
Automated and Reliable Low-Complexity SoC

Design Methodology for EEG Artefacts Removal

Pranit N Jadhav

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Electrical Engineering

June 2016

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Dr. Amit Acharyya for the

continuous support of my M.Tech study and research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and my stay at Indian Institute

of Technology Hyderabad. I could not have imagined having a better advisor and mentor for my M.Tech

study.

Besides my advisor, I would like to thank other faculty members of Microelectronics and VLSI

specialization: Dr. Asudeb Dutta, Dr. Shiv Govind Singh and Dr. Siva Rama Krishna Vanjari for their

encouragement, insightful comments and help during course work and related projects.

Getting through my thesis required more than academic support, and I have many, many people to

thank for listening to and, at times, having to tolerate me over the past three years. I cannot begin

to express my gratitude and appreciation for their friendship. Deepali Nimbalkar, Aniket Ghole, Kunal

Yadav, Pankaj Kumar Jha, Pravanjan Patra, Swati Bhardwaj, Sumit Naikwad, Radharamana Mohanty,

Naresh Vemishetty, Rajkiran Choudhary, Parveen Nisha, Anuradha Balouria, Arvind Gautam, Madhuri

Panwar, Lakhan and Shahnawaz Khan have been unwavering in their personal and professional support

during the time I spent at the IIT Hyderabad. For many memorable evenings out and in, I must thank

everyone above as well as my juniors: Prakash Lenka, Shashank Raghuraman and Harsha Prasad and

all my labmates at Advanced Embedded System and IC Design Lab, IIT Hyderabad.

Last but not the least, I would like to thank my family: my parents Vasundhara and Namdeo

Jadhav, for giving birth to me at the first place and supporting my decisions throughout life. With his

own brand of humour, Sumit Jadhav, my elder brother, has been kind, supportive and never said no to

me in any situation, since my birth. This thesis stands as a testament to your unconditional love and

encouragement.

iv

Dedication

To My Family, Relatives and Friends......

v

Abstract

EEG is a non-invasive tool for neurodevelopmental disorder diagnosis (NDD) and treatment. How-

ever, EEG signal is mixed with other biological signals including Ocular and Muscular artefacts making

it difficult to extract the diagnostic features. Therefore, the contaminated EEG channels are often dis-

carded by the medical practitioners which may result in less accurate diagnosis. Independent Component

Analysis (ICA) and wavelet-based algorithms require reference electrodes, which will create discomfort

to the patient/children and cause hindrance to the diagnosis of the NDD and Brain Computer Interface

(BCI). Therefore, it would be ideal if these artefacts can be removed real time and on hardware platform

in an automated fashion and denoised EEG can be used for online diagnosis in a pervasive personalised

healthcare environment without the need of any reference electrode. In this thesis we propose a reliable,

robust and automated methodology to solve the aforementioned problem and its subsequent hardware

implementation results are also presented. 100 EEG data from Physionet, Klinik für Epileptologie, Uni-

versität Bonn, Germany, Caltech EEG databases and 3 EEG data from 3 subjects from University of

Southampton, UK have been studied and nine exhaustive case studies comprising of real and simulated

data have been formulated and tested. The performance of the proposed methodology is measured in

terms of correlation, regression and R-square statistics and the respective values lie above 80%, 79% and

65% with the gain in hardware complexity of 64.28% and hardware delay 53.58% compared to state-of-

the art approach. We believe the proposed methodology would be useful in next generation of pervasive

healthcare for BCI and NDD diagnosis and treatment.

vi

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

1 Introduction 1

1.1 Motivation . 2

2 Literature Review 4

3 EEG Artefacts Detection and Removal 7

3.1 Denoising . 7

3.2 Muscle Artefacts Detection and Removal . 9

3.3 Blink Artefacts Detection and Removal . 13

4 ARM Cortex Mo+ Overview 17

4.1 ARM Cortex M0+ . 17

4.1.1 About the Processor . 17

4.1.2 Features . 17

4.1.3 Interfaces . 18

4.1.4 Configurable Option . 18

4.2 Functional Description . 18

4.2.1 About the Functions . 18

4.2.2 Interfaces . 21

5 AMBA AHB-Lite Protocol Specification 23

5.1 Introduction . 23

5.2 About the Protocol . 23

5.3 Components . 24

5.3.1 Master . 25

vii

5.3.2 Decoder . 25

5.3.3 Multiplexor . 25

5.3.4 Slave . 25

5.4 Operation of AMBA AHB-Lite System . 26

5.5 Signal Description . 26

5.5.1 Global Signals . 27

5.5.2 Master Signals . 27

5.5.3 Slave Signals . 27

5.5.4 Decoder Signals . 27

5.5.5 Multiplexor Signals . 27

5.6 Transfer . 28

5.6.1 Basic Transfer . 28

5.6.2 Transfer Types . 29

5.6.3 Locked Transfer . 29

5.6.4 Transfer Size . 30

5.6.5 Burst Operation . 30

5.7 Bus Interconnect . 32

5.7.1 Address Decoding . 32

5.7.2 Bus Interconnection . 33

5.8 Slave Response Signaling . 33

5.8.1 Slave transfer responses . 34

6 Integration and Implementation 36

6.1 Configuration Options . 36

6.2 Key Integration Task . 36

6.3 Functional Integration Guidelines . 39

6.3.1 Clocks . 39

6.3.2 Reset . 39

6.3.3 Interface . 40

6.4 Key Implementation Points . 41

6.5 SoC Development Results . 41

7 Results & Discussion 44

8 Conclusion 52

References 53

viii

List of Figures

3.1 System Block Diagram . 8

3.2 Input Noisy Signal . 9

3.3 Output Denoised Signal . 9

3.4 EEG Signal containing Muscle Artefacts . 12

3.5 EEG Signal after removing Muscle Artefacts . 12

3.6 EEG Signal containing Blink Artefacts . 16

3.7 EEG Signal after removing Blink Artefacts . 16

4.1 Functional Block Diagram . 20

5.1 AHB-Lite Block Diagram . 24

5.2 AHB Master Interface . 25

5.3 AHB Slave Interface . 26

5.4 Slave Select Signals . 32

5.5 Multiplexor interconnection . 33

6.1 Integration and Implementation Flow . 38

6.2 Implementation Flow . 39

6.3 Integration of AHB-Lite with ARM Cortex M0+ . 42

6.4 Integration of AHB-Lite interface with peripheral . 43

7.1 Mixed artefact signal Analysis. The shaded area (light grey) shows the position where

artefacts are manually added and removed. (A) Amplitude vs Time plot for 10 second

of raw clean EEG signal. (B) Muscle and Blink artefacts are added in the signal (A)

in a random fashion. (C) Signal obtained after artefacts removal when the optimized

conditions are applied. 47

7.2 Real EEG Signal Analysis (21 Channel): Input to the System 48

7.3 Real EEG Signal Analysis (21 Channel): Output from MATLAB Simulation 48

7.4 Real EEG Signal Analysis (21 Channel): Output from the FPGA Implementation 48

ix

7.5 Variation of Hardware Complexity in terms of Transistor Count with different word-length(n) 51

7.6 Variation of Hardware Delay with different word-length(n) 51

x

List of Tables

4.1 Processor Configurable Options . 19

5.1 Global Signal . 27

5.2 Master Signals . 28

5.3 Slave Signals . 29

5.4 Decoder Sgnals . 29

5.5 Multiplexor Signals . 30

5.6 Transfer Type Encoding . 30

5.7 Transfer Size Encoding . 31

5.8 Burst Signal Encoding . 31

5.9 HRESP Signal . 34

5.10 Transfer Response . 34

6.1 Cortex M0+ Option Summary . 37

6.2 Cortex M0+ Level Clocks . 40

6.3 Cortex M0+ Level Reset . 40

6.4 AHB-Lite Signals . 40

7.1 Performance Metrics for different cases of artefact addition and real data simulation on

hardware platform (FPGA) . 45

7.2 Performance Comparison by varying ‘x’ in Muscle Artefact and Blink Artefact Cases of

LM & GM for alternate and random addition of artefact 46

7.3 Comparison with different State-of-the-art methods . 49

7.4 FPGA Resource Utlilization . 49

xi

Chapter 1

Introduction

Neurodevelopmental disorders (NDD) including Attention Deficit Hyperactivity Disorder (ADHD), Schizophre-

nia, Down syndrome, Autism Spectrum Disorder (ASD), intellectual retardation, learning disablement

are impairments in the evolution of the brain or the central nervous system which manifest early in

development, often during infancy or before child enters into socio-academic education. While the symp-

toms and behaviour of NDD including language and speech learning, motor synchronization, behaviour,

retention, imagination underdevelopment, communication [1] differ from individual to individual, some

children with such disabilities in childhood develop permanent damages. For example, children with ASD

show impairment in social interaction, deficit in communication and motor coordination, repetitive or

stereotyped behaviour, lack of cognitive skills, language loss, and atypical visual perception [2, 3, 4, 5, 6].

To diagnose NDD for ASD, Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic

Interview-Revised (ADI-R) are used comprising of a series structured tasks and interviews respectively

involving the interactions among patient, examiner and parents. The examiner identifies the patient’s

response to the tasks and suggests a proper treatment procedure [7]. However, such procedures involve

a constant observation on the children, significant amount of parenting, treatment time and huge and

long-term expenses. The recent Neuroimaging techniques that discovered an overgrowth of the cortical

white matter and abnormal pattern in frontal and temporal lobe during prenatal and postnatal period

of brain evolution generally require a sedation and radioactive dye [8]. Both of the above-mentioned

procedure requires high quality medical facilities for intensive care in home environment. On the other

hand EEG- electrical recording of the brain systematic activity along the scalp, measured by the voltage

fluctuations resulting from the ionic current which flows within the neuron [8, 9, 10], is cost-effective

and non-invasive tool for the exploration of different brain regions for cognitive and other event related

activities of a subject [8, 10]. The diagnostic feature extracted from the EEG signals can reveal the

1

brain functionality in the area of particular task and can be used as a biomarker to classify between the

NDD and healthy control. In fact, EEG has also been arguably the most widely used mechanism for

acquiring brain computer interface (BCI) signals from the brain for the control of computers or other

devices via the modulation of neuro-logical activity in the participant’s brain without the need of any

activation of the efferent nervous system [11]. However in daily life, EEG signal is mixed with other

biological signals of non-interest [10, 12], including blink and muscle artefacts it is difficult to extract

the diagnostic feature. Therefore, Medical Practitioners during offline visual observation, discard the

EEG channels containing these artefacts [2] which may result in less accurate diagnosis [13]. Similarly,

in case of online automated diagnosis using EEG in tele-health framework under internet of things, these

artefacts may cause wrong diagnosis triggering false alarm and causing panic.

