442 | 0526 | 0.524 | 0.457 | 0.474 | 0.466 | 0428 | 0.539 | 0.573 | 0.552 | 0.447 | 0.501 | 0.440 | 0.578
S16 0.493 | 0549 | 0.433 | 0.523 (0.590) 0.242 | 0.525 | 0.579 | 0.501 | 0.524 | 0.491 ((0.642> 0.450 | 0.567
s17 0.494 | 0.440 | 0.441 | 0486 | 0.563 | 0.123 | 0.483 | 0.493 | 0.452 | 0.408 | 0.433 | 0577 | 0.533 | 0.428
S18 0.439 | 0.575 | 0.471 | 0.306 (0.608 0.513 | 0.561 | 0.437 | 0.547 | 0.512 | 0.454 | 0.562 | 0.479 | 0.358
519 0.478 | 0427 | 0.506 | 0.388 | 0.576 | 0.414 | 0.506 | 0.565 | 0.365 | 0.558 | 0.443 | 0.418 | 0.505 | 0.350
520 0.507 | 0447 | 0.485 | 0.361 | 0.417 | 0.331 | 0.530 | 0.474 | 0.385 | 0.469 | 0.550 | 0.545 | 0.450 | 0.483

Table 2.2: Hurst exponents for atrial fibrillation signals

Patient | 4936 | 5121 | 6426
S1 (0.575 » 0.816 | 0.704
S2 0.601 | 0.737 | 0.853
S3 0.781 | 0.831 | 0.858
S4 0.785 | 0.761 | 0.833
S5 0.704 | 0.746 | 0.729

further sub-categorized as Atrial fibrillations (AFIB), Atrial flutter, Supraventricular tachycardia,
and those originating in ventricles as Ventricular Fibrillation (VFIB), Ventricular Tachycardia (VT)
and Ventricular Flutter. Various other anomalous heart conditions exist; however, rather than tak-
ing all such conditions into account, we shall focus on three abnormal conditions, namely, AFIB,
VFIB and VT, and attempt to distinguish those from the normal.

2.3.2 ECG databases and preprocessing

For our experiments, we use Massachusetts Institute of Technology (MIT) Beth Israel Hospital
(BIH) Normal Sinus Rhythm (NSR), MIT BIH Malignant Ventricular Arrhythmia, MIT BIH Atrial
Fibrillation, and Creighton University (CU) Ventricular Tachyarrhythmia Databases [15]. Since
these database signals are corrupted by contact noise, power line interference, baseline drift etc., we
have preprocessed data using median filters of windows of different sizes. This step normally leaves
crucial signal components like P-wave, QRS complex and T-Wave in tact, but removes baseline
wander.

For self-similarity analysis, we have considered signals of long enough duration by accommo-
dating 5-6 R-peaks in them. As the database signals have different sampling frequencies, we have
standardized the sampling frequencies to 500Hz using suitable multirate processing tools, and the
signal length to 4096 samples (8.2 sec.).
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Table 2.3: Hurst exponents for Malignant Ventricular signals

Patient | 420 422 423 427 430 602

S1 0.764 | 0.803 | 0.769 | 0.923 | 0.776 | 0.907
S2 0.859 | 0.786 | 0.575 | 0.748 | 0.947 /O%
S3 0.836 | 0.668 | 0.726 | 0.743 | 0.888 ( 0.477 ]
S4 0.935 | 0.721 | 0.778 | 0.713 | 0.858 | 0.716
S5 0.905 | 0.838 | 0.762 | 0.718 | 0.930 | 0.620

Table 2.4: Hurst exponents for Ventricular Tachyarrhythmia signals

Patient: | cu01l | cu07 | cu08 | cul0
S1 0.704 ( 0.563 § 0.579 ) 0.712

S2 0.748 | 0.741 | 0.831 | 0.760
S3 0.741 | 0.681 | 0.737 | 0.789
S4 0.770 | 0.733 | 0.930 | 0.754
S5 0.833 | 0.668 | 0.989 | 0.870

