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Abstract—In the recent past, various methods have been
proposed to construct deterministic compressed sensing (CS)
matrices. Of interest has been the construction of binary sensing
matrices as they are useful for multiplier-less and faster dimen-
sionality reduction. In most of these binary constructions, the
matrix size depends on primes or their powers. In the present
work, we propose a composition rule which exploits sparsity
and block structure of existing binary CS matrices to construct
matrices of general size. We also show that these matrices satisfy
optimal theoretical guarantees and have similar density compared
to matrices obtained using Kronecker product. Simulation work
shows that the synthesized matrices provide comparable results
against Gaussian random matrices.

Index Terms—Compressed Sensing, RIP, Binary and ternary
sensing matrices.

I. INTRODUCTION

The objective of compressed sensing is to recover a sparse
signal x = {x;}M, € RM from a few of its linear mea-
surements y € R™ where y = ®x. Sparsity is measured
by ||.]lo norm - the number of non-zero entries in z, i.e.,
lzllo = [{j : ©; # 0}|. Given the pair (y, ®), the problem of
recovering z can be formulated as finding the sparsest solution
(solution containing most number of zero entries) to the given
linear system of equations y = ®x.

Compressed sensing has been found to have tremendous
potential for several applications [12], [16], [17], [20]. Sparse
representations of signals have gained importance in areas such
as image/signal processing [4], [19] and numerical computa-
tion [5]. The Orthogonal Matching Pursuit (OMP) algorithm
and the /; —norm minimization (also called basis pursuit) are
two widely studied CS reconstruction algorithms [21].

A sufficient condition for exact reconstruction is the re-
stricted isometry condition on @ originally developed by
Candes and Tao [6], [7]. An m x M matrix ¢ is said to
satisfy the Restricted Isometry Property (RIP) of order k£ with
constant §; (0 < & < 1) if for all vectors x € R with
lz|lo < k, we have

(1= 6x) lz]3 < | @23 < (1 + ) ||zl3 - )

Given a matrix ®, a positive integer k, and 6 € (0,1),
verification of the restricted isometry property of & with
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order k and constant § is an NP-Hard problem [8]. An easier
to check sufficient condition is provided by the concept of
mutual-coherence. The mutual-coherence p(®) of matrix &
is the largest absolute inner-product betweeg its normalized
columns i.e., u(P) = maxi< ; j< um, i#j m, where ¢y,
stands for the k-th column of ®. The following proposition

[3] relates the RIP constant d; and p.

Proposition 1. Suppose that ¢+, ..., ¢ are the unit norm
columns of a matrix ® with coherence u. Then ® satisfies
RIP of order k with constant 6, = (k — 1)p.

To reduce the number of operations in the matrix-vector
multiply (®x) it is desirable that the sensing matrix ¢ contain
only a small number of non-zero entries. The density of a
matrix is defined as the ratio of total number of non-zero
elements to the total number of elements of the matrix.

Random matrices (e.g. Gaussian, Bernoulli) satisfy RIP
with the largest possible levels on sparsity with very high
probability. As the probability of failure is non-zero, there has
been an interest in deterministic construction of CS matrices
[10], [11], [18], [23]. Deterministic binary CS matrices are
useful in multiplier-less and faster dimensionality reduction.
Several existing binary constructions (i.e. containing 0 and 1
as elements) possess a block structure.

Definition 2. A matrix U, s is said to be a block matrix if
WU has k number of row partitions each of size n (i.e. m =
kn) and each column contains a single unit element in each
partition with rest of the elements being zero.

