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Abstract

In compressed sensing, to recover a sparse signal or nearly sparse signal from noisy measurements,

most popular method is `1-norm minimization [1]. The signals in this context are actually some

vectors in Rn. For conventionally sparse signal, latest approch to derive upper bound for the `2, `1-

norm of error between estimated signal and original signal is shown in [2] and [3]. For “group sparse”

signals, upper bound for the norm of error is given in [4]. In the present work, we focused on group

sparse signals, and presented a unified approach to eatablish upper bound on the norm of error. For

group sparse signal recovery, we also introduced a new bound on RIC constant which is diiferent

from the one proposed in [4]. A key technical tool, which represents a vector in polytope set by

convex combination of sparse vectors is discussed in [2]. We modified this key technical tool for

group sparse signals to establish the above discussed unified approach.
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Chapter 1

Introduction to Compressed

Sensing

1.1 Motivations

Compressive sensing, also referred to as compressive sampling or compressed sensing, is an signal

processing technique which has attracted a lot of attention recently. Compressed sensing deals with

efficiently acquiring a signal and reconstructing it, by finding the solution to undetermined linear

system. It exploits the fact that many of the natural signals are sparse when represented in proper

basis. For example, it is a well known fact that a signal can’t be time limited as well as band limited

simultaneously, hence it is always sparse in one of its domain. This sparsity property enables us to

recover the original signal from far fewer samples than required by the Shannon-Nyquist sampling

theorem. Shannon-Nyquist sampling theorem states that in order to exactly recover a signal we must

sample it at the or above the Nyquist rate which is twice the maximum frequency component present

in the original signal. This requirement increases the computational cost. However, in applications

like imaging, sensor networks, astronomy, high-speed analog-to-digital compression and biological

systems, the signals of interest are often sparse over a certain basis. For example, if we take a typical

image consisting of a million pixels, it is found to be very sparse or compressible over the wavelet

basis. Only a small fraction of wavelet coefficients, about one hundred or one thousand out of a

million wavelet coefficients, are significant in recovering the original image, while the rest of wavelet

coefficients are discarded in the process of compression.

This process of sampling at full rate and then compression can prove to be costlier, as the cost

of sensors, sampling resources or the cost of running them, are often high. In many applications we

have the situations where the resources such as sensors, energy, and observation time etc. are limited,

so sampling at Nyquist rate is not a feasible option. At this point, the compressed sensing comes

into play which promises to recover high dimensional signal exactly or accurately by using far fewer,

non-adaptive linear samples or measurements of the original signal. In general, signals in this context

are represented by vectors from linear spaces, and in many applications they may represent an image

or any other quantity. As a result of very few linear measurement of the signal we have a condition

where number of equation is less than the number of unknowns. Basic principles of linear algebra

says it is not possible to obtain the exact signal from incomplete set of measurements. However, as we
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discussed before, many of these signals such as image or audio are sparse when represented in proper

basis. This enables us to get back the original signal from incomplete measurement by using some

demodulation algorithm. One of the most efficient, effective and popular demodulation algorithm for

compressed sensing is the basis pursuit algorithm [5], also known as `1 norm minimization algorithm.

1.2 Mathematical Formulation of Compressed Sensing

In this section, first of all we define the meaning of sparsity? Sparse means, something which is less

dense. So, if someone says that a given vector is sparse, that means most of its elements are zero.

More specifically, if a vector x ∈ Rn is k-sparse, then it will have maximum k non-zero elements in

it. The set of all k-sparse vectors is denoted as Σk. Mathematically we can write,

‖x‖0 = |supp(x)| ≤ k � n, ∀x ∈ Σk.

Where, supp(x) is the support set of vector x, and it is defined as,

supp(x) := {i ∈ [n] : (x)i 6= 0}.

In compressed sensing we only take few linear measurement of a sparse or linearly sparse signal.

Let us assume that we have m measurements, where m� n. Each of the measurements can be seen

as the inner-product between the original signal x ∈ Rn and measurement vector ai ∈ Rn, where

i = 1, 2, ....,m. If we consider the m measurements as a vector y ∈ Rm, we may then consider a

measurement matrix A ∈ Rm×n whose rows are the vectors ai. So, the sparse signal recovery problem

can be seen as the recovery of a signal x ∈ Rn from its measurement y = A. Mathematically we can

write

y = Ax. (1.1)

Now the question that arises at this point of time is, knowing that x is k-sparse, how to get back

x from its measurement y ? Theoretically, one may attempt to recover the signal x by solving

`0-minimization problem,

x̂ := argmin
z
‖z‖0 s.t. Az = y. (1.2)

Now, we define the null space of A as,

N (A) = {z ∈ Rn : Az = 0}.

Here we make a statement that in case of noise-less measurement, if N (A) does not contain any

vector in Σ2k except a null vector, or in short N (A) ∩ Σ2k = {0}, then the solution to the equa-

tion (1.2) is exactly equal to x. This can can be proved very easily as, Ax̂ = Ax = y, which implies

A(x̂ − x) = 0 and hence, (x̂ − x) ∈ N (A). Further, it is not difficult to see that, (x̂ − x) ∈ Σ2k.

But we have assume that N (A) does not contain any nonzero vector in Σ2k, thus the only vector

in N (A) which is 2k sparse is z = 0, which leads to x̂ = x. Based on the above fact we conclude

that, `0-minimization problem works perfectly theoretically. However, in practical it is a NP-Hard

problem[6]. Fortunately in compressed sensing we have many alternative to `0-minimization algo-

rithm, which are computationally efficient.
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1.2.1 `1-minimization

`1-minimization algorithm also referred to as “basis pursuit”, is an alternative to `0-minimization

algorithm, which relaxes the NP-Hard problem associated with `0-norm minimization. In case of

noise-free measurement we recover the x as:

x̂ := argmin
z
‖z‖1 s.t. Az = y. (1.3)

The `1-norm minimization approach is sometimes referred to as the LASSO formulation, due its

similarity to the LASSO formulation for sparse regression [7]. It is interesting to note that, this

algorithm often recovers x exactly when x is sparse and accurately when x is nearly sparse, even

though the `1-norm is different from `0-norm which is a quasi-norm. We should note that the

measurement matrix A remains fixed and it is independent of the signal. The `1 minimization

algorithm will succeed [8],[9] whenever signal x is sufficiently sparse and matrix A satisfies some

conditions which we will discuss later. Surprisingly, `1-norm minimization gives sparsest solution.

According to the paper [10] sparsity promoting nature of `1-norm was first noticed in 1960 by Logan

[11] where he proved probably the first `1-uncertainty principle. The `1 minimization also finds

its applications in seismology, where sparse reflection function from band limited data indicates

meaningful changes between surface layers [12]. A paper [7] proposed LAASO algorithm for sparse

model selection in statistics, after which search for the application areas of `1 minimization began

to broden.

The basis pursuit was proposed [5] for obtaining sparse representation of a given signal from a

given over complete dictionary, and a similar approach known as variation minimization was pro-

posed in [13]. But the major breakthrough was achieved in [8],[9] and [14], therein it was shown

that Basis Pursuit is able recover sparse signals from its few linear measurements. However in order

to recover sparse signal, a stronger condition on the measurement matrix A is required. For exam-

ple, restricted isometry property (RIP) condition which guarantees that `1 minimization accurately

recovers a sparse signals. The number of rows for the measurement which satisfies these properties

ig given by m = k log(n)O(1) [14].

1.2.2 Greedy Algorithms

Under the the certain conditions on measurement matrix, `1 minimization guarantees exact sparse

recovery in noiseless case and robust sparse recovery in case of noisy measurements. But solving

a `1 minimization problem is found to be highly complex. For example, in linear programming,

the complexity grows cubic in the problem dimension n. In applications where the signal x is of

very large dimension, `1 minimization takes too much time. In such cases we use greedy algorithms

which are comparatively fast in both theory and practice. There are several greedy algorithm

exists such as Orthogonal Matching Pursuit [15], [16] Regularized Orthogonal Matching Pursuit

[17], Stagewise Orthogonal Matching Pursuit [18], Iterative Thresholding [19], Matching Pursuit

[20]. Greedy algorithm approximates the sparse signal iteratively and after each iteration they

come up with a better approximation. Among all the Matching Pursuit algorithm is the simplest

one. It projects the measurement y on each of the column of measurement matrix A ∈ Rm×n. The

projection which possesses largest euclidean distance gets subtracted from the measurement y. After
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the subtraction, the obtained vector is know as residue (r). If the euclidean distance of r is not less

than some predefined value (known as stopping criteria), then we again repeat the same procedure

with r in place of y. This algorithm will continue until the stopping criteria is satisfied. Even though

MP takes an infinite number of iterations in general, it converges exponentially. On the other hand,

in case of Orthogonal Matching Pursuit (OMP), though it selects atoms (columns) iteratively from

A, but it uses the current approximate as an orthogonal projection onto the Space Spanned by the

column selected so far. The main consequence of this modification is that the OMP is guaranteed

to converge in n (or fewer) iterations. We can interpret the algorithm as building up a subspace in

which the approximation lives and each iteration adds a dimension to this subspace, and so at most

n iterations are possible.

Though the greedy algorithm are comparatively fast, but most of them do not deliver upto the

expectations when compared to `1 minimization, in addition to that most of the greedy algorithms

don’t provides provable guarantees for robust sparse recovery.

1.3 Conditions On Measurement Matrix

As we know that, the measurement of a signal x ∈ Rn, in noiseless case can be seen as y = Ax,

where A ∈ Rm×n is the measurement matrix. Since m � n, we are getting a compressed form of

the signal x. But, we should must ensure that the measurement y is preserving significant amount

information contained in x. In this section we are concerned with different conditions to which the

sensing matrix A should satisfy such that y preserves sufficient amount of information.

1.3.1 Null Space-Based Condition

We have already seen in section 1.2 that in case of noise-less measurement, if the signal x is k-

sparse and A satisfies the condition N (A)∩Σ2k = {0}, then theoretically the `0-norm minimization

algorithm in (1.2) will exactly recover x. However in practical situations, signals are not exactly

sparse, and measurements are always associated with some amount of random noise. In addition,

solving `0-minimization is not possible. Hence, we need to setup some appropriate condition on A

as well as we have modify our recovery algorithm. In compressed sensing recovery algorithm is often

termed as “demodulation map”, denoted by ∆ : Rm → Rn. For different noise model we will define

different demodulation map (∆).

