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Abstract 

 

While attaining the objective of online optimization of complex chemical processes, 

the possibility of using the first principle based models is rarely an option, since such models 

demand large computational time. Surrogate models, which can emulate first principle based 

models, offer a credible solution to this problem by ensuring faster optimization. Thus, the 

entire challenge of enabling online optimization of complex models depends on construction 

of efficient surrogate models. Often, the surrogate building algorithms have certain parameters 

that are usually fixed based on some heuristic, thereby inviting potential errors in building such 

surrogate models. This work aims at presenting an elaborate study on the effect of various 

parameters affecting the predictability of Adaptive Neuro Fuzzy Inference Systems viz. (a) 

architecture of ANFIS, (b) sample size required by the ANFIS, (c) maximum possible accuracy 

of prediction, (d) a robust sampling plan. The ANFIS is then utilized as surrogates for a highly 

nonlinear industrial PVAc process, the optimization of which is then realised nearly 9 times 

faster than the optimization study using the expensive phenomenological model. A brief study 

was also conducted on another well-known class of surrogates, Artificial Neural Networks, for 

modelling of the Electrospinning process. 

 

Index Terms— ANFIS, nonlinear models, Online optimization and control, Parameter in 

surrogate construction, Surrogate models, PVAc process, ANNs, Electrospinning process. 
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Chapter 1 
 

Introduction 

 

 Modern technologies demand for optimization of processes to ensure their practical 

implementation in the industrial scale. Owing to the usage of robust first principle models, 

which try to capture the dynamics of reaction networks in a polymer industry or a model 

handling the wake effects or turbulence in fluid flow, etc., process modelling and optimization 

of complex industrial problems turn out to be a rigorous task. The first principle models involve 

solving of several nonlinear coupled ordinary and partial differential equations (ODEs and 

PDEs) [1] thereby compelling the usage of time consuming simulation packages such as 

Differential Algebraic Equations solvers (DAE), Computational Fluid Dynamics (CFD) and so 

on. The inherent complexity of these models considered for optimization forms the genesis for 

the large computational time consumed by the optimizer, thus compelling the entire process to 

run over several days or months [2]. The problem increases by multiple folds when the 

considered system is multi-dimensional in nature (say n dimensions) with optimization 

formulation involving multiple conflicting objective functions instead of one. The conflicting 

nature of objective functions results in a set of non-dominating solutions known as Pareto-

Optimal (PO) solutions, which are mostly obtained using a multi-objective evolutionary or 

classical algorithm. A single solution is chosen from the Pareto optimal set based on some 

higher order information, often provided by the decision maker [3]. The solution obtained in 
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such a way aims at enabling a decision support system to program and simulate the given 

process in an optimal fashion. Industrial sectors practically implement this concept of online 

optimization only when the combined functioning of optimizer and controller is realised in real 

time of the live process. The tremendous industrial growth and ever expanding demand over 

the last decade have created strong need for the solutions, which could cater multiple objectives 

at the same time. This requires solving the underlying multi-objective optimization problem 

(MOOP). Till date, owing to the advent of fast computing machines, the ability of modern 

evolutionary methods for solving the MOOP has remained unparalleled [4]. On the other hand, 

due to the predominant condition, wherein lack or expensive computation of gradient 

information of the complex models has become a common scenario, the modern evolutionary 

optimization techniques have gained enormous prominence over their classical counterparts, 

which provide every future course of movements depending on the current gradient 

information [3]. The procedure of solving the MOOP by the robust evolutionary techniques, 

which primarily work with population of candidate solutions, necessitates multiple function 

evaluations in order to generate those solutions required in the optimization process [5]. These 

aspects together make the concept of online optimization a far-fetched impractical concept 

confined to theory, which cannot be realized practically unless the optimization happens in real 

time. 

The key to this problem lies with fast and accurate surrogate models, which essentially are 

data based models trying to emulate the given complex first principle or physics based models. 

These surrogates then replace the original physics based models in the optimization algorithm 

thereby shielding them from the optimizer while generating the candidate solutions. With 

surrogates in place, the entire optimization algorithm may proceed in a fast manner thus 

enabling a step towards online optimization. In spite of displaying immense applicability in 

scientific and engineering domains, the data-based modelling still has large amount of 
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unexplored potential, when unleashed would enable fast and efficient methods of modelling, 

eliminating the practical issues associated with the physics based models such as stability, 

convergence, large computational times, feasibility, etc. Particularly, the thrust lies with 

enabling the state-of-the-art data based modelling approachess such as Kriging Interpolators 

(KI) [9], Artificial Neural Networks (ANNs) [16] and Support Vector Machines (SVM) [6], to 

capture the voluminous information about the system or process by incorporating the easily 

available knowledge base in the form of human experience [11]. On the other hand, credible 

amount of research put in Fuzzy Information Systems (FIS) over the past few years [11] has led 

to the development of robust inferencing engines which can efficiently model the available 

knowledge base using a set of simple fuzzy rules. However, they remain incapable of learning 

from crisp data set. Recent works [23,24] reported in the literature are aimed at exploiting the 

advantage of knowledge based models such as FIS and data-based models such as ANNs to 

develop the Adaptive Neuro Fuzzy Inference Systems (ANFIS) that can learn from crisp data 

apart from being able to incorporate the available expert knowledge. ANFIS is one of the 

prominent candidates of surrogate models which has the ability to combine the benefits of 

Neural Networks and Fuzzy Inference system [12]. An adaptive neuro fuzzy architecture 

consists of a feed forward multi layered network where each node performs a particular 

function on the incoming signals as well as a set of parameters pertaining to this node.  

Consider a system having two inputs x and y and one output z. For a first-order Takagi-

Sugeno fuzzy model, a common rule set with two fuzzy if-then rules is the following: 

 Rule 1: If x is A1 and y is B1, then f1=p1x+q1y+r1; 

 Rule 2: If x is A2 and y is B2, then f2=p2x+q2y+r2. 

The corresponding equivalent ANFIS architecture is as shown in Fig.1. The description of 

each the layers is given below [12]. 

http://www.bindichen.co.uk/post/AI/takagi-sugeno-fuzzy-model.html
http://www.bindichen.co.uk/post/AI/takagi-sugeno-fuzzy-model.html
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Fig. 1. Structure of ANFIS 

Layer 1: Every node i in this layer is an adaptive node with a node function as shown below: 

                                         

Here x (or y) is the input to node i and Ai (or Bi-2) is a linguistic label (such as "small" or 

"large") associated with this node. In other words, O1,i is the membership grade of a fuzzy set A 

( =A1 , A2 , B1 or B2 ) and it specifies the degree to which the given input x (or y) satisfies the 

quantifier A. Here the membership function for A can be any appropriate parameterized 

membership function such as the generalized bell function: 

                                              

where {a, b, c} is the parameter set. As the values of the parameters change, the shape of the 

bell-shaped function varies. Parameters in this layer are called premise parameters. 

