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Abstract

Recently, there have been many applications involving shape memory alloy (SMA) to actuate or

control small to large vibration in the field of aerospace, automobile, building structures, bioengi-

neering devices, etc. The application of SMA over a wide field is due to its ability to apply large

force and displacement with low power. It is also found that SMA can regain its original state after

going through the cycle of heating and cooling processes. During the process of loading, the inter-

nal temperature change due to phase transformation which causes energy dissipation. Due to its

effective energy dissipation capabilities, it can respond to slow loading, fast loading, sudden loading,

and time varying loading, respectively. However, to understand the effective control of vibration

of a structure, it is important to investigate its linear and nonlinear behavior under the different

loadings conditions. In this thesis, we plan to investigate the linear and nonlinear response of SMA

controlled cantiliver beam (spring) under different loading conditions. To do the study, we first

present the thermomechanical constitutive model of SMA with a single degree of freedom system.

Subsequently, we solve the equation to obtain linear frequency and nonlinear frequency response

using the method of harmonic balance. To analyze the influence of cubic and quadratic nonlinearity,

we modify the governing equation and discuss the results based on the method of harmonic balance.

Additionally, we also describe the method of averaging to obtain the nonlinear frequency response

of SMA based oscillators. The analysis of results lead to various ways of controlling the nature

and extent of nonlinear response of SMA based oscillators. Such findings can be effectively used to

control the external vibration of different systems.

vi



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Nomenclature viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Thermomechanical Model of Shape-Memory Devices 5

2.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A Numerical Method: Harmonic Balance Solution . . . . . . . . . . . . . . . . . . . 13

2.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Isothermal Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Non-Isothermal Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Analysis of SMA Based Duffing Oscillators Model by Harmonic Balance Solution 20

3.1 Investigation of SMA Based Cubic Oscillator . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 A Numerical Method: Harmonic Balance Solution . . . . . . . . . . . . . . . 21

3.1.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Investigation of SMA Based Cubic and Quadratic Oscillators . . . . . . . . . . . . . 23

3.2.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 A Numerical Method: Harmonic Balance Solution . . . . . . . . . . . . . . . 24

3.2.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Analysis of SMA Model by Method of Averaging 27

4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 A Numerical Method: Method of Averaging . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



4.3.1 SMA Oscillator without Cubic Nonlinearity . . . . . . . . . . . . . . . . . . . 30

4.3.2 SMA Oscillator with Cubic Nonlinearity . . . . . . . . . . . . . . . . . . . . . 32

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion and Future work 34

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References 35

viii



Chapter 1

Introduction

Shape memory alloy (SMA) has been used to control vibration in various areas as its behavior and

response can be controlled under various operating conditions. While, it is used as an actuator in

aircraft, its application in commercial jet engines may reduce the weight, and hence, their efficiency.

It is also used to make solenoids commonly found in automobiles, and in intelligent reinforced

concrete, IRC, to detect the cracks in bridges and buildings. Recently, it is also being used in the

area of medicine and optometry because of its suitable properties.

A typical SMA material shows pseudoelastic or superelastic behavior in which for a given ex-

ternal loading, its internal temperature changes with deformation due to phase transformation and

heat exchange with the surrounding. The phase transformation between austenite (A) at higher

temperature and martensite (M) at lower temperature can induce an exothermic A → M as well as

endothermic M → A transformations due to loading and unloading, respectively. Such change in

temperature can be modeled using the laws of thermodynamics. A typical SMA response is described

by the displacement, velocity, phase transformation and the temperature. It also exhibit hysteresis

behavior due to strong coupling between thermal and mechanical variables. Figure 1.1(a) shows the

structure of phase transformation between austenite to martensite state. Such transformation can

be achieved either by changing the temperature or deforming the material under external loading.

For increase in temperature under a given loading, the twinned martensite state at low tempera-

ture can be converted into austenite state at higher temperature. On the otherhand, for a given

temperature, twinned martensite state can be converted into detwinned martensite state (deformed

state) under external loading. However, on heating the deformed state can be converted to austenite

state and then back to original state by cooling the material. However, in pseudoelasticity, such

transformation changes its internal temperature and causes energy dissipation without any external

cooling and/or heating. Therefore, it can respond to slow loading, fast loading, transient loading,and

time varying loading. Thus, we can state that change in internal temperature is due to the com-

bined effect of phase transformation and heat exchange with surrounding. Figure 1.1(b) shows a

detailed hysteresis loop due to internal changes in phase and temperature of SMA. It shows that

during cooling process, austenite state (A) converted into twinned martensite (B) where the process

of martensite transformation initiate. It transformed into final state of detwinned martensite phase

(C) under loading. After releasing the load, material regains its shape through a linear process until

stress becomes zero (D). At point D, the process of transformation to austenite state starts. Due to
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Figure 1.1: (a) Phase transformation of a SMA under loading and temperature effect; (b) Stress-
strain-temperature hysteresis loop of a SMA; (c) Hesteresis loop at different loading rates.

heating process, such transformation completes at point F which is called the austenite phase.

SMA also shows the effect of superelasticity over a large elastic range. Under such condition, when

mechanical load is applied, the alloy deforms reversibly to high strains by the formation of a stress-

induced phase. When the mechanical load is removed, formation of new phase occur and it becomes

unstable, and, thus, the material regains its original shape. Therefore, for a superelastic alloy, no

change in internal temperature is needed to recover its original shape. However, SMA without

superelastic effect require a change in internal temperature to recover a original shape. Figure 1.1(c)

shows the effect of loading rate on hysteresis loop of SMA. It shows different types of responses

under slow and fast loading and associated effects on the slopes of hysteresis loop. If loading rate is

slow, temperature variations are small, hence the system shows isothermal condition. In isothermal

process, the hysteresis loop is governed by the mechanical parameters only. Consequently, for a given

sets of the mechanical parameters, the isothermal hysteresis loop is almost flat and the two plateaus

are parallel. For faster loading rate, thermal effects become important. With consideration of high

heat coefficient value, the system exchanges more heat with the environment. As a consequence,

the plane in hysteresis loop is significantly different than the isothermal case. Consequently, under

non-isothermal condition, the nearly flat plateaus become steeper and the area of the hysteresis loop

is reduced. Therefore, to model a mechanical oscillator with SMA under external dynamic loading,

the rate of loading needs to be taken into consideration. In this thesis, we discusses the response of

SMA based oscillator with linear and nonlinear stiffness under isothermal as well as non-isothermal

conditions.

1.1 Motivation

Most of the SMA based studies show the coupling of SMA and linear oscillator under isothermal

and non-isothermal condition. They discuss ways to model nonlinear response specially due to the

nonlinearity arising out of SMA behavior. However, there are hardly any study available which

shows any coupling of SMA behavior with nonlinear oscillators. In this thesis, we present frequency

response of SMA based on oscillator with cubic and quadratic nonlinear stiffness. The oscillator

with cubic nonlinearity is termed as Duffing oscillator and that with quadratic nonlinear is termed

as quadratic oscillator. A typical nonlinear response of a SMA shows nonlinear softening behavior.