Let us consider measurement as

y = Ax+ η,

where, x ∈ Rn is our original signal and η ∈ Rm is some random noise. If the noise η follows the

characteristic ‖η‖2 ≤ ε, then we generally use demodulation map (∆) of the type,

∆(y) = x̂ := argmin
z
‖z‖1 s.t. ‖Az − y‖2 ≤ ε. (1.4)

In case, if the noise η follows the characteristic ‖Atη‖∞ ≤ ε, then we usually use demodulation map

(∆) of the type

∆(y) = x̂ := argmin
z
‖z‖1 s.t. ‖At(Az − y)‖∞ ≤ ε. (1.5)
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Before going into the further discussion we introduce couple of definitions which we will use

frequently in this work.

Definition 1.1: Suppose positive integer n and k <n, and a norm ‖ · ‖ on Rn are specified. Let

x ∈ Rn be arbitrary. Then the quantity

σk(x, ‖ · ‖) := min
z∈Σk

‖x− z‖

is called the k-sparsity index of vector x ∈ Rn with respect to the norm ‖ · ‖. It is obvious that

x ∈ Σk if and only if σk(x, ‖ · ‖) = 0.

Definition 1.2: Suppose we are given positive integers n and k < n, a measurement matrix

A ∈ Rm×n, and a demodulation map ∆ : Rm → Rn. The various property of pair (A,∆) are defined

as follows:

• The pair (A,∆) is said to achieve exact sparse recovery of order k if

∆(Ax) = x, ∀x ∈ Σk.

• The pair (A,∆) is said to achieve stable sparse recovery of order k if there exists a constant

C1 such that for some p ≥ 1, it is the case that

‖∆(Ax)− x‖p ≤ C1σk(x, ‖ · ‖1) ∀x ∈ Rn.

• The pair (A,∆) is said to achieve robust sparse recovery of order k if there exist constants

C1,C2 and some p ≥ 1, such that for all η ∈ Rm with ‖η‖2 ≤ ε, it is the case that

‖∆(Ax+ η)− x‖p ≤ C1σk(x, ‖ · ‖1) + C2ε ∀x ∈ Rn.

Though there are several null space-based conditions exists, but we will talk about only two of

them those are more relevant in this work.

Definition 1.3: A matrix A ∈ Rm×n is said to satisfy the exact null space (ENS) property of

order k if,

‖v‖1 < 2σk,G(x, ‖ · ‖1),∀v ∈ N (A)\{0}. (1.6)

Following this definition we introduce a theorem.

Theorem 1.1: If the measurement matrix A ∈ Rm×n satisfies exact null space proerty (ENSP)

of order k, then in noiseless case, recovery algorithm defined in (1.3) will exactly recover k-sparse

signals.

Proof: In order to prove this we will show that x is the unique minimizer to (1.3). Let an

arbitrary vector z ∈ Rn such that y = Az = Ax and z 6= x, where x ∈ Σk. We denote supp(x) by

S. It is quite obvious that h = (x− z) ∈ N (A)\{0}. Using the ENSP, we have that

‖h‖1 < 2‖hSc‖1,
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where Sc is the complement of S and it can be expressed as = {1, 2, ...n} − S. We should note

that hS denotes a vector which retains elements of vector h corresponding to index set S and the

remaining elements are set to zero. On simplifying the above inequality, we get

‖hS‖1 < ‖hSc‖1. (1.7)

Using the triangle inequality and (1.7), we have that

‖x‖1 − ‖zS‖1 ≤ ‖x− zS‖1
‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1

≤ ‖hS‖1 + ‖zS‖1
< ‖hSc‖1 + ‖zS‖1
= ‖ − zSc‖1 + ‖zS‖1 = ‖z‖1.

The a above fact establishes the fact that ‖x‖1 is the unique minimizer to (1.3) and hence it proves

our theorem.

Definition 1.4: A matrix A ∈ Rm×n is said to satisfy the `2 robust null space property (`2-

RNSP) of order k and norm ‖ · ‖2, with constants ρ ∈ (0, 1), τ ∈ R+, if, for all h ∈ Rn and all sets

S ⊂ [n] s.t. |S| ≤ k, it is true that

‖hS‖2 ≤
ρ√
k
‖hSc‖1 +

τ√
k
‖Ah‖2. (1.8)

With this definition we introduce a theorem for “robust recovery” of signals.

Theorem 1.2: Suppose A ∈ Rm×n, x ∈ Rn, and y = Ax + η where ‖η‖2 ≤ ε. Define x̂ = ∆(y)

as in (1.4). Suppose that A satisfies `2 robust null space property of order k and norm ‖ · ‖2, with

constants ρ ∈ (0, 1), τ ∈ R+. Then, for all p ∈ [1, 2], we have that,

‖x̂− x‖p ≤
1

k1−1/p
.

2

1− ρ
[(1 + 2ρ)σk(x, ‖ · ‖1) + 3τε]. (1.9)

Proof of this theorem is omitted here, but the interested readers are directed to [3]. We should

notice that the upper bound on the norm of error e = x̂− x is finite, see inequality (1.9). In case of

noise-free measurements, if x ∈ Σk, then from inequality (1.9) we get x̂ = x. Hence we can say that

A is preserving significant amount of information contained in x.

So far in this section we have seen different properties to which the measurement matrix A should

satisfy in order to achieve sparse recovery.

1.3.2 Restricted Isometry Property

We mentioned in subsection 1.3.1 that if A satisfies `2-robust null space property (`2-RNSP) as in

definition 1.4, then the demodulation map ∆ defined in (1.4) will exactly recovers the signal x in

case of sparse signal recovery problem. However, satisfying `2-RNSP is just an idea and it is not

clear how one may go about choosing matrix A to have this property. In the present subsection we
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introduce a property known as Restricted Isometry Property (RIP), and it is shown in [3] that RIP

implies `2-RNSP.

Definition 1.5: A matrix A ∈ Rm×n is said to satisfy the restricted isometry property (RIP)

of order k with constant δk ∈ (0, 1) if

(1− δk)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δk)‖u‖22, ∀u ∈ Σk. (1.10)

Where δtk is known as restricted isometry constant (RIC). Another equivalent way of expressing

(1.10) is the following: For every subset J ⊂ [n] with |J | ≤ k, the singular values of the matrix

AtJAJ lies in the interval [1− δk, 1 + δk].

Theorem 1.3: Suppose A ∈ Rm×n satisfies the RIP of order 2k with constant δ2k <
√

2 − 1, and

that y = Ax + η for some x ∈ Rn and η ∈ Rm with η2 ≤ ε, then the demodulation map ∆ defined

in (1.4) leads to the bound:

‖x̂− x‖2 ≤ C1σk(x, ‖ · ‖1) + C2ε, (1.11)

Where,

C1 =
2√
k

1 + (
√

2− 1)δ2k

1− (
√

2 + 1)δ2k
(1.12)

C2 = 4

√
1 + δ2k

1− (
√

2 + 1)δ2k
. (1.13)

For the proof of this theorem readers are directed to [21].

1.4 Group Sparsity

Until now we have been studying what might be called “pure” sparsity or conventional sparsity,

in which the quantity of interest is the number of nonzero components of a vector. However, in

applications such as cancer biology, the quantity of interest is the number of ”pathways” in which a

vector have non-zero components, and not the absolute number of non-zero components. This kind

of application leads naturally to the notion of group sparsity.

1.4.1 Mathematical Structure of Group Sparsity

Throughout this work, the symbol [n] denotes the set {1, . . . , n} whenever n is an integer. For some

Λ ⊂ [n] and h ∈ Rn, the symbol hΛ denotes a vector which retains elements of vector h corresponding

to index set Λ and the remaining elements are set to zero. The symbol Λc denotes a set which is

defined by Λc = [n]− Λ.

Now we introduce the following definition,

Definition 1.6: Let G = {G1, . . . , Gg} be a partition of [n] such that |Gi| ≤ k for all i. If

S ⊆ {1, . . . , g}, define GS := ∪i∈SGi. A subset Λ ⊆ [n] is said to be group k-sparse if there

exists a subset S ⊆ {1, . . . , g} such that Λ = GS , and in addition, |Λ| ≤ k. The collection of all

group k-sparse subsets of [n] is denoted by GkS. A vector u ∈ Rn is said to be group k-sparse,

if its support set supp(u) is contained in a group k-sparse set. Set of all group k-sparse vector

corresponding to set GkS is denoted by ΣGkS.
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In particular, every group k-sparse set is k-sparse i.e. has cardinality no larger than k, but the

converse is not true.

One may ask why to put condition like that Λ = GS ? What will happen if this condition

replaced by Λ ⊆ GS ? Answer to this is not very simple. If the stated condition is replaced by

Λ ⊆ GS , then the every k-sparse vector will become group sparse vector and hence, there will be no

meaning of introducing the notion of group sparsity. Let us take an example to make the notion of

group sparsity more clear. Suppose, n = 6, k = 3, g = 4, and that

G1 = {1}, G2 = {2}, G3 = {3}, G4 = {4, 5, 6}.

Denote Λ1 = {1, 2}, Λ2 = {1, 3}, Λ3 = {2, 3}, Λ4 = {1, 2, 3}, Λ5 = {4, 5, 6}, Λ6 = G1, Λ7 =

G2, Λ8 = G3, Λ9 = G4, then the set GkS is comprised of

GkS = {Λ1, Λ2, Λ3, Λ4, Λ5, Λ6, Λ7, Λ8, Λ9}.

Suppose we are given vectors v1 = [0 0 0 5 0 3], v2 = [0 0 3 1 0 8]. Observe that supp(v1) ⊂ Λ5,

hence v1 is group k-sparse as well as k-sparse. On the other hand,

supp(v2) 6⊆ Λi ∀i ∈ [9]

the above fact suggest that v2 is not group k-sparse, but it can be easily seen that v2 is k-sparse.

This supports the fact that we stated above. For more details readers are directed to [4].

1.4.2 Group Restricted Isometry Property (GRIP)

Just like we defined Restricted Isometry Property (RIP) in case of conventional sparsity, a property

called Group Restricted Isometry Property (GRIP) is introduced in this subsection which is

meant for group sparsity model.

Definition 1.7: A matrix A ∈ Rm×n is said to satisfy the group restricted isometry property

(GRIP) of order k with constant δk ∈ (0, 1) if

1− δk ≤ min
Λ∈GkS

min
supp(z)⊆Λ

‖Az‖22
‖z‖22

≤ max
Λ∈GkS

max
supp(z)⊆Λ

‖Az‖22
‖z‖22

≤ 1 + δk.

The set of group k-sparse vectors can be strictly smaller than the set of k-sparse vectors. Conse-

quently, in general, the GRIP constant of order k can be smaller than the RIP constant of order k.

When probabilistic methods are used to construct the measurement matrix A, often we require fewer

measurements to achieve group sparse recovery than sparse recovery. See for example [4, Section 6].

This is why we study group sparsity.