1.1 Motivation

Recently there is an attempt to propose an online and automated EEG artefacts removal scheme in

[11, 14, 15] targeting BCI where, although the processing is done online, the acquisition of the data is

still done off-line which deviates from the need of our envisaged goal of having a pervasive personalized

healthcare monitoring system. Therefore, a robust methodology which would remove the effect of these

artefacts as well as retrieve EEG amidst the presence of these artefacts would be extremely helpful for

BCI and also for enhanced diagnosis of NDD in real-time online personalized home care environment. But

since, the frequency spectrum of blink and muscular artefact overlap with the normal EEG signal, it poses

a commendable challenge in achieving the target of retrieving artefact free EEG in real-time automated

fashion on hardware platform. To tackle this challenge, researchers use Independent Component Analysis

(ICA) Blind source Separation and wavelet based time frequency algorithm to remove the ocular artefacts

[10, 16, 17, 18, 19, 20, 21, 22, 23] and muscular artefacts [13, 15, 20, 22, 24] from the EEG. Although

these methods are noninvasive, they require external ocular electrodes near the eyes, which will cause

discomfort thereby making it unsuitable for the personalized remote health care. Furthermore, such

arrangements make the patients/children conscious about the presence of these extra electrodes, which

may cause hindrance to the appropriate diagnosis of the NDD. In [12], the need of these ocular electrodes

have been eradicated however, this recent method does the processing of the data acquired offline [12].

Therefore, it would be ideal if

• these artefacts can be removed real time in an automated fashion and denoised EEG can be obtained

for online diagnosis in a pervasive personalised healthcare environment on low complexity hardware

2

platform without the need of any external ocular electrode;

• this can be achieved with comparable accuracy when compared with state of the art approachess

• this can be implemented in a low complexity fashion on a chip to ensure the battery backup, that

drives electronics, sustains for longer time than the state of the art approaches.

Motivated by this, in this thesis we propose a reliable, robust and automated low complexity hardware

design methodology to remove blink and muscular artefacts real time without the need of any extra

electrode and subsequently its hardware results and performance comparison with the state-of-the-art

approaches are also presented.

3

Chapter 2

Literature Review

V Krisnaveni et.al [16] proposed a method to automatically identify slow varying ocular artefact (OA)

zones and applying wavelet based adaptive thresholding algorithm only to the identified OA zones, which

avoids the removal of background EEG information. Adaptive thresholding applied only to the OA zone

does not affect the low frequency components in the non-OA zones and also preserves the shape (wave-

form) of the EEG signal in non-artefact zones which is of very much importance in clinical diagnosis.

But the methodology presented here was found to be computationally intensive and required EOG signal

for reference.

Carrie A Joyce et.al [18] presents a method based on blind source separation (BSS) for automatic removal

of electro-ocular artefacts from EEG data. BBS is a signal-processing methodology that includes inde-

pendent component analysis (ICA). In contrast to previously explored ICA-based methods for artefact

removal, this method is automated. Moreover, the BSS algorithm described herein can isolate corre-

lated electro-ocular components with a high degree of accuracy. Although the focus is on eliminating

ocular artefacts in EEG data, the approach can be extended to other sources of EEG contamination

such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoen-

cephalographic (MEG) data, a magnetic correlate of EEG. Use of BSS for removal of ocular artefacts is

computationally intensive and requires EOG & EMG signals as reference electrode.

Kevin T Sweeney et. al [21] proposed a technique known as ensemble empirical mode decomposition with

canonical correlation analysis (EEMD-CCA) which is capable of operating on single-channel measure-

ments. The EEMD technique is first used to decompose the single-channel signal into a multidimensional

signal. The CCA technique is then employed to isolate the artefact components from the underlying

signal using second-order statistics resulting in clean (artefact-free) signal.

4

D.J. McFarland et.al. [25] developing an electroencephalographic (EEG)-based brain-computer interface

(BCI) system that could provide an alternative communication channel for those who are totally para-

lyzed or have other severe motor impairments. This laboratory BCI system digitizes 64 EEG channels

from the system user (i.e., the subject), performs real-time spatial filtering and spectral analyses, uses

the results to control a video display, continually adapts its analysis algorithm so as to convert the user’s

EEG control as efficiently as possible into display control, provides performance data on-line to the sys-

tem operator (i.e., the investigator), and stores all data for later off-line analyses.

Doha Safieddine et.al [26] compare the ability of two stochastic approaches of blind source separation,

namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two

deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to

remove muscle artefacts from EEG signals. To quantitatively compare the performance of these four

algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and

artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency

of CCA, ICA, EMD, and WT to correct the muscular artefact was evaluated both by calculating the

normalized mean-squared error between denoised and original signals and by comparing the results of

source localization obtained from artefact-free as well as noisy signals, before and after artefact correc-

tion. Results shows that, for less noisy data, and when spikes arose from a single cortical source, the

myogenic artefact was best corrected with CCA and ICA. Otherwise when spikes originated from two

distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while

WT offered the better denoising result for less noisy data. These results suggest that the performance

of muscle artefact correction methods strongly depend on the level of data contamination, and of the

source configuration underlying EEG signals.

Miguel A Sovierzoski et.al [27] analyse the electrical behaviour of eye blink events acquired by EEG

electrodes, and also developed a neural network classifier to identify them. This eye blink event classifier

will be used as a part of a hybrid classifier of epileptic form events.

Borna Noureddin et. al [28] proposed a methodology to measure how much artefact is removed is com-

bined with a measure of how much an OA removal algorithm is likely to distort underlying EEG in a

single metric. Though the method is online, it requires a reference electrode for EOG signal.

C Guerrero-Mosquera et. al [29] presented a method for eye movement artefacts removal based on

independent component analysis (ICA) and recursive least squares (RLS) is presented. The proposed

algorithm combines the effective ICA capacity of separating artefacts from brain waves, together with

the online interference cancellation achieved by adaptive filtering. Eye blink, saccades, eyes opening and

5

closing produce changes of potentials at frontal areas. For this reason, the method uses as a reference

the electrodes closest to the eyes, which register vertical and horizontal eye movements in the electroen-

cephalogram (EEG) caused by these activities as an alternative of using extra dedicated electrooculogram

(EOG) electrode. Both reference signals and EEG components are first projected into ICA domain and

then the interference is estimated using the RLS algorithm.

Maria Ansatasiadou et. al [30] introduced an automatic method for detection and removal of muscle arte-

facts from scalp EEG recordings, based on canonical correlation analysis (CCA). A classifiers is designed

in order to automatically discriminate between contaminated and non-contaminated EEG epochs using

features based on altered autocorrelation structure and spectral characteristics during periods when it

is contaminated by muscle activity.

Manish Tibdewal et. al [31] introduce a combination of methods to detect the presence of eye blink

artefact in the EEG signal. EEG data signals were fed to an Artificial Neural Network (ANN). The

neural network is trained to identify whether the particular recording contain eye blink artefacts or not.

Once confirmed that the EEG data signal contains artefacts, it is processed further by using wavelet

transform to detect the zones for which the part of signal is contaminated. Further artefact removal

algorithm is applied to detected portion in order to prepare clean EEG data signals. If the artefact

removing methods are directly applied to raw EEG data without detecting the artefact zone, it may be

removed some important cerebral activities.

6

Chapter 3

EEG Artefacts Detection and

Removal

Figure 3.1 depicts the block diagram of the proposed methodology. A 21 and 64 channel EEG signal were

mixed individually with muscle and ocular artefacts in random ratio, then passed through FastICA [32]

block. Considering, A = mixing matrix, S = source matrix, X = input mixed matrix, FastICA works

on X = A*S and estimates Y = W*X where, Y≈ S, W = Unmixing matrix and Y = estimated

independent component matrix. The proposed method works on the output of the FastICA where the

fundamental building block is Discrete Wavelet Transform (DWT) which is computed by passing the

EEG signal through series of high pass filter with impulse response ‘h’ resulting detailed coefficient ‘Cd’

(step.1) and low pass filter with impulse response ‘g’ resulting in approximate coefficient ‘Ca’ (step.1)

then sampled down [33]. At every decomposition level, output filter has half the frequency band of the

input, so the frequency resolution has doubled. The ‘Haar’ wavelet [26] is the simplest wavelet possible,

since it implemented only using addition and subtractions and has been found computation efficient.

3.1 Denoising

The FastICA output presented in previous section and shown in Fig. 3.1, usually corrupted with noise

frequency ranging from 50 to 60 Hz, are fed to the denoising block for removing the environmental and

surrounding electrical noise. Denoising is applied as a pre-processing step in the analysis of data i.e.

estimating the unknown signal which is inherit, from the noisy data sample. Wavelet based denoising

removes the noise present in the signal without affecting its characteristics. Discrete Wavelet transform

7

Figure 3.1: System Block Diagram

is applied to the signal, producing wavelet coefficients up to the level where noise is distinguished. Soft

Thresholding method [34, 35] based on wavelets is applied to perform Denoising. The results of denoising

block is shown in fig. 3.2 & 3.3 and corresponding pseudo code is presented in Pseudo code 1.

Pseudo Code 1: DWT Computation

Notations: F = sampling frequency, T = total time for which EEG is observed, Ca = DWT

Approximate Coefficient, Cd = DWT Detailed Coefficient.