Since the Duffing oscillator may show nonlinear softening to nonlinear hardening response based on

2



the beam material, it can be used to tune the coupled response of SMA based nonlinear oscillator.

Hence, it forms the motivation for presenting a systematic study of the coupled response of SMA

based nonlinear oscillators with cubic and quadratic nonlinearity.

1.2 Literature Survey

With its peculiar memory effect, shape memory alloys have found many application in the fields

of vibration control. The research related with the development of SMA material and tuning of

its properties with new alloy for various application covers a wide range of problems. Dimitris [2]

has discussed the modeling of SMA along with its application and properties in great detail. The

commonly found shape memory alloys are Cu-based SMAs, shape memory ceramics, ferrous SMAs,

NiTi SMAs, and shape memory polymers. However, the Ni-Ti alloy is used widely among others.

They exhibit thermomechanical, thermoelectrical and thermochemical behavior under mechanical,

thermal, electrical and chemical loading conditions. The pseudoelastic model of SMA is described

vividly by Bernardini and Vestroni [3] using the single degree of freedom system. Many systems

incorporating SMA based cantilever beam are also widely studied [3, 4, 5]. To study the thermo-

mechanical behavior of SMA based system, the deformation, phase transformation and temperature

variation are captured by the governing equation along with the constitutive equations of SMA.

The constitutive equations governing hysteresis model are obatined using a free energy function as

explained by Bernardini and Ivshin and Pence [6, 7] used for isothermal as well as non-isothermal

conditions. The isothermal condition neglect the heat transfer with the surrounding [4]. Moussa et

al. [8] presented the experimental as well as theoretical studies of the thermomechanical behaviour

of superelastic shape memory alloys for quasi-static loading cases. Theoretical and experimental

studies of SMA based system are also studied in varieties of structures [9, 10, 11]. The nonlin-

ear frequency response of displacement amplitude as well as temperature in SMA based system

is obtained by solving the coupled equation using the method of harmonic balance and averaging

method, [12, 13, 14]. In addition to the model developed by [3], another micromechanical model is

also developed by the Oberaigner et al. [18]. It consists of a kinetic equation, stress-strain relation,

temperature-transformed and volume-fraction relations. These equations couple the heat conduction

and the vibration of a rod. The change in phase of material leads to energy dissipation. Applying

this model, a working temperature of damping can be found which lies between the temperatures

of martensite start and the martensite finish. The thermodynamics of two models of pseudoelas-

tic behavior of SMA are developed by Raniecki et al. [19]. The first model, R-model, undergoes

reversible processes only and constitutes the Maxwell model of phase transformation. The second

model, RL-model, includes interaction of energy. It determines formation of external and internal

hysteresis loops with the Clausius-Duhem inequality. By using coupling of these models, we obtain

the phase composition, stress-strain and heat exchange with surroundings environment.

Although, there are numerous studies available to analyze the influence of nonlinear frequency

response of SMA based oscillator, but all of them consider nonlinearity directly associated with SMA

behavior. In this thesis, we study the influence of cubic and quadratic nonlinearity on SMA based

system. To do the analysis, we first consider the Duffing oscillator with cubic nonlinear nonlinearity

[20]. We solve the equation using the method of harmonic balance. By varying the nature and

strength of nonlinearity from softening to hardening [21], we obtain the coupled response of SMA
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dased Duffing oscillator. Subsequently, we also analyze the combined effect of cubic and quadratic

nonlinearity [22] using the method of harmonic balance. The above analysis is valid for isothermal

as well as non-isothermal conditions. To compare different solution methods, we also solve SMA

based Duffing oscillator using averaging method [23] for isothermal condition. On comparing the

results obtained from the harmonic balance method and the methods of averaging, we found that

the averaging method underestimate the solution due to numerical error [24]. The comparison of the

solution of Duffing oscillator with and without SMA shows that the frequency tuning of SMA based

response can be tunned effectively by varying the coefficients of Duffing and Quadratic oscillator.

1.3 Outline of Thesis

After giving fundamental details of SMA and literature related with its characterization in Chapter

1, we present detailed mathematical models for a SMA based oscillator by following the work of

Lacarbonara et al. [4] in Chapter 2. To check the accuracy of governing equation and validate the

solution approach, we reproduce the results of nonlinear frequency response of SMA based oscillator

for the same set of parameters under isothermal and non-isothermal conditions. Additionally, we

also validate our analytical solution with numerical results. In Chapter 3, we present the solution

methodology using the method of harmonic balance to solve SMA based oscillator with additional

cubic and quadratic nonlinear stiffness term. Subsequently, we discuss about the effect of different

degrees of nonlinearity on frequency response of SMA based nonlinear oscillators, namely, Duffing

and quadratic oscillators. In Chapter 4, we compare the solutions obtained by using the method

of harmonic balance and the method of averaging for isothermal condition of SMA based oscillator

with and without cubic nonlinearity. Finally, we present the concluding remarks and future work in

Chapter 5.
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Chapter 2

Thermomechanical Model of

Shape-Memory Devices

In this chapter, we present complete mathematical modeling of thermomechanical behavior of SMA

based oscillator by following the work done by Ivshin and Pence [7], Bernardini and Vestroni [3] and

Lacarbonara et al. [4], respectively.

2.1 Mathematical Model

In SMA system, two cases taken into account for analysis: Isothermal and Non-isothermal. In the

isothermal case, the dynamical system is three-dimensional as the state space is described by the

displacement x, the velocity v, and the internal variable ξ which governs the evolution of the phase

transformations that occur in the SMM [4]. In the non-isothermal case, the state space becomes

four-dimensional as the temperature ϑ is added to x, v, and ξ in the state-space description [4].

The model of pseudoelastic oscillator contain mass m, damping system with damping coefficient

µ, and SMA rod is shown in Figure 2.1(a). Figure 2.1(b) shows the description of heat exchange

between the SMA with temperature ϑ and the surrounding with temperature ϑE . It also contain

additional cubic and quadratic nonlinearity in stiffness. For the present analysis, we neglect this

additional nonlinear effect. However, their effects will be discussed in details in Chapters 3 and 4.

Here, the system is excited by harmonic force F (t) = γ cos(Ωt). The harmonic force is balanced

by pseudoelastic device (SMM) and damping system. Force produced by pseudoelastic device is

f and by damping system is µẋ, here x is displacement. During loading heat is exchanged with

environment, ϑE is environment temperature and ϑ is the internal temperature of pseudoelastic

device. The fraction of martensite phase in the device ξ ∈ [0,1] is describe the evolution of the phase

transformations [4]. When ξ = 0 the device is in a complete austensitic state (A) and when ξ = 1

the device is in a complete martensitic state (M). This effect is in the material microstructure and

is taken into account by the material parameter δ with δ > 0 representing the maximum transfor-

mation displacement [4].
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Energy balance equation of thermomechanical system is given by

mẍ = γ cos(Ωt)− f − µẋ (2.1)

ė = fẋ+ Q̇ (2.2)

ϑη̇ = Q̇+ Γ̇ (2.3)

Γ̇ ≥ 0 (2.4)

where e denote the internal energy, Q̇ is the rate of heat exchange with the surrounding, Γ̇ is the

rate of energy dissipation, η is the entropy. Eq. (2.1) is the linear momentum balance, Eq. (2.2) is

the internal energy balance and Eq. (2.3) and Eq. (2.4) are the balance of entropy and second law

of thermodynamics [4].