Theorems in context to group sparse recovery is given in chapter 2.

1.4.3 Conventional Sparsity as a Special Case of Group Sparsity

Let G = {G1, G2, ....., Gn} is the partition set of index set [n] = {1, 2, 3, ....., n} such that |Gi| = 1

for all i ∈ [n]. Then the set GkS contains all Λ ⊂ [n] such that, |Λ| ≤ k. Note that, for all x ∈ Σk,
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Λ = supp(x) ⊂ [n] with |supp(x)| ≤ k, which implies Λ ∈ GkS. So, with the above fact it is clear

that conventional sparsity is a special case of group sparsity.

1.5 Application

Compressed sensing is present not only in theory but it has widespread applications, both in past, for

example, in geophysical science (seismology) and promisingly in future. It has already contributed

to a greater extent in the fields, space based imaging, radar design, surface metrology, genotyping,

medical imaging, high-speed analog-to-digital conversion and ground-penetrating radar imaging in

civil engineering, oil-exploration, geophysics, landmine detection, forensics, archeology etc. Several

examples of its applications are discussed in details in the upcoming subsections.

1.5.1 Compressive Imaging

Acquiring images efficiently is one of the prominent application of compressed sensing. Most of the

images we are interested in, are often sparse over some suitable basis like wavelet basis. So they

meet the requirement of compressed sensing. Cameras that we use captures images with one sensor

for every pixel and they acquire all the pixel before compressing the acquired data. Todays digital

cameras have the mega pixel range which uses semiconductors as sensors.

One may ask why to acquire this many data as we have to throw many of them immediately?

With the advances in compressive imaging, the sensors can directly acquire random linear measure-

ments of an image while reducing the number of sensors required. With the knowledge of compressive

sensing we can propose a guideline framework for implementing such an idea, including designing

the measurement methods and the decoding algorithms. In fact the researchers have worked on de-

signing such a system, for example, single pixel camera that the rice university has made [22]. This

single pixel camera is consisting of a digital micro-mirror device (DMD), two lenses, a single photon

detector and an analog-to-digital(A/D) converter. A DMD chip is made of 10 million oscillating

mirrors or even more. We can command the action of each and everyone of these tiny (15 micrometer

by 15 micrometer) mirrors. In other words, with the use of a proper set-up, every milliseconds, we

can let each of these mirrors to shine on the detector. One of those lens focuses onto the DMD. Each

of the mirror on DMD is for a pixel in the image, and we can make them to tilt toward or away

from the second lens. Tilt towards the lens, is denoted by +1 and away the lens is denoted by −1.

We can tell the set of mirrors on DMD to display a set of random tilting, that way a random set of

mirrors are shining on second lens. This operation is analogous to creating inner products between

the image (in vector form) and a vector containing elements 1 and − 1. This light is then collected

by the lens and focused onto the photon detector where the measurement is computed. If we do this

once we obtain first compressed sensing measurement. We have to continue this process m times.

The optical computer in the camera computes the random linear measurements of the image and

passes those to a digital computers where it reconstructs the image. So, the single pixel Camera is

very different from a tradition camera as it requires only one photon detector. One of the advantage

of single pixel camera is that they can operate over a much broader range of light spectrum than a

traditional camera. Sensors can be very expensive over some over some light spectrum, for example

a tradition camera made for capturing infrared images would be very expensive and complicated.

For more details about the working of single pixel camera readers are directed to [23].
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Figure 1.1: Diagram showing working of a single pixel camera.

Compressed sensing finds another important application in medical imaging, in particular in

magnetic resonance imaging (MRI) which samples Fourier coefficients of an image. MR images

are are found to be sparse. Some of them such as angiograms are sparse in their actual pixel

representation, whereas some other more complicated MR images are sparse over some other basis,

such as the wavelet basis or Fourier basis. As we all are aware about the fact that MRI are too

much time costly, as we have to acquire a huge amount of data but the physical and physiological

constraints don’t allows us to do so in a short time window. Thus the our prime concern is to reduce

the number of measurements without compromising on the quality of MR image or in other way,

we can say that our concern is to increase the recovered image quality with the same number of

measurements. Compressed sensing in MRI is a very hot topic now days and it has attracted a

large number of researchers all over the world. For MRI application many compressive sampling

algorithm have been designed [24].

1.5.2 Radar Signal Processing

Compressed sensing has got deep root in “Radar Signal processing. In a traditional radar system,

radar transmits a kind of pulse form, after receiving it at the other end a matched filter is used

to correlate the signal received with that pulse. Pulse compression system is used by the receiver

together with a high-rate analog-to-digital (A/D) converter to process the signal. However, this

approach is not only complicated and expensive, but also the resolution of the radar system is

limited by radar uncertainty principle. Compressive Radar Imaging discretized the time-frequency

plane into a grid. Each possible target scene is treated as a matrix. The occupations of the grids

will be sparse if the number of targets is small enough, and then, compressive sensing techniques

can be used to recover the target scene [25].
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1.5.3 Biology

Compressive sensing can also be used efficiently in the area of biological applications. In fact, the

idea of Group Testing is closely related to compressive sensing. Group testing was used in World

War II to test soldiers for syphilis. Because the test for syphilis antigen in a blood sample was

expensive, pathologist managed to group people and test the entire pool of blood samples for this

group. If syphilis antigen was found in a pool of samples, the group was further divided into the

subgroups, and then the test was done on each of the individual subgroup. Now a days, comparative

DNA micro-array is a more modern example of compressive sensing idea in biology [26],[27]. Micro-

arrays (DNA, protein, etc.) are colossal parallel affinity-based bio-sensors capable of detecting and

computing a large number of different genomic particles simultaneously. Tens of thousands of probe

spots found DNA micro-arrays are being used to test a number of targets in a single experiment. In

micro-arrays, a large number of copies of a single probe is contained in a spot, designed to capture

a single target, and hence collects only a single data point. However, only a chunk of the total

number of genes represented by the reference sample and the test sample is differentially expressed

in comparative DNA micro-array experiments. So we can use the compressed sensing ideas to create

the compressed micro-arrays. In compressed micro-arrays, each spot encompass copies of different

probes and the total number of spots is much smaller than the number of targets being tested.

Application of compressed sensing can also be found in gene expression studies. For example, it will

be a big achievement if one would be able to deduce the gene expression level of thousands of genes

from only a limited number of observations [28].

1.5.4 Error Correcting

Compressive sensing also finds its applications in coding theory and practices. Error correction

problem is an active research area in coding theory: In communication applications, when signals

are received at the receiver, they usually get corrupted due to some random noise or disturbance. For

example, in digital communications, onboard computations performed by circuits are real-valued.

circuits usually experience disturbance caused by the numerous factors in the outside world. This

is only one of the example of difficult real-world problem of error correction. So, It is a challenging

problem that how to design system and decoding algorithms to correct the errors. As the errors

usually occur in few places, compressed sensing tools can be applied to reconstruct the original signal

from the corrupted data [8]. The mathematical formulation for the error correction problem is as

follows:

Let us consider we are given a word “CRICKET”. Assume that the code for the given word is

in the form of a vector x ∈ Rm, and we are asked to transmit it reliably to a remote receiver. Note

that, We are not going to transmit x directly. We first encode the x ∈ Rm into a n-dimensional code

y using a coding matrix B (also known as linear code). We can write y as

y = Bx, where B ∈ Rn×m.

It is clear that in noiseless case, if B is a full rank matrix, we can get back x. But in real-world

scenario, most often, we get the corrupted version of y due to the addition of some random sparse

noise. So the receiver receives

y′ = Bx+ η, (1.14)
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where η ∈ Rn is some random noise. We then wish to recover the x from the corrupted received

codeword y = Bf + η. To realize this as a compressed sensing problem, consider a matrix a matrix

A ∈ Rm×n whose null-space lies in the column space of B. On applying A to both sides of the

equation (1.14), we get Ay′ = Aη. Set Ay′ = z, and it becomes the problem of recovering a sparse

vector η from its measurement z = Ay′. After obtaining the error vector η we subtract it from

y = Bx+ η, which gives us Bx. Since B is full rank matrix, we can get back original signal x. For

more details readers are directed to [8].
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Chapter 2

Literature Review

In the past, for sparse signal recovery, several condition on RIC constants have been proposed. For

example, some sufficient conditions for sparse signal recovery in noiseless case are: δ2k <
√

2− 1 in

[21], δ2k < 0.497 in [29], δ2k < 0.472 in[30], δk < 0.307 in [31], δ2k < 1/2 and δk < 1/3 in [32]. Some

conditions that involves RIC of different orders have been introduced, e.g. δ3k+3†4k < 2,δk+†2k < 1

in [33],δ2k < 0.5746 together with δ2k < 0.5746, δ3k < 0.7731 together with δ16k < 1 in [34] and

δ2k < 4/
√

41 in [35]. However, as proposed in [2], δtk <
√

(t− 1)/t for some t ≥ 4/3 is the latest

bound on RIC available till date. In this chapter, first we will derive some of the bounds introduced

in [2] and then we will discuss about some sufficient conditions introduced in [4] for group sparsity.

2.1 Sparse Representation of a Polytope and Recovery of

Sparse Signals

In order to understand how the latest bound on RIP have been derived in [2], it is necessary to have

knowledge of the key technical tool [2, Lemma 1.1], which represents a vector in polytope set by

convex combination of sparse vectors. Proof of this key lemma is given in next subsection. Later

we will modify this lemma for group sparsity case which will play a key role in obtaining the goal of

this thesis.

2.1.1 Sparse Representation of a Polytope

For a positive number α and a positive integer k, define a polytope T (α, k)subsetRn , such that

T (α, k) = {v ∈ Rn : ‖v‖∞ ≤ α, ‖v‖1 ≤ αk}.

Lemma 2.1: For any v ∈ T (α, k) define a set of sparse vector U(α, k, v) ⊂ Rn such that,

U(α, k, v) = {u ∈ Rn : supp(u) ⊆ supp(v), ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α, ‖u‖0 ≤ k} ,
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there exist an integer N such that v can be represented as

v =

N∑
i=1

λi ui,

where

0 ≤ λi ≤ 1,

N∑
i=1

λi = 1, ui ∈ U(α, k, v), ∀i ∈ [N ].

Proof: We will prove this based on induction principle. Let l is a positive integer such that

l − 1 ≥ k. Here we will prove that, if this lemma is true for all vectors v ∈ T (α, k) such that

|supp(v)| = l − 1, then it also true for all l sparse vector present in T (α, k).

First, our assumption is that this lemma is true of all (l − 1)-sparse vector in T (α, k). Let a

vector v ∈ T (α, k) s.t. v is l-sparse but not (l− 1)-sparse, otherwise there will be nothing to prove.