One of the first constructions of deterministic binary sensing
matrices has been given by R. Devore [9]. The sizes of the
constructed matrices are p?> x p"T! with coherence % and
density %, where p is a prime power and 0 < r < p. This
construction has p number of row partitions, each partition
is of size p and each column contains a single one in each
partition (i.e., in terms of the above definition, k = p,n = p).
R. Devore’s construction is based on polynomials over finite
fields. S. Li., F. Gao et. al. [13] have generalized this work
using algebraic curves over finite fields. The size of the
matrices constructed is |P|q x ¢“(), where ¢ is any prime
power and P is the set of all rational points on algebraic curve
X over finite field F,. According to the previous definition,
for this construction k¥ = |P|,p = ¢. The authors in [18]
have constructed binary sensing matrices using Euler squares
with sizes nk x n2 and coherence %, where n, k are integers
and n > k. This construction has k& number of row partitions,
each partition is of size n and each column contains single one
in each partition. In [14], [15], the authors have constructed
binary sensing matrices via finite geometry.

The binary CS matrices constructed in [9], [13], [18] have



block structure as defined previously. In addition, most of these
constructions, row sizes of associated matrices are given by
some particular family of numbers (e.g. functions of prime or
prime powers). In [1], a Binary-mixing method and Kronecker
product have been used to resize existing compressed sensing
matrices. While the Binary-mixing method operates on a
binary matrix and a matrix containing elements with the same
absolute value, the Kronecker product combines two binary
matrices producing a third binary sensing matrix of a different
size.

Proposition 3. Given two matrices Apm,xn, and Bp,xn,
with coherence |14 and pp respectively, Kronecker product
produces new matrix Cin,moxning With coherence juc =

max{pa, LB}

Kronecker product does not exploit sparsity and block
structure of existing binary constructions. This motivates us
to propose a specialized composition rule which uses the
properties of existing binary matrices efficiently in obtaining
new constructions with optimal theoretical guarantees. The
matrices obtained also have more general row sizes and similar
densities compared to the matrices obtained by Kronecker
product method.

The paper is organized in several sections. In section II, we
present the new composition rule. In section III, we describe an
application of the method to binary constructions presented in
[9] and give a comparison with Kronecker product. Simulation
results are given in section IV while section V presents the
concluding remarks.

II. PROPOSED COMPOSITION RULE

Our composition rule starts with two existing binary sensing
block matrices as defined earlier. By definition, each column
of the matrix contains k£ number of ones. If ¢ is a column of
the matrix, the support of ¢ is defined as supp(c) = (i1, ..., k)
where the indices iq,...,4; are such that ¢(i;) # 0,5 =
1,..., k. We treat the support as an ordered k-tuple (instead of
a set) for convenience. Addition and subtraction of k-tuples is
perfomred element-wise. Multiplying a k-tuple wuth a scalar
is understood as multiplying each element of the k-tuple with
the given scalar.

Let W/, . .~ be a binary sensing block matrix having k"
row blocks, each of size n” such that each column in each
block contains a single ‘1’ and the overlap of any two columns
is at most 7, that is [{l[¢y, = L} N{tlyy, = 1} < "
for any two columns vy and ;. Let W] , ,, be another
binary sensing block matrix having & row blocks, each of
size n’ such that each column in each block contains a single
‘1> and the overlap of any two columns is at most r’. Assume
r=max{r’, 7"} <k <min{k,k"} <n” <n’. Now a new
matrix can be constructed by the following steps:

Step-1: Let the i*" column of " be Y. For 1 <i< M",
define S = supp(¢))) — (0,n”,...,n" (k" — 1)). Since
U’ has k" blocks and each block contains a single ‘1°, it
follows that |S/| = k" where S} is a k”— tuple on the
set X = {1,2,...,n"}. In other words, the j—th entry of
S provides the location of the single unit element in the

j—th block. Since ¥ has M" columns, we have M" such
k" —tuples. For example, suppose m” = 9 and ¥” has 3
blocks, then each block is of size 3. Now, if the i*" column
P is (10001000 1), supp(W;)is [1 5 9], then the triplet,
Sy, corresponding to this column is [1 2 3].