2.3.3 ECG signal classification results

We compute Hurst exponent of different ECG signals from preprocessed as well as compressed
measurements (about 1365 samples), and furnish those in Tables 2.1, 2.2, 2.3 and 2.4, where first
row of each table indicates subject number as listed in Physionet database, and first column the
signal segment. Note that several signal segments of duration 8.2 seconds exist for each subject. It
can be seen from these Tables that the range of Hurst exponent for Normal Sinus Rhythm is generally
between 0.15 and 0.58, whereas the Hurst exponent value for other three types of anomalous ECG
signals is generally greater than 0.58. Based on this observation, a threshold of 0.58 is used for
classifying anomalous and normal signals based on Hurst exponent. Incorrectly classified signal
segments are circled for easy reference. This choice of the threshold appears reasonable based
on large proportion of correct classification as seen in Table 2.5. However, an optimized method
(possibly learning based) may improve performance.

Finally, we acquire nonuniformly sampled signals by leaving the unwanted uniformly samples
out. For example, for average down sampling by 2, we leave out half the original samples. For
our experiments, we compare average down sampling factors of 1 (Nyquist sampling), 2, 3, and 4.
Table 2.6 presents the summary of classification performance in terms of sensitivity and specificity
corresponding to these four cases. A down sampling factor of 3 appears attractive as it achieves the
sensitivity and the specificity of 92.31% and 96.79%, respectively, both of which appear to be accept-
able. Thus based on our design principles, we would choose a compressive sampling classification

system where the effective down sampling factor is 3.

Table 2.5: Confusion matrix for two class classification

normal | abnormal
normal 271 9
abnormal 5 60
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Table 2.6: Classifier performance in terms of sensitivity and specificity for various down sampling
factors

Sampling rates Sensitivity | Specificity
Nyquist Sampling 82.35 99.67
Effective down sampling factor of 2 88.23 98.66
Effective down sampling factor of 3 92.31 96.79
Effective down sampling factor of 4 93.84 73

2.4 Summary

The present work envisages a framework of telecardiology based on compressively sampled ECG sig-
nals. This system would save both bandwidth and power without significantly sacrificing diagnostic
accuracy. Specifically, using sensitivity and specificity as competing dual objectives, we designed
a system for ECG signals from widely used databases. Specifically, we found an effective down
sampling factor of three as attractive. The system can be further improved with better classification

accuracy, and in future we plan to incorporate other features to achieve such improvement.
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Chapter 3

Reliable low-cost telecardiology for

continuous monitoring

In a conventional telecardiac monitoring involving high-risk-patient care, ECG from a subject is
continuously monitored to detect any deviation from normal sinus rhythm. Additional complexities
arise when the subject requires remote monitoring [2]. Consider a telecardiology architecture, de-
picted in Figure 1.3, where ECGs of remote users are transmitted over bandwidth constrained links
to a diagnostic center equipped to accurately detect anomalous beats. Traditionally, the entire sig-
nal would be transmitted, resulting in perfect reliability, albeit with the attendant high bandwidth
requirement. In this context, with a view to realizing a low-cost system, one would ask: Can reliable
telecardialogy, in terms of accuracy of anomalous beat detection, be achieved with significantly lower
bandwidth?

In response, we propose automated heartbeat classification at the user devise (see Figure 3.1),
and transmission of only those beats that are detected as abnormal. Indeed, assuming an (unrealiz-
able) ideal classifier with both sensitivity and specificity unity, one would achieve perfect reliability
with only « fraction of the original bandwidth, where o denotes the prevalence rate of anomalous
beats. In practice, we shall achieve a high reliability target using suitable high-sensitivity classifiers.
Not surprisingly, bandwidth requirement increases with decreasing specificity subject to sensitivity
constraint. Thus, the usual sensitivity-versus-specificity tradeoff in the underlying classifier maps
to the reliability-versus-bandwidth tradeoff in the telecardiology system, albeit nonlinearly. In this
work, we propose a natural design framework for telecardiology system design based on the latter
tradeoff, and make explicit and illustrate the aforementioned nonlinear mapping, while indicating
the target high reliability (equivalently, high sensitivity) region.