We can express v as v =
∑l
i=1 ai ei where a1 ≥ a2 ≥ a3 ≥ ..... ≥ al > 0 : ei’s are different unit

vectors with only one non-zero entry of ±1.

Define a set D as

D = {1 ≤ i ≤ l − 1 : ai + ai+1 + ai+2 + ......+ al ≤ (l − i)α}.

It is obvious that 1 ∈ D as, a1 + ......+ al ≤ αk ≤ (l− 1)α. Let j is the largest element in D, which

implies

aj + aj+1 + ......+ al ≤ (l − j)α,

aj+1 + aj+2 + ......+ al > (l − j − 1)α. (2.1)

Define

bw =

∑l
i=j ai

l − j
− aw, j ≤ w ≤ l. (2.2)

It is not difficult to see that (l − j)
∑l
i=j bi =

∑l
i=j ai. By using (2.1), for all j ≤ w ≤ l,

bw ≥ bj =

∑l
i=j ai

l − j
− aj =

∑l
i=j+1 ai

l − j
− (l − j − 1)aj

l − j

=

∑l
i=j+1 ai − (l − j − 1)aj

l − j
> 0. (2.3)

In addition, we define

vw =

j−1∑
i=1

ai ei +

l∑
i=j

bi

l∑
i=j,i 6=w

ei ,

λw =
bw∑l
i=j bi

. (2.4)

Observe the following points:

• v =
∑l
i=j λw vw.
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• 0 ≤ λw ≤ 1.

•
∑l
i=j λi = 1.

• supp(vw) ⊂ supp(v).

• |supp(vw)| = l − 1.

We also have

‖vw‖1 =

j−1∑
i=1

ai + (l − j)
l∑

w=j

bw =

j−1∑
i=1

ai +

l∑
i=j

ai = ‖v‖1,

‖vw‖∞ = max{a1, ....., aj−1,

l∑
i=j

bi}

≤ max{α,
∑l
i=j ai

l − j
} ≤ α.

The last inequality is from the first part of (2.1). From the above fact it is quite clear that vw is

(l− 1)-sparse and it belongs to the set T (α, k). We made an assumption that this lemma is true for

all (l − 1)-sparse vector, therefore we can find {ui,w ∈ Rn, λi,w ∈ R : 1 ≤ i ≤ Nw, j ≤ w ≤ l} such

that

ui,w is k-sparse, supp(ui,w) ⊆ supp(vw) ⊆ supp(v), ‖ui,w‖1 = ‖vw‖1 = ‖v‖1, ‖ui,w‖∞ ≤ α.

In addition, vw =
∑Nw

i=1 λi,wui,w, so v can be represented as

v =

l∑
w=j

Nw∑
i=1

λwλi,wui,w. (2.5)

The result in (2.5) tells us that this lemma is true for all v ∈ T (α, k) that satisfies |supp(v)| = l.

Based on induction principle we can state that this lemma is true for all v ∈ T (α, k). �

2.1.2 Exact Sparse Recovery

As we have already seen in subsection 1.3.1 that, ENSP enables “exact sparse signal recovery”. In

this subsection we will establish the fact that, if the measurement matrix A ∈ Rm×n satisfies RIP

of order tk with constant δ2k <
√

(t− 1)/t, for some t ≥ 4/3, then it will also satisfy exact null

space property (ENSP) of order k. First we will begin with the following lemma,

Lemma 2.2: The number µ defined as µ =
√
t(t− 1)−(t−1), for some t > 1, satisfies µ ∈ (0, 0.5).

Proof: As t is greater than 1, it is obvious that µ > 0. In order to prove this lemma, we use

obvious inequality that
√

1 + q < 1 + q/2 for all q > 0. We have,

µ =
√
t(t− 1)− (t− 1)

=
√

(t− 1 + 1)(t− 1)− (t− 1)

=(t− 1)
[√

1 +
1

(t− 1)
− 1
]
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< (t− 1)
1

2(t− 1)
= 0.5 .

Now we are going to introduce an important theorem which establishes the fact that, δtk <√
(t− 1)/t is a sufficient condition that should be satisfied by measurement matrix A in order to

achieve exact sparse recovery of order k.

Theorem 2.1: Suppose A ∈ Rm×n, x ∈ Σk ⊂ Rn, and y = Ax. Define recovery algorithm as in

(1.3). Suppose A satisfies the RIP of order tk with constant δtk <
√

(t− 1)/t, for some t ≥ 4/3 such

that tk is an integer. Then the recovery algorithm in (1.3) will exactly recover x.

Proof: We only need to prove that, ∀h ∈ N (A)\{0}, it is true that ‖hS‖1 < ‖hSc‖1, where S is

the index set corresponding to k largest magnitude element of h. Proving this will prove the exact

null space property (ENSP). However we will prove this by contradiction.

Assume there exist a vector h ∈ N (A)\{0} such that, ‖hS‖1 ≥ ‖hSc‖1. Define,

α := ‖hSc‖1/k.

Define index set S1 and S2 as,

S1 := {i ∈ Sc : |(h)i| > α/(t− 1)},

S2 := {i ∈ Sc : |(h)i| ≤ α/(t− 1)}.

For brevity, denote hS , hS1 , hS2 by h0, h1 h2 respectively. It is obvious that ‖h1‖1 ≤ ‖hSc‖1 = αk.

Let ‖h1‖0 = m, then it follows that

αk ≥ ‖h1‖1 > m α/(t− 1), or m < k(t− 1).

In addition we have

‖h2‖1 = ‖hSc‖1 − ‖h1‖1

≤ αk −m α

(t− 1)

= [k(t− 1)−m]
α

t− 1
(2.6)

‖h2‖∞ ≤
α

(t− 1)
. (2.7)

Let α∗ = α/(t− 1) and p = k(t− 1)−m. On observing (2.6) and (2.7), we find that h2 ∈ T (α∗, p).

Using lemma 2.1, for some positive integer N , h2 can be represented as

h2 =

N∑
i=1

λiui.

Since, ui are (k(t− 1)−m)-sparse, by the known inequality

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞
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≤
√
k(t− 1)−m α

(t− 1)

≤
√
k(t− 1)

α

(t− 1)

≤

√
k

(t− 1)
α. (2.8)

Let µ ≥ 0 , c = 1/2 are two constants. Denote βi = h0 + h1 + µui, then

N∑
j=1

λjβj −
1

2
βi = h0 + h1 + µh2 −

1

2
βi

= (
1

2
− µ)(h0 + h1)− 1

2
µui + µh

N∑
j=1

λjβj −
1

2
βi − µh = (

1

2
− µ)(h0 + h1)− 1

2
µui. (2.9)

It is not difficult to see that vectors in equation (2.9) are tk-sparse.

We can check the following equation in l2 norm,

N∑
i=1

λi‖A(

N∑
j=1

λjβj −
1

2
βi)‖22 −

N∑
i=1

λi
4
‖A(βi)‖22 = 0. (2.10)

Set µ =
√
t(t− 1)− (t− 1). Since A follows RIP, it follows that

N∑
i=1

λi‖A(

N∑
j=1

λjβj −
1

2
βi)‖22 ≤ (1 + δtk)

N∑
i=i

λi

(
(
1

2
− µ)2‖h0 + h1‖22 +

µ2

4
‖ui‖22

)
. (2.11)

Using (2.9),(2.10), (2.11) we come to the conclusion that

0 ≤ (1 + δ2k)

N∑
i=i

(
λi(

1

2
− µ)2‖h0 + h1‖22 +

µ2

4
‖ui‖22

)
− (1− δ2k)

N∑
i=1

λi
4

(
‖h0 + h1‖22 + µ2‖ui‖22

)
=

N∑
i=1

λi

[(
(1 + δ2k)(

1

2
− µ)2 − (1− δ2k)

1

4

)
‖h0 + h1‖22 +

1

2
δtkµ

2‖ui‖22
]
. (2.12)

Using (2.7), we estabilish the fact that

‖ui‖2 ≤
√
k/(t− 1) α ≤ ‖h0‖2√

(t− 1)
≤ ‖h0 + h1‖2√

(t− 1)
. (2.13)

On substituting (2.13) in (2.12), we get

≤
N∑
i=1

λi‖h0 + h1‖22
[
(µ2 − µ)δtk +

(1

2
− µ+ (1 +

1

2(t− 1)
)µ2
)]
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≤ ‖h0 + h1‖22 ·
[
δ2k

(
(2t− 1)t− 2t

√
t(t− 1)

)
−
(

(2t− 1)
√
t(t− 1)− 2t(t− 1)

)]
< 0. (2.14)

Above, we used fact that

δtk <
√

(t− 1)/t,

‖ui‖2 ≤
√
k/(t− 1)α

≤ ‖h0‖2√
(t− 1)

≤ ‖h0 + h1‖2√
(t− 1)

. (2.15)

Inequalities (2.12) and (2.14) are contradicting each other. Which implies

‖hS‖1 � ‖hSc‖1.

So we conclude that matrix A satisfies exact null Space property. Hence the recovery algorithm

defined in (1.3) exactly recovers the k-sparse signal x. �

2.1.3 Robust Recovery of Signal

In the subsection 2.1.2 we proved that measurement matrix A in theorem 2.1 facilitates exact sparse

recovery. However, in real life time most of the signals are nearly sparse instead of exactly sparse. In

addition, there is always some amount of noise associated with the measurements. In this subsection

we will prove that, matrix A in theorem 2.1 also facilitates robust sparse recovery.

Theorem 2.2: Suppose that, for some number t ≥ 4/3 such that tk is an integer, the matrix

A ∈ Rm×n satisfies the RIP of order tk with constants δtk <
√

(t− 1)/t. Define recovery algorithm

as in (1.4). Suppose, x ∈ Rn and that y = Ax+ η where ‖η‖2 ≤ ε. Then the recovery algorithm in

(1.4) will lead to the bound

‖x̂− x‖2 ≤ 2

√
2(1 + δtk)

1−
√
t/(t− 1)δtk

ε+

(√2δtk +
√
t(
√

(t− 1)/t− δtk)δtk

t(
√

(t− 1)/t− δtk)
+ 1

)
2σk(x, ‖ · ‖1)√

k
. (2.16)

Proof: Suppose h = x̂−x, first we will derive a widely known result (see, e.g.,[36],[37],[38],[39]),

‖hΛc
0
‖1 ≤ ‖hΛ0‖1 + 2‖xSc

0
‖1.

Where S0, Λ0 are the index set of k largest components by magnitude of x, h respectively.

Optimality condition of x̂ implies that

‖x̂‖1 = ‖x+ h‖1 ≤ ‖x‖1.

