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Abstract

In the recent past open source analysis software have been on the demand for

studying various phenomenon related to fluids and solids. To counter act the

booming prices of commercial CFD and FEM toolkits, open source software pro-

vide the key. In the field of computational fluid dynamics, open source cfd toolkit

, OpenFOAM (Open source Field Operation And Manipulation) is a viable al-

ternative to commercial cfd toolkits like FLUENT, StarCCM+, etc.

In the following thesis, an attempt has been made to address standard droplet

breakup problem using OpenFOAM. The thesis aims at developing an incom-

pressible multiphase vof (volume of fluid) based solver which works on a SMAC

algorithm, using the native OpenFoam libraries.

The native vof solver of OpenFOAM and the newly developed explicit solver are

tested against standard benchmark cases like 3D lid driven cavity, vortex in a

box, dual vortex stretching, spurious currents, square bubble to circle, cubical

bubble to sphere, dual vortex stretching and droplet splashing and compared in

terms of accuracy and computational time. This knowledge led to deciding upon

optimum case setup parameters which was then used to address the problem at

hand: droplet breakup.

For the droplet breakup analysis, two droplets with different diameters ratios

were allowed to collide for different Reynolds number and Weber numbers. The

collisions were also studied for different offsets parameters.

Apart from above standard cases, other important features of OpenFOAM such

as different linear solvers, numerical schemes, multicore operational capabilities,

dynamic mesh refinement and static mesh refinement were also tested and re-

ported.
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Chapter 1

Introduction

1.1 Why the interest in droplet dynamics ?

Combustion is defined as a process of conversion of chemical energy of fuels into

heat, light and sound. Combustion phenomenon in IC engines, gas turbines or

any other prime mover that involves petroleum fuels, occurs in gaseous phase.

No liquid fuel burns in its original state. Hence, atomization of liquid fuels is

the primary step in any combustion process. Looking at IC engines as an area of

interest, the injected fuel has very low residence time in combustion chamber. In

this small time interval, the injected fuel, which is in liquid state, has to be bro-

ken down into smaller droplets which then evaporate to form a near homogeneous

gaseous charge ready for combustion. Since evaporation is a surface phenomenon,

larger the surface area to volume ratio, faster is the evaporation. As, the droplet

size decreases, the surface area to volume ratio keeps on increasing. Thus, smaller

the droplet, faster is its atomization implying better and complete combustion.

The characteristics of spray formed significantly affects the engine performance.

The local equivalence ratio of the fuel air mixture determines the kind of com-

bustion that will occur in the chamber which in-turn depends upon the mass

fraction of liquid and gas present in any given sample volume. Thus, all in all,

formation of the charge for combustion in an IC engine is a complex multiphase

phenomenon that involves droplet liquid sheet breakup, droplet atomization and

breakup, droplet interaction with surrounding like and unlike droplets involving

collision and child droplet formation, and finally its combustion. This makes

droplet studies imperative for better understanding and improvement of IC en-
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gine combustion. Similar arguments can also be made about physics behind gas

turbine combustion and liquid jet propulsion systems. On top of all, with the

introduction of newest fuel injection technologies like CRDI (Common Rail Di-

rect Injection), MPFI (Manifold Port Fuel Injection) and GDI (Gasoline Direct

Injection) it becomes imperative to know all that there is to be known about

droplet and bubble dynamics. Also, with the reserves of fossil fuels hitting an

all-time low, desperate attempts are being made to find alternatives to fossil fu-

els especially for locomotive purposes. Fuel blending is a promising step in this

direction. So, to analyze the effect of different blends on droplet and jet breakup

these studies are a must. Hence, it becomes imperative to study droplet interac-

tion and their breakup at length.

Droplets have been an active area of research for decades. And still it has been

very difficult to successfully address the actual physics of the phenomenon. Var-

ious attempts have been made over the years to explore droplet and bubble dy-

namics and a lot still remain unknown. The first studies on droplet collision,

using water droplets in air at atmospheric pressure, have been conducted be-

cause of meteorological interest by Adam et al. [2]. They focused attention on

the aerodynamic environment of the event and on the outcome of the collisions.

Park [3] produced collisions between streams of water droplets traveling in still air

and showed pictorially that near head-on collision between pairs of equally sized

droplets of 700 µm, resulted in stable coalescence, while off-centre collision at the

same relative velocity resulted in a transient coalescence and finally in separation.

As reported by Qian and Law [8] for water droplets, for head-on collisions at at-

mospheric pressure bounce is not observed; for the same conditions however, the

collision outcome between hydrocarbon droplets may result to bouncing. Jiang

et al. [9] provided a comprehensive quantitative assessment of droplet collisions

of hydrocarbon droplets (heptane, decane, dodecane, tetradecane and hexade-

cane), and later Qian and Law [8] extended these investigations to include the

effects of ambient pressure, density, viscosity and impact parameter (characteriz-

ing off-centre binary collisions). The following collision regimes were found with

increasing Weber number; droplet bouncing, stable droplet coalescence, unsta-

ble droplet coalescence and droplet stretching separation, [8],[9]. Estrade et al.

[10] published information about the number of satellite droplets, their sizes and

velocities produced by bouncing collisions. Estrade et al. [10] published infor-

mation about the number of satellite droplets, their sizes and velocities produced
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by bouncing collisions. Moreover, they also developed a model for predicting the

boundary between the bouncing and the coalescence regimes. Brazier-Smith et

al. [4] carried out experiments on binary water droplet collisions and developed

the threshold of the stability of water droplets against separation, while Arkhipov

et al. [12] obtained a relation for the impact parameter separating stable coales-

cence from stretching separation. Willis and Orme [13] conducted experiments of

droplet collisions in a vacuum, devoid of aerodynamic effects, focusing on the role

of viscosity in the evolution of the collision phenomenon. Experimental results of

Ashgriz and Poo [5], showed that for the same Weber number of the two colliding

droplets, the number of satellite droplets resulting from the droplet separation

increases with the increase of the impact parameter.

1.2 Approach to investigation

Now that the need for this study has been established the immediate question

that needs to be answered is the kind of approach that one needs adopt for the

study.

1.2.1 Analytical:

The analytical approach to droplet breakup proposes two theories linear stability

theory and non-linear stability theory. To understand the analytical approach,

the actual theoretical mechanism of droplet formation needs to be understood at

length. Usually, droplets are formed from parent mass of fluid through ligament

separation and pinching. As the parent mass of fluid deforms, a smaller mass

of fluid starts separating from it. Initially, they remain connected by a small

ligament of fluid. As the ligament stretches, its surface area keeps on increasing.

If more surface area is present than the minimum required to contain the volume

of fluid, the system has excess of surface energy. A system not at minimum en-

ergy state will attempt to rearrange so as to move toward the lower energy state

leading to breakup of fluid into smaller masses to minimize the system surface

energy by reducing surface area.

To analytically determine droplet breakup, linear stability theory was proposed.

The theory states that the breakup process starts with the development of cer-

tain perturbations on the free liquid surface of the fluid. These disturbances are
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Figure 1.1: Stability theory breakup model

very arbitrary in nature. Hence they are analyzed using fourier transform which

converts the arbitrary disturbances into perturbations of a single wavelength.

Consider a cylinder as shown in figure 1.1. The perturbations cause a change

in radius at different locations. At the region of less curvature, the pressure is

high which forces the liquid from this region into a that of high curvature since

the pressure in this region is low. However, the radius of curvature in the larger

region is very important to breakup process. For some perturbation wavelengths

, the pressure in the larger region may surge overcoming the effect of pressure in

the smaller region and thus forcing the fluid back thus returning the fluid to its

original undeformed shape. In other cases, the perturbation wavelength assists

the pressure in the smaller region leading to complete flushing of liquid out of the

smaller region finally resulting into pinching.

While linear theory is useful in considering the growth of small disturbances on

the free surface, when the disturbances grow to have a significant amplitude,

non-linear effects begin to dominate breakup behavior. The non-linear behavior

of the thread governs its final breakup and ultimately determines the final shape

and number of the resulting fluid masses.
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The relationships obtained using these stability theories give empirical relation-

ships involving the wave numbers. But the proportionality constants need to

be evaluated using experimental data. Hence, to conclude, the stability theory

can only predict which wavelength will be dominant and responsible for droplet

breakup. But, it cannot address the transient nature of the process nor the

statistics of the outcome like child droplet diameter or their number. Hence,

experimental techniques were devised.

1.2.2 Experimental:

Since decades, scientists and researchers all over the world have been using various

experimental techniques to address multiphase phenomenon.Experimental stud-

ies of multiphase flows are significantly more difficult than single phase flows.

For sprays in atomization regime, length scales and time scales are short and

optical access to primary atomization zone is limited. The primary atomiza-

tion step is most difficult to address. Hence, most of the earlier experimental

studies were more focused on characterizing sprays by analyzing the spray cone

angle, tip penetration length, breakup length, mean droplet diameter etc. Over

the years the experimental techniques have become more reliable, more accurate,

more sophisticated but also more expensive. These techniques include: Laser

Doppler Anemometry (LDA), PDPA (Phase Doppler Particle Analyzer), PIV

(Particle Image Velocimetry), LIF (Laser Induced Fluorescence) [16], Mia scatter-

ing experiment[17], Schlieren photography [18], shadography [19], Laser Rayleigh

Scattering(LRS) R(25). In general, all these experiments require a source of light

that will illuminate the region under observation and a high speed camera that

will capture the phenomenon for further post processing. Both these components

are extremely expensive.

Although any experimental technique in multiphase flows is absolute, i.e. it

doesnt require any separate validation, it has some inherent drawbacks. Using

experimentation, the flow can be analyzed only in the regions where there is

sufficient concentration of the phase of interest. Once the phase becomes too dis-

perse, it becomes lesser and lesser visible to the apparatus. And hence cannot be

further investigated. Also, on the other hand, if the region is very dense, visible

light is scattered by dense region causing large errors in measurements. Thus,

experimental techniques are in-adequate at regions very close to the nozzle (in
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case of spray problems) where the phase is very dense and also far away from the

nozzle where the phase is very disperse. Also, for a real automobile injector, it

is very difficult to cature the high speed sprays at sufficient spatial and temporal

resolution.Studies on flow visualization in nozzles are also available in literature.