Layer 2: Every node in this layer multiplies the incoming signals and sends the output signal 

to the next layer. In general, any other T-norm operator that performs fuzzy AND can be used 

as the node function in this layer. Each node output represents the firing strength of a rule.  

http://www.bindichen.co.uk/post/Fundamentals/bell-shaped-function.html
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Layer 3: In this layer, the ith node calculates the ratio of the ith rule's firing strength to the sum 

of all rules' firing strengths. The outputs of this layer are called normalized firing strengths. 

                                    

Layer 4: Every node i in this layer is an adaptive node with a node function represented as: 

                                          

where 𝑤̅ 𝑖 is a normalized firing strength from layer 3 and {pi, qi, ri} is the parameter set of this 

node. Parameters in this layer are referred to as consequent parameters. 

Layer 5: The single node in this layer computes the overall output as the summation of all 

incoming signals: 

                                    

Thus an adaptive network that is functionally equivalent to a Sugeno fuzzy model has been 

constructed. 

Apart from the network structure, the sample size required for training also effects the 

predictability of the network significantly in accordance with the network architecture [12]. 

Thus, there is strong obligation to device a logical approach to design the architecture of a 

given network, simultaneously, along with sample size determination. With this backdrop, we 

can clearly say that the surrogate building algorithm is governed by several parameters whose 

values are usually fixed based on some heuristic, thus inviting potential errors and credible 

variations in the predictability of the surrogates. Also, any extrapolation out of the n-
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dimensional input space calls for re-construction of the surrogate model, which would require 

a significant amount of computational time. Thus, the surrogate building algorithm should be 

fast enough, apart from being parameter free to make the surrogate models universal and 

process of optimization online.  

In this work, the effect of several parameters governing the ANFIS surrogate building 

procedure has been studied. The work presents a sound basis and justification for the need of a 

novel parameter free surrogate building algorithm especially focusing on the automated design 

of configuration of ANFIS along with the simultaneous determination of the sample size 

required for maximizing the prediction accuracy, without over-fitting the network. The 

individual effect of each of the parameters like architecture, sample size, sampling plan, etc. 

on the aspects of predictability and parsimonious behaviour of the surrogate model has been 

investigated. An industrially validated model for Poly Vinyl Acetate (PVAc) process is 

considered for all the sensitivity analysis and optimization studies. A comprehensive 

comparative study between the results obtained using several ANFIS surrogates obtained by 

varying the aforementioned parameters, is presented in details. This article contains the 

following sections: the Introductory section which is followed by the Formulation section 

comprising a detailed description of the PVAc model and the ANFIS sensitivity analysis. This 

is then followed by the Results and Discussions section before concluding the work in the 

Conclusion section. The last chapter of this article deals with the modelling and optimization 

of electrospinning process using ANNs as surrogates. 
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Chapter 2 
 

Formulation 

2.1  Industrial problem – Modelling and Optimization of PVAc model   

2.1.1  PVAc kinetic model 

 Owing to the wide range of applicability of polymers at industrial scale, the major focus 

of research in this area has been over process modelling and optimization of long chain 

branched polymers. The kinetic mechanism for a batch free radical polymerization of vinyl 

acetate is as shown in Table 1 [1] where “n” represents the total chain length and 𝑃𝑏,𝑛 and 

𝐷𝑏,𝑛 indicate the corresponding live and dead polymer chains having “b” long chain branches. 

It is assumed that the dead polymer chains with a double bond have a concentration equal to 

some known fraction of the total number of dead polymer chains. The net rate of production 

of live polymer and dead polymer chains are represented in Table 2 [1]. This classification, 

based on long chain branching (LCB), results in a set of very large number of ODE-IVPs, 

which must be solved in order to obtain the Molecular Weight Distribution (MWD). 

Table 1: Radical chain reaction of PVAc polymerization 

1. Initiator Decomposition 
                     𝐼  

𝑘𝑑
→  2𝑃𝑅∎ 

2. Initiation 
                  𝑃𝑅∎ +𝑀 

𝑘𝐼
→ 𝑃0,1 

3. Propagation 
𝑃𝑏,𝑛 +𝑀 

𝑘𝑝
→  𝑃𝑏,𝑛+1 
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4. 

5. 

Chain transfer  

 To monomer 

 To solvent 

 

𝑃𝑏,𝑛 +𝑀 
𝑘𝑓𝑚
→   𝐷𝑏,𝑛 + 𝑃0,1 

           𝑃𝑏,𝑛 + 𝑆 
𝑘𝑓𝑠
→  𝐷𝑏.𝑛 + 𝑃0,1 

6. Reaction with terminal double bond 𝑃𝑏,𝑛 + 𝐷𝑟,𝑚  
𝑘𝑑𝑏
→  𝑃𝑏+𝑟+1,𝑛+𝑚 

7. Chain transfer to polymer 
𝑃𝑏,𝑛 + 𝐷𝑟,𝑚  

𝑘𝑓𝑝
→  𝐷𝑏.𝑛 + 𝑃𝑟+1,𝑚  

 

8. 

9. 

Termination by 

 Combination 

 Radical disproportionation 

 

𝑃𝑏,𝑛 + 𝑃𝑟,𝑚  
𝑘𝑡𝑐
→  𝐷𝑏+𝑟,𝑛+𝑚 

𝑃𝑏,𝑛 + 𝑃𝑟,𝑚  
𝑘𝑡𝑏
→  𝐷𝑏,𝑛 + 𝐷𝑟,𝑚 

 

Table 2: Rate of production of Live and Dead Polymer chains 

 

Live polymer 

Chain 

 

Dead 

Polymer 

Chain 

 

 

 

A moment based modeling was taken up for each class of branched polymer where the 

0th, 1st and 2nd ordered moments for live and dead polymers of each class were derived  as 

shown in Table 3.This avoids the complication involved in solving such a large number of ODE-
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IVPs. The number of classes for constructing the moments was carefully chosen ensuring that 

the summation of first moments of each class remains equivalent to the overall first moment 

of polymer. This has ensured the complete construction of overall MWD from MWD of 

individual moments, but resulted in a large number of classes since the polymer was highly 

branched. The resulting large number (e.g. 285) of highly nonlinear ODE-IVPs demands 

relatively larger time for simulating a single run using the differential algebraic equation (DAE) 

solver LIMEX. This large time of execution greatly reduces the scope of online optimization 

of PVAc reaction process with LCB in real world applications. 