1. DWT Level 1

C1
aj =

(fi + fi+1)√
2

, C1
dj =

(fi − fi+1)√
2

j = number of coefficients in Level1; 1, 2, . . . , n2

2. DWT Level z

Cz
ak =

(Cz−1
aj + Cz−1

aj+1)
√

2
, Cz

dk =
(Cz−1

aj − Cz−1
aj+1)

√
2

k = number of coefficients in Levelz; 1, 2, . . . , n
2z

z = number of DWT Level Decomposition

8

Figure 3.2: Input Noisy Signal

Figure 3.3: Output Denoised Signal

3.2 Muscle Artefacts Detection and Removal

Muscular or myogenic artefacts arise from the activity of different head muscle, neck movement, arm

movement etc. which influence the EEG recordings [20, 35]. Myogenic artefacts lie in frequency range

greater than Beta band (β) i.e. 16 − 31Hz [25] and have high power spectral density [26] than the

normal EEG as shown in Fig. 2. First C1
dj and second C2

dk detailed coefficients are computed in step 1

of the pseudo code 2. Muscular artefacts overlap in C1
aj and C2

ak region, hence, both the coefficients are

analysed here. After wavelet transform decomposition, the length of C1
aj is twice as that of C2

ak. Hence,

alternate zero padding (step 2a of Pseudo code 2) is done making C1
aj and C2

ak equal in length. If sampling

frequency is ‘F’ Hz and the signal is observed for ‘T’ sec then ‘FT’ number of samples are accumulated.

9

C1
aj and C

(2∗)
ak are divided into ‘Sx’ equal frames resulting ‘x’ number of samples per frame. Since ‘FT’

needs to be stored, higher ‘FT’ indicates more memory requirement. However, if ‘FT’ is high, the

performance of the proposed methodology would be precise. Our method is targeted towards on-chip

implementation for home user and hence the value of ‘T’ is kept as 10sec. Also, varying the number of

frames ‘Sx’ in detailed coefficients would result in better performance for artefact removal and hence an

optimum value of ‘x’. To determine the maximum efficiency for artefact rejection in alternate and random

order of muscle artefacts, samples per frame (x) was varied as 4, 10, 20, 33, 43, 66, 86, 107, 122 and 170,

which equally divide ‘FT’. The corresponding Correlation, regression and R-square value has determined

that the maximum similarity between clean input EEG and output EEG in the range of 66 to 107 for a

particular ‘FT’ in Table 7.1. Wavelet power spectral density (WPS) can be computed as shown in step

2b of the pseudo code 2. Frame by frame comparison of P(a,b)(a=1)
& P(a,b)(a=2)

for 1 < b < Sx is done to

find out the maximum as shown in step 3 of the pseudo code 2. Assume Mb denote the maximum after

comparison and M be the mean. The mean of the calculated maxima M for each time frame is found

using equation in step 4 of the pseudo code 2. The mean M is compared with P(a,b)(a=1)
& P(a,b)(a=2)

for 1 < b < Sx. If the condition in step 4 is found to be true then all the samples in that particular frame

is made zero. Similar procedure is applied for second detailed coefficient and corresponding samples

of a particular frame is made zero. The signal reconstruction is carried out using the inverse wavelet

transform [8] as depicted in equation of step 5 and reconstructed EEG f
′

i is obtained. Figure 3.4 & 3.5

shows results of the methodology for Muscular artefact detection and removal. The corresponding code

is given in Pseudo code 2.

Pseudo Code 2: Muscular Artefact Detection and Removal

Notations: F = sampling frequency, T = total time for which EEG is Observed, Ca = DWT

Approximate Coefficient, Cd = DWT Detailed Coefficient, Cd
2∗
r+1 = Detailed Coefficient obtained after

alternate zero padding, a = level of DWT, rx = counter, b =frame number 1, 2, . . . , Sx = n
2x , Sx = total

number of frames in detailed coefficient, x = number of samples/frames, rca & rcd are reconstructed

approximate coefficient, f
′

i = Reconstructed EEG after Muscular artefact removal.

1. Wavelet Power Spectrum Calculation

10

(a) Alternate Zero Padding

C2∗
dr

= C2
ak For 1 < k <

n

4

C2∗
dr+1

= 0 For 1 < k <
n

2

r = r + 2; k = k + 1

(b) Wavelet Power Spectrum

Pa,b =

x−1∑
rx

[Ca
drx×b

]2

2. Frame by Frame Comparison & Calculation of mean WPS

Mb = max[(Pa,b)a=1, (Pa,b)a=2] For 1 < b < Sx

3. Mean Calculation

mean = M =

∑Sx

b=1Mb

Sx

4. Comparison of mean (M) with each level of WPS (Detect and Remove Muscle Artefacts)

Pa,b > M for 1 < b < Sx & 1 < a < 2

Then,

Ca
(d)r(x×b)

= 0 for 1 < rx < x− 1

5. Reconstruction to get artefact free EEG

(a) Reconstruction Level 3

rC3
al

=
C4

am
+ C4

dm√
2

rC3
al+1

=
C4

am
− C4

dm√
2

(b) Reconstruction Level 2

rC2
ak

=
rC3

al
+ C3

dl√
2

rC2
dk+1

=
rC3

al
− C3

dl√
2

11

(c) Reconstruction Level 1

rC1
aj

=
rC2

ak
+ C2

dk√
2

rC1
dj+1

=
rC2

ak
− C2

dk√
2

(d) Final Reconstruction to get clean EEG

f
′

i =
rC1

aj
+ C1

dj√
2

f
′

i+1 =
rC1

aj
− C1

dj√
2

Figure 3.4: EEG Signal containing Muscle Artefacts

Figure 3.5: EEG Signal after removing Muscle Artefacts

12

3.3 Blink Artefacts Detection and Removal

An eye blink can last up to 400ms [18, 23] and lie in Theta (θ) i.e. 4− 7Hz and Mu (µ) i.e. 8− 12Hz

frequency range of the EEG spectrum [35, 25]. These have a magnitude 10 times higher than the brain

electrical signal [18]. It occurs as a large dip on the frontal channels FP1-F3, FP2-F4, FP1-F7 and

FP2-F8, [16, 35, 25, 27] (according to the International 10-20 System of Electrode Placement) because

these channels are located nearest to eyes. The eyeball acts as a dipole, with cornea as positive pole

with respect to the retina. When eye goes from open to close the electrode sense a downward reflection.

Similarly, when eye goes from close to open an upward reflection occurs at the electrode. This results a

high amplitude negative peak in EEG [15, 18, 26]. EEG signal decomposition is done till theta band of

the EEG spectrum is reached to obtain C4
am. Further, the negative sample index of C4

am is taken and

time domain mapping of all the negative peaks in C4
am is carried out as shown in step 1 of the pseudo

code 3. In frequency domain, theta band is reached and corresponding time domain mapping is done

to extract artefacts in that band only. For each of the selected negative sample after mapping in time

domain, a window is created (step 2 of pseudo code 3) to effectively select the blink and the negative

peak is obtained. This process is repeated for the entire range of the signal. The negative peaks obtained

from steps 3 are stored and Global Mean (GM) is computed as indicated in step 4 of pseudo code

3. This GM is used as threshold to remove the eye blink artefact. Three cases are determined while

removing the blink artefacts. In case a, samples after satisfying the condition are simply made zero as

shown in step5a. In case b, assigns value of GM to the artefact region (step 5b). In case c, Local

Mean (LM) is calculated for each window in step 5c (ii). If the conditions are satisfied in step 5c (iii)

corresponding values GM or LM of are assigned to the artefact region of the window. The highest value

of correlation, regression and R-square among the three cases indicates the maximum performance and

high efficiency for artefact removal as indicated in Table 7.1. Thus, the signal obtained is free from blink

artefact and shown in Fig. 3.6 & 3.7. The corresponding code is given in Pseudo code 3.

Pseudo Code 3: Eye Blink Artefact Detection and Removal

Notations: m = number of coefficients in Level4 1, 2, . . . , n
16 , neg m = Store ‘m′ for negative C4

am,

neg m low = Lower point of window, neg m high = Highest point of window, B = stores negative

samples in f
′

i for a particular window, d = total number of negative samples found in f
′

i (t), t = Time

for which EEG signal is analysed. w = window number, d = number of negative samples in f
′

i at

13

window, B(w,d) = 2 dimensional vector to store negative samples.

1. Get negative values in DWT level 4

if, C4
am < 0

then, neg C4
am = neg m; neg m = m

2. Time domain mapping of neg m & create window around it

neg m low = neg m− 0.2

neg m high = neg m+ 0.2

3. Find negative samples in the above created window in time domain

If, (t > neg m low && t < neg m high)

If, (f
′

i < 0),

then, Bd = f
′

i (t) For, neg m low < t < neg m high

4. Mean Calculation

(a) Global Mean

GM =

∑d
c=1Bc

d

5. Remove Artefacts

(a) Make Sample Zero

If, f
′

i < GM

then, f
′

i = 0

(b) Make sample value equal to GM

If, f
′

i < GM

14

then, f
′

i = GM

(c) Make sample equal to LM or GM depending upon lesser negativity

i. If, (t > neg m low && t < neg m high)

If, (f
′

i < 0)

then, B(w,d) = f
′

i

ii. Mean Calculation

LMw =

∑d
c=1Bw,c

d

iii. Remove Artefacts

If, f
′

i < GM

If, GM < LMw

then, f
′

i = GM

Else if, GM > LMw

then, f
′

i = LMw

15

Figure 3.6: EEG Signal containing Blink Artefacts

Figure 3.7: EEG Signal after removing Blink Artefacts

16

Chapter 4

ARM Cortex Mo+ Overview

4.1 ARM Cortex M0+

4.1.1 About the Processor

The Cortex-M0+ processor is a very low gate count, highly energy efficient processor that is intended for

microcontroller and deeply embedded applications that require an area optimized, low-power processor.

The Cortex-M0+ processor supports State Retention and Power Gating (SRPG) with up to three power

domains to enable very energy efficient silicon implementation and a trace interface

4.1.2 Features

The processor features and benefits are:

• Tight integration of system peripherals reduces area and development costs.

• Thumb instruction set combines high code density with 32-bit performance.

• Support for single-cycle I/O access.

• Power control optimization of system components.

• Integrated sleep modes for low power consumption.

• Fast code execution enables running the processor with a slower clock or increasing sleep mode

time.

• Optimized code fetching for reduced flash and ROM power consumption.

17

• Hardware multiplier.

• Deterministic, high-performance interrupt handling for time-critical applications.

• Deterministic instruction cycle timing.

• Support for system level debug authentication.