Figure 2.1: (a) A lumped model of SMA based oscillator including cubic and quadratic nonlinear
stiffness. (b) A schematic of SMA with internal temperature and surrounding temperature.

Consider free energy function Φ = e − ϑη instead of internal energy e.

Using Eq. (2.2), Eq. (2.3) written as

Φ̇ = fẋ− ηϑ̇− Γ̇ (2.5)

Equation Q̇ is the heat exchange between device and the surrounding. It is assumed that heat

exchange due to convection, so by newtons law of heating

Q̇ = h(ϑE − ϑ) (2.6)

where h ≥ 0 is the heat exchange coefficient. Using Eq. (2.4) and Eq. (2.5) leads to

f =
∂Φ

∂x
, η = −∂Φ

∂ϑ
, Γ̇ = Πξ̇ ≥ 0 (2.7)

where Π = − ∂Φ/∂ξ is the thermodynamic force (driving force).
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The following free energy function used in model [6, 7]

Φ =
K

2
(x− sgn(x)δξ)2 + c(ϑ− ϑ0 − ϑ ln

ϑ

ϑ0
) + (ϑ− ϑ0)bδξ + a0 − b0ϑ (2.8)

where K > 0 is elastic stiffness, c > 0 is heat capacity, b > 0 is slope in the temperature transformation-

force plane, a0 and b0 are internal energy and entropy of the device in the fully austenitic state at

the reference temperature ϑ0 [4]. The constitutive equation for the restoring force, entropy and

thermodynamic force obtained from Eq. (2.7) and Eq. (2.8) as

f = f̄(x, ϑ, ξ), η = η̄(x, ϑ, ξ), Φ = Φ̄(x, ϑ, ξ)

f =
∂Φ

∂x
= K(x− sgn(x)δξ) (2.9)

η =
∂Φ

∂ϑ
= c ln

ϑ

ϑ0
− bδξ + b0 (2.10)

Π =
∂Φ

∂ξ
= Kδ(|x| − δξ)− bδ(ϑ− ϑ0) (2.11)

In restoring force, Eq. (2.9), sgn(x)δξ is the pseudoelastic part of displacement.

The constitutive equation for ξ̇ is the transformation kinetic so it state the evolution of the phase

transformation [4].

ξ̇ = G(Π, ξ, sgn(ξ̇))Π̇ (2.12)

where G is the hysteresis controller.

G =

{
k1(1− ξ)[1 + tanh(k1Π + k2)], if ξ̇ > 0

k3ξ[1− tanh(k3Π + k4)], if ξ̇ < 0
(2.13)

The function G takes different equations of increasing or decreasing ξ in order to define the A →
M and M → A transformations. The material parameters ki can be taken from experimental data

[4]. The integration of transformation kinetic used, to obtain the relationship between the phase

fraction ξ and the driving force Π.

ξ =

{
1
2 + 1

2 tanh(k1Π + k2), Forward Transformation
1
2 + 1

2 tanh(k3Π + k4), Reverse Transformation

The true shape of the phase fraction evolution is regulated by k1 (k3 for the reverse transformation),

which governs the slope of the transformation, and by k2 (k4 for the reverse transformation) which

regulates the actual values of Π at which the transformation takes place [4].

Π̇ = Kδ(sgn(x)ẋ− δξ̇)− bδϑ̇

7



ξ̇ = GΠ̇ = − Gδb

1 +GKδ2
(ϑ̇− sgn(x)

K

b
ẋ) (2.14)

In Eq. (2.13) k1 and k3 > 0, means G > 0.

Figure 2.2: Effect of the parameters k1 and k2 on the evolution of ξ in terms of Π

In order to show the kinetic effect on the force-displacement behavior, consider a loading case,

quasistatic force F (t) at constant temperature ϑ(t) = T [4]. F can written as a function of f ,

|F | = sgn(x)f = K(|x| − δξ)

Driving force can also be written as a function of F ,

Π = δ|F | − bδ(ϑ− ϑ0)

So expression of the force-displacement loading curve for forward transformation as

Kx = F +Kδξ

here ξ = 1
2 + 1

2 tanh(k1Π + k2), and at reference temperature ϑ(t) = ϑ0, so Π = δ|F |.

x =
F

K
+
δ

2
(1 + tanh(|F |k1δ + k2))

The forces fMs and fMf , at which the forward transformation starts and finishes and ξr is the residual

martensite at the conventional start of the transformation, for convenience take r := tanh−1(1−2ξr)

[4]. At constant temperature,

ξr =
1

2
+

1

2
tanh(k1δfMs − bδk1(T − ϑ0) + k2)

1− ξr =
1

2
+

1

2
tanh(k1δfMf − bδk1(T − ϑ0) + k2)

8



Above two equation yields respectively,

k1δfMs − bδk1(T − ϑ0) + k2 = −r

k1δfMf − bδk1(T − ϑ0) + k2 = r

Solving for k1 and k2,

k1 =
−2r

δ(fMs − fMf )
, k2 = r − 2r

b(T − ϑ0)− fMf

fMs − fMf

The forces fAs and fAf , at which the reverse transformation starts and finishes [4].

At constant temperature,

1− ξr =
1

2
+

1

2
tanh(k3δfAs − bδk3(T − ϑ0) + k4)

ξr =
1

2
+

1

2
tanh(k3δfAf − bδk3(T − ϑ0) + k4)

Above two equation yields respectively,

k3δfAs − bδk3(T − ϑ0) + k4 = r

k3δfAf − bδk3(T − ϑ0) + k4 = −r

Solving for k3 and k4,

k3 =
−2r

δ(fAf − fAs)
, k4 = r − 2r

b(T − ϑ0)− fAs
fAf − fAs

Substitute the constitutive equation for f, η, Γ̇ and Q̇ in Eq. (2.3) and solve by considering Z1 and

Z2 as,

Z1 =
bδG

1 +Kδ2G
, Z2 = −Kδ(|x| − δξ)− ϑ0bδ

Driving force, Π = Kδ(|x| − δξ)− bδ(ϑ− ϑ0) = −Z2 − bδϑ

Entropy η = c ln
ϑ

ϑ0
− bδξ + b0

By solving entropy balance equation yield,

cϑ̇+ Z2ξ̇ = h(ϑE − ϑ) (2.15)

9



By solving Eq. (2.14) yield,

ξ̇ + Z1ϑ̇ = Z1
K

b
sgn(x)ẋ (2.16)

Solving Eq. (2.15) and Eq. (2.16) simultaneously obtained equations for rate of temperature and

rate of fraction of martensite as,

ξ̇ =
Z1

c− Z1Z2
[sgn(x)

Kc

b
v + h(ϑ− ϑE)] (2.17)

ϑ̇ =
1

c− Z1Z2
[−sgn(x)

K

b
Z1Z2v − h(ϑ− ϑE)] (2.18)

Added the equation of motion Eq. (2.1) in order to obtain the system of equation that describes the

non-isothermal dynamics of the pseudoelastic device [4]. Consider ẋ = v, and express pseudoelastic

force f in Eq. (2.1) and rearrange as the system reduced to a first-order explicit form ẋ = f(x, t),

that is,

ẋ = v,

v̇ =
γ

m
cos(Ωt)− K

m
(x− sgn(x)δξ)− µ

m
v,

ξ̇ =
Z1

c− Z1Z2
[sgn(x)

Kc

b
v + h(ϑ− ϑE)],

ϑ̇ =
1

c− Z1Z2
[−sgn(x)

K

b
Z1Z2v − h(ϑ− ϑE)] (2.19)

In order to capture the essential features of the response, set of Eqs. (2.19) has been written

in a non-dimensional form by assuming, reference condition, the A → M transformation at the

temperature ϑr [4]. In such conditions force and displacement are denoted by fMs and xMs, with

fMs = KxMs. The temperature ϑr is the value at which the device exhibits pseudoelastic response.