The Eqs. (1)–(4) define the polymer properties such as number average molecular weight 

(Mn), weight average molecular weight (Mw), polydispersity index (PDI) and branching 

index (Bn), respectively, in terms of moments obtained by solving the aforementioned set of 

ODEs. With these equations in place, if the batch monomer concentration (M), amount of 

initiator (I) and temperature of the isothermal batch polymerization process (T) are given as 

inputs, the model can then be solved to obtain Mn, Mw, Bn and PDI as outputs after a batch 

polymerization time of tpoly [1]. 

 

Table 3: 0th, 1st and 2nd Moments for Live and Dead polymers 
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 𝑀𝑛 = (
µ1

µ0
)𝑀𝑊𝑉𝐴  … (1)                                              𝑃𝐷𝐼 =  (

𝑀𝑤

𝑀𝑛
)         … (3) 

           𝑀𝑤 = (
µ2

µ1
)𝑀𝑊𝑉𝐴 … (2)       𝐵𝑛  =  ∑ ∑ (

𝑏𝑁𝑛,𝑏

µ0
)

𝑁𝑐
𝑏=0

∞
𝑛=1  … (4) 

2.1.2  Optimization Problem Formulation 

 The current industrial scenario demands the following three objectives which are 

conflicting in nature –  

i. Maximize the production of high molecular weight branched /cross linked polymer 

(Mw). 

ii. Minimize the time of operation (tpoly). 

iii. Maximize the branching index (Bn). 

The polymerization needs to be run for a longer time in order to achieve high molecular weight 

polymers. Therefore maximizing Mw and minimizing tpoly simultaneously leads to a conflicting 

scenario. The third objective of maximizing the Bn is a direct result of the current necessity in 

polymer industry. Thus a multi - objective optimization problem (MOOP-1) is formulated 

within this framework where the conflicting objectives are to maximize the Mw, minimize 

the tpoly and maximize the Bn. The optimization problem presented in the article is formulated 

to fulfill this desire and is shown in Table 4. 
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      Table 4 : Optimization Formulation 

Objective functions Constraints Decision Variables 

Maximize Mw Mw  ≥ (Mw) 
min mol/lit; 14Mmol/lit 10   

Maximize Bn PDI ≤ (PDI)max mol/lit; 0.00015Imol/lit 0.00003   

Minimize tpoly Conv ≤ 0.97{ Convgel (T) } 352KTK333   

where gel conversion is given by the correlation, Convgel (T) = 1.47×10-3×T+0.32 

The relationship between the process parameters (M, I and T) and the objectives 

pertaining to Mw, Bn and tpoly is provided by the first principle model described above. The 

process parameters form the decision variables for the optimization problem which aims at 

finding the optimum values of the same which would satisfy the objective functions. The 

upper and lower bounds on the decision variables M, I and T are obtained from the experimental 

study so that the search space remains feasible as well as practical [1]. The phenomenological 

constraints are in place for the molecular weight and polydispersity index. The constraint 

owing to gel formation is obtained by constructing an empirical relation from the experimental 

data of monomer con- versions at various temperatures [1]. In order to avoid the gel formation 

effect, the simulation was allowed to run upto a conversion level (expressed in %), which is 3% 

less than the gel conversion point (expressed in %). Population based real coded NSGA II 

framework [3] (number of population = 70, generations = 40, crossover probability = 0.9 and 

mutation probability = 0.1) has been used as optimization algorithm to solve this multi-objective 

optimization (MOOP) due to the advantage non-dominated sorting provides in establishing the 

wide spread PO front as compared to its counter parts in classical optimization. Since the 

reaction network is highly complicated, it usually consumes an overwhelming amount of time 

for obtaining a single input–output sample data as pointed out earlier. In order to optimize the 
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process, the optimizer is in need of such function evaluations to be carried out many times. 

Thus the target was to replace the original physics based model with a fast and accurate Sobol 

set based ANFIS model in optimization  algorithm  and  study  the  advantages  and  

disadvantages that surrogate based optimization gives in terms of computational time and 

accuracy. 

2.2  Surrogate building algorithm: ANFIS 

2.2.1 Practical Considerations in ANFIS 

The sheer experience of individuals is always susceptible to biased information and 

other practical errors which might result in sub-optimal solutions. Thus, fine tuning of 

membership functions is required when the given input-output data set is large enough. 

However, if the data set is too small then it is not worthwhile to further tune the MFs since we 

might lose any important information about the system. In such situations the membership 

functions must be kept fixed throughout the learning process. In a conventional fuzzy inference 

system, the number of rules is decided by an expert who is familiar with the system to be 

modelled. Each fuzzy rule can be viewed as a local description of the system under 

consideration. However, when there is no prior knowledge available which is usually the 

practical case, the number of rules is determined by examining the desired input-output data 

such that it can be able to capture the non - linearity present in the system. On a similar basis, 

the order of Sugeno fuzzy rules is considered as zero, first or any other higher order. The 

number of membership functions assigned to each input variable is chosen empirically based 

on the given data set. This scenario is much similar to that of ANNs where the minimum 

number of hidden layers is not known in advance for achieving a desired performance. The 

type of MF and the fuzzy T-norm operator as described in the introductory section has always 

been determined by a trial and error method until some desired accuracy is found. In this current 

work, the author proposes an elaborate study on the effect of architecture design on the 
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predictability of the network and provides an appropriate justification for the need of an optimal 

design of the ANFIS architecture which would enable the network to predict results with 

maximum accuracy.            

2.2.2 Accuracy of Prediction 

 Prior to modelling, the accuracy of the surrogate model which is a necessary parameter, 

needs to be specified by the decision maker. It is obvious that any decision maker would like 

to have a maximum value of accuracy for the surrogate model, which may come at the cost of 

large computational time and large number of sample points for training. With the dubious 

nature of this issue, the decision maker without any specific prior experience in the domain of 

surrogate modelling, would hesitate to provide a particular value of accuracy. This may not 

allow the algorithm to build a surrogate model capable of maximum predictability. Thus, there 

is a need to ensure that without providing a specific value of accuracy as an input to the 

algorithm, it must be able to build a surrogate model having maximum predictability. Accuracy 

of the predicted output of the network can be estimated using two well-known statistical 

measures [10]: 

 

i) Root mean square error: RMSE 

ii) Correlation coefficient R2 

𝑅2 = (
cov (y, ŷ)

√var(y)var(ŷ)
)