Having laid down the design framework, we demonstrate high-sensitivity detection with accept-
able specificity using class-specific dictionaries, and hence reliable low-cost telecardiology. In this
paper, we shall consider anomaly resulting from only ventricular ectopic beats (VEB). Although
such beats do occur occasionally even in healthy individuals, those could indicate onset of serious
conditions, especially, in vulnerable individuals [30]. Specifically, we train individual dictionaries for
normal beats and VEBs, respectively, based on well established interval and morphological features.
Given a test heartbeat, such features are represented using both the dictionaries, and we assign to

it that class, whose dictionary provides sparser representation. Our main idea here is that a VEB
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Figure 3.1: Proposed telecardiology architecture

should finds a better representation in the VEB dictionary, rather than in the normal beat dictio-
nary, and vice versa. Using the proposed classification rule, desired high-sensitivity detection was

achieved for appropriate dictionary sizes.

3.1 DMotivation and Contribution in Context

At this point, we provide detailed motivation by placing our contribution in medical and engineering

contexts.

3.1.1 Clinical Motivation

A heterogeneous set of serious conditions, symptomatized by abnormal electrical activity in the
heart, are categorized as cardiac arrhythmia [30]. Arrhythmias originating in the atria include
atrial fibrillation, atrial flutter, and supraventricular tachycardia, whereas those originating in the
ventricles include ventricular fibrillation, ventricular tachycarida, and ventricular flutter. While a
normal heartbeat is triggered by the sinoatrial node, certain abnormal ventricular conditions trigger a
premature ventricular contraction (PVC) beat ahead of the usual sinoatrial trigger (Figure 3.2). Such
PVC beats could be either benign, or a precursor of aforementioned serious arrhythmic conditions,
especially in subjects with compromised heart. Abnormal beats also occur when the usual sinoatrial
trigger does not materialize, and the contraction is instead initiated by ventricular pacemaker cells
as a backup. Such a ventricular escape beat also either occurs in a healthy individual (skipped
beats), or could be a harbinger of serious arrhythmic conditions in cardiac patients. Additionally,
since the morphologies of both PVC and ventricular escape beats are approximately the same, the
Association for the Advancement of Medical Instrumentation (AAMI EC57:1998) standard describes
both as ventricular ectopic beats (VEBs) [31]. In this backdrop, we propose to detect VEBs, and

use those as markers to potentially initiate medical intervention.

3.1.2 Motivation for High Sensitivity Classifiers

Consider a telecardiology system depicted in Figure 1.3, where each user is equipped with a heartbeat
classifier as shown in Figure 3.1, so that only beats detected as anomalous are transmitted. As
mentioned earlier, we shall consider VEBs as the only anomaly. Further, denote by Se and Sp,
respectively, the sensitivity and the specificity of the classifier. We also assume that the diagnostic
center has the resources to validate and correct, if necessary, the class of each beat it receives. Thus
one fails to detect a VEB only if that beat is originally classified as normal and never transmitted.
Thus the fraction of undetected VEBs, 1 — Se, measures the reliability of the system. The lower the

above fraction, the more reliable is the system, and perfect reliability is achieved when such fraction
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Figure 3.2: ECG record containing normal and ventricular beats. Beats annotated “N” indicate
normal, and “V” indicate VEBs.

equals zero. Correspondingly, the fraction B of bandwidth usage is give by
B=Sexa+(1-25p)(l-a), (3.1)

where « is the prevalence rate of VEBs, and the bandwidth requirement without any classifier is
taken as the reference. Of course, no classification is equivalent to Se = 1 and Sp = 0, where,
although perfect reliability is achieved (1 — Se = 0), one does not save bandwidth (B = 1). On
the other hand, perfect reliability would be achieved by an ideal classifier (Se = 1, Sp = 1) with
required bandwidth fraction equal to Se x a, amounting to substantial savings. Unfortunately, such
an ideal classifier is not realizable. In practice, we seek to save bandwidth while still achieving high

reliability (e.g., no more than two undetected VEBs in one thousand, i.e., Se > 99.8%).