Kim et al. [20] performed visualizations of the internal flow in diesel injection

nozzles by using transparent model nozzles that are ten times larger than real

diesel injectors. Tamaki et al. [21] conducted an experimental work on water jets

produced by transparent nozzles of different geometrical characteristics. They

used micro flash spark light for internal flow visualization. Detailed review of the

status of experimental investigation of primary atomization of liquid streams is

reported in [22].

1.2.3 Numerical:

The reason behind the choice of experimentation in earlier decades was that com-

puters of that era were not powerful enough to handle the hefty computations

needed to capture multiphase flow phenomenon. But now with the advent of

faster and powerful computing resources, numerical simulations have gained a lot

of popularity as well as reliability. With the introduction of parallel computing, a

lot of impossible tasks of yesterday have become a common day reality of today.

Also, with the recent debut of GPU based parallization the world of parallel com-

puting has reached its peak. Numerical investigations have their own advantages

when weighted against experimental techniques. Significant reduction in cost and

space requirement is one of them. Also with better numerical models developed

day by day the reliability of these simulations is always on the rise. Hence, a

numerical approach is adopted in this thesis for the droplet study.

Any general multiphase flow solver needs two components. First, an algorithm

to solve the Navier Stokes equation. These include SMAC, PISO, SIMPLE or

their derivatives. And second, an algorithm to deal with the different phases that

come into the picture.

Two principle approaches to the numerical study are Eulerian-Eulerian and Eulerian-

Largrangian methodology. In the Eulerian-Eulerian approach both liquid and gas

phases are solved on a fixed grid.Eulerian-Eulerian approach for spray modeling

is a recent addition in this category and has made significant progress in the
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past decade [24],[25],[26]. Locating and accurate capturing of the continuously

deforming interface is the most challenging task faced by such an algorithm.

In Eulerian-Largrangian methodology, for a droplet study, the gaseous phase is

solved on a fixed grid while the liquid droplets are given Lagrangian treatment.

For a bubble study, the roles are reversed.

The multiphase flow simulations in Eulerian-Eulerian framework can proceed via

two approaches: Multi fluid approach and One-fluid approach.

In the multi-fluid approach, the complete computational domain is divided into

sub-domains. All the governing equations are valid in these sub-domains and all

these sub-domains are connected to their neighbors numerically by appropriate

boundary conditions. This usually required a computationally expensive iterative

algorithm. When two fluid model is used a number of interfacial transport coeffi-

cients are defined and require constitutive relation models to complete the overall

model [26]. This approach has an advantage that the actual transport processes

can be rigorously defined, however, the disadvantage is that one is required to

model these kinetic processes in detail, which implies a much greater depth of

experimental data and insight.

On the other hand, in a single fluid approach, one set of governing equations are

solved over the entire domain. The velocity field is assumed to be continuous and

the boundary conditions are implicitly contained within the equations of motion.

The physical properties of the fluid in a particular cell are computed from the

physical properties of the individual phases with the help of an appropriately

defined weighted function from the location of the interface. That indicates a

need for interface tracking/capturing algorithm. Detailed classification of inter-

facial flow modelling techniques is given in [27]. The interfacial solvers have two

main categories: one involves solution on moving and deforming meshes in which

the grid points move according to local flow characteristics while the other cat-

egory involves solution on fixed meshes. In the moving mesh methods, the grid

points move according to local flow characteristics. Moving mesh category in-

cludes methods such as finite element based Lagrangian [28] interface fitting (or

boundary fitted coordinate) [29] and boundary integral (more popular as bound-

ary element methods) [30].

Fixed grid methods are very useful while dealing with large deformations of inter-

faces. In these methods an extra indicator function is used to track the interface.

Based on the type of indicator function used, these methods can be classified
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as: interface capturing and interface tracking methods.Although there is a com-

mon practice in literature to use these methods interchangeably there is a dif-

ference between these two methods [27]. Interface capturing method represents

position of interface in an indirect manner. Whereas, interface tracking method

provides a direct description of interface usually, by specifying a set of marker

points located on the free surface [31]. Because of Lagrangian approach, interface

tracking method is very accurate. But, unlike interface tracking method, a great

advantage with interface capturing method is their inherent ability to handle in-

terface merging and breakup. The most widely used interface tracking method

is Glimms Front Tracking method [32]. While, the most widely used interface

capturing methods include Marker And Cell (MAC) [33], volume of fluid (vof)

[34],[35], level set [36],[37] and diffuse interface (or phase field) [38],[39] method.

Also, there are some hybrid methods intended to harness the advantages of both

interface tracking as well as interface capturing methods. These include Tryggva-

sons front tracking [40] and sharp interface methods [41]. Fuster et al. [44] have

reviewed the current advances in multiphase flows using VOF method. According

to them, an ideal multiphase flow solver should have the following properties:

• Robust representation of evolving topologically complex interfaces

• Accurate representation of surface tension, which requires accurate esti-

mates of interface normal and curvature

• Robust and accurate handling of large density and viscosity ratios

• Efficient representation of evolving flow features of widely different charac-

teristic spatial scales.

It is very difficult to find all these features in a single solver. A generic com-

parison of all interface tracking methods in given in table 1.1. As mentioned

before, in fixed grid methods an indicator function is required to track the inter-

face. Hence, in the volume of fluid method this tracker is the volume fraction.

The cells which completely filled with a particular fluid are assigned a value of

0 or 1. While the cells which are partially filled, i.e. the cells which have the

interface, have a value between 0 and 1. The interface is then approximated from

this volume fraction value. Various reconstruction methods are available and are
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Method Advantages Disadvantages

Volume of fluid

Good mass conservation

Accurate curvature extimation techniques are required.Maintains sharp interface

Inherently handles droplet merging and breakup

Level-set
Relatively easy to extend to 3D Poor mass conservation

Inherently handles droplet merging and breakup Reinitialization of level set function is difficult

Front tracking Extremely accurate Difficult to handle merging and breakup of interface

Computationally expensive

Phase field Can handle droplet merging and breakup Interface is diffused over multiple cells

Marker particle Extremely accurate Computationally expensive

Can handle droplet merging and breakup Redistribution of marker particles is required

Table 1.1: Comparison of various interface capturing methods

reported in brief. The oldest one is the Simple Line Interface Calculation (SLIC)

[34] where the interface in each cell was assumed to be either horizontal or ver-

tical. Later came the Piecewise Linear Interface calculation (PLIC) [45],[46],[47]

method which had improved interface reconstruction capabilities because the in-

terface in any cell was represented by the general equation of line (in 2D) or plane

(in 3D). The result of the marker function advection strongly depends on inter-

face reconstruction [79] The accurate estimation of curvature is very important

because it also plays an important role in determining the surface tension force

incorporating the continuous surface force model.

Because of its inherent volume conserving property, a vof model is a lucrative

choice to model multiphase flow. OpenFOAMs multiphase solver also uses vof

model. Also, the research group responsible for this thesis has a lot of experi-

ence dealing with vof model based approach to spray characterization and droplet

breakup. Hence, vof model was an obvious choice for this thesis.

1.3 Why OpenFOAM?

With the significant amount of time and resources spent in the development of

numerical methods Computational Fluid Dynamics and gained a lot of popularity

and respect. With that, a lot of commercial and open source CFD toolkits have

emerged over the last decade. These include: Ansys-Fluent, StarCCM+, Gerris,

OpenFOAM, EnSight; to name a few. All the commercial cfd toolkits come at a

significant price. Hence, in the modern days, open source tools like OpenFOAM,

Gerris, etc. have become very popular. Another important factor driving the

drift towards open source softwares is that the commercial softwares are a black-
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box. Apart from the provision to write a user-defined function, the user cannot

touch the source code of the software. Hence, some specific tailor made operations

are difficult to perform using a commercial code. On the other hand, an open

source code provides all kinds of freedom to the user to edit and modify and

improvise upon any domain he deems fit. OpenFOAM, because of its versatility,

has become very popular in recent times. A lot of multiphase studies have been

successfully performed using OpenFOAM

1.4 Scope of this thesis:

In most of the numerical studies involving spray and atomization, the interac-

tion of the liquid with its surrounding atmosphere is well addressed. But, the

effect of other surrounding droplets has not been taken into account. During

liquid sheet breakup , spray formation and atomization , the droplets may inter-

act with each other resulting into stable or unstable coalescence, pinching and

child droplet formation. So, this thesis is an attempt to have a closer look at

droplet interaction. Also, a common decision was made within the group to use

OpenFOAM cfd toolkit for this purpose. The main aim of this thesis, is to judge

OpenFOAM’s multiphase solver on different grounds and compare the results

with standard benchmark cases. With these results in hand, a droplet collision

study is presented. Also, the research group further intends to modify the vof

model used in OpenFOAM and implement a coupled level set and vof method-

ology. (CLSVOF) Hence, this thesis will also serve as benchmark to comment

upon the improvements in the new model.



Chapter 2

Mathematical Formulation

This chapter describes in brief the mathematical formulation of Navier Stokes

equations. The current code is based upon the SMAC (Simplified Marker And

Cell algorithm). The same will be discussed at length below. Also the code

is based upon finite volume method. Hence the discretization will be discussed

based upon this method.