• Serial Wire Debug reduces the number of pins required for debugging.

• Support for optional instruction trace.

4.1.3 Interfaces

The interfaces included in the processor for external access include:

1. External AHB-Lite interface

2. Debug Access Port (DAP)

3. Optional single-cycle I/O Port

4. Execution Trace Interface

4.1.4 Configurable Option

Table 4.1 shows the processor configuration options available at implementation time.

4.2 Functional Description

4.2.1 About the Functions

The Cortex-M0+ processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA

AHB-Lite interface and includes an NVIC component. It also has optional hardware debug, single-cycle

I/O interfacing, and memory-protection functionality. The processor can execute Thumb code and is

compatible with other Cortex-M profile processors.

Figure 4.1 shows the processor functional block diagram.

1. A low gate count processor that features:

• The ARMv6-M Thumb instruction set.

• Thumb-2 technology.

18

Table 4.1: Processor Configurable Options

Features Configurable Option

Interrupts External Interrupts 0− 32

Data endianness Little-endian or big-endian

SysTick timer Present or absent

Number of watchpoint comparators 0, 1, 2

Number of breakpoint comparators 0, 1, 2, 3, 4

Halting debug support Present or absent

Multiplier Fast or small

Single-cycle I/O port Present or absent

Wake-up interrupt controller Supported or not supported

Vector Table Offset Register Present or absent

Unprivileged/Privileged support Present or absent

Memory Protection Unit Not present or 8-region

Reset all registers Present or absent

Instruction fetch width 16-bit only or mostly 32-bit

• Optionally, an ARMv6-M compliant 24-bit SysTick timer.

• A 32-bit hardware multiplier. This can be the standard single-cycle multiplier, or a 32-cycle

multiplier that has a lower area and performance implementation.

• Support for either little-endian or byte invariant big-endian data accesses.

• The ability to have deterministic, fixed-latency, interrupt handling.

• Load/store multiple and multicycle multiply instructions that can be abandoned and restarted

to facilitate rapid interrupt handling.

• Optionally, Unprivileged/Privileged support for improved system integrity.

• C Application Binary Interface compliant exception model.

• Low power sleep-mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instruc-

tions, or the return from interrupt sleep-on-exit feature.

19

Figure 4.1: Functional Block Diagram

2. NVIC that features:

• Up to 32 external interrupt inputs, each with four levels of priority.

• Dedicated Non-Maskable Interrupt (NMI) input.

• Support for both level-sensitive and pulse-sensitive interrupt lines.

• Optional Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.

• Optional relocation of the vector table.

3. Optional debug support:

• Zero to four hardware breakpoints.

• Zero to two watchpoints.

• Program Counter Sampling Register (PCSR) for non-intrusive code profiling, if at least one

hardware data watchpoint is implemented.

• Single step and vector catch capabilities.

• Support for unlimited software breakpoints using BKPT instruction.

• Non-intrusive access to core peripherals and zero-waitstate system slaves through a compact

bus matrix. A debugger can access these devices, including memory, even when the processor

20

is running.

• Full access to core registers when the processor is halted.

• Optional, low gate-count CoreSight compliant debug access through a Debug Access Port

(DAP) supporting either Serial Wire or JTAG debug connections.

4. Bus interfaces:

• Single 32-bit AMBA-3 AHB-Lite system interface that provides simple. integration to all

system peripherals and memory.

• Optional single 32-bit single-cycle I/O port.

• Optional single 32-bit slave port that supports the DAP.

5. Optional Memory Protection Unit (MPU):

• Eight user configurable memory regions.

• Eight sub-region disables per region.

• Execute never (XN) support.

• Default memory map support.

4.2.2 Interfaces

The interfaces included in the processor for external access include:

1. External AHB-Lite interface:

Transactions on the AHB-Lite interface are always marked as non-sequential. Processor accesses

and debug accesses share the external interface to external AHB peripherals.

The processor accesses take priority over debug accesses

2. Debug Access Port (DAP):

The processor is implemented with either a low gate count Debug Access Port (DAP) or a full

CoreSight DAP.

The low gate count Debug Access Port (DAP) provides a Serial Wire or JTAG debug-port, and

connects to the processor slave port to provide full system-level debug access.

The full CoreSight DAP system enables the processor to provide full multiprocessor debug with

simultaneous halt and release cross-triggering capabilities.

21

3. Optional single-cycle I/O Port:

The processor optionally implements a single-cycle I/O port that provides very high speed access

to tightly-coupled peripherals, such as general-purpose-I/O (GPIO). The port is accessible both

by loads and stores, from the processor and from the debugger.

A code cannot be executed from the I/O port.

4. Execution Trace Interface:

The processor optionally implements an interface for the Micro Trace Buffer execution trace com-

ponent.

22

Chapter 5

AMBA AHB-Lite Protocol

Specification

5.1 Introduction

The ARM Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip intercon-

nect specification for the connection and management of functional blocks in system-on-a-chip (SoC)

designs. It facilitates development of multi-processor designs with large numbers of controllers and pe-

ripherals. AHB is a bus protocol introduced in Advanced Microcontroller Bus Architecture version 2. In

addition to previous release, it has the following features:

• large bus-widths (64/128 bit).

A simple transaction on the AHB consists of an address phase and a subsequent data phase (without

wait states: only two bus-cycles). Access to the target device is controlled through a MUX (non-tristate),

thereby admitting bus-access to one bus-master at a time. AHB-Lite is a subset of AHB formally defined

in the AMBA 3 standard. This subset simplifies the design for a bus with a single master. This chapter

provides an overview of the AHB-Lite protocol.

5.2 About the Protocol

AMBA AHB-Lite addresses the requirements of high-performance synthesizable designs. It is a bus in-

terface that supports a single bus master and provides high-bandwidth operation. AHB-Lite implements

the features required for high-performance, high clock frequency systems including:

23

Figure 5.1: AHB-Lite Block Diagram

• burst transfers

• single-clock edge operation

• non-tristate implementation

• wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

Figure 5.1 shows a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite

slaves. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The

decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor

routes the corresponding slave output data back to the master.

5.3 Components

The main component types of an AHB-Lite system are described below:

• Master

• Decoder

• Multiplexor

• Slave

24

5.3.1 Master

An AHB-Lite master provides address and control information to initiate read and write operations.Figure

5.2 shows an AHB-Lite master interface.

Figure 5.2: AHB Master Interface

5.3.2 Decoder

Decoder decodes the address of each transfer and provides a select signal for the slave that is involved

in the transfer. It also provides a control signal to the multiplexor.

5.3.3 Multiplexor

A slave-to-master multiplexor is required to multiplex the read data bus and response signals from the

slaves to the master. The decoder provides control for the multiplexor.

5.3.4 Slave

An AHB-Lite slave responds to transfers initiated by masters in the system. The slave uses the HSELx

select signal from the decoder to control when it responds to a bus transfer. The slave signals back to

the master. Figure 5.3 shows an AHB-Lite slave interface.

• the success

• failure

• or waiting of the data transfer.

25

Figure 5.3: AHB Slave Interface

5.4 Operation of AMBA AHB-Lite System

The master starts a transfer by driving the address and control signals. These signals provide information

about the address, direction, width of the transfer, and indicate if the transfer forms part of a burst.

The write data bus moves data from the master to a slave, and the read data bus moves data from a

slave to the master.

Every transfer consists of:

• Address phase one address and control cycle

• Data phase one or more cycles for the data.

A slave cannot request that the address phase is extended and therefore all slaves must be capable of

sampling the address during this time. However, a slave can request that the master extends the data

phase by using HREADY. This signal, when LOW, causes wait states to be inserted into the transfer

and enables the slave to have extra time to provide or sample data.

The slave uses HRESP to indicate the success or failure of a transfer.

5.5 Signal Description

This section describes the protocol signals. It contains the following subsections:

• Global signals

26

• Master signals

• Slave signals

• Decoder signals

• Multiplexor signals

5.5.1 Global Signals

Table 5.1 lists the protocol of Global Signal.

Table 5.1: Global Signal

Name Source Description

HCLK Clock Source The bus clock times all bus transfers. All signal timings are
related to the rising edge of HCLK.

HRESETn Reset Controller The bus reset signal is active LOW and resets the system and
the bus.

5.5.2 Master Signals

Table 5.2 lists the protocol signals generated by a master.

5.5.3 Slave Signals

Table 5.3 lists the protocol signals generated by a slave.

5.5.4 Decoder Signals

Table 5.4 lists the protocol signals generated by the decoder.

5.5.5 Multiplexor Signals

Table 5.5 lists the protocol signals generated by the multiplexor.

27

Table 5.2: Master Signals

Name Destination Description

HADDR[31:0] Slave and Decoder The 32-bit system address bus.

HBURTS[2:0] Slave The burst type indicates if the transfer is a single transfer
or forms part of a burst.

HMASTERLOCK Slave When HIGH, this signal indicates that the current transfer
is part of a lockedsequence.

HPROT[3:0] Slave

The protection control signals provide additional infor-
mation about a bus accessand are primarily intended for
use by any module that wants to implement somelevel of
protection.The signals indicate if the transfer is an opcode
fetch or data access, and if thetransfer is a privileged mode
access or user mode access.

HSIZE[2:0] Slave Indicates the size of the transfer.

HTRANS[1:0] Slave Indicates the transfer type of the current transfer.

HWDATA[31:0] Slave

The write data bus transfers data from the master to
the slaves during write operations. A minimum data bus
width of 32 bits is recommended. However, this can be
extended to enable higher bandwidth operation.

HWRITE Slave Indicates the transfer direction. When HIGH this signal
indicates a write transfer and when LOW a read transfer.

5.6 Transfer

5.6.1 Basic Transfer

An AHB-Lite transfer consists of two phases:

Address Lasts for a single HCLK cycle unless its extended by the previous bus transfer.

Data That might require several HCLK cycles. Use the HREADY signal to control the

number of clock cycles required to complete the transfer.

HWRITE controls the direction of data transfer to or from the master. Therefore, when:

• HWRITE is HIGH, it indicates a write transfer and the master broadcasts data on the write

data bus, HWDATA[31:0].

• HWRITE is LOW, a read transfer is performed and the slave must generate the data on the

read data bus, HRDATA[31:0].