3.1.3 Proposed Solution vis-a-vis Engineering Choices

In classifying each heartbeat into two classes, normal and VEB, various engineering choices arise. For
instance, classification algorithms have been reported based on characteristic points of ECG signals
(P, Q, R, S, and T) [20,21], as well as fractal dimension and Hurst exponent [22,23]. However, we seek
to design classifiers using labeled historic data, and hence limit to only machine learning techniques.
In this regard, linear discriminant analysis and neural network have been employed [32,33]. Further,
unsupervised methods of dimensionality reduction have been used in conjunction with compressively
sampled ECG data, whence anomaly detection has been successfully demonstrated [34,35]. In
this backdrop, keeping practical implementation in view, we additionally desire a method where
classification performance can seamlessly be traded off against compute requirement. Accordingly,
in this paper we adopt dictionary learning so that the above tradeoff could be achieved by varying
the dictionary size.

The proposed dictionary learning solution enjoys intimate theoretical connection with sparse cod-
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ing, where a signal is expressed as a linear combination of relatively few basis vectors (equivalently,
atoms of a dictionary) [24]. Indeed, we propose sparse coding, using dictionaries learnt using the K-
SVD (singular value decomposition) algorithm [36]. Of course, other dictionary learning techniques,
such as the method of optimal directions (MOD), also exist alongside K-SVD, and find applications
in areas including image restoration, denoising and texture classification [37]. Specific techniques
apart, effectiveness of dictionary learning has in general not been demonstrated for classification
of ECG beats. The present paper fills this gap by demonstrating dictionary-based high-sensitivity

classification and its effectiveness in the context of high-reliability telecardiology.

3.2 Proposed Dictionary based Classifier

To proceed, we need the mathematical notions and the preliminaries of compressive sensing and

dictionary learning.

3.2.1 Problem Statement

We begin by mathematically formulating the problem of classifying an ECG beat into the normal
and VEB categories. Denote by x any signal vector representing an ECG beat. A candidate classifier
specifies two mutually exclusive and exhaustive subsets I'; and I's of set ' of all possible x such
that if a beat = € I'y, it is declared normal, else if x € T'5, it is declared a VEB. We wish to find T';
(and hence T'y) such that the sensitivity, i.e., fraction of VEB beats detected as VEB beats, is high
(say, above 99.9%). Subject to this, we desire to maximize specificity, i.e., fraction of normal beats
declared as normal beats. Recall that the sensitivity (Se) determines the reliability (= 1 — Se),
whereas both sensitivity and specificity determine the bandwidth requirement according to (3.1).
Generally, two approaches are taken towards designing such classifier: based on (i) stochastic model
under each hypothesis (normal and VEB), and (ii) historic data making use of appropriate learning
method. As mentioned earlier, we adopt the latter in view of abundant labeled data, and propose a

dictionary based solution.

3.2.2 Mathematical preliminaries
Compressive Sampling

Compressive sampling (CS) aims at recovering high dimensional sparse vector x € R™ from a few
of its measurements y == ®x € R™ with m < n, where ® denotes the measurement matrix [24].

Formally, we seek to solve

min ||z|lo  subject to Pz =y, (3.2)

€T
where || - || indicates the [y (counting) norm. In general, (3.2) is intractable. Fortunately, under
certain technical conditions, solution to (3.2) remains unaltered if || - ||o is replaced by the {1 norm

I - ll1, where new problem requires more tractable l; solvers. Among the existing I, solvers, or-
thogonal matching pursuit (OMP), a simple and effective (although greedy) algorithm, will be used
in our paper [24]. The aforementioned technical condition relates to the sufficiency of the set of
measurements as a function of signal sparsity, which is often empirically estimated through repeated

experimentation.
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CS theory also applies to signal recovery from noisy (inaccurate) measurements
y=%x+e |ef2<e
for some € > 0. Specifically, we seek recovered signal
& =argmin, ||y — ®z ||2 +7 || z |1, (3.3)

for appropriate 7 under certain technical conditions. The optimizaion problem (3.3) is often solved
by iterative soft-thresholding method [24].