2

 

cov(y, ŷ) = nt∑ y(i)ŷ(i)
nt

i=0
− ∑ ŷ(i)

nt

i=0
∑ y(i)

nt

i=0
 

var(y) =  nt∑ y(i)2
nt

i=0
− (∑ y(i)

nt

i=0
)
2

 

where y is the original output coming from physics driven model or data and ŷ is the predicted 

output from the surrogate model. 
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2.2.3 Sampling plan or Design of Experiments (DOE) 

The sampling plan is an important aspect of the surrogate building algorithm as it 

directly influences the number of sample points, accuracy of prediction and architecture of the 

network. The sampling plan can be easily interpreted as a scheme of placing some arbitrary 

probes in an m-dimensional space to capture the behaviour of the model (m being the number 

of inputs). An ideal case would be to divide the entire space into grids and place a probe at 

every junction which leads to the full factorial sampling plan [17]. This will ensure maximum 

accuracy based on the precision of the grid size, but the number of probes required will be 

extremely large making it an impractical proposition. However, the ability to capture the 

dynamics of the system at every cross joint would certainly make the sampling plan uniform 

and such a sampling plan is thus said to have the feature of space-filling [10]. The characteristic 

trait of any efficient sampling plan should be able to probe the dynamics of the entire m-

dimensional input space with least possible function evaluations or in other terms least possible 

sample points. Several sampling plans exist in literature displaying the feature of space filling, 

but none of them reports of performing the task in least possible number of function 

evaluations. One such example is Latin Hyper-cube Sampling technique (LHS) [10, 15], which 

would ensure the space filling nature of the system but when prompted for an additional sample 

point, would generate a set of points, completely different from previous set constituting the 

sampling plan. This essentially abandons the previously collected sample points and calls for 

several new function evaluations. Sobol sampling plan [7], based on highly convergent Sobol 

sequence, is one sampling plan, which ensures both space filling attribute and maintains the 

sequence even if prompted for a new sample point. The projection of the distribution of 200 

sample points in 3-dimensional space obtained using the Sobol sampling plan is compared with 

the distribution of those obtained using LHS sampling plan and is presented in Fig 2. One can 

easily decipher qualitatively the enhanced uniformity and space filling nature of Sobol points 
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over the LHS points. A metric, called the φ (PHI) metric, proposed in literature [10, 21] of 

sampling techniques, measures the space filling attribute of any given sampling plan. Lower 

the value of this φ metric, better the space filling ability of the sampling plan. The space filling 

nature of both LHS and Sobol sampling plans are measured using this PHI metric for the same 

distribution of 200 points as given in Fig. 2 and the results are presented in Table 1. It is evident 

from Table 1 that Sobol sampling plan emerges out to be one of the best alternatives among 

the existing options. Thus, Sobol sampling plan is selected in this work for implementation in 

the surrogate building algorithm. 

 

Fig. 2: The distribution of 200 sample points using the a) Sobol sampling plan and b) LHS 

sampling plan. 

 

Table 5: Comparison of different sampling plans in terms of PHI metric and computational 

time for 200 sample points. 

Sampling Plan PHI metric measure Computational time 

LHS-200 205.367 588.69 seconds 

Sobol-200 201.939 0.0251 seconds 
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2.2.4 Sample size 

From the study of literature, it can be said that no proper rationale is devised to decide 

the number of data points required for training [19]. In most of the cases, the general rule of 

thumb of considering 70% of the available data for training is applied. Such kind of heuristic 

based assumption may cause the network to be either over-fitted or under trained because of 

the unavailability of any exact measure of the number of sample points required for training. 

One significant contribution in literature [22] showcases a novel algorithm for sample size 

determination of the given network. Their approach is based on the fact that the training error 

of the network is minimized by increasing the sample size. Although this is true, but the fact 

that the network might get over-fitted as the sample size is increased cannot be ruled out. Thus, 

in order to ensure the parsimonious nature of the network, they incorporated the K-fold model 

evaluation technique [25, 26] (with K = 10) along with a variant of LHS called the incremental-

LHS (i-LHS) sampling plan for sample size determination. Their algorithm starts with an initial 

guess value of the sample size, for a given architecture, which they proposed to consider 10 

times the number of dimensions in the model. The sample size is given to the i-LHS sampling 

algorithm, which then generates the training set and it is then divided equally into K-groups or 

folds. Out of the K available folds, one group is selected for validation and the remaining 

groups are used for training the network. A validation error is obtained, which is defined as the 

maximum of the absolute values of the deviations between original output and fitted quantities. 

The fold for validation can be considered in K different ways thereby resulting in K number of 

validation errors. A mean of those errors is thus considered and is denoted as the cross 

validation error of the current model (models are differentiated by the sample sizes). Then the 

sample size is incremented by a user defined value (say plus 10) and the entire procedure is 

repeated for this new model. A quantity is then evaluated for each iteration which is defined as 

the ratio of the differences of the cross validation errors of two consecutive iterations with the 
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difference in their corresponding sample size. This ratio is divided by the maximum value of 

such ratios found till the current iteration to obtain the measure called slope ratio percentage 

(SRP). If this SRP is less than some tolerance value which is again user specified (say 0.01), 

the algorithm is terminated and the current sample size is fixed as the final sample size. The 

essence of their algorithm in brief is to find a minima of cross validation error metric, which is 

a function of the sample size. One of the major drawbacks of this algorithm is the large 

computational time of K-fold based validation method. Another disadvantage is the extensive 

number of function evaluations deliberately called by the i-LHS sampling plan, as described 

previously.  

Hence, the real challenge in this study is to build ANFIS surrogate in place of the 

phenomenological model for this complex polymerization process along with simultaneous 

determination of sample size, sampling plan to predict maximum accuracy and carry out the 

optimization exercise using the surrogate model.  

2.3  ANFIS: The Algorithm and its functioning 

A Matlab source code has been developed for successful implementation and 

functioning of the ANFIS. In order to test the scope and applicability of any type of network, 

the code developed was a generic code which can practically take the following as inputs 

1. Any architecture in the form of a row vector where the entry in each column would 

correspond to the following: 

a. First column - Number of MFs assigned per input (m); varies from 1 to 4. 

b. Second column – Number of fuzzy rules; varies from m to 𝑚𝑛  where n 

indicates the dimensionality of the system. 

c. Third column – Type of MF; Gaussian, Bell or Triangular MF. 

d. Fourth column – Fuzzy T-norm operator; Product or Minimum. 

e. Fifth column – Order of FIS; first or second. 
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The code accepts the numerical values of 1, 2 or 3 depending on the choice of 

architecture to be implemented in the network (Table 6). 

Table 6. Choice of variables for ANFIS architecture 

 

 

 

 

 

2. The data set required for training and validation needs to be sent into the code to 

ensure proper training and validation. The code can accept any number of training 

and validation sample points. 