28

Table 5.3: Slave Signals

Name Destination Description

HRDATA[31:0] Multiplexor

During read operations, the read data bus transfers data from the
selected slave to the multiplexor. The multiplexor then transfers
the data to the master.A minimum data bus width of 32 bits is
recommended. However, this can bee xtended to enable higher
bandwidth operation.

HREADYOUT Multiplexor
When HIGH, the HREADYOUT signal indicates that a
transfer has finished on the bus. This signal can be driven LOW
to extend a transfer.

HRESP Multiplexor
When LOW, the HRESP signal indicates that the transfer sta-
tus is OKAY. When HIGH, the HRESP signal indicates that
the transfer status is ERROR.

Table 5.4: Decoder Sgnals

Name Destination Description

HSELx Slave

Each AHB-Lite slave has its own slave select signal HSELx and
this signal indicates that thec urrent transfer is intended for the
selected slave. When the slave is initially selected, it must also
monitor the status of HREADY to ensure that the previous bus
transfer has completed,before it responds to the current transfer.

5.6.2 Transfer Types

Transfers can be classified into one of four types, as controlled by HTRANS[1:0]. Table 5.6 lists these

encoding scheme.

5.6.3 Locked Transfer

If the master requires locked accesses then it must also assert the HMASTLOCK signal. This signal

indicates to any slave that the current transfer sequence is indivisible and must therefore be processed

before any other transactions are processed.

Typically the locked transfer is used to maintain the integrity of a semaphore, by ensuring that the

slave does not perform other operations between the read and write phases of a microprocessor SWP

instruction.

Most slaves have no requirement to implement HMASTLOCK because they are only capable of perform-

ing transfers in the order they are received. Slaves that can be accessed by more than one master, for

example, a Multi-Port Memory Controller (MPMC) must implement the HMASTLOCK signal.

29

Table 5.5: Multiplexor Signals

Name Destination Description

HRDATA[31:0] Master Read data bus, selected by the decoder.

HREADY Master and Slave When HIGH, the HREADY signal indicates to the master and
all slaves, that the previous transfer is complete.

HRESP Master Transfer response, selected by the decoder.

Table 5.6: Transfer Type Encoding

HTRANS[1:0] Type Description

b’00 IDLE

A master uses an IDLE transfer when it does not want to per-
form a data transfer. Slaves must always provide a zero wait
state OKAY response to IDLE transfers and the transfer must
be ignored by the slave.

b’01 BUSY

The BUSY transfer type enables masters to insert idle cycles
in the middle of a burst. This transfer type indicates that the
master is continuing with a burst but the next transfer cannot
take place immediately. When a master uses the BUSY transfer
type the address and control signals must reflect the next transfer
in the burst.

b’10 NONSEQ

Indicates a single transfer or the first transfer of a burst. The
address and control signals are unrelated to the previous transfer.
Single transfers on the bus are treated as bursts of length one and
therefore the transfer type is NON-SEQUENTIAL.

b’11 SEQ
The remaining transfers in a burst are SEQUENTIAL and the
address is related to the previous transfer.The control informa-
tion is identical to the previous transfer.

5.6.4 Transfer Size

HSIZE[2:0] indicates the size of a data transfer. Table 5.7 lists the possible transfer sizes.

The transfer size set by HSIZE must be less than or equal to the width of the data bus. For

example, with a 32− bit data bus, HSIZE must only use the values b’000, b’001, or b’010. Use HSIZE

in conjunction with HBURST, to determine the address boundary for wrapping bursts.

5.6.5 Burst Operation

Bursts of 4, 8, and 16-beats, undefined length bursts, and single transfers are defined in this protocol. It

supports incrementing and wrapping bursts:

• Incrementing bursts access sequential locations and the address of each transfer in the burst is an

increment of the previous address.

30

Table 5.7: Transfer Size Encoding

HSIZE[2:0] Size(bits) Description

b’000 8 Byte

b’001 16 Halfword

b’010 32 Word

b’011 64 DoubleWord

b’100 128 4 - Word Line

b’101 256 8 - Word Line

b’110 512 -

b’111 1024 -

• Wrapping bursts wrap when they cross an address boundary. The address boundary is calculated

as the product of the number of beats in a burst and the size of the transfer. The number of beats

are controlled by HBURST and the transfer size is controlled by HSIZE.

HBURST[2:0] controls the burst type. Table 5.8 lists the possible burst types.

Table 5.8: Burst Signal Encoding

HBURST[2:0] Size(bits) Description

b’000 SINGLE Single Burst

b’001 INCR Incremental Burts of undefined length

b’010 WRAP4 4 - Beat Wrapping Burst

b’011 INCR4 4 - Beat Incrementing Burst

b’100 WRAP8 8 - Beat Wrapping Burst

b’101 INCR8 8 - Beat Incrementing Burst

b’110 WRAP16 16 - Beat Wrapping Burst

b’111 INCR16 16 - Beat Incrementing Burst

31

5.7 Bus Interconnect

This chapter describes the additional interconnect logic required for AHB-Lite systems. It contains the

following sections:

• Address Decoding

• Bus Interconnection

5.7.1 Address Decoding

A central address decoder provides a select signal, HSELx, for each slave on the bus. The select signal

is a combinatorial decode of the high-order address signals.

A slave must only sample the HSELx, address, and control signals when HREADYis HIGH, indicating

that the current transfer is completing. Under certain circumstances it is possible that HSELx is asserted

when HREADY is LOW, but the selected slave has changed by the time the current transfer completes.

The minimum address space that can be allocated to a single slave is 1KB. All masters are designed

so that they do not perform incrementing transfers over a 1KB address boundary. This ensures that a

burst never crosses an address decode boundary.

Figure 5.4 shows the HSELx slave select signals generated by the decoder.

Figure 5.4: Slave Select Signals

5.7.1.1 Default slave

If a system design does not contain a completely filled memory map then you must implement an

additional default slave to provide a response when any of the nonexistent address locations are accessed.

If a NONSEQUENTIAL or SEQUENTIAL transfer is attempted to a nonexistent address location then

32

Figure 5.5: Multiplexor interconnection

the default slave provides an ERROR response. IDLE or BUSY transfers to nonexistent locations result

in a zero wait state OKAY response.

5.7.2 Bus Interconnection

The AHB-Lite protocol is used with a central read data multiplexor interconnection scheme. The master

drives out the address and control signals to all the slaves, with the decoder selecting the appropriate

slave. Any response data from the selected slave, passes through the read data multiplexor to the master.

Figure 5.5 shows the multiplexor interconnection structure required to implement an AHB-Lite design

with three slaves.

5.8 Slave Response Signaling

This section describes the slave response signaling. It contains the following section:

• Slave transfer responses.

33

5.8.1 Slave transfer responses

After a master has started a transfer, the slave controls how the transfer progresses. A master cannot

cancel a transfer after it has commenced.

A slave must provide a response that indicates the status of the transfer when it is accessed. The transfer

status is provided by the HRESP signal. Table 5.9 lists the HRESP states.

Table 5.9: HRESP Signal

HRESP Response Description

0 OKAY

The transfer has either completed successfully or additional
cycles are required for the slave to complete the request.The
HREADY signal indicates whether the transfer is pending or
complete.

1 ERROR

An error has occurred during the transfer. The error condition
must be signaled to the master so that it is aware the transfer has
been unsuccessful. A two-cycle response is required for an error
condition with HREADY being asserted in the second cycle.

Table 5.9 shows that the complete transfer response is a combination of the HRESP and HREADY

signals. Table 5.10 lists the complete transfer response based on the status of these two signals. This

Table 5.10: Transfer Response

HREADY

HRESP 0 1

0 Transfer pending Successful transfer completed

1 ERROR response, first cycle ERROR response, second cycle

means the slave can complete the transfer in the following three ways:

• immediately complete the transfer

• insert one or more wait states to enable time to complete the transfer

• signal an error to indicate that the transfer has failed.

These three slave transfer responses are described as:

• Transfer done: A successful completed transfer is signaled when HREADY is HIGH and

HRESP is OKAY.

• Transfer pending: A typical slave uses HREADY to insert the appropriate number of wait

states into the data phase of the transfer. The transfer then completes with HREADY HIGH

34

and an OKAY response to indicate the successful completion of the transfer.

When a slave inserts a number of wait states prior to completing the response, it must drive

HRESP to OKAY.

• ERROR response: A slave uses the ERROR response to indicate some form of error condition

with the associated transfer. Usually this denotes a protection error such as an attempt to write

to a read-only memory location.

Although an OKAY response can be given in a single cycle, the ERROR response requires two

cycles. To start the ERROR response, the slave drives HRESP HIGH to indicate ERROR while

driving HREADY LOW to extend the transfer for one extra cycle. In the next cycle HREADY

is driven HIGH to end the transfer and HRESP remains driven HIGH to indicate ERROR.

The two-cycle response is required because of the pipelined nature of the bus. By the time a slave

starts to issue an ERROR response then the address for the following transfer has already been

broadcast onto the bus. The two-cycle response provides sufficient time for the master to cancel

this next access and drive HTRANS[1:0] to IDLE before the start of the next transfer.

35

Chapter 6

Integration and Implementation

This chapter gives an overview of the process of integrating and implementing the Cortex-M0+ processor

with other peripheral.

Figure 6.1 shows the integration and implementation flow when you first integrate the Cortex-M0+ pro-

cessor into your system and then implement your system.

Figure 6.2 shows the implementation flow.

6.1 Configuration Options

Table 6.1 shows the configuration options summary for Cortex M0+.

6.2 Key Integration Task

Following list the Cortex M0+ component level key integration task.

1. Connect the SCLK, HCLK, and DCLK clocks correctly.

2. Connect the HRESETn and DBGRESETn resets correctly.

3. Tie off or connect the following interface inputs appropriately:

• External AHB-Lite interface.

• AHB interface extensions,

• I/O port.

36

Table 6.1: Cortex M0+ Option Summary

Parameter
Default

Value

Supported

Values
Description

ACG 1 0,1

Specifies if internal architectural clock gates are included to minimize dynamic power dissipation:

0 Exclude architectural clock gates.

1 Include architectural clock gates.

AHBSLV 1 0,1

Specifies the bus protocol implemented on the SLV port. This is a debug port.