Dictionary Learning

The method of dictionary learning identifies a tunable selection of basis vectors providing sparse
representation. Given a set of signals {z;}?_;, K-SVD [36] obtains the dictionary D that provides
the sparsest representation for each example in this set. It involves a two-step procedure. In the
first step, for a given dictionary D, we obtain matrix ¥ with sparse columns by solving the following

optimization problem:

¥ = argming Z || ©; 1|1 subject to X = DO, (3.4)
1

where ©; is the I*" column of ©, and X is the matrix whose columns are z;’s. Using the above ¥,
the pair (D, V) is then updated as

(D, W) = argmin || X — DV|% subject to ||¥;]|o < ToVi, (3.5)

where U; denotes the i* column of ¥, Tj, the sparsity parameter, and | - | z indicates the Frobenius
norm. In view of CS theory, thus the K-SVD algorithm alternates between sparse coding (3.4),
solved using an [! solver such as OMP, and dictionary update (3.5), solved using iterative soft-

thresholding, till there is a convergence in the dictionary so learnt.

3.2.3 Proposed Solution

Armed with the preceding mathematical background, we now propose a dictionary based heart-
beat classification method that exploit labeled historic data. Denote such labeled dataset by
{{zu} N }E . Here  indicates the class label: [ = 1 indicates normal, and [ = 2 indicates VEB, with
number K of classes equaling two at present. Further, ¢ indicates the signal index and takes values
up to IV, the number of beats present in class [. Now, as detailed above, we learn the dictionary D,
for class I from {y;;} !, for both [ = 1 (normal) and I = 2 (VEB). All such dictionary learning is
performed offline.

In real time, when a heartbeat vector z is presented, the proposed classifier assigns the class
label, the dictionary corresponding which provides the sparsest representation. Specifically, we set

an accuracy level € > 0, and find the sparsest representation &; of x using each dictionary D,
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Feature Description

e Number of samples between
current R_peak location and Pre-
vious R_peak location

e Number of samples between
current R_peak and the next
R_peak

o QRS _offset-QRS _onset

e R_peak-Q_peak

e S_peak-R_peak

e Magnitude of Q_peak
e Magnitude of R_peak
e Magnitude of S_peak
o P offset-P_onset

e Magnitude of P_peak
[ ]

[ ]

[ ]

[ ]

[ ]

[}

[ ]

Heartbeat
interval
features

P _peak-P onset
P _offset-P _peak
T _offset-T _onset
Magnitude of T _peak
T _peak-T _onset
T _offset-T _peak
Morphological 30 uniformly sampled data
features points within 60ms window with
R_peak as center
e 20 uniformly sampled data
points within 80ms window with
T _peak as center

Table 3.1: Feature vector has length 66, comprising of 16 heartbeat interval features, and 50 mor-
phological features.

(l=1,...,K) by solving
&, = argmin ||oy||; subject to ||z — Dyoy|s < e
Finally, we assign to = the class label
[ = arg min |||, (3.6)

i.e., the index of the sparsest representation. If (3.6) results in a tie between two indices i and j,
we pick i such that ||z — D;&|ls < ||# — D;é,|o. If dictionary size is small, it may not be possible
to obtain e-accurate representation using any rival dictionary. In that case, we shall only make use
of the tie-breaking mechanism. Finally, notice that one may use smaller dictionaries, potentially
incurring classification accuracy loss, in order to reduce compute requirement within the proposed
framework. Although our solution applies to any number K of classes, in this paper we confine to
K =2.
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Figure 3.3: Morphologocal features: (left) normal beat; (right) VEB.
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Figure 3.4: Sensitivity and Specificity of classifier for different dictionary sizes

3.3 Experiments and Results

We use MIT-BIH Arrhythmia Database available in the PhysioBank archives [15], consisting of 30-
minute excerpts of two channel ambulatory ECG recordings digitized at 360 samples per second per
channel with 11-bit resolution over a 10 mV range. Each beat in the database is annotated by two or
more cardiologists independently. Prior to classification, we remove baseline wander using median
filters of window size 200ms and 600ms. Such filters remove P-waves, QRS complexes and T-waves
leaving behind the baseline wander [32]. We then subtract the baseline wander from the original

signal.

3.3.1 Proposed Features

Towards desired classification, we first generate two sets of features: (i) heartbeat interval features,
and (ii) morphological features [32]. As a first step we used the following heuristic segmentation.
Consider an R_peak located at time to, and suppose the durations of the pre-RR and the post-RR
intervals are Tpre and Tpost. Then the interval [tg — 0.5T e, to + 0.75T}0st] provides the estimated
beat segment corresponding to an R_peak located at t;. Here we made use of the locations of the
R_peaks given in the Physionet database annotations.