2.1 Why SMAC (explicit) algorithm?

Its an undisputed fact that implicit algorithms are numerically very stable as

compared to explicit. Yet, this thesis emphasizes on the use of an explicit solver

working on SMAC algorithm. The reasons behind this venture are explained be-

low: Explicit solvers can be used when we have very low CFL number (Courant

Fredric and Lewy).The CFL number is given by:

CFL =
U∆t

∆x

Where: ∆t = time step and ∆x = grid size and U = velocity in the cell under

consideration. The CFL condition for applicability of explicit solver states that

for the solution to converge CFL << 1

The newly developed solver is supposed to address droplet breakup problem. The

non-dimensional numbers that are usually considered while addressing this phe-

nomenon are Weber number and Reynolds number. Weber number is defined as

the ratio of aerodynamic forces to viscous forces.
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We =
ρU2L

µ

Droplet breakup is a high Weber number phenomenon. Hence, large inertial

forces come into play implying large velocities. Hence, to capture the physics of

the flow properly, very small time steps need to be taken (∆t is of the order of

10−9). Also, since there is droplet breakup, we need very fine grid to capture the

child droplets. That sets ∆x << 1. Usually ∆x is of the order of 10−7.Comparing

the orders of time and spatial resolution concludes that CFL number for a droplet

breakup problem is well below 0.1. Hence, the use of explicit solver is justified.

Also, explicit solvers are faster as compared to implicit solvers. Hence, a lot of

computational efforts can be saved by using the explicit solver. So, an explicit

incompressible multiphase solver based on vof method was build using OpenFoam

libraries.

2.2 The finite volume method:

In general, there are three methods for discretizing any given governing equation.

They are: finite difference method (FDM), finite element method (FEM) and

finite volume method (FVM). Of these, FDM utilizes the equation in their strong

form or differential form while FEM and FVM utilizes the equations in their weak

form or integral form. The compiled vof solver utilizes OpenFOAM libraries that

involve discretization using the finite volume method. Most of the commercial

codes use FVM as a preferred choice of discretization. The reasons are as follows:

[54], [55]

• It is easier to implement

• It provides a more natural treatment of Neumann boundary conditions as

well as that of discontinuous source terms due to their reduced requirements

on the regularity or smoothness of the solution.

• It is better suited to deal with complex geometries in multidimensional

problem as the integral formulations do no rely on any special mesh struc-

ture.
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2.3 The Governing Equations:

Any general multiphase incompressible flow problem has following principle gov-

erning equations:

The Navier Stoke’s Equation:

∂ρU

∂t
+ U.∇U = −∇p+∇.(µ∇U) (2.1)

In equation 2.1 , ρ is the density of fluid, U is the velocity field, t is time, p is

pressure field, µ is the dynamic viscosity of fluid.

The continuity equation:

∂ρ

∂t
+∇.(ρU) = 0 (2.2)

If the flow is incompressible the equation 2.2 translates to

∇.U = 0

Scalar transport equation:

∂α

∂t
+ U.∇α = 0 (2.3)

Here, α is the volume fraction. As mentioned before, this equation serves as

the marker function used to capture the interface.

2.4 Finite volume discretization:

The equations 2.1 2.2 and 2.3 are in their strong form (differentiable form) . The

finite volume method of discretization needs the equations to be in their weak

form (integral form). To convert the equations from their strong form to weak

form, finite volume integration is performed over a given control volume.

Mathematically,∫∫∫
V

∂ρU

∂t
+ U.∇(ρU)dV =

∫∫∫
V

−∇p+∇.(µ∇U)dV
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As the flow is incompressible, density can be treated as constant. Hence, the

final equation that needs to be discretized is:∫∫∫
V

∂U

∂t
+ U.∇UdV =

∫∫∫
V

−1

ρ
∇p+∇.(ν∇U)dV (2.4)

where ν = µ/ρ is the kinematic viscosity of the fluid.

For ease of understanding, equation 2.4 can be split into four terms based on

their contribution to flow:

1. Temporal term

2. Convective term

3. Diffusion term

4. Pressure term

The nomenclature used for the discretization is as follows: capital letters (N,E,W,S)

stand for cell center values while, small letters (n,e,w,s) stand for face center val-

ues. P stands for current cell under consideration while all other cells labeled

N,E,W,S (north, east, west and south respectively) are labeled with respect to

this cell. n and n+1 stand for current and next time step respectively. For further

understanding the reader is referred to [27]

The terms are discretized as follows:

Temporal term: ∫∫∫
V

∂U

∂t
dV = VP

V n+1
P − V n

P

∆t
(2.5)

here VP is the volume of cell under consideration. The fundamental assumption

here is that the volume of cell remains constant through out the time step ∆t.

For all the remaining terms Gauss divergence theorem has been used to con-

vert volume integral into surface integral. The Gauss divergence theorem can be

mathematically written as:

∫∫∫
V

∇.φdV =

∫∫
A

φ.n̄dV (2.6)
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In pure physical sense, Gauss Divergence theorem can be thought off as a result

that relates flow of a vector field through a surface to the behavior of a vector

field inside the surface. Applying this theorem, the finite volume discretization

of the remaining terms is explained below:

Convective term: ∫∫∫
V

∇(UU)dV =
∑
f

UfFf (2.7)

here Uf is velocity at face f under consideration. F can take values from n,e,w,s,t,b

(north, west, west, south, top and bottom respectively.) Ff is the volume flux

given by Uf .Ff .

Diffusion term: ∫∫∫
V

∇.(µ∇U)dV =
∑
f

µ∇Uf .dSf (2.8)

dSf is the area vector normal to any face f. An area vector directed away from

the face is assigned positive value.

Pressure term: ∫∫∫
V

∇PdV =
∑
f

PFSfn (2.9)

Pf is the value of pressure at face center and Sfn is the surface area vector normal

to the face.

2.5 The SMAC algorithm:

The final discretized equations for the SMAC algorithm are:

VP
Un+1
p − Un

p

∆t
+
∑
f

Un
f F

n
f +

∑
f

F n
fdu = −1

ρ

∑
f

P n+1
f Sfx (2.10)

VP
V n+1
p − V n

p

∆t
+
∑
f

V n
f F

n
f +

∑
f

F n
fdu = −1

ρ

∑
f

P n+1
f Sfy (2.11)
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VP
W n+1
p −W n

p

∆t
+
∑
f

W n
f F

n
f +

∑
f

F n
fdu = −1

ρ

∑
f

P n+1
f Sfz (2.12)

These are the momentum equations along x,y and z directions respectively.

∑
Ff = 0 (2.13)

This is the continuity equation.

The step by step operation of SMAC algorithm is summarized below:

1. Predictor Step: Obtain predicted velocities (or mass velocities) by dropping

off pressure terms.

2. Pressure poission: Imposing continuity using the predicted velocities gives

the pressure poission equation.

3. Corrector Step: Using the newly found pressure values in conjunction with

continuity, final corrected velocities are obtained.

The detailed procedure is as follows:

Predictor Step: The pressure terms on the rhs of equations 2.10, 2.11, 2.12,

are dropped to give predicted or mass velocities as shown in equations 2.14, 2.15,

2.16

VP
U∗p − Un

p

∆t
+
∑
f

Un
f F

n
f +

∑
f

F n
fdu = 0 (2.14)

VP
V ∗p − V n

p

∆t
+
∑
f

V n
f F

n
f +

∑
f

F n
fdu = 0 (2.15)

VP
W ∗
p −W n

p

∆t
+
∑
f

W n
f F

n
f +

∑
f

F n
fdu = 0 (2.16)

U∗P , V
∗
P andW

∗
P represent the predicted velocities.

Subtracting equations 2.14 2.15 2.16 from equations 2.10 2.11 2.12 respectively

yields:

VP
Un+1
p − U∗p

∆t
+ = −1

ρ

∑
f

P n+1
f Sfx (2.17)
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VP
V n+1
p − V ∗p

∆t
+ = −1

ρ

∑
f

P n+1
f Sfy (2.18)

VP
W n+1
p −W ∗

p

∆t
+ = −1

ρ

∑
f

P n+1
f Sfz (2.19)

Using continuity equation and substituting the values of Un+1
P , V n+1

P andW n+1
P

obtained from equations 2.17, 2.18 and 2.19 the Pressure poission’s equation is

obtained which is given by:

∑
f

(∇P n+1
f ).Sf =

ρ

∆t

∑
f

F ∗f (2.20)

where F ∗f = U∗f .SF and Uf is the interpolated value at face center. Note that here

Ff deals with velocities along all 3 principle directions

The solution to equation 2.20 gives the new pressure values which can then

be substituted in equations 2.17, 2.18 and 2.19 to yield final velocity field.

Once the velocity field is known, the newly found values can be substituted in the

scalar transport equation 2.3. The discretized form of equation 2.3 is as follows:

∆VP
αn+1
P − αnP

∆t
+
∑
f

F n
f α

n+1
f = 0 (2.21)

The value of αn is already known due to either initialization or from previous

iteration. Hence, equation 2.21 can be iteratively solved to get values of αn+1.

This concludes one time step. For the next time step the n + 1 level values

are transferred to nth level and the algorithm repeats.



Chapter 3

Validations and Test Cases

As mentioned previously, the aim of this thesis is to rigorously test vof solver for

its capabilities in various domains, and identify areas of improvement. OpenFoam

itself, in all its standard releases, has a vof based multiphase solver called inter-

Foam. It works on PIMPLE algorithm. It is a tailor made algorithm aimed at

harnessing the benefits of both SIMPLE and PISO algorithm. But it is implicit

in nature. Yet, this thesis utilizes an explicit solver. The reasoning behind that

has been already done in Chapter 2

Initially, the implicit solver was tested against some standard rigorous tests and

later same set of tests were again performed on rbsFoam, the freshly compiled

explicit solver.

All the test cases, that were conducted and the reasons behind conducting them

are mentioned below. Any multiphase solver is judged based on following do-

mains:

• Navier Stokes solving capabilities: These tests estimate how well the

Navier Stokes equation is solved. The standard test cases used include 3D

lid driven cavity, Flow over a square cylinder.

• Surface tension modelling: In any multiphase flow problem, surface

tension appears as a source tem in the governing equations. Its calculation

involves estimation of the curvature. The tests carried out include: 3D cube

to bubble test, spurious currents estimation.

• vof modelling:The tests carried out to test the solution of the vof equation
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include: vortex in a box test, Dual vortex stretching test, etc.

• Finally, one needs to check if all the above modules put together, work well.

For that a standard bubble rise test is done in 2D, for both high and low

density ratios. To do the same in 3D, a droplet splashing simulation is

attempted.