0 The SLV port implements a Cortex-M0+ DAP specific protocol.

1 The SLV port implements a subset of AHB-Lite.

BE 0 0,1

Specifies the endianness for data transfers:

0 Little-endian.

1 Byte-invariant big-endian.

BKPT 4 0-4 Specifies the number of breakpoint unit comparators implemented.

DBG 1 0,1

Specifies whether or not the debug extensions are implemented:

0 Exclude debug functionality.

1 Include debug functional.

HWF 0 0,1

Half-word fetching only:

0 Fetch instructions using 32-bit AHB-Lite accesses whenever possible.

1 Fetch instructions using only 16-bit AHB-Lite accesse

IOP 0 0,1

I/O port:

0 Exclude I/O port functionality.

1 Include I/O port functionality.

IRQDIS 0 0,1

Disables support for individual interrupts.

32’h00000000 No IRQ disabled.

32’h0000FFFF IRQ[15:0] disabled.

MPU 0 0,8

Specifies the number of implemented Memory Protection Unit (MPU) regions:

0 Exclude MPU functionality.

8 Include MPU functionality(Eight MPU regions).

NUMIRQ 32 0-32

Specifies the highest interrupt number (NUMIRQ-1) of implemented user interrupts:

0 No functional IRQ lines

1 IRQ[0].

2 IRQ[1:0]

....

32 IRQ[31:0].

RAR 0 0,1

Specifies whether all synchronous states or only architecturally required states are reset:

0 Only architecturally required state is reset.

1 All state is reset.

SMUL 0 0,1

Specifies the implemented multiplier:

0 Include the fast, single-cycle multiplier.

1 Include the small, 32-cycle multiplier.

SYST 1 0,1

Specifies whether or not the SysTick timer functionality is included:

0 Exclude the SysTick timer.

1 Include the SysTick timer.

USER 0 0,1

Unprivileged/Privileged support:

0 Exclude Unprivileged/Privileged support (that is, all accesses are Privileged).

1 Include Unprivileged/Privileged support.

VTOR 0 0,1

Vector Table Offset Register:

0 Exclude VTOR.

1 Include VTOR.

WIC 1 0,1

Specifies whether or not the WIC interface is implemented:

0 Exclude the WIC interface.

1 Include the WIC interface.

WICLINES 34 2-34

Specifies the lines supported by the WIC interface:

2 Only NMI and RXEV are supported.

3 NMI, RXEV, and IRQ[0] are supported.

4 NMI, RXEV, and IRQ[1:0] are supported

....

34 NMI, RXEV, and IRQ[31:0] are supported.

WPT 2 0-2 Specifies the number of watchpoint unit comparators implemented.

37

Figure 6.1: Integration and Implementation Flow

• Interrupt interface.

• Debug slave interface.

• Miscellaneous signals.

• SysTick signals.

• WIC interface.

4. Tie off the CoreSight ROM table base address.

5. Verify your design.

38

Figure 6.2: Implementation Flow

6.3 Functional Integration Guidelines

6.3.1 Clocks

Table 6.2 shows the clocks at the Cortex M0+ level of hierarchy.

6.3.2 Reset

Table 6.3 shows the resets at the Cortex M0+ level of hierarchy.

39

Table 6.2: Cortex M0+ Level Clocks

Name Direction Description Connection Information

SCLK Input Free running clock that clocks a small amount of logic in the processor system domain. SCLK must always be running unless the processor
is inWIC-mode deep sleep and no debugger is con-
nected.

HCLK Input Clock for the majority of the non-debug logic in the processor system domain. HCLK must be derived directly from SCLK.Connect
HCLK to the AHB layer that the processor is con-
nected to.

DCLK Input Clock for the processor debug domain. DCLK must be derived directly from SCLK.DCLK
must always be driven while a debugger is connected.
It can be gated when no debugger is connected.

Table 6.3: Cortex M0+ Level Reset

Name Direction Description Connection Information

HRESETn Input Reset for the processor system
domain and the AHB system

Deassert HRESETn synchronously to SCLK.

Assert HRESETn on power-on.

Assert HRESETn for at least two HCLK cycles.

DBGRESETn Input Reset for the processor debug do-
main

Deassert DBGRESETn synchronously to SCLK.

Assert DBGRESETn on power-on.

Assert DBGRESETn for at least two DCLK cycles.

Tie DBGRESETn LOW when no debugger is connected.

6.3.3 Interface

This section describes the interface of Cortex M0+ processor to AHB-Lite Interface.

Understanding of AMBA AHB-Lite bus interface signals is must as described in chapter 5 AMBA AHB-

Lite Protocol Specification.

Table 6.4 shows the AHB-Lite interface.

Table 6.4: AHB-Lite Signals

Name Direction Connection Information

HADDR[31:0] Output Connect to address decoders, arbiter, and slaves through the bus
infrastructure.

HBURST[2:0] Output Connect to the AHB arbiter and slaves through the bus infras-
tructure.

HPROT[3:0] Output Connect to the slaves through the bus infrastructure.

HSIZE[2:0] Output Connect to the slaves through the bus infrastructure.

HTRANS[1:0] Output Connect to the AHB arbiter and slaves through the bus infras-
tructure.

HWRITE Output Connect to the slaves through the bus infrastructure.

HMASTLOCK Output

HWDATA[31:0] Output

HRDATA[31:0] Input

HREADY Input

HRESP Input

40

6.4 Key Implementation Points

This section contains a list of the main points to consider when you implement the Cortex-M0+ processor.

Following lists the key tasks for Implementation

1. Select top level of hierarchy to implement.

2. Configure the processor parameters.

3. Select appropriate library cells for clock gating and Clock-Domain Crossing (CDC) purposes.

4. If you require SRPG, ensure that the implementation level includes pins for power, retention and

isolation control.

5. If you require SRPG, select appropriate UPF or CPF file and library cells for power gating.

6. Perform synthesis.

7. Determine optimum floorplan

8. Perform place and route

9. Perform LVS and DRC checks.

10. Perform timing verification.

11. Perform characterization.

12. Run DFT.

13. Perform formal verification using logical equivalence checking tools.

14. Optionally run the tests on the netlist with SDF annotation.

15. Perform sign-off in accordance with the agreed criteria and your sign-off obligations.

16. Sign-off your implementation.

6.5 SoC Development Results

Understanding of ARM Cortex M0+ and AMBA AHB-Lite protocol specification is important as de-

scribed in Chapter 4 and Chapter 5 respectively. The processor must be configured according to the

specification of the SoC. RTL code for all the peripherals which are to be integrated with the processor

41

must be functionally verified and free from violations. All the peripheral must be allocated with required

memory and should response only to those addresses assigned to it.

A top wrapper must accept the transaction from the master when selected and the slave should response

accordingly for read or write operation with the size of data coming in or going out. This top wrapper

should generate HRESP and HREADY signals for the master to know about it’s status and further

process.

Figure 6.3 shows the integration of AMBA AHB-Lite system with ARM Cortex M0+. This is the first

integration step towards development of SoC.

Figure 6.4 shows the integration of AHB-Lite with peripheral. This is the second step towards develop-

ment of SoC.

Figure 6.3: Integration of AHB-Lite with ARM Cortex M0+

42

Figure 6.4: Integration of AHB-Lite interface with peripheral

43

Chapter 7

Results & Discussion

The EEG signals database obtained from Physionet [36], Klinik für Epileptologie Universität Bonn,

Germany [37] consisting of five sets from healthy volunter and epileptic patient with different activities,

Caltech [38] and University of Southampton were recorded at sampling frequency of 256Hz, 173.6Hz,

160Hz and 500Hz respectively. A healthy volunteer (patient without any sufferings) EEG data of 10 sec

was mixed with EOG and Muscular artefact manually in specific pattern mentioned in the cases below

(Table 7.1). This mixed data was used in the initial analysis to prove the functionality and performance

of the algorithm on hardware platform in the following manner depicted in Table 7.1. It is to be noted

that each case has been validated against 100 EEG signals taken from the above mentioned databases.

Case I (Table 7.1) consists of seven signals, which were left clean and hence a high value of Correlation

Coefficient as expected, is experimentally determined along with Regression. Case II and Case III (Table

7.1), muscular artefacts are detected and removed. In case IV (Table 7.1), only blink artefacts were

manually added and removed. Parameter ‘x’ was varied to determine the optimum number of samples

per frame for muscle artefact removal. From Table 7.2, the highest value of correlation, regression and

R-square for Case II & III are observed at 86 samples per frame. Similarly from Table 7.2, for Case IV,

if ‘only GM’value is used as threshold, then high performance is expected. These optimised values are

used in cases V, VI, VII, VIII & IX, where both the artefacts were added in combination of alternate

and random manner as shown in Table 7.1 and corresponding correlation and regression values are

observed. Result of the mixed artefact case (Case IX) is shown in Fig. 7.1. In Case X and XI (Table

7.1), the EEG signals of various subjects sampled at 256Hz (Physionet [36]), 160Hz (Caltech [38]) and

500Hz (University of Southampton) were observed for 10sec and optimized condition for muscle and

blink artefact was used in the experiment. No external artefacts are added in case X and XI, since these

44

Table 7.1: Performance Metrics for different cases of artefact addition and real data simulation on
hardware platform (FPGA)

Case artefacts Performance Metrics

Muscular artefacts Blink artefacts Average Correlation Average Regression Average R-Square

Case I NO NO 0.9416 0.8124 0.7941

Case II Alternate NO 0.7078 0.7300 0.6956

Case III Random NO 0.6275 0.7828 0.7043

Case IV NO Yes 0.8894 0.4667 0.6278

Case V Random Alternate 0.5649 0.6555 0.5545

Case VI Alternate Alternate (same frame) 0.9070 0.8736 0.8923

Case VII Alternate Alternate (Different frame) 0.8956 0.8243 0.8565

Case VIII Alternate Random 0.8725 0.8203 0.8427

Case IX Random Random 0.9357 0.8963 0.8897

Case X (Real Data)
Unknown Position Unknown Position 0.8307 0.6680 0.7284

Unknown Position Unknown Position 0.7350 0.7791 0.7562

Case XI Unknown Position Unknown Position 0.8440 0.9326 0.5148

signals were already mixed with artefact to prove the effectiveness of the algorithm unlike case II to IX.