Next we obtain fiducial points of heartbeat such as, onset and offset of QRS complex, P_wave,
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Actual Actual
Labled \% N Labled A% N
A% 1764 2 A% 1766 0
N 215 | 1551 N 194 | 1572
(a) Dictionary size 240 (b) Dictionary size 420

Table 3.2: Confusion matrix for proposed classifiers. Here V indicate VEB and N indicates Normal
classes.

and T _wave, position and magnitude of P_peak, Q_peak R_peak S_peak and T _peak using a fiducial
point identifier algorithm [38]. In order to improve accuracy, we resampled our signals at 1024 Hz.
From these points, we compute a set of heartbeat interval features given in Table 3.1. We also
compute morphological feature vectors consisting of 30 uniformly spaced samples within a window
of 60ms with R_peak as center, 20 uniformly spaced samples within a window of 80ms with T _peak
as center. Such morphological features within normal and ventricular ectopic beats are depicted in

Figure 3.3.

3.3.2 Learning Class-specific Dictionaries

The experiment is performed using ECG signals pertaining to 11 patient records in MIT-BIH Ar-
rhythmia database. Each patient data is divided into training and test sets. For any given patient,
the number of normal beats are significantly higher compared to that of VEB beats. For training,
we choose the same number of normal beats as that of VEB beats for each subject. Further, we
learn dictionaries for both the ECG beat classes under consideration on the basis of training data
using K-SVD algorithm as described earlier. Next each test beat is projected onto both dictionaries
and the beat is assigned to the class whose dictionary provides the sparser representation. The
dictionaries of both normal and ventricular beats are trained using 1755 beats and the classification

performance is evaluated on 1766 beats from the same set of patients.

3.3.3 Classification Performance

Fig. 3.4 depicts the performance of the proposed classifier in terms of sensitivity and specificity
for various sizes of dictionaries. Note that our method achieves high sensitivity for a range of
dictionary sizes. To highlight this, we draw a dashed line indicating a sensitivity of 99.8%, and
observe multiple points above that line in the sensitivity plot. As expected [24], the specificity is
acceptable when the dictionary size is about three times the feature vector length or more. For a
dictionary size of 66x240, sensitivity and specificity of 99.9% and 87.8%, respectively, are achieved,
and the corresponding confusion matrix is presented in Table 3.2a. For a larger dictionary size of
66x420, we achieve sensitivity and specificity of 100% and 89%, respectively and the corresponding
confusion matrix is presented in Table 3.2b. Note the improvement in the classifier performance is
achieved at the cost of higher compute requirement.

Table 3.3 compares the classification performance of our method with various reported algo-
rithms in terms of sensitivity and specificity. While our technique achieves higher sensitivity than
rival algorithms, the latter in general achieve higher specificity, making a fair comparison difficult.

Yet, devoid of context (such as telecardiology), one sometimes wishes to keep both sensitivity and
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Sensitivity | Specificity
(%) (%)
Chow et al? [39] 97.4 99.2
Hu et all [40] 78.9 96.8
Christov et al. [41] 96.9 96.7
G Bortolan et al. [42]
Neural networks (NN) 95.8 98.3
K-th nearest neighbour (kNN) 91.3 98.7
Discriminant analysis (DA) 97.0 94.4
Fuzzy logic (FL) 92.8 98.4
Chazal et al [32] 77.5 98.9
Gémez-Herrero et al. [43] 98.5 97.2
Inan et al? [44] 85.3 99.1
Jiang et al [33] 94.3 99.4
Ince et al? [45] 93.4 99.2
Proposed method
Dictionary size 240 99.9 87.8
Dictionary size 420 100 89

I Classifiers proposed for multi class classification.
2 Specificity calculated by assuming prevalence as 11%.

Table 3.3: Comparison of the proposed method with rival methods in terms of classification perfor-
mance.

specificity roughly equal, while maximizing that equal quantity. According to such criterion, cer-
tain reported classifiers, especially, due to [39], [41], [42], [43], [33] and [45], do appear attractive.
Unfortunately, an application such as telecardiology does not lead to the aforementioned criterion.