Similarly from the matrix ', define S; = supp(¥’) —
(0,n',...,n' (k" — 1)) and we can generate M’ number of
k'—tuples on the set Y = {1,2,...,n'}.

Step-2: From each k”—tuple of the first matrix ¥ we
remove the last (k" — k) entries to obtain a k—tuple. We
then add (—1) to each of the entries of the M" number of
k—tuples that are obtained from ¥”. Let the k—tuples be of
the form (cj, ¢}y, ..., c}) for 1 <i < M".

Similarly, from each k’—tuple of second matrix ¥’, we
remove last (k' — k) entries to obtain a k—tuple. By this
process, we get M’ number of k—tuples from the second

matrix W'. Let each k—tuple have the form (c, ¢y, ..., };)
for1 <j <M.
Step-3: We now replace each k—tuple (c}},cls,...,clh)

with M’ number of k—tuples (obtained from V') by adding
n' (¢, ¢, -, ¢iy) to each of the k—tuples (¢}, ¢ja, ..., €l ),
1 < j < M'. This way, we get M"” M’ number of k—
tuples on the set X' = {1,2,...,n"n’}. Denote the set
of these k—tuples by F. Let (aj1,a;2,...,a;5;) for j =
1,2,....,M" M’ be the k— tuples in F.

Step-4: From these k— tuples we form a binary vector of
length kn”'n’ where ‘1’ occurs in the positions (I—1)n"'n’+a
for I = 1,2,...,k and rest of the positions are zeros. Using
these M" M’ number of k—tuples, we form a binary sensing
matrix ¢ having k& number of blocks where each block is of
size n''n’ and every block containing a single ‘1°. The position
of the unit elements in each block is indexed by the k— tuples.

So the size of the matrix ® becomes n''n’k x M" M’.

Lemma 4. The coherence of new binary matrix ® of size
n''n’'k x M"M', u(®), is at most 7

Proof: Let ¢;,¢; be two arbitrary columns of
matrix ®. There exist two k—tuples f;, f; € F such
that ¢;,¢; are the corresponding vectors of k— tuples

fi, f; as defined in the above construction. Suppose
fi = (C;cllvc;c/Q""vc;c'k) + n/<0%“1?0%”2a""cg”k> and
fi = (e dyg, - dig) + 0 (diy, dig, - dig),
where (€t Chrgs -y Chorte)s (Ahrys Ahray - -y diorr)
are two k—tuples obtained from o’ and

(C;C/”17 C%”Q? ey Cguk_), ( ;Cllll, Z//27 N 7d;€1”k) are k—tuples

obtained from W”. Set g;; = fi — f; = (Chr1s Chrgr - -+ Chorp,) —
! U U ! /! /! /!

(djrys dpgs oo i)+ 0 (rys gy oy Cnge)

(g, dlgy -y dilny) ). We will show that g¢;; has at

most r number of zero elements, which implies that
intersection between the supports of ¢;, ¢; is at most r. Now
¢, —d, | <n'and |cfl;, — dj.,| <n”. The I'"" element of
i 18 (9ij )1 = (Cfpry — diry) + 1/ (c)ry — dil;). We investigate
the cases wherein (g;;); = 0.

Case 1: Suppose ¢}, # d}.,;.

Subcase 1.1: If ¢/, = d}.,;, then (g;;); # 0.

Subcase 1.2: If ¢, # dj,,, then also (g;;); # O.



/

Since 1 S ‘C;CI”l - d;@{”l‘ < n// and |C;€/ - d;cll| < n,
we have |[(gi;)i] (¢, — disy) + 0 (o — diin)]
I’ (¢l — djon)| = Iejy, — iyl 20" = (0 = 1) > 1,
Case 2: Suppose ¢, = dj,; then (g;;); = 0 only when
CI/ — d// .

k.//l k//l

From the above cases, we conclude that (g;;); = O only
when ¢}, = dj,, and ¢}, = d},,,, therefore (g;;); = 0 can

occur for at most r—choices of [. So ¢;,¢; have at most
r—intersections. Therefore, 1(®) is at most 7.

|
The following theorem shows the RIP compliance of ®.