The signal is detected with artefacts and removed as shown in Fig. 7.2, 7.3 & 7.4. Table 7.3 is the

comparison of the proposed method with other recent methods.

The RRMSE, standard deviation, variance and mean error are higher than the other methods pro-

posed. The other performance metrics like average coefficient correlation is higher than the other methods

indicating an accurate and higher artefact removal procedure. The NMSE of the simulated and experi-

mental EEG data was calculated for each of the noisy channel (having artefacts) and noise free channels

(having no artefacts). The SNR of the proposed work was found to be −18.54dB and hence in the

simulated NMSE channel 15 and 18 were considered. A low value of NMSE indicates that the system

is performing well in the noisy channel of the EEG dataset. The proposed methodology is capable of

removing not only the low frequency blink artefact but also the high frequency muscle artefact in com-

parison with [11, 22]. It can be noticed from Table 7.3 that the performance of proposed methodology is

7% less in terms of correlation compared with [22]. However, such deviation is mainly attributed due to

our proposed low-complex hardware design methodology compared to the software centric of approach

of [22] where the hardware complexity and computational delay of the proposed methodology are 64.28%

and 53.58% less compared to [22] making it favourable for the real time hardware design for NDD and

45

Table 7.2: Performance Comparison by varying ‘x’ in Muscle Artefact and Blink Artefact Cases of LM
& GM for alternate and random addition of artefact

Cases Subcases Average Correlation Average Regression Average R-Square

Case I

Blink alternate (only GM) 0.9796632 0.963957 0.8984671

Blink alternate (LM & GM) 0.9753417 0.952481 0.8695557

Blink Random (Only GM) 0.977621 0.948206 0.8910231

Blink Random (LM & GM) 0.8661372 0.86631 0.7289345

Case II

Muscle alternate (4 samples/ frame) 0.4570492 0.752812 0.1924414

Muscle alternate (10 samples/frame) 0.6455181 0.7207 0.3805284

Muscle alternate (20 samples/frame) 0.7680168 0.758661 0.5112613

Muscle alternate (33 samples/frame) 0.8089984 0.76075 0.5225469

Muscle alternate (43 samples/frame) 0.8004564 0.73833 0.525052

Muscle alternate (66 samples/frame) 0.8356125 0.764186 0.5249669

Muscle alternate (86 samples/frame) 0.8719209 0.820555 0.6102836

Muscle alternate (107 samples/frame) 0.8677898 0.795259 0.5460391

Muscle alternate (122 samples/frame) 0.8341224 0.739985 0.4909559

Muscle alternate (170 samples/frame) 0.8611689 0.774721 0.52037

Case III

Muscle random (4 samples/ frame) 0.5110784 0.815195 0.3140283

Muscle random (10 samples/ frame) 0.726977 0.801797 0.4835464

Muscle random (20 samples/frame) 0.8232031 0.809822 0.5858392

Muscle random (33 samples/frame) 0.848105 0.81383 0.6078609

Muscle random (43 samples/frame) 0.8669584 0.83035 0.6331701

Muscle random (66 samples/frame) 0.8597717 0.7897 0.589286

Muscle random (86 samples/frame) 0.8719209 0.820555 0.6102836

Muscle random (107 samples/frame) 0.8563104 0.77265 0.5657873

Muscle random (122 samples/frame) 0.8693699 0.791556 0.5873208

Muscle random (170 samples/frame) 0.8651133 0.820209 0.6109856

46

Figure 7.1: Mixed artefact signal Analysis. The shaded area (light grey) shows the position where
artefacts are manually added and removed. (A) Amplitude vs Time plot for 10 second of raw clean
EEG signal. (B) Muscle and Blink artefacts are added in the signal (A) in a random fashion. (C)

Signal obtained after artefacts removal when the optimized conditions are applied.

BCI. The detailed complexity analysis of our proposed approach will be given later in this section. Fig

7.2, 7.3 & 7.4 shows 21 channel real EEG dataset from [27] and University of Southampton related to eye

and head movement respectively. The waveform presented in Fig. 7.2, 7.3 & 7.4 shows the favourable

comparison between the results of MATLAB simulation and FPGA prototyping. The percentage error

on-hardware (FPGA) is found to be 9.5% for Fig. 7.2, 7.3 & 7.4. The hardware complexity of the pro-

posed methodology is carried out in terms of the operations involved like adders, subtracters, multipliers,

multiplexers and comparators. For calculating the hardware complexity in terms of the number of logic

gates and transistor count we make the following assumptions from [42].

Assumption 1:- i) One n-bit adder and subtracter needs n full adders and full subtracters. ii) One n

by n multiplier needs n(n− 2) Full Adder, n Half-adders and n2 AND gates. iii) One n− bit comparator

requires cascading of n number of 1− bit comparators which consists of 2 NOT gates, 2 AND gates and

1 NOR gate each. iv) An n− bit 2 : 1 MUX requires n number of 2 : 1 MUX consisting of 4 NAND gates

each. v) One n − bit shifters requires n number of D flip-flops consisting of 4 NAND gates and 1 NOT

gate each.

Assumption 2:- Transistor count for each of the blocks are as follows. i) 1 − bit full adder has 24

transistors. ii) 1 − bit half adder has 12. iii) 1 − bit Full Subtracters has 28. iv) One 2-input AND

gate has 6. v) One 2-input NAND gate has 4. vi) One NOT gate has 2. Fig 5(A) shows the bar graph

47

Figure 7.2: Real EEG Signal Analysis (21 Channel): Input to the System

Figure 7.3: Real EEG Signal Analysis (21 Channel): Output from MATLAB Simulation

Figure 7.4: Real EEG Signal Analysis (21 Channel): Output from the FPGA Implementation

48

Table 7.3: Comparison with different State-of-the-art methods

Parameter [Reference][Value] This Work

RRMSE

[38]

BSS CCA=0.11;

ICA(JADE)=0.25

[10] 0.31 to 0.42 0.4437

Normalised Correlation Cofficient
[39]

ICA-RLS (Segment B) = 0.6264

[14] 0.796, [15] 0.76

[29] Zeroing ICA=0.5767, wICA=0.5817,

[22] 0.863 to 0.956, [23] 0.776,

[40] 0.77, [41] 0.755 to 0.833

0.8307

Standard Deviation [40] 40.98
[11] 16.28

[23] 11

54.1524

Variance [40] 1679.6 - 2932.5

Mean Absolute Error [40] 28.07 - 41.3756

NMSE (simulation)

[31]

Noisy Channel

Ch-15(SNR=-15dB)=0.355

Ch-18(SNR)=-20dB=0.3140

-

Noisy Channel

(SNR = -18.52dB)=0.3255

Noise Free Channel

Ch-15 = 0.9200

Ch-18 = 0.9755

Noise Free Channel

0.9623

NMSE (experimental)

[31]

Noisy Channel

Ch-15 = 0.1023

Ch-23 = 0.1604

-

Noisy Channel

0.2365

Noise Free Channel

Ch-15 = 0.8694

Ch-23 = 0.8280

Noise Free Channel

0.8759

Table 7.4: FPGA Resource Utlilization

Logic Utilization Used Available Utilization

Number of Slice Register 571 18224 3.13%

Number of Slice LUTs 933 9112 10.23%

Number of Fully used LUT-FF Pairs 433 489 88.54%

Number of Block RAMS/FIFO 8 32 25%

Number of BUFG/BUFGCTRLs 8 16 50%

for transistor count by varying the word-length (n), comparing the proposed methodology with other

methods [11, 22] has indicated a lower transistor count thus implies low complex procedure. The system

proposed here is designed for n = 16 and corresponding transistor count is 44,544. The hardware delay

for arithmetic and logical block has been calculated taking into account the delay of the basic building

block like NAND gate. Following assumptions are made as per [42].

49

Assumption 1:- i) No interconnect delay. Denoting the delay of two-input NAND gate to be ∆ units,

the delay of other blocks are calculated as ii) An n-bit two input full adder and full subtracter has 2n∆

units delay. iii) n − by − n multiplier has 8n∆ units delay. iv) An n − bit comparator has 9n∆. v) An

n− bit 2 : 1 MUX has 5n∆. vi) An n− bit shifter has 4n∆.

Figure 7.5 & 7.6 shows the hardware complexity and delay respectively of the proposed methodology

with respect to the variation in the word-length (n) in comparison with other methods in [11, 22]. The

graph indicates a lower complexity and delay for the computation of the proposed method by 64.28%

and 53.58% respectively compared with [22] and 33% and 25.8% respectively compared with [11] for

world length of 16 − bits. The proposed methodology has been designed and proved on Xilinx Spartan

6 FPGA board. The inputs to design under test (DUT) were given through a Block RAM created on

FPGA and outputs were observed on monitor using ChipScopePro tool from Xilinx. Table 7.4 shows

the estimated device utilisation summary of the hardware.

50

Figure 7.5: Variation of Hardware Complexity in terms of Transistor Count with different word-length(n)

Figure 7.6: Variation of Hardware Delay with different word-length(n)

51

Chapter 8

Conclusion

The automated methodology proposed in this paper, unlike the state of the art methods, can remove

blink and muscular artefacts without the need of any extra electrode. Its reliability and robustness is

also established after exhaustive simulation study and analysis on both simulated and real data. The

performance of the proposed methodology is measured in terms of correlation, regression and R-square

statistics and it has been found that their average values lie above 80%, 75% and 76% respectively.

Comparison of the simulation results and FPGA prototyping shows an error of about 9.5%. The total

power consumption of the proposed methodology is about 76µW. The satisfactory hardware results

are also obtained when prototyped on FPGA platform, which shows the capability of the proposed

methodology to be translated into a system on chip. We believe the proposed methodology would be

useful in next generation pervasive healthcare for BCI and NDD diagnosis and treatment.

52

References

[1] M. S. Gupta. Neurodevelopmental Disorders in Children Autism and ADHD. EnvironmentalChem-

istry. com. April 14.

[2] E. Milne, A. Scope, O. Pascalis, D. Buckley, and S. Makeig. Independent component analysis

reveals atypical electroencephalographic activity during visual perception in individuals with autism.