To highlight the importance of telecardiological context, in Fig. 3.5 we make comparison between
the same classifiers as earlier, but now with respect to the number of VEBs undetected per one
thousand beats vis-a-vis the fraction of original bandwidth used. Here we assume an 11% prevalence
rate of VEBs'. As mentioned earlier, we use as reference the bandwidth requirement when no
classifier is deployed. On the other hand, an ideal classifier would use only 11% of the reference
bandwidth (shown by vertical dashed line). In this backdrop, notice that a number of reported
classifiers do operate close to, or even less than, such ideal bandwidth. However, those do not
perform close to our reliability limit of two undetected VEBs in one thousand (shown by horizontal
dashed line). The nearest in this respect, the classifier proposed by Gdémez-Herrero et al. [43],
requires only 13% of the reference bandwidth, but fails to detect about 15 VEBs in 1000, which
is 7.5 fold higher than the acceptable limit. In comparison, the proposed classifier with dictionary
size 66x240 would use 21.8% of bandwidth, while missing only 1 anomalous beat per 1000. A larger
dictionary size of 66x420 leads to only 20.8% of bandwidth with no (less than one in 1766) VEB

misclassification.

L As the statistics for VEB prevelance is not directly available, we take as a representative figure the CVD prevalence

rate (which is 11% in the USA [46])
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Figure 3.5: Comparison of various classifiers in the context of telecardiology.

3.4 Summary

In this work, we consider VEB versus normal heartbeat classification in the context of bandwidth
constrained telecardiology. Specifically, we desire a high reliability of two undetected beats in one
thousand or less (i.e., sensitivity greater than 99.8%). Subject to such reliability constraint, we
sought to minimize the bandwidth usage. In this backdrop, we demonstrated such high-sensitivity
classification (99.9% and 100%) using dictionary learning techniques, while achieving substantial
bandwidth savings (78.2% and 79.2%, respectively). Additionally, proposed classifiers are scalable
in terms of compute requirement (dictionary sizes of 240 and 420, respectively), and hence assume
practical significance. In theory, one may achieve high classification accuracy as well as high class-
specific compression and hence low transmission bandwidth, by simply enlarging the feature vector
to include the entire signal vector. However, the prohibitive compute requirement for both offline
training of a large dictionary, and real-time signal representation as a linear combination of large
number of dictionary atoms could make such schemes impractical. In summary, the tradeoff is not

merely between reliability and bandwidth, but involves the compute requirement as well.
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Chapter 4

Conclusion and discussion

A conventional telecardiac system, that acquires and transmits user ECG signals to the diagnostic
center may not be appealing to the economically disadvantaged communities living at less than US$
1.25 per day. Further, the design of such a system does not take into account the resource constraints
in remote localities. In this backdrop, we proposed reliable and low-cost telecardiology solutions to
two practical scenarios that require efficient resource utilization.

In Chapter 2, we addressed the problem of remote resource-constrained telecardiology. We
proposed a two-tier telecardiology framework to tackle stringent power and bandwidth constraints.
Specifically we used compressive sampling to address power constraints and compressive detection
of anomaly, to communicate only anomalous signals to the diagnostic center thereby reducing the
bandwidth requirement. The proposed scheme is expected to significantly reduce healthcare cost
in remote areas by obviating significant personnel movement and infrastructure-related investment.
Our system also reduces the burden on subjects to travel long distances to obtain expert advice.
In other words, the proposed system delivers the desired benefits of classical telecardiology even
with limited resources. Conveniently, the experiences of subjects and experts also remain essentially
unaltered. Specifically, a subject still provides the ECG signal using the same transducers, and an
expert visualizes that signal at the diagnostic center at essentially the same quality.