Variables with hat denotes the non-dimensional form. Arrange Eq. (2.19) in non-dimensional form

as,

˙̂x = v̂

˙̂v = γ̂ cos(Ω̂t̂)− (x̂− sgn(x̂)λξ)− 2ζv̂

non-dimensional form for Z1 and Z2 are,

Ẑ1 =
Ĝ

1 + λJĜ
, Ẑ2 = −L[J(|x̂| − λξ) + ϑ̂0]

10



The evolution of phase transformation can be described in non-dimensional form as,

ξ̇ =
Ẑ1

1− Ẑ1Ẑ2

[sgn(x̂)Jv̂ + ĥ(ϑ̂− ϑ̂E)]

The rate of temperature change of pseudoelastic device can be written in non-dimensional form as,

˙̂
ϑ =

1

1− Ẑ1Ẑ2

[−sgn(x̂)JẐ1Ẑ2v̂ − ĥ(ϑ̂− ϑ̂E)]

Rearrange the equations of system in normal form (non-dimensional form) as,

˙̂x = v̂,

˙̂v = γ̂ cos(Ω̂t̂)− (x̂− sgn(x̂)λξ)− 2ζv̂,

ξ̇ =
Ẑ1

1− Ẑ1Ẑ2

[sgn(x̂)Jv̂ + ĥ(ϑ̂− ϑ̂E)],

˙̂
ϑ =

1

1− Ẑ1Ẑ2

[−sgn(x̂)JẐ1Ẑ2v̂ − ĥ(ϑ̂− ϑ̂E)] (2.20)

where the non-dimensional variables [4],

t̂ = ωt, x̂ =
x

xMs
, ϑ̂ =

ϑ

ϑr
,

Ĝ = Gbδϑr, Ẑ1 =
Ĝ

1 + λJĜ
= ϑrZ1, Ẑ2 = −L[J(|x̂| − λξ) + ϑ̂0] =

Z2

ϑrc
(2.21)

with ω2 = K
m and the non-dimensional parameters [4] are

λ =
δ

xMs
, L =

bδ

c
, ĥ =

h

cω
, J =

fMs

bϑr
, k̂j = kjbδϑr, j = 1, 3

ζ =
µ

2ωm
, γ̂ =

γ

fMs
, Ω̂ =

Ω

ω
(2.22)

The kinetic parameters k̂i do not have a direct physical meaning, they can be expressed in terms q̂i,

parameter q̂i possess a physical meaning [4]. These q̂i parameters are defined as

q̂1 =
fMf

fMs
, q̂2 =

fAf
fAs

, q̂3 =
fAs
fMs

where fMs, fMf , fAs, and fAf are the forces at the start and finish of the associated transformations
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at the reference temperature ϑr [4]. The relations between the k̂’s and q̂’s are

k̂1 =
2r

J(q̂1 − 1)
, k̂2 = k2 =

2(1− ϑ̂0)− J(q̂1 + 1)

J(q̂1 − 1)
r

k̂3 =
2r

(1− q̂2)q̂3J
, k̂4 = k4 =

2(1− ϑ̂0)− q̂3J(q̂2 + 1)

(1− q̂2)q̂3J
r

To obtain upper and lower pseudoelastic plateaus with the same force variation, the condition

fMf − fMs = fAs − fAf used [4]. Using this condition obtained the q̂2 as,

q̂2 =
1 + q̂3 − q̂1

q̂3

Moreover, b is the slope in the transformation force−temperature plane [4]. Stress free transforma-

tion temperature, Ms,Mf , As, and Af are the temperatures at the start and finish of the associated

transformations [4]. The change of temperatures at the start and finish of the associated transfor-

mations are,

Ms = 1− J ; Mf = 1− Jq̂1; As = 1− Jq̂3; Af = 1− Jq̂2q̂3.

Temperature in free energy ϑ0 is the mean value of the stress-free transformation temperatures [4].

∆ϑMs = ϑr − ϑMs = ϑrMs, ∆ϑMf = ϑr − ϑMf = ϑrMf

∆ϑAs = ϑr − ϑAs = ϑrAs, ∆ϑAf = ϑr − ϑAf = ϑrAs

Collecting the values of ∆ϑMs,∆ϑMf ,∆ϑAs and ∆ϑAf in terms of Ms,Mf , As and Af respectively,

ϑ0 can be expressed as,

ϑ0 =
∆ϑMs + ∆ϑMf + ∆ϑAs + ∆ϑAf

4

ϑ̂0 = 1− J 1 + q̂1 + q̂3 + q̂2q̂3

4

non-dimensional form of driving force,

Π̂ =
Π

bδϑr
=
KxMs

bϑr
(|x̂| − λξ)− (ϑ̂− ϑ̂0)

non-dimensional form of hysteresis controller is,

Ĝ =

{
k̂1(1− ξ)[1 + tanh(k̂1Π̂ + k̂2)], if ξ̇ > 0

k̂3ξ[1− tanh(k̂3Π̂ + k̂4)], if ξ̇ < 0

12



non-dimensional form of restoring force of pseudoelastic device is,

f̂ =
f

fMs
= x̂− sgn(x̂)δξ

Hence, non-dimensional variables and parameters will be considered and hat will be neglected for

ease of notion.

2.2 A Numerical Method: Harmonic Balance Solution

The investigation of SMA damping system followed two type of responses: time response curve and

frequency response curve. To capture a behavior of system in time response curves, integrate the

set of Eqs. (2.20) using numerical integration and obtained a value of each variable for every second

and plot the graph of each variable with time scale. We used MATLAB software for numerical

integration and plotting of graphs.

In order to investigate the system behavior, in this thesis, harmonic balance solution method is

used to plot frequency response curves. Harmonic balance method is used to calculate and analyze

the steady-state response of nonlinear differential equations. It is a frequency domain method

used for investigating the responses. The algorithm of harmonic balance is a special version of

Galerkin’s method. It is used to calculate the periodic solutions of autonomous and non-autonomous

differential-algebraic systems of equations. In frquency response curve Ω is a control parameter.