Theorem 5. The afore-constructed matrix ., 1% prpr Satis-
fies RIP with 0y = (k' — 1)(§) for any k' < & + 1.

Proof: Proof follows from the Proposition 1 and Lemma
4. u

III. APPLICATION TO EXISTING BINARY CONSTRUCTIONS

For distinct primes p1, p2 and any positive integer r, suppose
r < pg < pi. Using the method in [9] one obtains binary
matrices Wy, U5 of sizes p? x p} ! and p3 x p5 ' respectively.
Thus we get p| ™' number of p; —tuples and p5 " number of
po—tuples. If we apply the composition procedure on these
matrices we generate a matrix ® of size p1p3 x (pip2)"+!
with coherence pLQ. The density of & is ﬁ, which is
small compared to p% and pi the densities of W, and ¥,
respectively. The coherence M(CI)) is -

The row size of ® is pyp3 and each column of ® contains
p2 number of ones, and the overlap of any two columns is
at most 7. Such systems are known in extremal set theory as
r-sparse sets. If X is an m-element set and r < k < m,
a family F of k-element subsets of X is called r-sparse if
every two members of F intersect in less than r elements.

A simple upper bound on the number of elements of F

is . Let M(m,k,r) represent the maximum number of

elements of an r-sparse family. Rodl [22] has shown that

lim,, 0o M (m, k,7) (T) (T)fl = 1 for fixed r,k, i.e., exis-

tence of optimal r-sparse families in the asymptotic case.
For the current construction, the upper bound on the column

P1P3

(T“) Using the general bounds (% )I€ <)< (%)k

(r+1)
we obtain (EE2)r+l < (21;12) <
5 (T+l)
G2 — O((pipay).

(r+1) 5
r+1 () .
(Plpz) (m )

r+1

size 1is

(p1p2e)”tL. For fixed r,

therefore

If £ — oo, we also have

(Plpz) +
ie., hmp%%oo (mp)
r+1

= 1. The proof

r2

follows from a similar argument givenT+irll [2]. Consequently,
® attains the maximum possible column size asymptotically.

Kronecker product is a popular composition rule to generate
matrices with more general row sizes. By applying Kronecker
product on the matrices ¥ and ¥’ which were used in
Section II with r = min{r”,7'} and k = min{k”, %'}, we
obtain a new matrix @’ of size n”'n’k"” k' x M M’. The density
of @’ is ,, — and it can be easily shown that the coherence of
' is £, where as the matrix ® constructed from the proposed

composition rule has density and coherence as of ®’, the aspect
ratio of ® is ]x[ nM which is larger than %, the aspect
ratio of @’.

While applying Kronecker product on ¥; and ¥4 described
previously in this section, we obtain a matrix ®*"° of size
(p1p2)? x (p1p2)"+'.The density of ®*7° is ﬁ and the
coherence u(®*7°) is . Each column of ®*7° contains
p1p2 number of ones, and the overlap of any two columns
is at most rp1. An upper b bound on the column size with the

pipP
properties of ®*7° is %

T 1
and (p1p2e)"Prt1. For p;ﬁxed r, there is a gap between

(pip2/e)™™ ! and (pip2)"*.

It can be noted that the proposed composition rule acheives
the same performance as Kronecker product while using a
factor of p; less number of rows. More precisely, if p; =
O(p2) and 7,p; tend to infinity, log M = O(m!/3ulogm)

. which is between (£2£22)7P1+1

for the current method whereas log M = ©(m'/*;logm) for
matrices obtained using Kronecker product.
Indeed, as we have m = pi1p3, M = (pip2)"™ 1, u = =

we obtain log M = (r + 1) log(pip2) = (up2 +1) log(Plpz)
Under the condition »r — oo we have ups — oco0. As
Cpy < p1 < Dpy for some absolute constants C, D, we
have Cp3 < m < Dp3, and therefore pm'/? — oo.
Hence, (D~Y3um!/3 4 1)1log(CD=2/3m?/3) < logM <
(C13um'/3 1) log(DC~2/3m?/3) and therefore log M =
O(uwm'/3logm). Similarly, it can be shown that log M =
O(um'/*logm) for the matrices obtained using Kronecker
product. We observe an improvement of a factor of m!/12 in
log M with the new composition rule.