The outputs from the code are listed below: 

1. Original outputs and ANFIS predictions - The predicted values of the outputs 

corresponding to the inputs in the validation set are sent as outputs of the ANFIS 

code along with the original outputs of the model which were sent as validation set. 

2. Root Mean Square Error (RMSE) 

3. R2 

4. Premise and consequent parameters of the trained neuro fuzzy network which will 

enable it to interpolate any new value. 

The working of the code, as per the sequential flow of the steps, is described further in the 

article. 

Variable 

name 
             Choice 

Fuzzy 

operator 
1 – Product, 2 - Minimum 

Order of FIS 1 – First order, 2 - Second order 

Type of MF 

1 – Triangular MF 

2 – Gaussian MF 

3 – Bell shaped MF 
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1. Normalization of the training data: The training data needs to be normalized before 

it is utilized for training the given network. This ensures scaling of all the input data 

in the range [0, 1], which is similar to the range of membership function values. 

2. Declaration and initialization of premise parameters: The number of premise and 

consequent parameters keep changing based on the architecture of the network. 

Since there is no human expertise available, the premise parameters are declared 

and initialized, to a suitable value, once the architecture is sent to the code as input. 

These initial values must satisfy ԑ - completeness with ԑ = 0.3, which means that 

given a value of input ‘x’ in the operating range, there is always a membership value 

µ(x) ≥ ԑ. This constraint enables sufficient overlapping and smooth transition from 

one fuzzy subset/linguistic variable to another. 

3. Network Training and Validation: Evolutionary Genetic Algorithm (GA) [4] is 

adopted as a learning rule for updating the premise and consequent parameters of 

ANFIS. After training the network using GA, the network predictions are validated 

using a set of 200 sample points obtained using the LHS sampling plan. The 

corresponding RMSE and R2 values are sent as outputs. 
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Chapter 3 

 

Results and Discussions 

  

 

The data for surrogate building was procured from a physics based model capable of 

predicting the overall MWD of Polyvinyl Acetate (PVAc) [1] which was developed using 

a validated reaction network describing the kinetics of PVAc. The MOOP formulation 

presented in Table 3 is solved using the real and binary coded NSGA II algorithm whose 

credentials are given in Table 7. Although the NSGA II algorithm was run for 100 generations, 

it was observed that the PO front was saturated at generation number 40 with each generation 

containing 70 populations. Thus, the total function evaluations required to perform the 

optimization run with original model in place, were nearly 2800. The results of the current 

work are reported below in the sequence of the simulations conducted. The sampling plan is 

fixed to Sobol for the reasons mentioned previously. 

Table 7: NSGA II parameters for solving the MOOP problem of PVAC system 

    

Parameters Values 

Population Size 70 
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Number of Generations 100 

Crossover probability 0.9 

Mutation probability 0.01 

  

A. Effect of variation of architecture and exploring multi-layered networks 

The architecture was varied along with variations in sample size and the surrogate 

ANFIS models thus built are reported in Table 8. For each of the architectures considered for 

investigation, the sample sizes were also varied within a range of 30 to 250. Several possible 

architectures (nearly 200) were investigated over a long period of time and the potential results 

which could serve with better accuracy are only reported in Table 8. N indicates the total 

number of premise and consequent parameters n indicates the sample size. As mentioned 

earlier, more number of fuzzy rules (second column) and higher order FIS (fourth column) 

enable to capture the nonlinearity of a system. Clearly, from Table 8, one can observe that this 

is not always true since higher number of parameters may have led to over fitting of the model 

thereby reducing its prediction accuracy R2. When compared with the architecture [3-2-2-2-2] 

(R2 = 0.810), the architecture [3-1-2-1-1-2] is predicting the results far better (R2 = 0.972) even 

with less sample size. Therefore, in the absence of expert data, we need to find the optimum 

number of rules and order of the system from the given dataset, which can predict maximum 

accurate results without overfitting the network.  

On varying the type of membership function, we can see that Gaussian or bell shaped 

MFs predict better results than linear or triangular MFs, which implies that the system is 

nonlinear. Regarding operator, no particular fuzzy T-norm operator evolves as a clear winner 

thereby suggesting that both the minimum and product operator should be explored prior to 

training the networks. Although this study corresponds to only output 1, a simultaneous study 
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was also performed for outputs 2, 3 and 4. Thus, from these results, a clear rationale is observed 

for devising a logical approach for optimal design of the architecture of ANFIS networks. 

Table 8: Effect of Architectures on network predictability for output 1 

Number of 

MFs/input   

No. of 

rules 

choice  

Choice 

of Fuzzy 

operator   

Order 

of FIS   

Choice 

of 

Type 

of MF     

R2 N n 

3 2 2 2 2       0.810 288 72 

2 2 2 1 1       0.889 50 108 

1  2 2 2 1 0.902 19 189 

4 1 1 2 2 0.922 64 90 

2 1 1 2 2 0.936 32 54 

3  1 2 1 3 0.954 39 177 

4 1 1 2 3 0.968 76 159 

3 1 2 2 3 0.965 57 93 

3 1 2 1 2 0.972 30 57 

3 1 2 2 2 0.969 48 66 

2 1 2 1 3 0.973 26 57 

1 1 2 2 2 0.975 16 72 

2 1 1 1 3 0.964 26 69 

1 2 1 2 3 0.988 19 72 

1 1 1 1 3 0.984 13 105 

1 1 2 1 2 0.963 10 42 
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B. Effect of Variation of Sample Size on predictability of an ANFIS. 

In order to study the effect of sample size on the prediction accuracies of the networks, one 

of the architectures with maximum prediction accuracy was selected from Table 8 and its 

predictability was studied by varying the sample size. The results of this study are reported in 

Table 9. Here, one can observe that initially, as the sample size increases, the prediction 

accuracy of the architecture also increases. But after sample size 90, the improvement slows 

down and reaches saturation, and after sample size 102, it starts decreasing. The overfitting of 

the network might be a reason for this anomaly. Since the R2 measured is with respect to the 

validation set, the validation error decreased as the sample size for training increased till the 

network got over-fitted. Thereafter, the validation error again increased indicating that the 

network is over-fitted to the training data. Thus, the sample size for training cannot be 

arbitrarily given to the network but a quantitative measure should be devised to evaluate 

systematically the sample size required for allowing a given architecture to predict till 

maximum accuracy possible without over-fitting the network.  