All above test cases will be described at length below. The description shall

include the geometry used for the test case, the different meshes used, the time

stepping method, the physical properties used and the boundary conditions. The

nomenclature of the boundary conditions used below is derived from OpenFoam

to facilitate replication and further use.

3.1 Testing the Navier Stoke’s equation solving

capabilities of the solver:

3D Lid driven cavity:

A fluid is kept in a cubical domain. The top lid of the domain is moving at a

constant velocity. The results are reported for flows with Reynolds number of

100 and 1000. After steady state is achieved the x velocity is plotted against Y

center line and the v velocity is plotted against X center line of the domain and

the plots are compared with standard experimental results by Ku et al. [48]. This

test gives a closer look at the Navier Stoke’s solution capabilities of the solver.

Different meshes are used to do a mesh independence study. 10x10x10;

20x20x20 ; 30x30x30; 40x40x40. Here the numbers indicate the number of cells

along x, y and z directions respectively as mentioned in the constant/blockMeshDict

file in OpenFoam case directory. Dirichlet boundary condition is used on all the

faces for velocity. The top wall is assigned a velocity of 1m/s along x direction

while all other faces have 0 m/s velocity assigned to them. A zero gradient pres-

sure boundary condition is imposed on all faces except the bottom where the BC

is Dirichlet having a value of 0 which is needed to begin the solution iteration.

(guess value)
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3.1 Testing the Navier Stoke’s equation solving capabilities of the

solver:

Figure 3.1: Contours of Umag for Re 100 and Re 1000

Discussion:

From the above plots it can be concluded that the results obtained from the

simulations are consistent with those obtained from experiments performed by

Ku et al. Since a lid driven cavity case is a single phase incompressible flow,

it demands the solution to Navier Stokes solution only. So, satisfactory results

for this test conclude that the Navier Stokes solution algorithm implemented in

rbsFoam is fairly accurate. Secondly, from Figures 3.3 and 3.2, it is seen that the

peaks are not captured to sufficient accuracy. This is expected since the flow is

very transient in those regions due to recirculation vortices. For all above cases,

the time step was 1ms. A finer mesh is needed to capture the vortices accurately

to numerical precision. A grid convergence study was also done to check what

quality mesh would be good enough to best capture the phenomenon. The re-

sults are reported in figure 3.4. The Re 1000 case was chosen for grid convergence

study since it offers more adverse test conditions involving strong recirculation

zones and vortices.

From above plots, it is observed that a finer mesh provides better results by

capturing the velocity profiles in the recirculation zone more accurately. Also

when compared against a commercial cfd solver like fluent, the results from rbs-

Foam for the same test case of re 1000 give a 100 complete match.
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Figure 3.2: Steady state plots for Re100

Figure 3.3: Steady state plots for Re 1000

3.2 Testing the surface tension model implemen-

tation of the solver:

Depending upon the initial configuration, this test can be either 2D or 3D. If the

initial configuration is a circle, its a 2D test and if it is a sphere, its a 3D test.
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Figure 3.4: Grid convergence study for Re1000

3.2.1 3D: Cube to sphere test:

While solving for any multiphase flow problem, surface tension appears as a source

term in the Navier Stokes equation. rbsFoam used continuum surface force model

for dealing with surface tension. The standard tests for checking the accuracy of

the surface tension model include a square or cubical bubble test (in 2D and 3D

respectively). The details for the 3D test are mentioned below. The same setup

was used for the 2D case.

Due to surface tension, liquids have an inherent tendency to obtain a shape that

has the least surface energy associated with it. Hence, any square or cubical liq-

uid drop will have a tendency to take the shape of a circle or sphere respectively.

So in this test, a cubical liquid drop is placed in a domain with zero gravity. The

simulations are run until a steady state is reached. Once steady state is reached,

the circularity of the sphere is tested which also serves as a measure of accuracy

of the surface tension model. The surface area of the resultant sphere serves as a

mathematical measure for this test

This test was done on both; the explicit solver rbsFoam and the implicit solver

interFoam. Interesting results were obtained when implicit as well as explicit

multiphase solvers were subjected to this test.

A cubical domain of size 2m is chosen for the test and a bubble of unit diam-

eter is placed at its center. To test the mesh dependency, a 25x25x25, 50x50x50,

75x75x75, 100x100x100, 125x125x125 and 150x150x150 meshes are chosen. The
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Figure 3.5: Surface tension test

numberes here indicate the number of cells along x, y and z directions respec-

tively as mentioned in the constantpolyMesh/blockMeshDict file. ZeroGradient

boundary conditions (Newman) are imposed on all faces for the volume fraction

alpha.water as well as velocity. For pressure, all faces except the top, has a ze-

roGradient BC attributed to it. The top face has a Dirichlet boundary condition

assigning a value of 0 for pressure.

Grid Size 25 50 75 100 125 150

Actual SA (m2) 4.836 4.836 4.836 4.836 4.836 4.836

SA after 10 sec (m2) 5.144 5.098 4.700 4.834 5.002 4.952

error after 10 sec 0.064 0.054 0.028 0.0004 0.0343 0.024

SA after 20 sec (m2) 5.143 5.097 4.700 4.832 4.923 4.892

error after 20 sec 0.063 0.054 0.028 0.0008 0.018 0.012

difference in error -0.0003 -0.0003 0 0.0003 -0.0162 -0.0123

Table 3.1: Surface area of sphere and corresponding error

The same result has been plotted below for better understanding:

Discussion: It can be clearly seen from Figure 3.6 that area after 10 sec and

20 sec is different for finer grids. This can be reasoned out as follows. When the

bubble starts changing its shape from cube to sphere it keeps on oscillating until it

reaches a steady state. The magnitude of these oscillations keep on reducing. On

a coarser grid the magnitude is small as compared to grid size. This is so because
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Figure 3.6: Errors using implicit solver : interFoam

the curvature estimation technique also depends on grid resolution. Hence the

effect of time is not so pronounced till 100x100x100 grid is used. As we go to

the finer grids, the amplitude of oscillation becomes comparable to grid size and

hence the difference in area is observed.

3.2.2 2D: Square to circle test

While simulation the 2D as well as 3D test, it was also observed that the bubble

was displaced along +y direction. Ideally, in the absence of any external force

and zero gravity, the bubble should remain stationary. To investigate further,the

bubble centroid was plotted vs time for all grid sizes. The results are reported in

the Figure 3.7 below:

Discussion: A general observation that can be made from the plot in Fi-

hure 3.7 is that as the grid becomes finer the bubble tends to stay stationary.

Since the bubble height is affected by the grid size we conclude that the external

force causing the bubble to rise is associated with the grid. The only force that

comes into picture is the surface tension force. So, to understand the anomalous
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Figure 3.7: Bubble centroid vs time for different grids: interFoam

behavior, csf formulation for surface tension modelling is re-visited.

The csf formulation for surface tension model reads:

Fst = σk∇k (3.1)

where k = −∇. ∇α|∇α| is an estimate of curvature using the volume fraction α.

From above equation it is clear that surface tension force calculation depends

on calculation of gradient of which in turn depends upon the grid used. Hence

we get different results for different grid sizes.

Also, another most prominent reason for the anomalous behavior is the spurious

currents. Spurious current is a small amplitude artificial velocity field which arises

from an imbalance between discretized forces in multiphase or multi-component

flows. An attempt has also been made to report the value of spurious currents

using rbsFoam which will be reported later.

The same analysis is presented for rbsFoam: First the results for cube to sphere

test. The data for surface area is tabulated below in table 3.2. The same data is

presented graphically in figure 3.8 for better understanding.
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Grid Size 25 50 75 100 125 150

Actual SA (m2) 4.836 4.836 4.836 4.836 4.836 4.836

SA after 10 sec (m2) 5.150 5.173 4.802 4.802 5.117 4.952

error after 10 sec 0.065 0.070 0.070 0.070 0.058 0.024

SA after 20 sec (m2) 5.144 5.106 4.722 4.894 5.015 4.893

error after 20 sec 0.0637 0.0558 0.024 0.012 0.037 0.012

difference in error 0.0013 0.0139 0.0166 0.0050 0.0210 0.0112

Table 3.2: Surface area of sphere and corresponding error: rbsFoam

Figure 3.8: Errors using explicit solver : rbsFoam

Also, a 2D square to circle test was performed to study the behavior of bubble

when subjected to an explicit algorithm and compare the same with the results

from explicit algorithm. The results are shown in figure 3.9.

It can be clearly observed from the above plot that the behavior of the bubble

when operated upon by the explicit algorithm is chaotic. A general trend cannot

be seen in the plot. For finer meshes, the bubble is highly unstable. From the

simulations it was also observed that the bubble stays bounded inside the com-

putational domain only if we maintain a max courant number of 0.01. Else, due
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Figure 3.9: Bubble centroid vs time for different grids: rbsFoam

to the spurious currents the bubble suddenly disappears from the computational

domain. A detailed analysis of the spurious currents is reported below:

3.3 Static droplet test: a measure of Spurious

currents

A static spherical droplet is suspended in a cubical domain of side L = 0.1m in

zero gravity. A droplet of diameter 0.5L is placed at the center of the domain.

The density ratio is unitary, i.e. ρl = ρg = 1000 and so is the viscosity ratio i.e.

µl = µg = 0.03 and a surface tension value of σ = 0.045. Ideally one would expect

no motion of the interface since the system is in equilibrium. However, the curva-

ture calculation scheme might result in non-symmetric pressure distribution, and

since U calculation is linked to pressure calculation, a fluctuating property called

spurious currents comes into play. Four meshes are used:163, 323, 643and1283 The

time step is fixed to 0.79x10−3 s. The solver is run for 51 iterations (50 time steps).
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Grid Size
L1 L2 Umax

Menard et al rbsFoam Menard et al rbsFoam Menard et al rbsFoam

16x16x16 1.2e-3 2.11e-1 4.86e-3 2.26e-1 2.93e-5 5.37e-3

32x32x32 1.16e-3 2.36e-1 4.78e-3 6e-2 7.61e-5 1.64e-2

64x64x64 1.23e-3 1.95e-1 4.91e-3 4.12e-2 6.8e-3 1.14e-2

128x128x128 1.19e-3 1.95e-1 4.82e-3 3.93e-2 8.26e-6 1.15e-2

Table 3.3: Surface tension test results: spurious currents

Hence the end time for simulation is 0.408x10−1 s. The errors are calculated as

follows:

L1 =

∣∣∣∣∣
∑Nd

ijk Pijk − Pd
NdPd

∣∣∣∣∣ (3.2)

L2 =

∑Nd

ijk(Pijk − Pd)2

NdP 2
d

(3.3)

here Nd is the number of cells in the interior of the droplet defined by α ≤ 0.99.