From above constitutive equations (Eqs. (2.20)) three variables x, ϑ and ξ causes non-linear motion

of oscillator. Arrange the constitutive equations as follows,

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ,

ϑ̇ = h(ϑE − ϑ)− Z2ξ̇ (2.23)

Let,

X =

[
ẍ

ϑ̇

]

and consider,

L1 = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ,

L2 = h(ϑE − ϑ)− Z2ξ̇

so X can be written as,

X =

[
ẍ

ϑ̇

]
=

[
L1

L2

]
(2.24)

13



Now assume Fourier series for variables as follows,

x =
a0

2
+

N∑
i=1

An cos(nΩt) +Bnsin(nΩt) n = 1, 2....N

ϑ =
b0
2

+

N∑
i=1

Cn cos(nΩt) +Dnsin(nΩt) n = 1, 2....N

L1 =
c0
2

+

N∑
i=1

En cos(nΩt) + Fnsin(nΩt) n = 1, 2....N

L2 =
d0

2
+

N∑
i=1

Hn cos(nΩt) + Insin(nΩt) n = 1, 2....N (2.25)

Solving Eq. (2.24) and set of Eqs. (2.25) obtained,

En +AnΩ2 = 0

Fn +BnΩ2 = 0

Hn −DnΩ = 0

In + CnΩ = 0 (2.26)

In set of Eqs. (2.26), 4N unknown, An, Bn, Cn and Dn and 4N equations. The Fourier coefficients

En, Fn, Hn and In are depends on An, Bn, Cn and Dn. To calculate Fourier coefficients En, Fn,

Hn and In use the iterative algorithm based on evolution of An, Bn, Cn and Dn. From Fourier

coefficients of An, Bn, Cn and Dn calculate values of x and ϑ for timespan of [0 2π
Ω ]. Using values of

x and ϑ obtained the values of ξ by using numerical integration. Obtained the values of L1 and L2

using values of x, ϑ and ξ. Finally, calculate the values of En, Fn, Hn and In by using IFFT (Inverse

Fast Fourier Transform) [3]. In order to obtained a unstable branch of frequency response curve

used arc continuation method. Here, spherical arclength continuation method is used to obtained a

constrained equation. The constrained equation are as follows,

(x− xi)
T (x− xi)− (∆s)2 = 0

Here, x is unknown quantity of current step and xi known quantity of previous step. In above

constrained equation s is arclength along a curve and ∆s is step size. In this thesis, predictor-
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corrector algorithm is used for iterative method. Here, secant predictor algorithm used and proposed

as following,

xi+1 = xi + pi(xi − xi−1)

Where, pi is step-dependent parameter. For corrector algorithm used Newton-Raphson iterative

method and by using predictor-corrector method obtained values of unknown constant.

2.3 Result and Discussion

In this section, we present the transient as well as frequency response of SMA based simple oscillator

under two different conditions, namely, isothermal and non-isothermal conditions.

2.3.1 Isothermal Regime

The isothermal case deals with constant temperature so ϑ̇ = 0, using Eq. (2.20), the heat exchange

rate with the surrounding environment is given by,

˙̂
ϑ =

1

1− Z1Z2
[−sgn(x)JZ1Z2v − h(ϑ− ϑE)] = 0

Q̇ = h(ϑE − ϑ) = sgn(x)JZ1Z2v

substituting the obtained expression for Q̇ into Eq. (2.20) yields,

Figure 2.3: (a)Displacement vs Time (b)Force vs Displacement (c)Velocity vs Displacement
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Figure 2.4: Frequency response curves of displacement for isothermal case

ξ̇ = JZ1sgn(x)v

Now, set of constitutive equations becomes as following,

ẋ = v,

v̇ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζv,

ξ̇ = JZ1sgn(x)v (2.27)

The response of the system to harmonic excitations of various amplitudes has been computed through

harmonic balance method as mentioned in above section. The range of amplitude is γ = 0.1 − 0.6

and Ω = 0.1−0.6. In isothermal condition the material parameters taken from Lacarbonara et al.[4].

λ = 7; ζ = 0.05; J = 0.315; h = 0.08; ϑr = 293K;

q1 = 1.05; q3 = 0.6; ϑE = 293K; ξr = 0.2; L = 0.124.

For γ = 0.6 and ω = 0.6 and taking intial condition x0 = [0 0 0 1], and integrating set of

Eqs. (2.27), responses are describes in Figure 2.3. It is found that, after a few periods, the dis-

placement tends to a symmetric periodic solution with zero mean value. That means it controls the

vibration. In pseudoelastic effect, it forms the hysteresis loop. It stores the energy with loading and

dissipate with temperature change, so it can stand with large deformation. It shows two hysteresis

loop relating with tension and compression. In hysteresis loop plateaus are flat and parallel. Plot

of displacement vs velocity shows that system oscillates around equilibrium point (x = 0, v = 0).

To construct the frequency response curves, the non-dimensional frequency Ω is used as the control
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parameter. In Figure 2.4, ‖x‖ indicates the maximum value of the displacement attained over one

cycle. Procedure of harmonic balance is used as mentioned in above section for obtained frequency

response curves. Continuous lines except dotted lines denote stable solutions. The frequency re-

sponse curves are, as expected, of the softening type thus mean a decrease of the frequency with the

oscillation amplitude. In this thesis obtained a displacement frequency response curve for γ = 0.1

and γ = 0.2 only. For γ = 0.1 curve shows nearly linear response and maximum value of ‖x‖ ob-

tained at Ω = 0.1. For higher force γ = 0.2 curve shows softening nature. Here resonance frequency

shifts to left side means less than one. Above result and discussion also mentioned in [3, 4].

2.3.2 Non-Isothermal Regime

Figure 2.5: (a)Displacement vs Time (b)Temperature vs Time (c)Last 10 periods of displacement
and temperature (d)Force vs Displacement (e)Velocity vs Displacement

As explained in Chapter 1, shape-memory devices interact thermodynamically with the external

environment so that non-isothermal conditions occur. These materials under dynamic loading ex-

hibit strong thermomechanical coupling with an influence on the mechanical response as shown in

this section. In non-isothermal condition ϑ̇ 6= 0, so the equations governing behavior of the system

includes thermodynamics are given by the full set in Eqs. (2.20), including the temperature as a

state variable. The same parameters as used in the last isothermal case are considered. However,

three additional parameters are to be considers, namely L, J and h. Concerning the non-dimensional

temperature scale, the dimensional temperature is expressed in Kelvin (K). For example, the envi-

ronmental temperature is 20◦C (293 K), then a small increase of the non-dimensional temperature

of 5% (i.e., θ = 1.05) corresponds to a temperature variation of about 73% in ◦C [4]. The response

of system are described in Figure 2.5 with reference to γ = 0.6, Ω = 0.6 and initial conditions

x0 = [0 0 0 1] while integrating Eq. (2.20). It is found that (Figure 2.5(a)), after a few periods, the

displacement tends to a symmetric periodic solution with zero mean value. On the other hand, after

a slightly longer transient, the temperature tends to a periodic solution with non-zero mean value.