 

 

 

2 1 1 1 2 0.983 20 72 

3 1 1 2 2 0.985 48 99 

1 2 2 2 3 0.988 19 84 

1 2 2 1 2 0.990 10 63 

1 2 1 2 2 0.995 16 45 

1 2 2 2 2 0.997 16 93 

2 1 2 2 2 0.998 32 90 



24 
 

Table 9: Effect of Sample size on network predictability for output 1 

 

Number 

of 

MFs/input   

No. of 

rules 

choice   

Choice 

of Fuzzy 

operator   

Order 

of FIS   

Choice of 

type of 

MF     

R2 N n 

2 1 2 2  2 0.895 32 36 

2 1 2 2  2 0.933 32 42 

2 1 2 2  2 0.964 32 48 

2 1 2 2  2 0.940 32 54 

2 1 2 2  2 0.956 32 60 

2 1 2 2  2 0.969 32 66 

2 1 2 2  2 0.975 32 72 

2 1 2 2  2 0.984 32 78 

2 1 2 2  2 0.992 32 84 

2 1 2 2  2 0.998 32 90 

2 1 2 2  2 0.9978 32 96 

2 1 2 2  2 0.9976 32 102 

2 1 2 2 2 0.983 32 108 

2 1 2 2 2 0.942 32 114 

 

C. Process optimization using ANFIS surrogates 

 These results justify the need for a parameter free ANFIS surrogate building algorithm 

which can intelligently devise the architecture i.e., number of rules, membership function, fuzzy 

operator and order of FIS, along with simultaneous determination of sample size such that, the 
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network predicts with maximum accuracy without being over-fitted. However, with the help of 

the laborious hit and trial routine, four architectures with appropriate sample size were selected 

for emulating the outputs of the PVAc model. These surrogates with their credentials are 

presented in Table 10. 

Table 10: ANFIS surrogates for PVAc model 

Output Architecture 

(Input partitions –

Rules – Operator -

Order - MF) 

N R2 Sample 

size 

Total 

function calls 

Mw [2-2-2-2-2] 32 0.998 90  

   120 + 200 

(training + 

validation set) 

= 320 

Bn [1-2-2-2-3] 19 0.998 60 

tpoly [3-2-1-2-2] 48 0.995 120 

PDI [2-2-1-2-2] 32 0.9964 80 

 

                       

Fig. 3: Parity plot for Output 1 using the architecture = 2-2-2-2-2 with R2 = 0.998  

obtained using K-fold sampling technique 
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Fig. 4: Parity plot for Output 2 using the architecture = 1-2-2-2-3 with R2 = 0.9977 

obtained using K-fold based technique 

 

 

 

Fig. 5: Parity plot for Output 3 using the architecture = 3-2-1-2-2 with R2 = 0.995 

obtained using K-fold based technique 
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             Fig. 6: Parity plot for Output 4 using the architecture = 1-2-2-2-3 with R2 = 0.9964  

obtained using K-fold based technique 

 

 

Fig. 7: PO front comparison of optimization using ANFIS surrogate built by K-fold 

based sampling method and original first principle PVAc model 
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The corresponding parity plots are presented in Figs. 4, 5, 6 and 7. The ANFIS surrogate 

based optimization has reduced the number of function evaluations of the first principle model 

by nearly 9 (2800/320) times when compared with conventional optimization approach. The 

ANFIS surrogate models obtained for all the outputs are then allowed to replace the original 

PVAc model in the conventional optimization algorithm. The NSGA II simulation runs were 

completed in no time and the final Pareto Optimal front comparisons are shown in Fig 8. For 

the sake of obtaining a clear cut qualitative estimation of the result observed in Fig 8, the inputs 

of the PO points obtained using the ANFIS surrogate based optimization are sent to the original 

polymerization model and the corresponding outputs are compared. The ANFIS surrogates 

were able to predict the global Pareto optimal front with 97% accuracy. This has enabled online 

optimization of the PVAc-LCB complex model. All the simulations were carried out in Intel(R) 

Xeon(R) CPU E5-2690 0 @ 2.90GHz (2 processors) 128 GB RAM machine. 

D. Knowledge Discovery 

 In this case study, since there was no availability of expert knowledge, the author has 

extracted the knowledge (fuzzy rule set) from the given input-output data. This aspect can be 

justified by considering an ANFIS architecture consisting of 8 rules for the 3-dimensional 

PVAc system. Gaussian membership functions are considered with product T-norm operator 

for a first order FIS.  
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If M is LOW, I is LOW and T is LOW then f(1) = p1x + q1y + r1z + s1 

If M is LOW, I is LOW and T is HIGH then f(2) = p2x + q2y + r2z + s2 

If M is LOW, I is HIGH and T is LOW then f(3) = p3x + q3y + r3z + s3 

If M is LOW, I is HIGH and T is HIGH then f(4) = p4x + q4y + r4z + s4 

If M is HIGH, I is LOW and T is LOW then f(5) = p5x + q5y + r5z + s5 

 If M is HIGH, I is LOW and T is HIGH then f(6) = p6x + q6y + r6z + s6 

If M is HIGH, I is HIGH and T is LOW then f(7) = p7x + q7y + r7z + s7 

If M is HIGH, I is HIGH and T is HIGH then f(8) = p8x + q8y + r8z + s8 

The premise parameters of the Gaussian membership functions, which were updated using 

the genetic algorithm [1], form the two fuzzy subsets - LOW and HIGH for each of the 3 

input variables. The outputs of the all the fuzzy rules are represented as a first order function 

of the inputs x, y and z and the coefficients of the function (p, q, r and s), which are the 

consequent parameters, are obtained using the learning algorithm. The overall output (f) is 

the summation of the individual outputs of each fuzzy rule: f =∑ 𝑓(𝑖)8
𝑖=1  . 

 Let us consider that an industry desires to have a polymer of molecular weight 

3.2694*106 g/mol (normalized Mw = 0.9815), Bn = 1.2217 (normalized Bn = 0.0922) in time 

7.204*104 sec (normalized tpoly = 0.3320). In order to obtain the desired output, the decision 

variables M, I, T that need to be considered are obtained as shown below: 

 (p1+p2+….p8) M + (q1+q2+….q8) I + (r1+r2+…r8) T + (s1+s2+….s8) = 0.9815 

 (p1+p2+….p8) M + (q1+q2+….q8) I + (r1+r2+…r8) T + (s1+s2+….s8) = 0.0922 

 (p1+p2+….p8) M + (q1+q2+….q8) I + (r1+r2+…r8) T + (s1+s2+….s8) = 0.3320 

On substituting the values of p, q, r and s for each of the outputs, we obtain the following 

set of equations: (0.443) M + (0.557) I + (0.648) T + (0.795) = 0.9815  

   (0.126) M + (0.243) I + (0.114) T + (0.024) = 0.0922 

   (0.219) M + (0.321) I + (0.532) T + (0.227) = 0.3320 
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On solving these three equations, the values of M, I and T are obtained and thus the eight 

rules can be extracted based on their respective LOW and HIGH membership function values. 