Pijk is the pressure inside a cell. Pd is the theoretical pressure difference denoted

by: Pd = 2σ/R. The error is reported in the table below. The results are

compared with the work of Menard et al.[49]. and reported in table 3.3

The maximum magnitude of velocity after 51 iterations is also reported. From

the table it can be clearly seen that the magnitude of errors L1 and L2 as well

as magnitude of maximum velocity in rbsFoam is large as compared to the work

of Menard et al. [49]. This indicates poor implementation of the surface tension

model in OpenFoam.

3.4 Testing vof model:

To test the vof model implementation, only the transport equation for volume

fraction should be solved. Rest all other modules like the Navier Stokes part, etc

should not come into play. Keeping in mind the above objective, the vortex in

a box test and dual vortex stretching tests are designed. Here, a non-uniform

position and time dependent velocity field is imposed at every grid point so that

the Navier Stokes part of the code need not be solved for velocity. With this an-

alytical velocity field as input, the volume fraction transport equation is solved.
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Description:

For the 2D case, we choose a periodic domain of unit side. A circle with center at

(0.5,0.75) units is placed inside the box. The streamlines inside the box at time

t=0 are as shown below:

Figure 3.10: Streamlines at t = 0

The velocity field is calculated based upon the stream function given by:

ψ(x, y, z, t) =
1

π
cos(

πt

T
)sin2(πx)sin2(πy) (3.4)

The velocity is calculated from the stream function as: u = ∂ψ
∂y

and v = −∂ψ
∂x

The sinusoidal temporal term makes the function periodic. Hence, after a

time period of T/2, the flow reverses and the system starts coming back to its

initial configuration. Due to the initial vortex, the circle is stretched along the

streamlines until a maximum is reached at a flow time of T/2 after which the flow

reverses. The simulations are run for a total flow time of 2 sec and 8 sec. Three

grids are used for the test: 64x64, 128x128, 256x256. Under ideal hypothetical

conditions after the cycle time the code should be able to recover the circle.

The error is calculated as:
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Time = 2sec

Grid E(i) T(i) E(r) T(r) Eref E(i)/Eref E(r)/Eref T(r)/T(i)

64x64 0.004 614 0.007 363 - - - 0.59

128x128 0.003 3713 0.003 1333 0.001 3 3 0.36

256x256 0.001 12945 0.001 6001 - - - 0.46

Table 3.4: Error for T=2 sec using interFoam and rbsFoam

Time = 8sec

Grid E(i) T(i) E(r) T(r) Eref E(i)/Eref E(r)/Eref T(r)/T(i)

64x64 0.023 3504 0.002 2321 - - - 0.66

128x128 0.008 13025 0.008 7145 0.003 2.75 2.75 0.36

256x256 0.004 49710 0.004 23762 0.002 2.005 2.005 0.48

Table 3.5: Error for T=8 sec using interFoam and rbsFoam

E =

∑
i,j |α

f
i,j − αii,j|

NxNy

(3.5)

where f and i stand for final and initial time steps respectively. Note that here

Nx and Ny stand for number of cells along x and y directions and not points.

The error for both time periods is reported below. Also a comparison has been

made between the implicit solver interFoam vs. the explicit solver rbsFoam on

grounds of accuracy and computation time.

In the above tables 3.4 and 3.5 E(i) stands for error calculated using Equation

3.4 using the implicit solver, interFoam whereas E(r) stands for explicit dolver,

rbsFoam. Similarly, Eref stands for error from reference [51]. T(i) and T(r) stands

for cpu time taken by implicit and explicit solvers respectively. Figures 3.11 and

3.12 show the contours of the droplet at maximum deformation (corresponding

to half of flow time) and final position for times 2 sec and 8 sec respectively.

Discussion:

An important observation that can be made from the above table is that implicit

as well as explicit solver have the same error which is quite expected as none of

the solver actually solves for the velocity field. And yet we are able to obtain same

set of results in almost half time as compared to the implicit solver. The reference

chosen here is native code developed by Dr. Rajesh Reddy which is an in-house
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Figure 3.11: Droplet shapes for different grids at times 1s and 2s

CLSVOF multiphase code [51] . The error reported from rbsFoam is significantly

large as compared to the reference indicating a poor implementation of vof model.

For 3D case a dual vortex stretching problem is chosen. A spherical droplet of

radius 0.2 is placed at the point (0.35,0.35,0.35) inside a periodic cubical domain

of unit dimension. The velocity field inside the domain is given by:

u(x, y, z, t) = 2sin2(πx)sin(πy)sin(πz)cos(πt) (3.6)

v(x, y, z, t) = −sin(πx)sin2(πy)sin(πz)cos(πt) (3.7)

w(x, y, z, t) = −sin(πx)sin(πy)sin2(πz)cos(πt) (3.8)

The simulations are run for a cycle time of 1 sec. The contours at time t=0.5

s and t=1 sec are shown in Figure 3.13. It can be clearly observed that as the

grid becomes finer, the initial spherical configuration can be recovered better.
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Figure 3.12: Droplet shapes for different grids at times 4s and 8s

If the simulations are allowed to run for 8 sec, the resulting data reveals mass

loss at various time instances. The following plot reports the mass loss at various

time instances.

As one would expect from a vof model, excellent mass conservation is reflected

from the plot in Figure 3.14. During the first half of the cycle, the sphere stretches

under the influence of counter-rotating vortices. During this half cycle, mass loss

is seen from the plot. But during the second half, the mass loss is recovered. This

mass is conserved throughout the cycles (8 in total). The error is calculated as

follows:

L1 =
1

N3
(

N∑
i,j,k=1

|αfi,j,k − α
i
i,j,k|) (3.9)

N indicates number of cells along either x, y or z direction. (Since same number

of cells are used along all directions.)

The following table reports the errors obtained from rbsFoam and also those
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Figure 3.13: Mass conservation for 8 cycles

Grid L1(rbsFoam) L1(Menard et al)

16x16x16 1e-2 1.83e-2

32x32x32 5.8e-3 8.93e-3

64x64x64 2.65e-3 6.77e-3

128x128x128 1.4e-3 3.26e-4

Table 3.6: Error for dual vortex stretching test

reported in the Reference Menard et al. [49].

The findings from table 3.6 reveal that error obtained from rbsFoam is slightly

less as compared to the standard reference code by Menard et al. That being said,

for the simulations performed using rbsFoam, a max courant number of 0.01 was

maintained indicating very small time steps. Whereas, no comments on time

stepping were made in the reference. Hence, these findings are inconclusive.
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Figure 3.14: Mass conservation for 8 cycles

Test case ρ1 ρ2 µ1 µ2 g σ Re We ρ1
ρ2

µ1
µ1

1 1000 100 10 1 0.98 24.5 35 10 10 10

2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

Table 3.7: Case parameters for 2D bubble rise

3.5 Testing NS, vof and ST modelling combined:

3.5.1 2D bubble rise

One of the most standard and stringent tests done to validate the coupling be-

tween the above mentioned modules is the bubble rise test. A 2D domain of

dimensions 1m x 2m domain is chosen. A bubble of radius 0.25m is placed at

(0.5,0.5). The simulations are performed for different density and viscosity ratios.

The details of the physical parameters chosen for the task are mentioned in the

table below:

Re = Reynold’s Number and We = Weber Number
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The grids chosen for the task are 40x80, 80x160, and 160x320. The y centroid

of the bubble and rise velocity is plotted against the flow time. The y centroid

and rise velocity are calculated as follows:

yc =

∑N
i=1 αiyi∑N
i=1 αi

(3.10)

yc =

∑N
i=1 αivi∑N
i=1 αi

(3.11)

The important point to be noted here is that N stands for number of points

which is different from 40x80 = 3200, since 40x80 or 80x160 indicate the number

of cells along each direction.

Figure 3.15: 2D bubble rise results for density ratio = 10

As it can be clearly seen from plots in Figure 3.15, highly grid convergent and

accurate results are obtained for a density ratio of 10 an compared to those of

Heysing et al. [50]

Again from Figures 3.15 and 3.16 is can be clearly seen that the simulation

results obtained from rbsFoam match decently with the experimental results re-

ported by Heysing et al. Another important point to be considered is the time
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Figure 3.16: 2D bubble rise results for density ratio = 1000

required for simulations using the explicit method vs the implicit method. The

same has been reported in the table 3.8

Hence, from above results it can be concluded that the solver is decently ac-

curate and with the optimum case setup obtained from the above test cases, a

real life problem can be successfully addressed.

3.5.2 Droplet splashing

The bubble rise case mentioned above tests the coupling between NS, vof and sur-

face tension modelling in 2D. But simply validating a 2D case isn’t good enough.
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Density ratio solver 40x80 80x160 160x320

10
clocktime for interFoam (sec) 108 909 8649

clocktime for rbsinterFoam (sec) 67 471 3629

Speed-up interFoam/rbsinterFoam 1.61 1.93 2.38

1000
clocktime for interFoam (sec) 143 1003 11168

clocktime for rbsinterFoam (sec) 90 724 10260

Speed-up interFoam/rbsinterFoam 1.59 1.39 1.09

Table 3.8: Clocktime comparision: explicit vs implicit solvers for density ratio

1000

2D and 3D behavior of a solver is significantly different. For example, for curva-

ture estimation, to evaluate the surface tension and interface location, in 2D, a

line needs to be reconstructed whereas in 3D a plane needs to be reconstructed.