Biological psychiatry 65, (2009) 22–30.

[3] S. E. Levy, D. S. Mandell, and R. T. Schultz. Autism. The Lancet 374, (2009) 1627 – 1638.

[4] M. Wadman. Autism’s fight for facts: A voice for science. Nature 28–31.

[5] H. L. Needleman, A. Schell, D. Bellinger, A. Leviton, and E. N. Allred. The long-term effects of

exposure to low doses of lead in childhood: an 11-year follow-up report. New England journal of

medicine 322, (1990) 83–88.

[6] D. L. Santesso, I. E. Drmic, M. K. Jetha, S. E. Bryson, J. O. Goldberg, G. B. Hall, K. J. Mathewson,

S. J. Segalowitz, and L. A. Schmidt. An event-related source localization study of response moni-

toring and social impairments in autism spectrum disorder. Psychophysiology 48, (2011) 241–251.

[7] T. Pistorius, C. Aldrich, L. Auret, and J. Pineda. Early Detection of risk of autism spectrum

disorder based on recurrence quantification analysis of electroencephalographic signals. In Neural

Engineering (NER), 2013 6th International IEEE/EMBS Conference on. IEEE, 2013 198–201.

[8] S. Rondeau. Electroencephalogram use in Autistic Disorder Assessment. Naturopathic Doctor News

& Review .

[9] (2012). EEG Connectivity and Autism: Methodological and Clinical Features. Psychophysiology

49, (2012) S8.

[10] R. Patel, S. Sengottuvel, M. Janawadkar, K. Gireesan, T. Radhakrishnan, and N. Mariyappa.

Ocular artifact suppression from EEG using ensemble empirical mode decomposition with principal

component analysis. Computers & Electrical Engineering .

53

[11] I. Daly, R. Scherer, M. Billinger, and G. Müller-Putz. FORCe: Fully Online and automated artifact

Removal for brain-Computer interfacing. IEEE transactions on neural systems and rehabilitation

engineering 23, (2015) 725–736.

[12] L. Frølich, T. S. Andersen, and M. Mørup. Classification of independent components of EEG into

multiple artifact classes. Psychophysiology 52, (2015) 32–45.

[13] T.-P. Jung, C. Humphries, T.-W. Lee, S. Makeig, M. J. McKeown, V. Iragui, and T. J. Sejnowski.

Removing electroencephalographic artifacts: comparison between ICA and PCA. In Neural Net-

works for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society

Workshop. IEEE, 1998 63–72.

[14] M. R. Mowla, S.-C. Ng, M. S. Zilany, and R. Paramesran. Artifacts-matched blind source separation

and wavelet transform for multichannel EEG denoising. Biomedical Signal Processing and Control

22, (2015) 111–118.

[15] W. Zhou and J. Gotman. Automatic removal of eye movement artifacts from the EEG using ICA

and the dipole model. Progress in Natural Science 19, (2009) 1165–1170.

[16] V. Krishnaveni, S. Jayaraman, S. Aravind, V. Hariharasudhan, and K. Ramadoss. Automatic

identification and removal of ocular artifacts from EEG using wavelet transform. Measurement

science review 6, (2006) 45–57.

[17] M. Mennes, H. Wouters, B. Vanrumste, L. Lagae, and P. Stiers. Validation of ICA as a tool to

remove eye movement artifacts from EEG/ERP. Psychophysiology 47, (2010) 1142–1150.

[18] C. A. Joyce, I. F. Gorodnitsky, and M. Kutas. Automatic removal of eye movement and blink

artifacts from EEG data using blind component separation. Psychophysiology 41, (2004) 313–325.

[19] C. Burger and D. J. van den Heever. Removal of EOG artefacts by combining wavelet neural network

and independent component analysis. Biomedical Signal Processing and Control 15, (2015) 67–79.

[20] D. R. Achanccaray and M. A. Meggiolaro. Detection of artifacts from EEG data using wavelet

transform, high-order statistics and neural networks. In XVII Brazilian Conference on Automatica.

2008 23.

[21] K. T. Sweeney, S. F. McLoone, and T. E. Ward. The use of ensemble empirical mode decomposition

with canonical correlation analysis as a novel artifact removal technique. IEEE transactions on

biomedical engineering 60, (2013) 97–105.

[22] J. Hu, C.-s. Wang, M. Wu, Y.-x. Du, Y. He, and J. She. Removal of EOG and EMG artifacts

from EEG using combination of functional link neural network and adaptive neural fuzzy inference

system. Neurocomputing 151, (2015) 278–287.

54

[23] W.-D. Chang, H.-S. Cha, K. Kim, and C.-H. Im. Detection of eye blink artifacts from single

prefrontal channel electroencephalogram. Computer methods and programs in biomedicine 124,

(2016) 19–30.

[24] B. Mijovic, M. De Vos, I. Gligorijevic, J. Taelman, and S. Van Huffel. Source separation from

single-channel recordings by combining empirical-mode decomposition and independent component

analysis. IEEE transactions on biomedical engineering 57, (2010) 2188–2196.

[25] D. J. McFarland, A. T. Lefkowicz, and J. R. Wolpaw. Design and operation of an EEG-based

brain-computer interface with digital signal processing technology. Behavior Research Methods,

Instruments, & Computers 29, (1997) 337–345.

[26] D. Safieddine, A. Kachenoura, L. Albera, G. Birot, A. Karfoul, A. Pasnicu, A. Biraben, F. Wendling,

L. Senhadji, and I. Merlet. Removal of muscle artifact from EEG data: comparison between stochas-

tic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP Journal on

Advances in Signal Processing 2012, (2012) 1–15.

[27] M. A. Sovierzoski, F. I. Argoud, and F. M. de Azevedo. Identifying eye blinks in EEG signal analysis.

In 2008 International Conference on Information Technology and Applications in Biomedicine. IEEE,

2008 406–409.

[28] B. Noureddin, P. D. Lawrence, and G. E. Birch. Effects of task and EEG-based reference signal on

performance of on-line ocular artifact removal from real EEG. In 2009 4th International IEEE/EMBS

Conference on Neural Engineering. IEEE, 2009 614–617.

[29] C. Guerrero-Mosquera and A. Navia-Vazquez. Automatic removal of ocular artefacts using adaptive

filtering and independent component analysis for electroencephalogram data. IET signal processing

6, (2012) 99–106.

[30] M. Anastasiadou, A. Hadjipapas, M. Christodoulakis, E. S. Papathanasiou, S. S. Papacostas, and

G. D. Mitsis. Detection and removal of muscle artifacts from scalp EEG recordings in patients with

epilepsy. In Bioinformatics and Bioengineering (BIBE), 2014 IEEE International Conference on.

IEEE, 2014 291–296.

[31] M. N. Tibdewal, R. Fate, M. Mahadevappa, and A. Ray. Detection and classification of Eye Blink

Artifact in electroencephalogram through Discrete Wavelet Transform and Neural Network. In

Pervasive Computing (ICPC), 2015 International Conference on. IEEE, 2015 1–6.

[32] A. Acharyya, K. Maharatna, B. M. Al-Hashimi, and J. Reeve. Coordinate rotation based low

complexity ND FastICA algorithm and architecture. IEEE Transactions on Signal Processing 59,

(2011) 3997–4011.

55

[33] J. S. Walker. A primer on wavelets and their scientific applications. CRC press, 2008.

[34] J. Joy, S. Peter, and N. John. Denoising using soft thresholding. International Journal of Advanced

Research in Electrical, Electronics and Instrumentation Engineering 2, (2013) 1027–1032.

[35] P. Jadhav, D. Shanamugan, A. Chourasia, A. Ghole, A. Acharyya, and G. Naik. Automated

detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism

Spectrum Disorder. In 2014 36th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE, 2014 1881–1884.

[36] P. PhysioBank. PhysioNet: Components of a New Research Resource for Complex Physiologic

Signals [Circulation Electronic Pages]. Circulation 101, (2000) e215–e220.

[37] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger. Indications of

nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity:

Dependence on recording region and brain state. Physical Review E 64, (2001) 061,907.

[38] http://www.vis.caltech.edu/ rodri/data.htm .

[39] W. De Clercq, A. Vergult, B. Vanrumste, W. Van Paesschen, and S. Van Huffel. Canonical correla-

tion analysis applied to remove muscle artifacts from the electroencephalogram. IEEE transactions

on Biomedical Engineering 53, (2006) 2583–2587.

[40] R. Mahajan and B. I. Morshed. Unsupervised eye blink artifact denoising of EEG data with modi-

fied multiscale sample entropy, kurtosis, and Wavelet-ICA. IEEE journal of biomedical and health

informatics 19, (2015) 158–165.

[41] S. ORegan, S. Faul, and W. Marnane. Automatic detection of EEG artefacts arising from head

movements using EEG and gyroscope signals. Medical engineering & physics 35, (2013) 867–874.

[42] A. Acharyya, K. Maharatna, and B. M. Al-Hashimi. Algorithm and architecture for nD vector

cross-product computation. IEEE Transactions on Signal Processing 59, (2011) 812–826.

56

	Introduction
	Motivation

	Literature Review
	EEG Artefacts Detection and Removal
	Denoising
	Muscle Artefacts Detection and Removal
	Blink Artefacts Detection and Removal

	ARM Cortex Mo+ Overview
	ARM Cortex M0+
	About the Processor
	Features
	Interfaces
	Configurable Option

	Functional Description
	About the Functions
	Interfaces

	AMBA AHB-Lite Protocol Specification
	Introduction
	About the Protocol
	Components
	Master
	Decoder
	Multiplexor
	Slave

	Operation of AMBA AHB-Lite System
	Signal Description
	Global Signals
	Master Signals
	Slave Signals
	Decoder Signals
	Multiplexor Signals

	Transfer
	Basic Transfer
	Transfer Types
	Locked Transfer
	Transfer Size
	Burst Operation

	Bus Interconnect
	Address Decoding
	Bus Interconnection

	Slave Response Signaling
	Slave transfer responses

	Integration and Implementation
	Configuration Options
	Key Integration Task
	Functional Integration Guidelines
	Clocks
	Reset
	Interface

	Key Implementation Points
	SoC Development Results

	Results & Discussion
	Conclusion
	References