Further, we make experimental demonstration using annotated PhysioNet databases [15]. In
particular, we designed compressive classifiers based on self-similarity property exhibited by ECG
signals [22] [47]. Our method has the unique ability of operating on compressive samples, thus
adapting to resource constraints. Finally, we found an effective down sampling factor of three with
a Hurst threshold of 0.58 as attractive operating point. In view of the demonstrated efficacy of
the proposed system, we plan its practical deployment in the future. To this end, further research
on the following issues are required. (i) Compare the reconstruction accuracy from compressively
sampled data using an objective measure for various downsampling factors and patterns. (ii) Design
a universal downsampling pattern for a given downsampling factor that guarantees recovery from all
the ECG signals. (iii) Optimize the threshold for Hurst exponent for various downsampling factors.
(iv) Consider additional features of ECG (like periodicity) to improve classification performance. (v)
Investigate the tradeoff between bandwidth (communication cost), classifier sensitivity (reliability)
and downsampling factor (power savings). (vi) Analyze the cost-benefit of the proposed architecture

compared to conventional telecardiology.
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In Chapter 3, we addressed the problem of reliable and low-cost telecardiology for continuous
monitoring. In this context, we proposed a novel telecardiology framework that detects anomalous
beats with high accuracy (missing no more than one anomalous beat in thousand anomalous beats)
and communicates only those beats to diagnostic center to achieve bandwidth savings. Note that we
desired high sensitivity rather than high overall accuracy, as the diagnostic center corrects wrongly
classified normal signal. To this end, we used dictionary learning technique to achieve the desired
high-sensitivity classification. We demonstrated the efficacy of our method using the MIT/BIH
arrhythmia database. In particular, with a reliability target of at most two undetected in one
thousand, we achieve about 79.2% savings in bandwidth which translates to proportional savings in
the operational cost, which is expected to be attractive to the economically marginalized.

The proposed system provides a low-cost continuous monitoring solution with reliability and
user experience are on par with the conventional telecardiology. Further our system can be used in
a broader setting to address preventive care and mass screening of CVDs. Current system can be
further improved with the following considerations. (i) Train dictionaries with entire beat vector
instead of hand-picked features would not only result in the desired classification, but also achieves
compression by representing the beat vector sparsely in dictionaries. (ii) Operate at the desired
classification performance by comparing the ratio of sparsity of representation to a variable threshold.
(iii) Add more classes of anomalous beats to the classification algorithm. (iv) Demonstrate the
performance of the proposed classification algorithm on the larger set of data. (v) Investigate the
tradeoff between computational requirement, bandwidth savings and the classification accuracy. (vi)
Analysis of the cost-benefit of the proposed system compared to conventional telecardiology.

Apart from the specific considerations for each of the aforementioned systems, the following
guideline are applicable for both the architectures. Firstly, in this thesis, our focus has been on
demonstrating the tradeoff among reliability, power and bandwidth, and we make such demon-
stration using only one-lead ECG signal. In contrast, professional diagnosis requires 12-lead ECG
signals [48]. Thus, to realize professional grade equipment, our principles need to be applied to
the 12-lead system. Secondly, to improve portability, 3-lead (generally, reduced lead) ECG systems
have been suggested such that the desired 12-lead signals can be faithfully reconstructed from the
observed 3-lead signals [38]. In view of this, it would be worthwhile to develop portable devices
that are reliable under resource constraints. Finally, practical aspects of the desired system, includ-
ing privacy and information security, and effect of network congestion and packet loss, need to be
studied, and taken into account.

Towards practical deployment and large-scale adoption, one needs to also develop appropriate
quality models and standards. As alluded earlier, professional evaluations are generally made based
on 12-lead ECG signals, which are sampled at a rate of 500Hz or greater [13,48], and such a system
can ideally be taken as the standard. In other words, while evaluating a cardiology-related system
(including ours), one would seek a clinical outcome that is statistically indistinguishable from the
outcome based on the standard system. This point of view has been adopted in the aforementioned
work, proposing reduction in number of leads [38], where a close approximation is reported. However,
such a stringent criterion could be hard to meet under resource constraints. Also, given the dire
medical infrastructure generally found in rural areas, levels of expectation of various stakeholders
could also be different. Various quality of service models, including the one proposed by Kastania et

al. [49], take such expectations into account. Thus, towards developing a gold standard for resource-
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constraint telecardiology, the expectation levels of patients, physicians and other stakeholders need
to be estimated through scientifically devised surveys and trials. Such an endeavor is generally
intensive and needs participation of a multitude of individuals from diverse backgrounds, and hence
a standard may not evolve quickly. However, one should take heart from the fact that desired

standards and guidelines have successfully evolved in related contexts [50,51].
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