Hence, a droplet splashing experiment was chosen for 3D validation.

A water drop of diameter Do = 5.1mm is released inside a cubical domain of

dimensions 6.5Dox1.75Dox6.5Do with a velocity of 2.14 m/s along -y direction.

The value of acceleration due to gravity, g , is set to 9.81 m/s2 along - y direction.

The domain is filled with water upto a height of 0.5mm.

As the droplet hits the water film, a crater is formed which grows in diameter

with respect to time. Also, due to splashing the water surface ejects in the form

of ligaments which rise along the + y direction further giving rise to satellite

droplets.

For mathematical validation the non dimensional crown diameter defined as

D∗ = Dc

Di
is plotted against non-dimensional time defined by t∗ = tU

Di
. The

results are compared against experimental results reported by Cosalli et al. The

calculation of crown diameter is a challenging task. In the experimental results

reported, the diameter was calculated as an average of diameters measured at

various points. The definitions of all the diameters can be found in Cosalli et al.

The plots can be seen in Figure 3.19

Though at first sight, the results in figure 3.19 might appear to be bad, the

uncertainty in estimation of the various diameters experimentally justifies the

mis-match. So. the results fall well within the tolerance zone.
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Figure 3.17: Results for droplet splashing - A

3.6 Closure

This section summarizes the conclusions that can be made from the validations

performed above.

The results from the lid driven cavity test indicate excellent Navier Stoke’s solu-

tion implementation. Another study was carried out to compare OpenFOAM’s

results with FLuent, which is a commercial CFD package. The results gave a

complete match. The square to circle and cube to sphere tests indicated a de-

scent, though not good Surface tension model. Similar finding were also found

from the static droplet test which indicated larger spurious current amplitude as

compared to literature. The comparison between explicit and implicit methods

confirmed the known facts that implicit solvers are more stable as compared to

explicit. Also, a minimum cfl number of 0.01 needs to be maintained to get ac-

curate results. This setting needs to be ensured for both courant numbers, one

based on velocity of the flow field, and second, based on the interface velocity. 2D

vortex stretching and 3D vortex stretching test cases reported less accurate vof

model implementation in OpenFOAM. The interface capturing technique needs

improvement. Or an altogether different interface capturing approach like Level
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Figure 3.18: Results for droplet splashing - B

Set or a Coupled Level set vof (CLSVOF) approch needs to be adopted for fur-

ther improvement. 2D bubble rise and droplet splashing tests gave satisfactory

results indicating good communication between all 3 modules namely, NS, surface

tension and vof model implementation. With the above knowledge of optimum

test case setup and scope of errors, a droplet collision study is presented in the

next chapter.
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Figure 3.19: Results for droplet splashing - B



Chapter 4

Droplet Breakup

In this chapter, droplet dynamics is characterized. The various parameters that

come into play along with their significance is explained in detail.

While dealing with bubble and droplet dynamics, the forces that come into picture

are: inertial force, surface tension force and aerodynamic force. For example,

when a water drop is subjected to a blast of air, the water droplet has cohesive

forces which manifest themselves in the form of surface tension, trying to maintain

the spherical shape of the droplet keeping it together. Opposing this force is the

inertial force exerted by the incoming blast of air trying to deform the water

droplet. This inertial force experienced by the droplet usually depends upon its

size characterized by droplet diameter D0. When the inertial forces dominate

over the surface tension, droplet breakup occurs. To address all these forces at

once, one needs a non-dimensional number. Hence, Weber number is introduced.

Weber number (We) is defined as the ratio of inertial force to surface tension

force. Mathematically :

We =
ρU2D

σ

where ρ stands for density of droplet material, U is the magnitude of relative

velocity of drop w.r.t. surrounding fluid, D is characteristic droplet diameter and

σ is the surface tension of the pair.

Most of the droplet breakup regimes are characterized based on We of the flow.

For example, when a drop is subjected to an air blast, for a We of 3.4 the droplet

undergoes oscillatory deformation but no breakup is observed implying that the

deforming inertial forces are weak as compared to the surface tension force. If the
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We is increased to 13.5 bag breakup is observed. Here the droplet first deforms

into a liquid disc which later on takes the shape of a bag with a disintegrating

liquid disc at its center. When the We is further increased to a value of 100,

the droplet undergoes sheet thinning breakup. In this breakup mode, the droplet

first deforms to form a thin sheet of fluid which then further disintegrates into

smaller droplets. [56]

An important point ot be noted here is that, though We is an important parame-

ter, the breakup mode also depends on system configuration. In case of off-center

droplet collision, for same We number, totally different breakup regime can be

expected with changes in impact parameter.

Before simulating droplet breakup, one needs to decide upon the resolution

needed to successfully capture the tiny droplets formed in the process. To validate

the same, the case presented by [53] was replicated to test the performance of

the new solver. The reference stated that dynamic mesh refinement was used to

simulate this case. But, as discussed in appendix, OpenFOAM’s dynamic mesh

refinement utility is not accurate or fast enough for the task. Hence a uniform

mesh having a resolution equal to the finest level in reference was used. That

resolution was reported to be 50 cells per droplet diameter. A decent match with

the volume fraction contour confirmed that this resolution was decent enough to

capture the droplets.

In this thesis, the results for off-center droplet collision are presented. A lot of

possibilities can be thought off when two droplets are allowed to collide. They

are listed below:

• Droplets of different fluids can collide in same environment.

• Droplets of different diameters can collide in a head on fashion.

• Droplets of different diameters can collide in an off-center fashion with

varying levels of offset.

• Any possible permutation and combination of the above.

Since all of these are high fidelity simulations, simulating all cases is com-

putationally very expensive and time consuming. Hence, two possibilities are

explored. For one set of cases, a diameter ratio
Dlarge

Dsmall
= 1.5 was chosen and

analysis was done by varying the impact parameter from 0,0.25,0.5,0.75. For the
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other set, an impact parameter of x = 0.5 was fixed and the cases were simulated

for different diameter ratios varying from 1,1.25,1.5 to 1.75. The details of these

parameters are given in the next section.

4.1 Parameters affecting droplet collision:

Droplet collision has been extensively studied for decades. Various experiments

have been performed to study the effects of different physical and geometrical

parameters on droplet collision. Offset ratio also known as impact parameter

has a very pronounced effect on droplet collision. Depending upon impact pa-

rameter, the result of the collision may be a stable coalescence, transient coales-

cence finally resulting into droplet breakup. Also, changing the material of the

droplet changes the way droplet interacts with another droplet. For instance, it

has been experimentally reported that for head on collision of water droplets no

bouncing is observed, where as for hydrocarbon droplets bounce under similar

conditions. Another important area of exploration is the effect of weber number.

With increasing Weber number following collision regimes have been reported in

literature: droplet bouncing, stable droplet coalescence, droplet stretching finally

leading to separation. Also, during separation depending upon the We and im-

pact parameter satellite droplets may or may not be generated. A quantification

of these satellite droplets and their relation to the causative parameters is another

important area of study. To study the role of viscosity alone, droplet collision

experiments have also been performed in vacuum thus removing aerodynamic

forces out of picture.

Hence, to conclude, following parameters need to be noted while addressing

droplet breakup:

• Colliding droplets’ diameter ratio

• Impact parameter or offset ratio

• Composition of colliding droplets

• Weber number for the flow

• Reynold’s number for the flow
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4.2 Case setup parameters:

In all the reported simulation, the grid resolution has been maintained in between

40 to 50 cells per droplet at t=0. The size of the smallest colliding droplet at

t=0 has been set to 100µm and remains fixed through out. The diameter of

larger droplet is obtained from the diameter ratio defined by: Dr =
Dlarge

Dsmall
. This

ensures that the mesh always has a minimum resolution of D0/50. Also, it takes

some small amount of time for the flow field to develop. (Around 2 time steps).

Hence, an initial separation distance of about 4 grid cells is maintained along

the direction of relative velocity. (Here, the relative velocity vector is along x

direction). As it can be clearly seen from the contour plots, the surface of the

bubble after around 2 time steps is pretty smooth as compared to that at t=0.

Reynolds number and Weber number are defined with respect to smaller droplet

diameter. The values of viscosity and surface tension are assigned to be those for

a water air pair at atmospheric conditions. The values are as follows:

Fluid/Property Water Air

Density (Kg/m3) 1000 1

Viscocity (Pa.s) 1e-3 2e-5

Surface Tension (N/m) 0.001

Table 4.1: Physical Properties

Using above values the Re and We for all the simulations are 100 each respec-

tively. From previous experience of test cases and validations, it was observed

that for the explicit solver, a cfl number of 0.01 is needed to get the desired re-

sults. Hence, dynamic time stepping is used with a cfl number of 0.01. In case,

a higher courant number is used, unstable flow field is obtained which causes the

bubbles to flush out of the domain. But, an interesting observation was that a

high courant number was used for a coarser mesh, the results were stable and the

bubble was not flushed out. Hence, as finer meshed are used, the cfl criteria has

to be made more stringent.

Offset ratio or impact parameter (denoted as x) is defined as the ratio of

distance between droplet centers along a direction normal to their relative velocity

(denoted as y) and smaller droplet diameter (denoted as D0). Mathematically,

x = y
D0

. In this thesis, the effect of offset ratio and diameter ratio has been
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studied at length. For the first case, a diameter ratio of 1.5 is fixed and the

offset ratio is varied from 0, 0.25, 0.5 to 0.75. In the second case, offset ratio of

0.5 is fixed and the diameter ratio is varied from 1,1.25 to 1.75. The results are

discussed at length in the following section. The general layout in represented in

figure 4.1.

Figure 4.1: General Layout

4.3 Results for different offset ratios and diam-

eter ratio = 1.5

In the following simulation results, the diameter ratio was kept constant to 1.5

and the offset ratio was varied.