Depending on the degree of fuzziness/MF values, the decision maker can choose any one rule 

from the extracted rules such as: “M high, I low and T low”. This implies that, even-though 

the expert rule base was not available initially, the ANFIS surrogate model was able to extract 

knowledge from the given input-output dataset.  
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Chapter 4 

 

Electrospinning Process 

4.1 Modelling and Optimization formulation  

Electrospinning process is a simple, versatile and widely used method for the 

production of nanofibers at a large scale. A large of polymers have been electro spun into nano 

fibres. These fibres have been successfully applied in various fields, such as, nano catalysis, 

tissue engineering scaffolds, protective clothing, filtration, biomedical, pharmaceutical, optical 

electronics, health-care, biotechnology, defence and security, environmental engineering and 

so on due to their higher surface area and smaller pore size as compared to the regular fibres 

[28]. Overall, this is a relatively robust and simple technique to produce nanofibers from a wide 

variety of polymers. 

 

Fig. 8: Electrospinning setup 
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Unlike PVAc system, electrospinning process does not have a standard first principle based 

model. It is necessary to build a mathematical model for this process as it not only helps in 

understanding the effects of process parameters, but also reduces the burden of conducting time 

consuming experiments to estimate the features of the product under new set of conditions. 

Additionally, this would help to predict the results under a new combination of parameters and 

it is also beneficial for the control and optimization of process parameters. The governing 

parameters of the electrospinning process, which are effective on the macroscopic nanofiber 

properties are volumetric flow rate, polymer concentration, the applied voltage, syringe 

diameter and the distance between the collector and tip of the syringe [28]. Here, the modelling 

could have been performed in two ways: physics based modelling or data based modelling. 

Since the physical process of electrospinning involves phenomena of multi-physics with phase 

changes, building a physics based model could be extremely challenging since each of these 

physics driven sub-processes could have their individual modelling challenges. So, it has been 

decided to take the root of data based modeling and the real challenge in this study is to build 

a data based / surrogate model for this process. The author has considered the above mentioned 

process parameters as inputs to the system and the diameter of the fiber and its corresponding 

features are obtained as outputs from the system for modelling (Table 11).  

Table 11: Inputs and Outputs required for modelling electrospinning process 

Inputs Range of Inputs 

(Minimum:gap:Maximum) 

Outputs 

Syringe diameter(mm) 18:2:26 Diameter of the fiber 

Voltage (KV) 8:1:15     

Length of fiber - Short /      

                                Long 

Distance from collector 

(cm) 

5:1:15 

Flowrate of polymer 

(microliter/min) 

2:2:10  
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Concentration of 

polymer (wt %) 

3:1:8 Shape of the fiber - Bead / 

fiber / Beaded fiber 

 

Experimentation was performed over the entire range of input variables in order to obtain the 

training and validation sets required for modelling. Polyacrylonitrile (PAN) was used as the 

polymer solution. After building surrogate model with maximum accuracy, the next task is to 

find the optimum diameter of the fiber. This might be a single objective optimization problem 

but the main challenge lies in building the equivalent surrogate model for the process. 

4.2 Surrogate building algorithm - Artificial Neural Networks 

4.2.1. Introduction 

ANNs are mathematical models, which try to mimic the functioning of biological neural 

network of human brain. A biological neuron and its mathematical counterpart, called the node, 

are described in Fig. 9. They are widely acknowledged for their immense applications in pattern 

recognition problems, image processing and many other chemical engineering applications.  

 

 

Fig. 9. Basic Structure of a neuron and node  
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The number of nodes in a single layer and the number of layers in the network together 

constitute the architecture of the network. One of the flaws with implementation of the ANNs 

is the inability to optimally design the architecture of the network. The architecture of the 

network is obtained based on the method of hit and trial, which often leads to an impasse.  

One rule of thumb in this heuristic based design, applied widely in order to reduce the 

complexity of aforementioned hit and trial procedure, is the assumption that for any given data, 

a single hidden layer with some arbitrary number of nodes would be sufficient to predict any 

model with reasonable accuracy [14]. The potential of ANNs lies within their ability to 

segregate the data into exclusive regions. This can be visualised geometrically by considering 

one layer as an m-dimensional hyper-plane trying to separate out the existing data into two sub 

spaces, where m is the number of inputs feeding to that layer. A multi-layer perceptron network 

may, therefore, provide more accuracy for an unseen data, which might be linearly inseparable 

[8]. This rationale justifies for the fact that the aforementioned assumption may not be true in 

all cases. As mentioned in the previous chapters, the sample size required for training also 

effects the predictability of the network significantly in accordance with the network 

architecture [8]. Some of the prominent contributions in the literature are mixed integer 

nonlinear programing (MINLP) approach [13], the Akaike Information Criteria (AIC) [15], 

etc. to come up with the optimal design of the architecture. However, apart from being 

computationally expensive, none of them addressed the problem of simultaneous design of 

architecture and sample size determination. 

4.2.2 Artificial Neural Network: The Algorithm  

A Matlab source code has been developed for successful implementation and 

functioning of the ANNs. In order to test the scope and applicability of the multi-layered 

perceptron networks, the code developed was a generic code which can practically take the 

following as inputs 
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1. Any architecture in the form of a row vector where the entry in first column would 

correspond to number of inputs, the entry in last column would correspond to 

number of outputs while the number of entries in between first and last column 

would determine the number of hidden layers. The values in these in between 

entries will determine the number of nodes in the hidden layer. 

2. A numerical value for determining the transfer function. The output layers were all 

activated by the linear transfer function, but the activation of the hidden layers needs 

to be specified prior to the design of neural networks. Thus the code accepts the 

numerical value of 1 for implementing the tan sigmoidal activation function while 

the numerical value 2 would trigger the implementation of log sigmoidal activation. 

3. The data set required for training and validation needs to be sent in to the code to 

ensure proper training and validation. The code can accept any number of training 

and validation sample points. 

The outputs from the code are listed below: 

1. Original outputs and ANN predictions. The predicted values of the outputs 

corresponding to the inputs in the validation set are sent as outputs of the ANN code 

along with the original outputs of the model which were sent in as validation set. 

2. RMSE 

3. R2 

4. Weights of the trained neural network which will enable it to interpolate any new 

value. 