Using the decomposability of ‖ · ‖1, we get

‖xSc
0

+ hSc
0
‖1 + ‖xS0

+ hS0
‖1 ≤ ‖xSc

0
‖1 + ‖xS0

‖1.
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Applying triangle inequality twice to the left hand side of the above inequality. we get,

‖xS0
‖1 − ‖hS0

‖1 − ‖xSc
0
‖1 + ‖hSc

0
‖1 ≤ ‖xSc

0
‖1 + ‖xS0

‖1.

On canceling the common term and rearranging the above inequality, we get

‖hSc
0
‖1 ≤ ‖hS0

‖1 + 2‖xSc
0
‖1. (2.17)

Observe that

‖hΛ0‖1 ≥ ‖hS0‖1, and ‖hΛc
0
‖1 ≤ ‖hSc

0
‖1.

Using the above facts and (2.17), we get

‖hΛc
0
‖1 ≤ ‖hΛ0

‖1 + 2‖hSc
0
‖1. (2.18)

Bsides,

‖Ah‖2 ≤ ‖Ax̂− y‖2 + ‖Ax− y‖2 ≤ 2ε. (2.19)

Define

α = (‖hΛ0
‖1 + 2‖xSc

0
‖1)/k.

Now partition Λc0 as disjoint union S1 ∪ S2, where

S1 := {i ∈ Λc0 : |(h)i| > α/(t− 1)},

S2 := {i ∈ Λc0 : |(h)i| ≤ α/(t− 1)}.

For brevity, denote hΛ0
, hS1

, hS2
by h0, h1, h2 respectively. Using (2.18) we can easily obtain

‖h1‖1 ≤ ‖hΛc
0
‖1 ≤ αk.

Let ‖h1‖0 = m. Then it follows that

αk ≥ ‖h1‖1 > mα/(t− 1).

Which implies,

m < k(t− 1).

Observe that, ‖h0 + h1‖0 = k +m ≤ tk , it means h0 + h1 is tk-sparse. Then it follows that

〈A(hΛ0 + h1), Ah〉 ≤ ‖A(hΛ0 + h1)‖2‖Ah‖2
≤ 2
√

1 + δtk‖hΛ0
+ h1‖2 ε. (2.20)

It is not difficult to see that

‖h2‖1 = ‖hΛc
0
‖1 − ‖h1‖1

≤ αk −m α

(t− 1)
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= [k(t− 1)−m]
α

t− 1
, (2.21)

‖h2‖∞ ≤
α

(t− 1)
. (2.22)

Let α∗ = α/(t−1) and p = k(t−1)−m. On observing (2.21) and (2.22), we find that h2 ∈ T (α∗, p).

Using lemma 2.1, for some positive integer N , h2 can be represented as

h2 =

N∑
i=1

λiui.

Since, ui are (k(t− 1)−m)-sparse, by the known inequality

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞

≤
√
k(t− 1)−m α

(t− 1)

≤
√
k(t− 1)

α

(t− 1)

≤

√
k

(t− 1)
α. (2.23)

Let 1 ≥ µ ≥ 0, c = 1/2 and denote βi = h0 + h1 + µui. We have already seen in subsection 2.1.2

that,
∑N
j=1 λjβj −

1
2βi − µh = ( 1

2 − µ)(h0 + h1)− µ
2ui are tk sparse vectors.

Let s = ‖h0 + h1‖2, P = 2‖xSc
0
‖1/
√
k, then

‖ui‖2 ≤
√
k/(t− 1) α

≤ ‖hΛ0
+ h1‖2√

(t− 1)
+ 2

‖xΛc
0∗
‖1√

k(t− 1)

≤ s+ P√
t− 1

. (2.24)

Set µ =
√
t(t− 1)− (t− 1). Using the identity (2.10)

0 =

N∑
i=1

λi

∥∥∥A((
1

2
− µ)(h0 + h1)− µ

2
ui + µh

)∥∥∥2

2
−

N∑
i=1

λi
4
‖A(h0 + h1 + µui)‖22

=

N∑
i=1

λi

∥∥∥A((
1

2
− µ)(h0 + h1)− µ

2
ui

)∥∥∥2

2
+ 2
〈
A
(

(
1

2
− µ)(h0 + h1)− µ

2
h2

)
, µAh

〉
+ µ2‖Ah‖22 −

N∑
i=1

λi
4
‖A(h0 + h1 + µui)‖22

=

N∑
i=1

λi

∥∥∥A((
1

2
− µ)(h0 + h1)− µ

2
ui

)∥∥∥2

2
+ µ(1− µ)〈A(h0 + h1), Ah〉

− λi
4
‖A(h0 + h1 + µui)‖22.

Now observe that, ( 1
2 − µ)(h0 + h1)− µ

2ui, h0 + h1 + µui are tk sparse vector. Hence, by using RIP
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property and (2.20), we have that

0 ≤ (1 + δtk)

N∑
i=i

λi

(
(
1

2
− µ)2‖h0 + h1‖22 +

µ2

4
‖ui‖22

)
+ µ(1− µ)2

√
1 + δtk‖h0 + h1‖2 ε

− (1− δtk)

N∑
i=1

λi
4

(
‖(h0 + h1)‖22 + µ2‖ui‖22

)
=

N∑
i=1

λi

[(
(1 + δtk)(

1

2
− µ)2 − (1− δtk)

1

4

)
‖h0 + h1‖22 +

1

2
δtkµ

2‖ui‖22
]

+ 2µ(1− µ)
√

1 + δtk‖h0 + h1‖2 ε

≤
N∑
i=1

λi‖h0 + h1‖22
[
(µ2 − µ)δtk +

(1

2
− µ+ (1 +

1

2(t− 1)
)µ2
)]

s2

+
[
2µ(1− µ)

√
1 + δtk ε+

δtkµ
2P

t− 1

]
s+

δtkµ
2P 2

2(t− 1)

= −t
(

(2t− 1)− 2
√
t(t− 1)

)(√ (t− 1)

t
− δ2k

)
s2 +

[
2µ2

√
t− 1

t
·
√

1 + δtkε+
δtkµ

2P

t− 1

]
s

+
δtkµ

2P 2

2(t− 1)

=
µ2

t− 1

[
− t
(√ t− 1

t
− δtk

)
s2 +

(
2
√
t(t− 1)(1 + δtk)ε+ δtkP

)
s+

δtkP
2

2

]
. (2.25)

The above one is the second-order inequality for s. On solving (2.25) for s, we get

s ≤
{(

2
√
t(t− 1)(1 + δtk)ε+ δtkP

)
+
[(

2
√
t(t− 1)(1 + δtk)ε+ δtkP

)2

+ 2t(
√

(t− 1)/t− δtk)δtkP
2
]1/2}

·
(

2t(
√

(t− 1)/t− δtk)
)−1

≤ 2

√
t(t− 1)(1 + δtk)

t(
√

(t− 1)/t− δtk)
ε+

√
2δtk +

√
t(
√

(t− 1)/t− δtk)δtk

2t(
√

(t− 1)/t− δtk)
· P.

Finally, note that ‖hΛc
0
‖1 ≤ ‖h0‖1 + P

√
k, by [40, Lemma 5.3], we obtain ‖hΛc

0
‖2 ≤ ‖h0‖1 + P , so

‖h‖2 =
√
‖h0‖22 + ‖hΛc

0
‖22

≤
√
‖h0‖22 + (‖h0‖2 + P )2

≤
√

2‖h0‖22 + P

≤
√

2 s+ P

≤ 2

√
2t(t− 1)(1 + δtk)

t(
√

(t− 1)/t− δtk)
ε+

(√2δtk +
√
t(
√

(t− 1)/t− δtk)δtk

t(
√

(t− 1)/t− δtk)
+ 1

)
2σk(x, ‖ · ‖1)√

k
.

As P = ‖xSc
0
‖1/
√
k = σk(x, ‖ · ‖1)/

√
k, we get
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‖h‖2 ≤ 2

√
2(1 + δtk)

1−
√
t/(t− 1)δtk

ε+

(√2δtk +
√
t(
√

(t− 1)/t− δtk)δtk

t(
√

(t− 1)/t− δtk)
+ 1

)
2σk(x, ‖ · ‖1)√

k
. (2.26)

Which proves our theorem. �

Remarks: We made an assumption that tk is an integer. But in case, if tk is not an integer, take

t′ = dtke/k. Note that t′ > t, t′k is an integer. Then we can choose δt′k as

δt′k = δtk <

√
t− 1

t
<

√
t′ − 1

t′
.

Now we introduce a theorem which tells us that the bound δtk <
√

(t− 1)/t is indeed a sharp

bound. We are not going to give proof of it here, but the interested readers are directed [2].

Theorem 2.3: (See [2, Theorem 2.2]) Let t ≥ 4/3. For all γ > 0 and all k ≥ 5/γ, there exists a

matrix A satisfying the RIP of order tk with constant δtk ≤
√

(t− 1)/t+ γ such that the recovery

procedure in (1.4) fails for some k-sparse vector.

In this section we came to know that δtk <
√

(t− 1)/t for some t ≥ 4/3 is a sufficient condition

which should be satisfied by measurement matrix A in order to achieve both sparse recovery as well

as robust recovery of order k through the constrained `1-minimization.
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Chapter 3

My Contribution

The paper [4] provides upper bound on restricted isometry constant (δ2k) in addition to error

estimates for the group sparse recovery. It also includes several algorithms that have been proposed

in the literature for both “conventional” as well as group sparsity. In order to achieve robust

sparse recovery when the results proved in [4] are specialized to the case of conventional sparsity

and `1-norm minimization, we get the bound δ2k <
√

2 − 1. However, by using the Theorem 2.2,

in order to achieve robust sparse recovery, δ2k < 1/
√

2 is found to be a sufficient condition. It

means Theorem 2.2 gives a tight bound. This suggests that the method of proof adopted in [4]

can be improved. That is precisely the purpose of the present work. Therefore, our objective is

to establish bounds on restricted isometry constant and error estimates for group sparse recovery

through constrained `1-norm minimization, which include the bounds of [2] as a special case in the

case of conventional sparsity. Moreover, in the process of proving bounds for group sparse recovery,

we also improve upon the error estimates given in [2].

3.1 Preliminaries

Before moving to the main results of this chapter we introduce few definitions.

Definition 3.1: Given a vector x ∈ Rn and a group k-sparse set GkS. Set GkS0 = GkS, and define

the set Λ0 as

Λ0 = argmin
Λ∈GkS0

‖x− xΛ‖1.

Now, for i ≥ 1, we define an iterative algorithm as:

GkSi := {Λ : Λ ∩ Λi−1 = φ , ∀Λ ∈ GkSi−1},

Λi := argmin
Λ∈GkSi

‖x−
i−1∑
j=0

xΛj
− xΛ‖1.