Remark 6. Similar to Kronecker product, the proposed com-
position rule can be used to produce matrices of general row
size but with better guarantees.

IV. SIMULATION RESULTS

In this section, we compare the numerical performance
against standard Gaussian random matrices (with entries drawn
from (0, 2)). Binary matrices of size 36 x 144 and 64 x 256
are generated using the present method. The matrix ® of size
36 x 144 has been generated by applying the composition
rule on the initial matrices W', U" of size 9 x 9 and 16 x 16
respectively, which have been generated as in [9] with p = 3,4
and r = 1. Similarly, the matrix ® of size 64 x 256 has
been generated by applying the composition rule on the initial
matrices W', U’ of size 16 x 16, which have been obtained
from [9] with p = 4 and r = 1. Let  denote the recovered
solution using the OMP algorithm. For purposes of comparing
the two solutions, the Signal-to-noise ratio (SNR) of x is
defined as

x

For each sparsity level k, 1000 k—sparse signals x (the
nonzero indices chosen uniformly randomly and the entries
drawn from ~ A(0,1)) have been considered. The recovery
is considered good if SNR(z) > 100dB. Simulation results
(Figure 1) show that the matrices constructed using com-
position give better performance than the Gaussian random
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Fig. 1: Comparison of the reconstruction performances of the
synthesized matrices and Gaussian random matrices when the
matrices are of size (a) 36 x 144 (top plot) and (b) 64 x 256
(bottom plot). These plots indicate that the synthesized matri-
ces show superior performance for some sparsity levels, while
for other levels both matrices result in the same performance.
The x and y axes in both plots refer respectively to the sparsity
level and the success rate (in % terms).

matrices for higher sparsity levels. For lower sparsity levels
both the matrices give the same recovery performance.

The efficacy of the matrices obtained using the composition
rule is demonstrated using image reconstruction from lower
dimensional patches. The image has been divided into smaller
patches {I;| Il = 1,2,..., N} of equal size. For each patch,
the sparse vectors I; have been generated from the vectorized
versions of I; by decomposing them into wavelet domain. A
down-sampled copy of I has been generated via the binary
sensing matrix ® as ;' = ®I; as in [18]. If I is sparse enough,
I} (and consequently I;) can be recovered from the reduced
vector I;" using sparse recovery techniques.

The reconstruction shown in Figure 3 corresponds to the
synthesized matrices obtained previously and Gaussian matri-
ces of size 64 x 256 and the associated reconstruction errors in
terms of SNR are 16.22 and 15.01 respectively. From Figure 3
it may be concluded that the synthesized matrices provide
competitive reconstruction performance when compared to
Gaussian matrices.

V. CONCLUDING REMARKS

This paper proposed a specialized composition rule which
exploits sparsity and the block structure of existing binary
CS matrices to construct binary CS matrices with optimal
theoretical guarantees. Further, it is shown that the proposed

Fig. 3: For the original image of size 256 x 256 in Figure 2,
the image on the left is reconstructed via the new matrix and
the right image is obtained via the corresponding Gaussian
matrix with a down-sampling factor of four. This figure states
that the constructed matrix provides competitive reconstruction
performance.

composition rule produces CS matrices with density similar
to that of Kronecker product. In addition, it is also shown that
the new matrix, produced by the composition rule, provides
comparable results against its Gaussian counterpart.
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