The mean temperature is greater than one. It indicating that, in this case, the total energy balance
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Figure 2.6: (a)Frequency response curves of displacement for non-isothermal case (b)Frequency
response curves of temperature for non-isothermal case (c)Validation of result of harmonic balance
solution by jump phenomenon for γ = 0.2

leads to an overheating of the device with respect to the environment temperature (Figure 2.5(b)).

As form graphs, the frequency of the temperature is double because of two phase transformations

cycles, one in tension and one in compression, correspond to a single displacement cycle. Phase

transformations contribute to the temperature variations via the term Z2ξ̇ (Eq. (2.15)) that de-

pends on the absolute value of the displacement. Temperature variations during the oscillations are

influenced by two factors: the amount of phase fraction transformed during the cycle, which relates

with the maximum displacement, and the loading rate, which relates with the frequency. It is found

that, temperature variations are found to increase with the maximum displacement and with the

frequency and vice versa.

However, while for the displacement and temperature a plot of the maximum value versus the

excitation frequency contains the basic information. The maximum displacement frequency curves

for excitation amplitudes for 0.1 and 0.2 and responses are reported in Figure 2.6(a). Here, however,

the response is govern by the temperature evolution and therefore the maximum frequency response

curves are reported in Figure 2.6(b). Here when the maximum displacement is less than 1 hence

there is no phase transformation, the response is linear elastic and the temperature is constant,

i.e. the device remains at the surrounding environment temperature. The maximum temperature

increases with the frequency decreases due to the significant maximum displacement rise. It turns

out that, in this case, the effect of the transformation amount remains on that one of the loading

rate and governs the temperature variations. Nature of displacement and temperature is softening
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type same as isothermal case.

The maximum temperature response, shown in Figure 2.6(b), also exhibits that resonance fre-

quency shifts to less than one. The temperature variations occur due to loading rate effect, so that

the temperature decreases with the frequency. In peak region, two solutions related with complete

phase transformation cycles are found for the same frequency. These solutions are characterized

by the same transformed amount and by the same loading rate. During elastic loading and un-

loading heat exchange with the surrounding environment without any heat production. Hence the

solution with greater maximum displacement can exchange with the surrounding environment more

heat than the other solution. So it observed that loading rate and deformation significantly affect

temperature and phase transformation. Above result and discussion also mentioned in [3, 4].

The results obtained in non-isothermal case by using harmonic balance solution are validated by

numerical method as shown in Figure 2.6(c). In numerical result only stable part can obtained and

for unstable part it take jump. The jump phenomenon are used to validate result of displacement

frequency response curve for amplitude of excitation is γ = 0.2. The jump phenomenon is exactly

matching with solution of harmonic balance method.

2.4 Summary

The characteristic of SMA device is studied through constitutive equations. The constitutive equa-

tions are in non-dimensional form. Using non-dimensional parameters, obtained a frequency response

curves by the harmonic balance method. The SMA device with damping modeled for both isother-

mal and non-isothermal cases. The hysteresis loops indicate the effect of loading rate. In isothermal

case temperature is constant but temperature variation in non-isothermal case for SMA device plot-

ted in 2-D space of frequency and amplitude of temperature response. The responses of isothermal

exhibit the theoretical situation but responses of non-isothermal exhibit the practical situation.
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Chapter 3

Analysis of SMA Based Duffing

Oscillators Model by Harmonic

Balance Solution

In this Chapter, we discuss the influence of cubic and quadratic nonlinearity on the coupled response

of SMA based oscillators as shown in Figure 2.1. Here, we first present solution methodology and

analysis for cubic nonlinearity and then for the combined quadratic and cubic nonlinearity under

non-isothermal conditions.

3.1 Investigation of SMA Based Cubic Oscillator

The Duffing oscillator is governed by Duffing equation, ẍ + δẋ + βx + αx3 = γ cos(Ωt) [20] which

contain cubic nonlinearity in stiffness. To analyze the behavior of SMA based Duffing oscillator, we

obtain frequency response curves by using the harmonic balance method [22].

3.1.1 Mathematical Model

To analyze the SMA based Duffing oscillator, we add a cubic non-linear term C1x
3 in the governing

equation given by Eqn. (2.1) as,

mẍ = γ cos(Ωt)− f − µẋ− C1x
3

Solving the above non-dimensional form of the equation, we obtain,

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ− β0x
3

where, β0 =
C1x

3
Ms

fMs
. C1 is Duffing coefficient. β0 is a non-dimensional Duffing coefficient. It decide

the dominance of Duffing oscillator in response of system. Rewritting the constitutive equations

with Duffing oscillator in the state-space form, we get,

ẋ = v,
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v̇ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζv − β0x
3,

ξ̇ =
Z1

1− Z1Z2
[sgn(x)Jv + h(ϑ− ϑE)],

ϑ̇ =
1

1− Z1Z2
[−sgn(x)JZ1Z2v − h(ϑ− ϑE)]. (3.1)

The above constitutive equations are solved to obtain the frequency response curves of the system.

3.1.2 A Numerical Method: Harmonic Balance Solution

In order to investigate the system behavior follow a harmonic balance method. In frequency response

curve Ω is a control parameter. In Duffing oscillator β0 is a non-dimensional parameter, so value of

it affect significantly on response of system.

Arrange the constitutive equations (Eqs. (3.1)) in following form,

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ− β0x
3,

ϑ̇ = h(ϑE − ϑ)− Z2ξ̇ (3.2)

So using set of Eq. (3.2) follow a harmonic balance method as mentioned in Chapter 2 and ob-

tained a harmonic balance equations. Using that equations obtained a frequency response curves

for displacement and temperature.

3.1.3 Result and Discussion

In model SMA has nonlinear behavior due to energy dissipation capability. Duffing oscillator has

cubic non-linearity. Combine of these two oscillator shows a peculiar behavior. To analyze this

behavior obtained a frequency response curves for both displacement and temperature. For inves-

tigating behavior of Duffing oscillator due to incorporating SMA device, make comparison between

two system through displacement frequency response curves. Two system: Duffing oscillator and

Duffing oscillator with SMA device. The material of SMM device keep as Ni-Ti alloy.

In non-isothermal regime temperature changes with respect to time ϑ̇ 6= 0, so it consider a

thermodynamic parameter as given by Eq. (3.2). SMM material have strong coupling between

thermal and mechanical parameters. The same value of parameters used as mentioned in isothermal

case of shape memory devices. The Duffing oscillator added to SMA device and due to Duffing

oscillator behavior of SMA device affected. The cubic non-linearity of Duffing oscillator affect

on both displacement and temperature behavior of system. The response of Duffing oscillator is

defined by β0x
3 term so value of β0 has significant impact on response of system. Addition of

Duffing oscillator in system of SMA device produce complex behavior. Investigation of this complex

behavior is useful in industrial applications . Such a complex response captured in frequency response

curves and resonance frequency of system is observed.