4.3.1 Offset ratio x = 0

An offset ratio of 0 implies head on collision of droplets. The contours of vol-

ume fraction α at different time steps are shown in figure 4.2 Since both the

droplets are moving with the same velocity the larger droplet has more inertial

force. Hence,upon collision, the larger droplet absorbs the impact of the smaller

droplet and continues to move to the right but with reduced velocity. The smaller

droplet completely coalesces with the larger droplet upon impact and transfers

all its energy to the larger drop. Since the flow and the liquid is assumed to
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Figure 4.2: Contour plots for x=0

be incompressible, the entire energy supplied by the smaller drop is expended in

lateral expansion of the larger droplet. But the surface tension forces oppose this

occurrence and start pulling the liquid disc inside towards the core and hence the

blob of liquid starts to take a distorted spherical shape. At this point a tail of

liquid is seen protruding from the back. This is that fluid that came in contact

with the smaller droplet and hence has zero velocity to equal and opposing iner-

tial forces acting on it. But, an the blob progresses this volume of fluid is pulled

along the direction of motion by the surface tension and shear forces and hence

begins to drift along with the entire blob. The smaller droplet didnt have enough

energy to overcome the inertial and surface tension force of the larger droplet and

break free to the other side. Hence, droplet breakup was not observed. For the

definition of weber number, the larger diameter was considered. Hence, We for

the flow is 100.
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4.3.2 Offset ratio x = 0.25

Figure 4.3: Contour plots for x=0.25

As the offset ratio keeps on increasing, the interaction region between larger

and smaller droplet also goes on decreases. This implies lesser opposition force

for both the droplets. Since, the larger droplet has lot of inertia, the effect of this

interaction region is not much pronounced on the larger drop. But, as it can be

clearly seen from figure 4.3, the smaller droplet emerges with larger velocity after

collision. The off centered inertial forces cause a couple to act upon the system

of droplets setting them into rotary motion. The smaller droplet easily coalesces

with the larger droplet in its upper region. Since the collision in now localized

in the upper region of the larger droplet, there occurs large lateral deformation

in this region. This region starts to move with reduced velocities as compared to

the lower region of the droplet causing elongation. But after maximum lateral

expansion is achieved at the expense of the kinetic energy of the smaller droplet,

the surface tension and viscous forces start to retract the deformed blob of mass.

Due to the surface tension force and inertial force combined, the blob undergoes

oscillatory motion along the lateral direction while it continues its rotation along

the z axis. No droplet breakup is observed in this simulation as well. Surface

waves can be seen at different instances in figure 4.3. It is difficult to deduce

whether these waves are physical in nature or a result of numerical instability.
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4.3.3 Offset ratio x = 0.5

Figure 4.4: Contour plot for x=0.5

As mentioned above, a further increase in offset ratio implies further reduction

in the opposing force for the motion of both droplets. For an offset ratio of x = 0.5

, the point of impact shifts further upwards. The smaller droplet coalesces with

the upper region causing its lateral deformation and bringing it to a standstill.

Due to this a very thin film is formed at the center which is very close to rupture.

At this point the surface tension forces set in, causing retraction. Due to this,

most of the fluid appears to be separated into two spherical drops. The blob of

fluid is now acted upon by an even stronger couple resulting from inertial forces

that causes its rotary motion. After collision the top region has velocity close

to zero where as the bottom region keeps moving in the original direction at

velocities close to original. Due to this the ligament connecting the two drops is

stretched. Upon reaching its limit, a pinch off is observed separating the smaller

blob of liquid from the larger blob without the formation of any satellite droplets.

The results are shown in figure 4.4

4.3.4 Offset ratio x = 0.75

Amongst all test cases studied, this case has the highest offset ratio of x = 0.75.

This implies least resistance and maximum elongation of the bubbles. Upon col-

lision, the smaller drop immediately merges with the larger one, but the point
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Figure 4.5: Contour plot for x=0.75: A

of impact or coalescence is shifted towards the upper end of the larger droplet

because of the high offset ratio. As a result, after collision most part of the

droplets retains its initial kinetic energy. Hence, lesser energy is available for

lateral deformation. Hence, in this case, as seen in figure 4.4, the lateral expan-

sion is less as compared to longitudinal elongation. As the time progresses, the

droplets continue to move in opposite directions while still being connected by a

small filament of the liquid. Since, both drops have enough energy to move on

in opposite directions, the ligament is stretched on both sides due to the surface

tension force from both the drops. At a certain point, the pinch off occurs causing

the ligament to separate from both the drops. After pinching, the ligament of

liquid, due to surface tension force, tries to achieve a configuration of minimum

surface area. Due to this, the ligament tries to further break down into smaller

droplets which are evident in the figure.

To conclude, as the region of interaction between the two droplets decreases, the

blob of fluid become more and more prone to pinching and breakup. As the

offset ratio was increased from 0 to 0.75, the region of interaction, defined as the

overlapping region between the droplets along flow direction, kept on reducing.

Hence absolutely no pinching was observed for offset ratio of 0 and near pinching
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Figure 4.6: Contour plot for x=0.75: B

condition was obtained for offset ratio 0.25. For 0.5 offset ratio pinching with a

single child droplet was observed and finally for the largest offset ratio of 0.75

pinching from both large droplets was observed resulting into ligament separation

which further broke down to give child droplets.

4.4 Results for different diameter ratios and off-

set ratio = 0.5

Another important parameter in droplet collision studies is the diameters of col-

liding droplets. Hence, keeping the offset ratio fixed to 0.5, the diameter ratio

of colliding droplets was varied from 1 , 1.25 to 1.75. The effects are reported

below:

4.4.1 Diameter ratio = 1

A diameter of 1 implies collision of two equal sized droplets. For a constant offset

ratio of 0.5, a diameter ratio of 1 implies least interaction region for the droplets
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Figure 4.7: Contour plot for x=0.75: C

as compared to diameter ratios of 1.25 , 1.5 and 1.75. Hence, relating to above

observations one can predict a possibility of pinching and breakup. The same can

be observed from figure 4.8. As soon as the droplets collide, immediate droplet

coalescence is observed. Lateral expansion occurs to cope up with the kinetic

energy of the impact. As the flattened disc shape is achieved, the surface tension

forces start dominating and the disc starts to retract. Because of the energy

gained due to retraction the droplet oscillates until a child droplet separates from

the larger mass resulting into a long ligament and another huge blob of fluid.

Since the ligament has insufficient surface area to hold the surface energy, it

further breaks down into smaller droplets.

4.4.2 Diameter Ratio = 1.25

The results for this off-center collision can be seen in figures 4.9,4.10 and 4.11.

Upon collision, the droplets coalesce and resulting mass of fluid starts to expand

along lateral direction. Since lot of kinetic energy is concentrated at the point of

impact, the rapid shear deformation in this region as can be seen in4.9. An oval

void is created which immediately gets absorbed in the neighboring fluid due to

surface tension. Because of off-center collision, both the masses of fluids continue
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Figure 4.8: Contour plot for diameter ratio = 1

to move in opposite directions while still being connected by a thin ligament of

fluid. As the two blobs move further apart, the ligament gets stretched to a

point when pinch off takes place from the smaller blob. Further, the ligament

also pinches off from the larger mass 4.10. The ligament now has larger surface

area than the minimum required to hold that mass of fluid. Hence, the ligament

further breaks down into smaller droplets as shown in figure 4.11.

4.4.3 Diameter ratio = 1.75

This case has the largest region of interaction in between the droplets. Upon

collision, the droplets coalesce and expand in lateral direction. Upon reaching a

limit, the restoring surface tension forces retract the fluid mass. At this point,

most of the energy is expended hence no pinching or droplet breakup is observed.

The blob of fluid oscillates until the oscillations finally die out. Due to off-center

collision an inertial couple sets the fluid in rotary motion. The results are shown

in figure 4.12
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Figure 4.9: Contour plot for diameter ratio = 1.25

Figure 4.10: Contour plot for diameter ratio = 1.25
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Figure 4.11: Contour plot for diameter ratio = 1.25

Figure 4.12: Contour plot for diameter ratio = 1.75



Appendix A

Exploring OpenFOAM

This section talks about the non-standard tests and some utilities native to Open-

Foam that were explored during the course of this thesis. They include the fol-

lowing:

• Optimum choice of smoothers, preconditioners and solvers used to solve the

U (velocity) and P (pressure) matrices.

• The time required to solve the computationally most expensive Pressure-

Poissons equation for different combination of smoothers, preconditioners

and smoothers.

• The speed up analysis when a large mesh is decomposed over different

number of cores.

• Dynamic mesh refinement utility for multiphase flows.

• Refine mesh utility for multiphase flows.

A.1 Smoothers, solvers and preconditioners:

The details about the choice of preconditioners, solvers and smoothers need to

be specified in the system/fvSchemes file. A snapshot of a sample fvScheme file

is given below:
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Figure A.1: Sample fvScheme dict

A.1.1 Pre-conditioners:

The aim of any iterative solver is to solve the system of equation given by:

Ax = B

If M is any matrix such that the system:

M−1Ax = M−1B

has a faster convergence as compared to the original system, then M is known

as a preconditioner. This leads to M (mostly) being an easily invertible approxi-

mation of A. All mathematical operations involving M, should be computationally

cheap. The above system was an example of left preconditioning. Central and

right preconditioning also exist. Given below is a list of the preconditioners avail-

able in OpenFOAM along with a brief explanation of their application. They are

available in the FOAMSRC/OpenFOAM/matrices/lduMatrix/preconditioners

directory:

diagonalPreconditioner - Diagonal preconditioner for both symmetric and

asymmetric matrices. This preconditioner actually does not help with faster
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propagation through the grid, but it is very easy and can be a good rst step.

Note: The reciprocal of the diagonal is calculated and stored for reuse because

on most systems multiplications are faster than divisions.

DICPreconditioner - Simplied diagonal-based incomplete Cholesky precondi-

tioner for symmetric matrices (symmetric equivalent of DILU). The reciprocal of

the preconditioned diagonal is calculated and stored.

DILUPreconditioner - Simplied diagonal-based incomplete LU preconditioner

for asymmetric matrices. The reciprocal of the preconditioned diagonal is calcu-

lated and stored.