Iterate the above algorithm for s number of times such that GkSs+1 = φ. Finally, we obtain the

set {Λ0, Λ1, ........, Λs}. Then the set of vector {xΛ0
, xΛ1

, ....xΛs
} is known as optimal group

k−sparse decomposition of x.
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Definition 3.2: Given an integer k, let GkS denote the collection of all group k-sparse subsets of

[n], and define

σk,G(x, ‖ · ‖) := min
Λ∈GkS

‖x− xΛ‖ = min
Λ∈GkS

‖xΛc
0
‖ (3.1)

to be the group k-sparsity index of the vector x with respect to the norm ‖ · ‖ and the group

structure G. In group sparsity, group k-sparsity index is analogous to k-sparsity index defined in

conventional sparsity.

It is obvious that if g = n, and each group Gi is the singleton set {i}, then group sparsity and

group sparsity index reduce respectively to k-sparsity and k-sparsity index. Note that, because GkS

is in general a strict subset of the set of all k-sparse sets, it follows that

σk(x, ‖ · ‖) ≤ σk,G(x, ‖ · ‖). (3.2)

Definition 3.3: Given a vector v ∈ Rn, we define the group support set of v, denoted by

Gsupp(v), as

Gsupp(v) := {j ∈ [g] : vGj
6= 0}. (3.3)

Thus Gsupp(v) denotes the subset of the groups on which v has a nonzero support.

Definition 3.4: Suppose A ∈ Rm×n, known as the measurement map, and ∆ : Rm → Rn, known

as the demodulation map. Then the pair (A,∆) is said to achieve robust group sparse recovery

of order k if there exist constants D1, D2 such that, for all η ∈ Rm with ‖η‖2 ≤ ε, we have that

‖∆(Ax+ η)− x‖2 ≤ D1σk,G(x, ‖ · ‖1) +D2ε. (3.4)

3.2 Polytope Decomposition Lemma

The key to the results in section 2.1 is Lemma 2.1, which represents a vector in polytope set by

convex combination of sparse vectors. In this subsection we generalize this lemma to the case of

group sparsity. Before presenting the lemma, we introduce a couple of terms.

We define mmax and mmin as

mmax := max
j∈[g]
|Gj |,mmin := min

j∈[g]
|Gj |. (3.5)

Recall that, by assumption group sparsity, mmax ≤ k.

Lemma 3.1: Given a vector v ∈ Rn and some α ∈ R+ such that,

‖vGj
‖1 ≤ α, ∀j ∈ [g], and ‖v‖1 ≤ sα (3.6)

for some integer s, there an integer N and exist vectors ui, i ∈ [N ] such that

• supp(ui) ⊆ supp(v), ∀i ∈ [N ].

• ‖ui‖1 = ‖v‖1, ∀i ∈ [N ].

• ‖(ui)Gj
‖1 ≤ α, ∀i ∈ [N ], and ∀j ∈ [g]
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• ui is group smmax-sparse for each i, and finally

• v is a convex combination of ui, i ∈ [N ].

Remarks: In the case of conventional sparsity, mmax = 1, in which case all vectors ui are s-sparse,

which is precisely Lemma 2.1.

Proof: We will prove this Lemma by using the induction principle. Define a set of vectors

X := {v ∈ Rn : ‖vGj
‖1 ≤ α ∀j ∈ [g], ‖v‖1 ≤ sα}.

To begin the inductive process, suppose |Gsupp(v)| ≤ s. Then v is itself smmax-sparse. So

we can take N = 1 and u1 = v. Now suppose that the lemma is true for all v ∈ X such that

|Gsupp(v)| = r− 1 where r− 1 ≥ s. It is shown that the lemma is also true for all v ∈ X satisfying

|Gsupp(v)| = r.

Let a vector v ∈ X such that, |Gsupp(v)| = r. suppose Q ⊆ [g] denote the index set {j ∈ [g] :

vGj
6= 0}, and observe that |Q| = |Gsupp(v)| = r by assumption. Then v can be expressed as

v =
∑
j∈Q

vGj
.

Now arrange the vectors vGj
in decreasing order of their `1-norm. Denote the permuted vectors as

p1 through pr.

Define,

ai := ‖pi‖1, and p̂i = (1/ai)pi.

Then each p̂i has unit `1-norm. Moreover ai ≥ ai+1 for all i, and v =
∑r
i=1 pi =

∑r
i=1 aip̂i. Also,

because the `1-norm is decomposable and the pi have non overlapping support sets, it follows that

‖v‖1 =
∑r
i=1 ai.

Now define a set

D := {β ∈ [r − 1] :

r∑
i=β

aβ ≤ (r − β)α}.

Then 1 ∈ D because
r∑
i=1

ai = ‖v‖1 ≤ sα ≤ (r − 1)α.

Therefore D is nonempty. Now, by a slight abuse of notation, let β again denote the largest element

of the set D. This implies that

aβ + aβ+1 + aβ+2 + .......+ ar ≤ (r − β)α,

aβ+1 + aβ+2 + .......+ ar>(r − β − 1)α. (3.7)

Define the constants,

bw =

∑r
i=β ai

r − β
− aw, β ≤ w ≤ r,

which satisfies
r∑
i=β

ai = (r − β)

r∑
i=β

bi. (3.8)
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For all β ≤ w ≤ r,

bw ≥ bβ =

∑r
i=β+1 ai

r − β
− r − β − 1

r − β
aβ

≥
∑r
i=β+1 ai − (r − β − 1)α

r − β
> 0,

where the last two steps follow from ai ≤ α for all i, and from the second inequality in (3.7).

Next, for w = β, ....., r, define

v(w) :=

β−1∑
i=1

aip̂i + (

r∑
i=β

bi)

r∑
i=β,i 6=w

p̂i, λw :=
bw∑r
i=β bw

. (3.9)

Now observe that

0<λw<1,

r∑
w=β

λw = 1.

Next, supp(v(w)) ⊆ supp(v) for all w. Moreover, |Gsupp(v(w))| ≤ r − 1 for all w, because the

corresponding term p̂w is missing from the summation in (3.9). Also, note that each p̂i has unit

`1-norm. Therefore, for each w between β and r, we have that

‖v(w)‖1 =

β−1∑
i=1

ai + (r − β)

r∑
i=β

bi

=

β−1∑
i=1

ai +

r∑
i=β

ai =

r∑
i=1

ai = ‖v‖1. (3.10)

Through (3.9) it can be easily seen that v(w) is composed of some linear combination of p̂i . Since,

each p̂i is supported over a particular Gj and p̂i have non overlapping support set, it follows that

‖v(w)
Gj
‖1 ≤ max{a1, a2, ......, aβ−1,

r∑
i=β

bw}

≤ max{α,
∑r
i=β ai

r − β
} ≤ α. (3.11)

So, the results in (3.10), (3.11) suggest that, each v(w) ∈ X. By the inductive assumption, each v(w)

has a convex decomposition as in the statement of the lemma. It follows that v is also a convex

combination as in the statement of the lemma. This completes the inductive step.

We have already established the fact that this lemma is true for all vector v ∈ X satisfying

|Gsupp(v)| ≤ s, therefore it is also true for all v ∈ X satisfying |Gsupp(v)| ≤ s + 1 and so on, for

all v ∈ X satisfying |Gsupp(v)| ≤ g. It is obvious that, ∀v ∈ X, 0 ≤ |Gsupp(v)| ≤ g. Hence this

lemma is true for all v ∈ X. This was the one way to understand the proof of this lemma. But

if, it is still not clear then forget about the induction principle. There is no need to assume that

this lemma is true for all v ∈ X satisfying |Gsupp(v)| = r − 1. Take any vector v ∈ X satisfying

|Gsupp(v)| = r > s. We can split it into v(w) as in (3.9). We have proved that v(w) ∈ X. We also

showed that |Gsupp(v(w))| = r− 1. If r− 1 = s, it means we have achieved our goal. Because if this
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is the case, then v(w) will be group smmax−sparse. But if, r − 1 is still greater than s, then we will

be able to apply the same procedure to each v(w). Split v(w) it into v(wt), where t = 1, ......, N1. Note

that v(wt) will satisfy |Gsupp(v(wt))| = r − 2 and v(wt) ∈ X. We shall repeat the same procedure

unless we get vectors ui, such that |Gsupp(ui)| = s. �

Now we introduce a lemma which gives a bound on the euclidean distance of ui for all i ∈ [N ].

Lemma 3.2: Let ui, i ∈ [N ] be the vectors in the convex combination of Lemma 3.1. Then

‖ui‖22 ≤
smmax

mmin
α2, ∀i ∈ [N ]. (3.12)

Proof: Fix the index i ∈ [N ]. Define the index set

Bi := {j ∈ [g] : (ui)Gj
6= 0}.

Let ci = |Bi|. Because ui is (smmax)-sparse, it follows that ci ≤ smmax

mmin
. Moreover, by using

Lemma 3.1 for each index j ∈ Bi, we have that

‖(ui)Gj‖2 ≤ ‖(ui)Gj‖1 ≤ α.

Now observe that

ui =
∑
j∈Bi

(ui)Gj
.

Please note that, there are at most ci terms in the above summation, and each term has Euclidean

norm no larger than α. Hence, using this fact and knowing that (ui)Gj
have non overlapping support

set, we have that

‖ui‖22 =
∑
∀j∈B

||(ui)Gj
||22

≤ smmax

mmin
α2,

which completes the proof. �

As of now we have stated and proved some important Lemma, now we shall move on to main

results.

3.3 Main Results

Suppose for some t > 1, k(t− 1)/mmax is an integer. Suppose that A satisfies the GRIP of order tk

with constant δtk = δ. To facilitate the statement and proof of the main theorem, we define a few

constants.

µ :=
√

(t− 1)t− (t− 1), (3.13)

a := [µ(1− µ)− δ(0.5− µ+ µ2)]1/2, (3.14)

b := µ(1− µ)
√

1 + δ, c :=

[
δµ2m2

max

2(t− 1)mmin

]1/2

, (3.15)
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d := µ(1− µ)
√
k(kt−mmax), (3.16)

ρ := c/a, τ := b
√
k/a2. (3.17)

Note that the alternate expression for a is

a =
[(1− δ)− (1− 2µ)2(1 + δ)]1/2

2
.

Next we extend the so-called robust null space property (see Definition 1.4) to group sparsity.