In SMA damping system frequency response curves shows softening nature for both displace-
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Figure 3.1: (a)Frequency response curves of SMA based cubic oscillator for displacement in non-
isothermal case (b)Frequency response curves of SMA based cubic oscillator for temperature in
non-isothermal case (c)Comparison of frequency response curves of displacement between cubic
oscillator with SMA and without SMA

ment and temperature. Addition of Duffing oscillator affects maximum values of displacement and

temperature which are obtained from time response curves. Duffing coefficient define the behavior

of Duffing oscillator [21]. So Duffing oscillator affect the energy dissipation capacity and its dom-

inance in non-linear region. Trough energy dissipation Duffing oscillator also affect heat exchange

with surrounding environment and temperature cycle. So amount of heat exchange with surround-

ing affected due to phase transformation. The sign of Duffing coefficient has significant impact on

response of system. So with respect to sign of Duffing coefficient Duffing oscillator changes its re-

sponse. The response of Duffing oscillator governed by sign of Duffing coefficient which decide to

support SMA effect or neutralize it. In this thesis, range of Duffing coefficient (β0) is from -0.1 to

1.1. If value of β0 is less than zero then it shows the supporting behavior of Duffing oscillator to

SMA device and if β0 is more than zero then it shows Duffing oscillator neutralize the effect of SMA

oscillator. It also observed that with the change of β0 value from negative to positive, maximum

value of displacement and temperature decreases with frequency parameter. In frequency response

curves, turning point (bifurcation point) shifts towards higher values of frequency with higher values

of β0. For β0 = 0.1 frequency response curve shows very small non-linearity of softening nature and

for β0 = 0.2 bifurcation point disappears for softening curve and become linear. This effect shown

by both displacement and temperature frequency response curve as shown in Figure 3.1(a) and Fig-

ure 3.1(b). For β0 = 0.3 curve becomes hardening curve and shows very small non-linearity. After

that with increase of β0 value non-linearity also increases. So with higher values of β0 hardening

types means increase of ‖X‖ and ‖T‖ with frequency and after bifurcation point values of ‖X‖ and

‖T‖ decreases with decrease of frequency (Figure 3.1(a) and Figure 3.1(b)). At β0 = 1.1 frequency
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response curve shows very less SMA damping effect and full dominance of Duffing oscillator.

In Duffing oscillator, influence of Duffing coefficient is same as shown with SMA device. The

comparison is done only between displacement frequency responses. Here, range of β0 is -0.09 to 1.1.

In Figure 3.1(c) red color curves indicate the response of Duffing oscillator and blue color curves

indicate the response of Duffing oscillator with SMA device. In Duffing oscillator, if value of β0 is

less than zero indicate softening nature of frequency response curves, with β0 = 0 indicate linear

nature and if β0 is higher than zero indicate hardening nature. But for making comparison between

Duffing oscillator and Duffing oscillator with SMA device, it is found that SMA system affect on

Duffing oscillator in three cases: softening, linear and hardening nature of frequency response curve.

The SMA system support the softening nature, so for β0 = −0.09 frequency response curve shows

softening nature. It is also found that linear curve in Duffing oscillator shift from β0 = 0 to β0 = 0.2

in Duffing oscillator with SMA device system. Simultaneously position of bifurcation point also

changes and shifted towards downward. In Duffing oscillator with SMA device value of ‖X‖ is

decreases compare to Duffing oscillator system. For hardening nature, some higher values of β0 used

to neutralize SMA effect i.e up to β0 = 0.2. At β0 = 0.2 Duffing oscillator neutralize SMA effect

and for β0 = 0.3 and higher values of β0 Duffing oscillator with SMA device system shows hardening

nature. Continue increases in β0 values, dominance of Duffing oscillator increases over SMA device.

3.2 Investigation of SMA Based Cubic and Quadratic Oscil-

lators

The behavior of SMA device analyze in Chapter 2. The behavior of quadratic oscillator is govern

by a non-linear second-order differential equation [25]. This behavior is defined by β1x
2 term. The

quadratic oscillator has quadratic non-linearity. For the purpose of industrial applications complex

system would set to control the vibration of structures. The Investigation of such complex behavior

and combine effect of Duffing oscillator and quadratic behavior on SMA device is important. The

behavior of Duffing oscillator is govern by Duffing equation. In this section obtained a mathematical

model including Duffing and quadratic oscillators. To analyze the behavior of system obtained a

frequency response curves by using harmonic balance method [22]. Investigate the results and make

a discussion on that.

3.2.1 Mathematical Model

The model contain a SMA device, Duffing oscillator and quadratic oscillator. This system is excited

by harmonic forcing. The behavior of SMA device added combine influence of cubic non-linearity

and quadratic non-linearity. To add Duffing response in system, term C1x
3, and for quadratic

response, term C2x
2 are incorporate in basic equation. Now Eq. (2.1) become,

mẍ = γ cos(Ωt)− f − µẋ− C1x
3 − C2x

2

solving above equation for non-dimensional form and obtained,

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ− β0x
3 − β1x

2
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where, β0 =
C1x

3
Ms

fMs
and β1 =

C2x
2
Ms

fMs
. C2 is a quadratic coefficient. In above equation β0 and β1

are non-dimensional Duffing coefficient and quadratic coefficient respectively. Both coefficient have

significant importance in investigation.

Arrange constitutive equations with Duffing and quadratic oscillators as following,

ẋ = v,

v̇ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζv − β0x
3 − β1x

2,

ξ̇ =
Z1

1− Z1Z2
[sgn(x)Jv + h(ϑ− ϑE)],

ϑ̇ =
1

1− Z1Z2
[−sgn(x)JZ1Z2v − h(ϑ− ϑE)] (3.3)

These constitutive equations used to obtained a response curves of system.

3.2.2 A Numerical Method: Harmonic Balance Solution

In order to investigate the system behavior follow a harmonic balance method. In frequency response

curve Ω is a control parameter. In Duffing and quadratic oscillators β0 and β1 are non-dimensional

parameters, so values of these coefficients affect significantly on response of system.

Arrange the constitutive equations (Eqs. (3.3)) in following form,

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ− β0x
3 − β1x

2,

ϑ̇ = h(ϑE − ϑ)− Z2ξ̇ (3.4)

So using set of Eqs. (3.4) follow a harmonic balance method as mentioned in Chapter 2 and ob-

tained a harmonic balance equations. Using that equations obtained a frequency response curves

for displacement and temperature.

3.2.3 Result and Discussion

In model, SMA device shows nonlinear behavior due to energy dissipation capability. Duffing oscil-

lator and quadratic oscillator have cubic and quadratic non-linearity respectively. Combine of these

two oscillator with SMA device shows a peculiar behavior. For investigation and analysis obtained

a frequency response curves of both displacement and temperature. The whole system contained

three oscillator: SMA oscillator, Duffing oscillator and quadratic oscillator. The material of SMM

device keep as Ni-Ti alloy.

In non-isothermal regime (ϑ̇ 6= 0), so model consider a thermodynamic parameter as given by

Eq. (3.4). SMA has a strong coupling between thermal and mechanical parameters. The same

values of parameters are used as mentioned in isothermal case of shape memory devices. The
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Figure 3.2: (a)Frequency response curves of SMA based cubic and quadratic oscillators for dis-
placement in non-isothermal case (b)Frequency response curves of SMA based cubic and quadratic
oscillators for temperature in non-isothermal case

Duffing oscillator and quadratic oscillator added to SMA device and due to combination of Duffing

and quadratic oscillators behavior of SMA device affected. The cubic and quadratic non-linearity of

Duffing and quadratic oscillators affect on both displacement and temperature behavior of system.