FDICPreconditioner - Faster version of the DICPreconditioner diagonal-based

incomplete Cholesky preconditioner for symmetric matrices (symmetric equiva-

lent of DILU) in which the reciprocal of the preconditioned diagonal and the

upper coe cients divided by the diagonal are calculated and stored.

GAMGPreconditioner - Geometric agglomerated algebraic multigrid precon-

ditioner (also named Generalised geometric-algebraic multi-grid in the manual).

noPreconditioner - Null preconditioner for both symmetric and asymmetric ma-

trices.

A.1.2 Solvers:

The word solver in OpenFOAM terminology is misleading. Solver, as specified

in the system/fvSolution dictionary implies the linear solver used to solve the

system of linear equations generated from the matrix equations 1 and/or 2. The

lilst of solvers along with their brief application is given below:

BICCG - Diagonal incomplete LU preconditioned BiCG solver

diagonalSolver - diagonal solver for both symmetric and asymmetric problems

GAMG - Geometric agglomerated algebraic multigrid solver (also named Gener-

alised geometricalgebraic multi-grid in the manual)

ICC - Incomplete Cholesky preconditioned Conjugate Gradients solver
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PBiCG - Preconditioned bi-conjugate gradient solver for asymmetric lduMatrices

using a runtime selectable preconditioner

PCG - Preconditioned conjugate gradient solver for symmetric lduMatrices using

a run-time selectable preconditioner

smoothSolver - Iterative solver using smoother for symmetric and asymmetric

matrices which uses a run-time selected smoother

A.1.3 Smoothers:

Although the preconditioners discussed before can considerably reduce the num-

ber of iterations, they do not normally reduce the mesh dependency of the num-

bers of iterations. OpenFOAM supplies the following smoothers to be used with

the solvers in the smoothers/ directory:

DIC/ - Simplied diagonal-based incomplete Cholesky smoother for symmetric

matrices.

DICGaussSeidel/ - Combined DIC/GaussSeidel smoother for symmetric matrices

in which DIC smoothing is followed by GaussSeidel to ensure that any ”spikes”

created by the DIC sweeps are smoothed-out.

DILU/ - Simplied diagonal-based incomplete LU smoother for asymmetric ma-

trices. ILU smoothers are good smoothers for linear multigrid methods.

DILUGaussSeidel/ - Combined DILU/GaussSeidel smoother for asymmetric ma-

trices in which DILU smoothing is followed by GaussSeidel to ensure that any

”spikes” created by the DILU sweeps are smoothed-out.

GaussSeidel/ - The GaussSeidel method is a technique used to solve a linear sys-

tem of equations. The method is an improved version of the Jacobi method. It is

defined on matrices with non-zero diagonals, but convergence is only guaranteed

if the matrix is either diagonally dominant, or symmetric and positive definite.

Of all the solvers mentioned above, GAMG was of prime interest. Hence it

was tested for a 0.1Million and 1 Million mesh for a lid-driven cavity case. The

required to solve the pressure poison equation was aso noted. The sample pa-

rameters that need to be specified in the system/fvSolution while using GAMG

as a solver are explained in Figure A.2
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Figure A.2: Sample GAMG settings

Various combination of smoothers, solvers and preconditioners were analyzed

to get the optimum case setup that ensures fast convergence. The analysis is

presented below:

The mesh size used for above analysis was a 0.1 Million. The data in Table

A.3 is presented in the form of a bar chart for better understanding in Fig 3. The

problem attempted was a 3D lid driven cavity.

From the above analysis we conclude that when a finer mesh is chosen, the

time required to solve the pressure Poisson equation goes up significantly as com-

pared to the other operations. Also, the optimum case setup consists of DIC

preconditioned GAMG solver with Gauss Siedel as smoother for pressure and a

smooth solver with Gauss Siedel as smoother for Velocity.
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Figure A.3: Different settings for fvSchemes file

The case setup for GAMG has lot of open ends that need to be addressed. They

include, deciding upon nCellsInCoarsestLevel number of levels of coarsening de-

fined by nMaxLevels in the system/fvSolution dictionary. The optimum value

found for both was 100 and 1 respectively.

A.2 Multicore speedup analysis:

The basic ideology behind parallel operation of any solver is that, a huge mesh

is broken down into number of parts which are then solved simultaneously. This

requires information to be transferred along the faces of the decomposed domain.

The time saving obtained by operating the solver in parallel mode is limited by

the time required for information transfer along the faces. Hence, a balanced has

to be maintained. As a thumb rule, 1 lac cells per domain ensure a good speed

up.

For the speed up analysis, same 3D lid driven cavity was chosen. The case setup

parameters were kept constant for all the simulations. decomposePar utility in

OpenFOAM was used for domain decomposition. Two types of decomposition

methods are available in OpenFOAM, namely: scotch and simple. Simple is a

geometric methods while scotch is more of an algebraic method. They have also

been compared. The ideology behind scotch is same as the one mentioned above.

The above plot in figure A.6 concludes that scotch is a better decomposition
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Figure A.4: Time consumption for 0.1 Million mesh

technique as compared to simple. Another important observation from the above

plot is that if odd number of cores are chosen for decomposition we get a sudden

speed down instead of a speed up. Yet using scotch along with even cores doesnt

give satisfactory speedup.

A probable reason for loss of speedup was identified as lack of enough number

of cells per core. Hence, with same case setup parameters, a 1 Million mesh was

chosen. The results for the same are as reported below in figure A.7

A.3 Dynamic mesh refinement:

Usually, in fluid flow problems, the actual phenomenon is localized in certain

region while, most of the other part of domain is isolated. For such problems,

usually a block mesh is chosen which is fine in the region that houses the actual

phenomena while the other region still remains coarse.

This techniques saves a lot of valuable computation time by reducing the overall

mesh size. But, if the region of interest changes with time, then a statically

refined block mesh doesnt solve the problem. The solution to such problems is
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Figure A.5: Time consumption for 1 Million mesh

dynamic mesh refinement. This technique is especially useful while dealing with

droplet and bubble dynamics.

In this technique, the mesh is refined based on a particular parameter. For

most of the multiphase flow problems involving droplets and bubbles the volume

fraction is the chosen parameter based on which the refinement is done. All

the cells that have value lying between the specified limits are refined. Thus,

the overall size of mesh is reduced drastically. However, there is an overhead

in terms of interpolation of values from coarser to finer and vice versa. Hence

the saving in time resulting from a smaller mesh may be counter balanced by

the time required for refinement, coarsening and interpolation. Hence, optimum

choice of parameters such as, number of levels of refinement, maximum number

of refined cells and refinement interval is imperative to achieve maximum benefit

from the method. An attempt was made to judge the dynamic mesh refinement

capabilities of OpenFOAM. The 2D bubble rise problem for a density ratio of

10 and 1000 was chosen as a benchmark to validate the accuracy of dynamic

meshing.

The contour plots and well as validation plots for bubble centroid vs. height are

given below. The explicit solver rbsFoam was used to generate these results.

In the plot A.9, the legends rf1 and rf2 stand for mesh refinement level of 1
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Figure A.6: Comparing decomposition techniques: scotch vs. simple

and 2 respectively. If any given cell is split in half along all the axes, then such

refinement is attributed as 1 level of refinement. Accordingly, a single cell is split

into 8 cells per level of refinement (for a 3D problem). Hence for a refinement

level of 2, 1 cell from the base case will be split into 64 cells.

The plots in figure A.9 reveal that results for any level of refinement are almost

same and match fairly well with the experimental results implying that the base

mesh of 40x80 cells was good enough to obtain the desired results. Hence, for

this particular case dynamic meshing is not advantageous since it increases the

computational time with no gain in accuracy. Upon a closer look, it is observed

that the results for refinement level of 2 have a wavy nature indicating instability

that might have been introduced due to the interpolation errors. Though these

errors are not so pronounced in the given case.

Now a more stringent and adverse test case of density ratio 1000 is considered.

From the above the plot in figure A.11, its evident that with dynamic mesh

refinement there is a significant loss of accuracy. For rf2 with a courant number

setting of 0.01 a wavy plot of significant amplitude is obtained confirming the

reasoning provided for density ratio 10 case. The interpolation errors introduced
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Figure A.7: Comparing decomposition techniques: scotch vs. simple

due to dynamic mesh refinement are more pronounced in the density ratio 1000

case. Though, if a lower courant number setting is used the solution appears to

stabilize. Yet, there is a significant deviation from the reference results. To check

the stability of implicit solver in such adverse test case, the above analysis was

repeated using interFoam. The results are reported in figure A.12.

The plot A.12 confirms that implicit solver is more stable as compared to

explicit one. Though, the results still differ significantly from the reference. With

increasing level of mesh refinement, the deviation seems to increase as well. One

of the reasons behind the deviation in results is the sudden interpolation that

needs to be done from a coarse grid to fine grid near the interface at the initial

time step. One way to avoid this is to initialize the volume fraction on a finer

block as explained in the Figure A.13 below.

The finer block is so placed that during initialization, the entire geometry of

phase 2 should lie within that box. This avoids the sudden numerical jerk that

comes into play while interpolating from a very coarse grid to very fine grid and

vice versa. Again the bubble rise test case for a density ratio of 1000 is consid-

ered to test the behavior of the bubbly numerically and compare the same with

standard results.

The refinement level selected is 1. Hence during initial time steps, the inter-
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Figure A.8: Terminal Bubble positions for different levels of mesh refinement dr

1000

polation is done only for a single refinement level. From the plots it is observed

that the deviation begins at 0.5 sec. The contour plot reveals that the bubble

leaves the finer domain at 0.5 sec. This is indicative of the fact that the source

of error is interpolation from finer grid to coarser grid.
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Figure A.9: Bubble centroid vs time for density ratio 10

Figure A.10: Terminal Bubble positions for different levels of mesh refinement dr

1000
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Figure A.11: Bubble centroid vs time for density ratio 1000

Figure A.12: Bubble centroid vs time for density ratio 1000
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Figure A.13: Bubble centroid vs time for density ratio 1000

Figure A.14: Bubble centroid vs time for density ratio 1000
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