Definition 3.5: A matrix A ∈ Rm×n is said to satisfy the `2 group robust null space property

(GRNSP) with constants ρ ∈ (0, 1), τ ∈ R+, if, for all h ∈ Rn and all sets S ∈ GkS, it is true that

‖hS‖2 ≤
ρ√
k
‖hSc‖1 +

τ√
k
‖Ah‖2, (3.18)

Now, using (3.18) we obtain one more important inequality:

By Schwarz’ inequality,

‖hS‖1 ≤
√
k‖hSc‖1. (3.19)

On substituting (3.19) into (3.18), we get

‖hS‖1 ≤ ρ‖hSc‖2 + τ‖Ah‖2. (3.20)

Now we come to the key result that allows us to establish robust group k-sparse recovery. Note

that, even in the case of conventional sparsity, the following result is new.

Theorem 3.1: Suppose that the matrix A satisfies the GRIP of order tk with constant δtk = δ.

Where t > 1 such that k(t− 1)/mmax is an integer. If δ satisfies

δ < µ(1− µ)

(
µ2m2

max

2(t− 1)mmin
+ 0.5− µ+ µ2

)−1

, (3.21)

then A satisfies the `2 GRNSP with constants ρ, τ defined in (3.18).

Proof: Let hΛ0 , hΛ1 , hΛ2 , . . . , hΛs be an optimal group k-sparse decomposition of h. Now denote

hΛc
0

= h∗. Define sets S1 and S2 as follows:

S1 =

{
j : ‖h∗Gj

‖1 > mmax

‖hΛc
0
‖1

k(t− 1)
, ∀j ∈ [g]

}
,

S2 =

{
j : ‖h∗Gj

‖1 ≤ mmax

‖hΛc
0
‖1

k(t− 1)
, ∀j ∈ [g]

}
.

Let GS1 = ∪j∈S1
Gj and GS2 = ∪j∈S2

Gj . Now define

h(0) = hΛ0 , h
(1) = h∗GS1

, h(2) = h∗GS2
.

Then we have

hΛc
0

= h∗ = h∗GS1
+ h∗GS2

= h(1) + h(2).
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Assume that |S1| = r. Now we will establish upper bound on ‖h(2)‖1 and ‖h(2)
Gj
‖1. Because of the

definition of set S1, it follows that

‖h(1)‖1 ≥ rmmax

‖hΛc
0
‖1

k(t− 1)
. (3.22)

Moreover

‖h(2)‖1 = ‖hΛc
0
‖1 − ‖h(1)‖1.

Using (3.22) we get

‖h(2)‖1 ≤ ‖hΛc
0
‖1 − rmmax

‖hΛc
0
‖1

k(t− 1)

=

[
k(t− 1)

mmax
− r
]
mmax

‖hΛc
0
‖1

k(t− 1)
. (3.23)

By the definition of set S2

‖h(2)
Gj
‖1 ≤ mmax

‖hΛc
0
‖1

k(t− 1)
, ∀j ∈ [g]. (3.24)

Remarks: We should note that r 6> k(t−1)
mmax

− 1. Because, if r = k(t−1)
mmax

, then ‖h(1)‖1 = ‖hΛc
0
‖1 + Ω

where, Ω ∈ (0,∞). This is not possible because hΛc
0

= h(2) + h(2), and in addition to that h(1), h(2)

have non overlapping support set. This implies that h(0) + h(1) is group (kt −mmax)-sparse, and

hence they are also group kt-sparse.

From (3.23) and (3.24), we see that the vector h(2) satisfies the hypotheses of Lemma 3.1 with

α = mmax

‖hΛc
0
‖1

k(t− 1)
, s =

[
k(t− 1)

mmax
− r
]
.

Therefore we can apply Lemma 3.1 to h(2). So, h(2) can be represented as

h(2) = λ1 u1 + λ2 u2 + . . .+ λNuN ,

where each ui is group (k(t − 1) − rmmax)-sparse, h(1) is group (rmmax)-sparse, and h(0) is group

k-sparse. Therefore ui + h(1) + h(0), is group tk-sparse for each i ∈ [N ]. Now let, for all i ∈ [N ],

xi =
1

2

(
h(0) + h(1)

)
+

µ

2
ui,

zi =
1− 2µ

2

(
h(0) + h(1)

)
− µ

2
ui,

γ = xi + zi = (1− µ)
(
h(0) + h(1)

)
,

βi = xi − zi = µ
(
h(0) + h(1) + ui

)
.

Then

N∑
i=1

λi〈Aγ,Aβi〉 =

〈
Aγ,A

N∑
i=1

λiβi

〉
= µ(1− µ)〈A(h(0) + h(1)), Ah〉. (3.25)
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However,for each index set i, we have that

〈Aγ,Aβi〉 = 〈Axi +Azi, Axi −Azi〉 = ‖Axi‖22 − ‖Azi‖22.

Therefore it follows that

N∑
i=1

λi(‖Axi‖22 − ‖Azi‖22) = µ(1− µ)
〈
A(h(0) + h(1)), Ah

〉
,

on rearranging

N∑
i=1

λi‖Axi‖22 =

N∑
i=1

λi‖Azi‖22

+ µ(1− µ)
〈
A(h(0) + h(1)) , Ah

〉
.

Since xi, zi, (h(0) + h(1)) are all group tk-sparse, it follows from the GRIP that,

(1− δ)
N∑
i=1

λi‖xi‖22 ≤ (1 + δ)

N∑
i=1

λi‖zi‖22

+ µ(1− µ)
〈
A(h(0) + h(1)), Ah

〉
.

Since h(0), h(1) and ui have disjoint support sets, it follows that, for all i ∈ [N ], we have

‖xi‖22 = 0.25
(
‖(h(0) + h(1))‖22 + µ2‖ui‖22

)
,

‖zi‖22 = 0.25
[
(1− 2µ)2‖(h(0) + h(1))‖22 + µ2‖ui‖22

]
.

Substituting these relationships, multiplying both sides by 4, and noting that
∑N
i=1 λi = 1, leads to

(1− δ)
[
‖(h(0) + h(1))‖22 + µ2

N∑
i=1

λi‖ui‖22
]
≤(1 + δ)

[
(1− 2µ)2‖(h(0) + h(1))‖22 + µ2

N∑
i=1

λi‖ui‖22
]

+ 4µ(1− µ)
〈
A(h(0) + h(1)), Ah

〉
,

or upon rearranging,

‖(h(0) + h(1))‖22[(1− δ)− (1 + δ)(1− 2µ)2] ≤ 2δµ2
N∑
i=1

λi‖ui‖22

+ 4µ(1− µ)
〈
A(h(0) + h(1)), Ah

〉
. (3.26)

Recall that

α = mmax

‖hΛc
0
‖1

k(t− 1)
, s =

[
k(t− 1)

mmax
− r
]
.
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Substituting these values into (3.12), we get that

‖ui‖22 ≤ k(t− 1)− rmmax

mmin
m2

max

‖hΛc
0
‖21

k2(t− 1)2

≤ k(t− 1)

mmin
m2

max

‖hΛc
0
‖21

k2(t− 1)2

=
m2

max

mmin

‖hΛc
0
‖21

k(t− 1)
. (3.27)

Substituting the above bound which is independent of i, into (3.26), we get

‖(h(0) + h(1))‖22[(1− δ)− (1 + δ)(1− 2µ)2] ≤ 2δµ2m2
max

mmin

‖hΛc
0
‖21

k(t− 1)

+ 4µ(1− µ)
〈
A(h(0) + h(1)), Ah

〉
. (3.28)

Using the Schwartz’s inequality and the fact that h(0) +h(1) is group tk-sparse, the above inequality

becomes

‖(h(0) + h(1))‖22[(1− δ)− (1 + δ)(1− 2µ)2] ≤ 2δµ2m2
max

mmin

‖hΛc
0
‖21

k(t− 1)

+ 4µ(1− µ)
√

1 + δk‖(h(0) + h(1))‖2 · ‖Ah‖2.

Denote ‖(h(0) +h(1))‖2 by f and invoke the definition of the constants a, b, c from (3.14) and (3.15).

This gives

4f2a2 ≤ 4c2
‖hΛc

0
‖21

k
+ 4bf‖Ah‖2,

or after dividing both the sides by 4 and rearranging,

f2a2 − bf‖Ah‖2 ≤ c2
‖hΛc

0
‖21

k
.

The next step is to complete the square on left side of the above inequality.

f2a2 − bf‖Ah‖2 +
b2

4a2
‖Ah‖22 ≤

b2

4a2
‖Ah‖22 + c2

‖hΛc
0
‖21

k
,

or equivalently, [
af − b

2a
‖Ah‖2

]2

≤ b2

4a2
‖Ah‖22 + c2

‖hΛc
0
‖21

k
.

Taking the square root on both sides, and using the obvious inequality that
√
x2 + y2 ≤ x + y

whenever x, y ≥ 0, leads to

af − (b/2a)‖Ah‖2 ≤ (b/2a)‖Ah‖2 + c
‖hΛc

0
‖1√
k

,

√
x2 + y2 ≤ x+ y whenever x, y ≥ 0, leads to

af − (b/2a)‖Ah‖2 ≤ (b/2a)‖Ah‖2 + c
‖hΛc

0
‖1√
k

,
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or upon rearranging and replacing f by ‖(h(0) + h(1))‖2,

a‖(h(0) + h(1))‖2 ≤ (b/a)‖Ah‖2 + c
‖hΛc

0
‖1√
k

.

Dividing both the sides by a and observing that hΛ0
= h(0) and

‖h(0)‖2 ≤ ‖(h(0) + h(1))‖2,

we get

‖hΛ0
‖2 ≤ ‖(h(0) + h(1))‖2 ≤

b

a2
‖Ah‖2 +

c

a

‖hΛc
0
‖1√
k

=
b
√
k

a2
√
k
‖Ah‖2 +

c

a

‖hΛc
0
‖1√
k

.

This inequality is of the form (3.18) with ρ, τ given as in (3.3). The only thing left to prove is that,

if δ satisfies the bound (3.21), then ρ < 1. This is equivalent to c/a < 1, so it is enough to show

that c2 < a2, that is
δµ2 m2

max

2(t− 1)mmin
< µ(1− µ)− δ(0.5− µ+ µ2),

on rearranging

δ
( µ2 m2

max

2(t− 1)mmin
+ 0.5− µ+ µ2

)
< µ(1− µ),

which implies

δ <
( µ2 mmax

2(t− 1)mmin
+ 0.5− µ+ µ2

)−1

µ(1− µ).

Hence we finished the proof. �

3.3.1 Robust Group Sparse Recovery

Suppose we have the measurement of the type

y = Ax+ η

where η is some bounded noise, with ‖η‖2 ≤ ε. Define the recovery algorithm (or, demodulation

map ∆) as,

∆(y) := x̂ = argmin ‖z‖1 s.t. ‖y −Az‖2 ≤ ε (3.29)

Now, we introduce a theorem in context to the error estimate obtained by the above algorithm.