As the number of nodes in the neural network increases, its ability to interpolate with accuracy 

also increases. Evidently, the increase in number of parameters help in capturing the nonlinear 

behavior of the system. However, this increase in accuracy comes at the cost of obtaining large 
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sampling data and time for training the increased number of parameters in the network. But 

large sample set for training leads to the problem of over fitting. Thus the goal while designing 

a neural network is to find a simple ANN structure (less number of nodes) that can fit a given 

set of data with maximum accuracy. This conflicting nature of objectives led to the formulation 

of a multi-objective optimization problem (MOOP-2), where the aim is to maximize the 

accuracy of the network while simultaneously minimize the total number of nodes in the 

architecture. The functioning of this multi-objective optimization algorithm is clearly described 

in [27]. 

4.3 Results and Discussions 

The sampling plan is fixed to Sobol for the reasons mentioned previously. K-fold 

sampling, which was described in the first part of this article, is used for determining the sample 

size required for training the model. The architecture was varied along with variations in 

sample size and the surrogate ANN models thus obtained using the above algorithm are 

reported in Table 12. The number of layers were varied up to a maximum value of 3 and number 

of nodes per each layer were varied up to 8, thus leading to 512 possible architectures. For each 

of the architectures considered for investigation, the sample sizes were also varied within a 

range of 30 to 200. Several possible architectures (nearly 200) were investigated over a long 

period of time and the potential results are reported below. The entries in the columns of the 

Table are N1 – number of nodes in hidden layer 1, N2- number of nodes in hidden layer 2, N3 

– number of nodes in hidden layer 3, N_TF – Numerical indicator for transfer function where 

1 indicates tan sigmoidal activation and 2 indicate log sigmoidal activation, N indicates the 

total number of nodes which is the sum of entries in first three columns and n indicates the 

sample size. Clearly, one can observe that none of the architectures were able to predict the 

output of the system with good accuracy. Thus from these results, the following points can be 

deduced:  
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1. Owing to the fact that there is no existing first principle model for the electrospinning 

process, it can be said that the process is highly nonlinear and complex. This implies 

that more number of data points may be required for modelling this complex process. 

2. Removing the noise present in the experimental data might help to improve the results 

upto some extent. 

All this study corresponds to only output 1 and a simultaneous study was also performed for 

outputs 2 and 3. The prediction accuracy was very low for all the outputs. 

 Table 12: Effect of Architectures on network predictability for output-1 

N1 N2 N3 N_TF R2 N n 

3 5 6 2 0.364 14 200 

4 7 0 2 0.901 11 176 

1 1 6 1 0.670 8 125 

6 4 4 1 0.645 14 179 

8 7 2 1 0.682 17 200 

1 1 5 2 0.324 7 170 

4 4 3 2 0.354 11 197 

2 2 0 2 0.349 4 134 

7 5 2 1 0.657 14 164 

8 6 2 2 0.395 16 200 

5 6 2 1 0.682 13 200 

1 1 6 1 0.677 8 137 

6 3 7 2 0.343 16 170 
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6 4 2 1 0.652 12 170 

3 5 0 2 0.537 8 101 
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Chapter 5 

 

Conclusion 

  

5.1 ANFIS Surrogate building algorithm – PVAC system 

In this work, the author has presented a comprehensive research over design of ANFIS 

surrogate models for enabling the optimization of complex industrial process by making use of 

surrogate based optimization methods. ANFIS are specifically selected due to their ability to 

incorporate the actual physics of the system along with black box modelling. Since the 

predictability and efficiency of the surrogate model play a dominant role in success of surrogate 

based optimization, the effect of various parameters on ANFIS surrogate building process has 

been studied. It was found that the parameters viz. (a) architecture of ANFIS, (b) sample size 

required by the ANFIS, (c) maximum possible accuracy of prediction and (d) a robust sampling 

plan are the major parameters which effect the surrogate building process. Along with that, the 

author also studied and justified the fact that, in case of no expert data, choosing the maximum 

possible fuzzy rules is not always the right approach for capturing the dynamics of the system. 

Therefore, it has been suggested that there is a need for a novel parameter free ANFIS surrogate 

building algorithm, which can estimate all the parameters automatically, thus eliminating the 

human intervention ANFIS design. The prime objective of this study is to understand the 

functioning of the ANFIS and layout a blue print for the intelligent design of Neuro Fuzzy 
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networks. The ANFIS surrogate models are utilized to emulate a highly complex PVAc-LCB 

model consisting of 3 inputs and 4 outputs. An optimization problem was solved using the 

ANFIS surrogates in place, for finding the best process conditions to maximize the branching 

index, molecular weight in minimum polymerization time. The results of the surrogate based 

optimization revealed that the surrogate based optimization method could reduce the function 

evaluations by nearly 9 times as compared to conventional approach, thereby making way for 

real time optimization of the complex PVAc model.  

 

5.2 ANN Surrogate building algorithm – Electrospinning process 

      In the previous chapter, the author has presented a brief research over design of ANN 

surrogate models for enabling the modelling and optimization of electrospinning process 

by making use of surrogate based optimization methods. ANNs are specifically selected 

due to their robustness and inherent potential to capture the behavior of any complicated 

nonlinear system. However, in this case-study, the inability of ANN based surrogate 

building algorithm for the prediction of maximum accurate results might be due to 

insufficient number of sample points for training the surrogate model or the experimental 

input output data may contain noise which needs to be pre-filtered before sending it to the 

model.  

        In order to test the robustness of this algorithm, a highly non-linear test function 

(Ackley function) was considered to perform ANN based interpolation. From the Fig.12, it 

is clear that the predicted ANN model was able to mimic the complicated function with 

high accuracy. 

 Ackley function:  

 

 

f(x, y) = {−20 exp (−0.2√0.5(x2 + y2))

− exp(0.5 (cos(2πx) + cos(2πx)) + e + 20} 
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Fig. 10: Comparison of ANN based Interpolation of Ackley function with original function 
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Future Work 

 

1. To develop a novel parameter free ANFIS surrogate building algorithm for intelligent 

design of neuro fuzzy networks along with simultaneous estimation of parameters such 

as sample size, sample plan, membership function and so on to enable it to emulate with 

maximum accuracy without being over-fitted. 

2. To apply the proposed surrogate building algorithms to build ANFIS surrogate models 

for emulating several industrially validated models and enable the online optimization 

of such complex models. 

3. To apply the proposed algorithm to build ANFIS models for an experimental setup and 

ensure the successful working of the proposed ANFIS surrogate building algorithm 

with experimental setups.  

4. To successfully eliminate the human intervention and heuristic based inputs in ANFIS 

design and implementation with the help of the proposed parameter free algorithm. 

5. To mimic the highly complex electrospinning process using the ANN based surrogate 

building algorithm. 
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