Theorem 3.2: Suppose A ∈ Rm×n satisfies GRIP of order tk with δtk = δ, where t > 1 such that

k(t− 1)/mmax is an integer. Then, for p ∈ [1, 2], the demodulation map (∆) defined in (3.29) leads

to the bound

‖x̂− x‖1 ≤ 2

1− ρ
[(1 + ρ)σk,G + 2τε] (3.30)

‖x̂− x‖p ≤ 2

1− ρ

{[ ρ

k1−1/p
+ (1 + ρ)

]
σk,G +

( 1

k1−1/p
+ 2
)
τε
}
. (3.31)
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Proof: Let x̂ = x+ h. Optimality condition implies that

‖x̂‖1 = ‖x+ h‖1 ≤ ‖x‖1.

Let xS0
, xS1

, . . . , xSb
be an optimal group k-sparse decomposition of x. Then

‖xSc
0

+ hSc
0
‖1 + ‖xS0 + hS0‖1 ≤ ‖xSc

0
‖1 + ‖xS0‖1.

Applying triangle inequality twice to the left hand side of the above inequality. we get,

‖xS0
‖1 − ‖hS0

‖1 − ‖xSc
0
‖1 + ‖hSc

0
‖1 ≤ ‖xSc

0
‖1 + ‖xS0

‖1.

Canceling the common term and denoting ‖xSc
0
‖ by σk,G(x, ‖ · ‖1) = σk,G, we get

‖hSc
0
‖1 − ‖hS0‖1 ≤ 2σk,G. (3.32)

Let hΛ0
, hΛ1

, . . . , hΛs
be an optimal group k-sparse decomposition of h. Then

‖hΛ0
‖1 ≥ ‖hS0

‖1, and ‖hΛc
0
‖1 ≤ ‖hSc

0
‖1.

Using the above fact and (3.32), we get

‖hΛc
0
‖1 − ‖hΛ0‖1 ≤ 2σk,G. (3.33)

Now,

‖Ah‖2 = ‖(Ax̂− y)− (Ax− y)‖2 ≤ 2ε.

Using the inequality (3.20) and the above fact, we have that

‖hΛ0
‖1 ≤ ρ‖hΛc

0
‖1 + 2τε. (3.34)

Using (3.34) and (3.33), we get [
1 −1

−ρ 1

][
‖hΛc

0
‖1

‖hΛ0‖1

]
≤

[
2σk,G

2τε

]
.

Let the M denotes the coefficient matrix on the left hand side

M−1 =

[
1 −1

−ρ 1

]−1

=
1

1− ρ

[
1 1

ρ 1

]
.

Since 1− ρ > 0, all the elements of M−1 are positive. Therefore we can multiply both the sides by

M−1. This gives [
‖hΛc

0
‖1

‖hΛ0
‖1

]
≤ 1

1− ρ

[
1 1

ρ 1

][
2σk,G

2τε

]
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≤ 1

1− ρ

[
2(σk,G + τε)

2(ρσk,G + τε)

]
. (3.35)

Finally Using the triangle inequality, we get

‖h‖1 ≤ ‖hΛc
0
‖1 + ‖hΛc

0
‖1

=
[
1 1

] [‖hΛc
0
‖1

‖hΛ0‖1

]

≤ 2

1− ρ
[(1 + ρ)σk,G + 2τε]

‖h‖1 ≤
2

1− ρ
[(1 + ρ)σk,G + 2τε]. (3.36)

The above inequality is same as (3.30). Now we move on to prove the inequality (3.31).

From the triangle inequality,

‖h‖p ≤ ‖hΛ0
‖p + ‖hΛc

0
‖p. (3.37)

Now we will obtain the upper bound for both of the terms in right hand side of (3.37). Using the

triangle inequality it is not difficult to see that,

‖hΛc
0
‖p ≤ ‖hΛc

0
‖1 ≤ ‖h‖1.

Using the above fact and (3.36), we get

‖hΛc
0
‖p ≤

2

1− ρ
[(1 + ρ)σk,G + 2τε]. (3.38)

It is the ready consequence of Holder′s inequality that

‖hΛ0
‖p ≤ k1/p−1/2 ‖hΛ0

‖2. (3.39)

Using the inequalities (3.39), (3.18), we get,

‖hΛ0‖p ≤ k1/p−1 (ρ‖hΛc
0
‖1 + 2τε). (3.40)

From inequality (3.35)

‖hΛc
0
‖1 ≤

2

1− ρ
(σk,G + τε). (3.41)

On substituting (3.41) into (3.40), we get

‖hΛ0‖p ≤
1

k1−1/p

[ 2ρ

1− ρ
(σk,G + τε) + 2

1− ρ
1− ρ

τε
]
,

on rearranging

‖hΛ0‖p ≤
1

k1−1/p

2

(1− ρ)

[
ρσk,G + τε

]
. (3.42)
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Using inequalities (3.37),(3.42),(3.38), we get

‖h‖p ≤
2

1− ρ

{[ ρ

k1−1/p
+ (1 + ρ)

]
σk,G +

( 1

k1−1/p
+ 2
)
τε
}
, (3.43)

which completes the proof. �

Now we are going to obtain error bound for the case of dantzig selector noise.

Theorem 3.3: Suppose that, for some t > 1 such that k(t−1)/mmax is an integer, matrix A ∈ Rm×n

satisfies GRIP of order tk. We have the measurement of the type y = Ax+ η, where ‖Atη‖∞ ≤ ζ.

Define the demodulation map as

∆(y) = x̂DS := argmin
z
‖z‖1 s.t. ‖At(Az − y)‖∞ ≤ ζ. (3.44)

Define constants a, c, d, ρ as in (3.14) to (3.17). Then the demodulation map defined in (3.44)

leads to the bound

‖h‖1 ≤ ‖hΛc
0
‖1 + ‖hΛ0

‖1 ≤
2

(1− ρ)

[
(1 + ρ)σk,G +

2d

a2
ζ
]
. (3.45)

Proof: With the x̂DS defined in (3.44), define h := x̂DS − x. Then the computations in the

proof of Theorem3.1 continue to apply until (3.28). We have already shown that that h(0) + h(1) is

group (kt −mmax)-sparse. Also, both x̂DS and x feasible for the optimization problem in (3.44).

Therefore it follows that

‖AtAh‖∞ = ‖At(y −Ax)−At(y −Ax̂DS)‖∞ ≤ 2ζ.

Now we can write

〈A(h(0) + h(1)), Ah〉 = 〈h(0) + h(1), AtAh〉

≤ ‖h(0) + h(1)‖1‖AtAh‖∞
≤ 2‖h(0) + h(1)‖2

√
kt−mmax · ζ. (3.46)

Substituting from (3.46) into (3.28) gives

‖(h(0) + h(1))‖22[(1− δ)− (1 + δ)(1− 2µ)2] ≤ 2δµ2m2
max

mmin

‖hΛc
0
‖21

k(t− 1)

+ 8µ(1− µ)ζ
√
kt−mmax · ‖h(0) + h(1)‖2,

or upon rewriting

‖(h(0) + h(1))‖22[(1− δ)− (1 + δ)(1− 2µ)2] ≤ 2δµ2m2
max

mmin

‖hΛc
0
‖21

k(t− 1)

+
8µ(1− µ)ζ

√
k(kt−mmax)√
k

· ‖h(0) + h(1)‖2. (3.47)

Recall now the definitions of the constants a from (3.14), c from (3.15), d from (3.16), and ρ from

(3.17). Then, after dividing both the sides by 4 and denoting ‖h(0)+h(1)‖2 by f , the above inequality
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becomes

a2f2 − 2dζ√
k
f ≤ c2

‖hΛc
0
‖21

k
.

Completing the square and taking the square root on both sides leads to

(
af − dζ

a
√
k

)2

≤ d2ζ2

a2k
+ c2

‖hΛc
0
‖21

k
,

af − dζ

a
√
k
≤
[d2ζ2

a2k
+ c2

‖hΛc
0
‖21

k

]1/2
≤ dζ

a
√
k

+ c
‖hΛc

0
‖1√
k

, (3.48)

and finally

‖h(0) + h(1)‖2 = f ≤ 2d

a2
√
k
ζ +

c

a

‖hΛc
0
‖1√
k

=
2d

a2
√
k
ζ + ρ

‖hΛc
0
‖1√
k

.

Next, by Schwarz’ inequality, we get

‖h(0)‖1 ≤
√
k‖h(0)‖2 ≤

√
k‖h(0) + h(1)‖2 ≤

2d

a2
ζ + ρ‖hΛc

0
‖1. (3.49)

We should note that inequality (3.33) is still valid in this case. Then we have

‖hΛc
0
‖1 − ‖hΛ0

‖1 ≤ 2σk,G, (3.50)

where it is to be noted that h(0) is same as hΛ0 , and σk,G is the shorthand for σk,G(x, ‖ · ‖1).

Inequalities (3.49) and (3.50) can be written as[
1 −1

−ρ 1

][
‖hΛc

0
‖1

‖hΛ0‖1

]
≤

[
2σk,G

2dζ/a2

]
.

Because ρ < 1, this leads to [
‖hΛc

0
‖1

‖hΛ0‖1

]
≤ 1

1− ρ

[
1 1

ρ 1

][
2σk,G

2dζ/a2

]
.

Combining these two shows that

‖h‖1 ≤ ‖hΛc
0
‖1 + ‖hΛ0

‖1 ≤
2

(1− ρ)

[
(1 + ρ)σk,G +

2d

a2
ζ
]
. (3.51)

�

Remarks: In the case of conventional sparsity, mmax = mmin = 1. If we put these values in the

bound obtained for δ in (3.21), we get

δ < µ(1− µ)

(
µ2

2(t− 1)
+ 0.5− µ+ µ2

)−1

. (3.52)
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Now tedious but simple computation shows that

µ(1− µ) = (2t− 1)
√
t(t− 1)− 2t(t− 1),

and
µ2

2(t− 1)
+ 0.5− µ+ µ2 = (2t− 1)t− 2t

√
t(t− 1) = µ(1− µ)

√
t

t− 1
.

Therefore,

µ(1− µ)
[ µ2

2(t− 1)
+ 0.5− µ+ µ2

]−1

=

√
t− 1

t
,

which implies that

δ <

√
t− 1

t
(3.53)

It is interesting to note that result obtained in (3.53) is same as proposed in [2]. We have seen

in Theorem 2.3 that the bound, δ <
√

(t− 1)/t is a sharp bound. So, this fact supports our claim

that the approach followed in this work (for group sparsity) provides a tight bound.
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