The response of Duffing and quadratic oscillators are defined by β0x
3 and β1x

2 terms respectively

so values of β0 and β1 have significant impact on response of system. Addition of Duffing and

quadratic oscillators in system of SMA device produce complex behavior. Investigation of this

complex behavior is useful in industrial applications. Such a complex response captured in frequency

response curves and resonance frequency of system is observed.

In SMA system frequency response curves shows softening nature for both displacement and

temperature. Addition of quadratic oscillator, add some different result in frequency response curves.

The model of SMA device with Duffing and quadratic oscillators used same parameter as mentioned

in isothermal case of SMA device in Chapter 2. In this thesis, Duffing coefficient (β0) kept constant

and vary quadratic coefficient (β1) from -0.1 to 0.9 to study the effect of quadratic oscillator. In

Figure 3.2(a) and Figure 3.2(b) green curves drawn at β0 = −0.1, blue curves at β0 = 0 and red

curves at β0 = 0.1, here vary β1 from -0.1 to 0.9 at each β0 value. The combination of two oscillator

with SMA device shows partial effect of Duffing oscillator and partial effect of quadratic oscillator.

The system with quadratic oscillator shows superharmonic response. It also affect the softening

nature of SMA system. But influence of of quadratic oscillator on softening nature of SMA damping

system is less compared to Duffing oscillator. For low value of β1 i.e β1 = −0.1 to 0.2 frequency

response curve shows very less superharmonic response. For β1 = 0.3 or more than that frequency

response curve shows higher influence of superharmonic response. Here superharmonic response is

linear. But simultaneously Duffing coefficient also has a effect on system and combination of these

two oscillator convert softening nature to hardening nature. If Duffing coefficient kept constant

and only vary the quadratic coefficient then it is found that all curves meet at single point near

to superharmonic region and orientation of further curve remains same as response of SMA device

with Duffing oscillator. That concurrent single point shift towards higher frequency with increase

of Duffing coefficient. The superharmonic response found only in displacement frequency response

curves. Similar type of response also found in temperature frequency response curves. With the

increase of value of both coefficients (β0 & β1) nature of curve changes from softening to linear to
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hardening. With increase of a value of quadratic coefficient peak of superharmonic region increases.

As shown in Figure 3.2(a), with increase of value of β1 peak of superharmonic region increases

and initiation of of adjacent superharmonic region (left side). At higher values of both coefficients

frequency response curves indicate hardening nature.

3.3 Summary

The Duffing oscillator governed by cubic term of displacement which has significant impact on

response of SMA system. The Duffing oscillator directly affecting on softening nature of SMA

devices. The value of Duffing coefficient decide the nature of Duffing oscillator. The comparison

of Duffing oscillator between with SMA and without SMA describe the influence of SMA device

on Duffing oscillator. In this section analysis of SMA device with Duffing and quadratic oscillator

contribute the study to non-linear dynamics. With quadratic and cubic oscillator SMA device has

partial influence of both oscillators. Quadratic oscillator is responsible for linear superharmonic

region. Both coefficients: quadratic coefficient and Duffing coefficient has a significant influence

on SMA device. The system has complex behavior and study of this behavior useful in industrial

applications.
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Chapter 4

Analysis of SMA Model by

Method of Averaging

In this Chapter, we describe the method of averaging [23] to obtain the nonlinear response and

compare the same with the method of harmonic balance. To present the comparison, we take the

SMA based oscillator with or without cubic nonlinearity under isothermal condition.

4.1 Mathematical Model

The mathematical model of SMA system obtained in Chapter 2. The same constitutive equations

used as obtained in discussion of mathematical model for SMA system. The non-dimensional form

of constitutive equations used for method of averaging. For the sake of convenience write a set of

constitutive equations again,

ẋ = v,

v̇ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζv,

ξ̇ =
Z1

1− Z1Z2
[sgn(x)Jv + h(ϑ− ϑE)],

ϑ̇ =
1

1− Z1Z2
[−sgn(x)JZ1Z2v − h(ϑ− ϑE)]. (4.1)

This set of equations used in method of averaging and equations obtained from method of averaging

used for plotting the frequency response curves.
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4.2 A Numerical Method: Method of Averaging

In the study of dynamical systems, the method of averaging based on Krylov−Bogolyubov method

of averaging [23] is used to study certain time-varying systems. This is a mathematical method

for approximate analysis of oscillating processes in non-linear mechanics. The method of averaging

is a useful computational technique to obtained a approximate solution of non-linear differential

equations. This method is based on averaging principle which replaced exact differential equations

by averaged equations. In order to validate the system behavior, method of averaging is used to

obtained the frequency response curves.

Arrange the constitutive equations Eqs. (4.1) as follows,

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ,

ϑ̇ = h(ϑE − ϑ)− Z2ξ̇ (4.2)

Apply method of averaging to first constitutive equation of set of Eqs. (4.2),

ẍ = γ cos(Ωt)− (x− sgn(x)λξ)− 2ζẋ,

consider, f(x, ϑ) = (x− sgn(x)λξ), so constitutive equation becomes,

ẍ = γ cos(Ωt)− f(x, ϑ)− 2ζẋ, (4.3)

Lets assume,

x = R cos(Ωt+ Φ)

where R is amplitude and Φ is phase, both are slow varying with respect to time. Consider θ = Ωt+Φ.

x = R cos(Ωt+ Φ) = R cos(θ) (4.4)

Differentiating Eq. (4.4) with respect to time, yield

ẋ = Ṙ cos(Ωt+ Φ)− ΩRsin(Ωt+ Φ)− Φ̇Rsin(Ωt+ Φ)

ẋ = Ṙ cos(θ)− ΩRsin(θ)− Φ̇Rsin(θ) (4.5)

making,

Ṙ cos(θ)− Φ̇Rsin(θ) = 0 (4.6)

Eq. (4.5) becomes as following,

ẋ = −ΩRsin(θ) (4.7)
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Differentiating Eq. (4.7) with respect to time, yield

ẍ = −ΩṘsin(Ωt+ Φ)− Ω2R cos(Ωt+ Φ)− Φ̇Rsin(Ωt+ Φ)

ẍ = −ΩṘsin(θ)− Ω2R cos(θ)− Φ̇Rsin(θ) (4.8)

Substitute Eq. (4.7) and Eq. (4.8) in Eq. (4.3), yield

−ΩṘsin(θ)− Ω2R cos(θ)− Φ̇Rsin(θ) + f(x, ϑ)− 2ΩζRsin(θ) = γ cos(Ωt) (4.9)

Solving Eq. (4.6) and Eq. (4.9) for Ṙ and Φ̇, obtained

Ṙ =
−γ cos(Ωt)sin(θ)

Ω
− ΩRsin(θ)cos(θ)− 2ζRsin2(θ) +

f(x, ϑ)sin(θ)

Ω
(4.10)

Φ̇ =
−γ cos(Ωt) cos(θ)

ΩR
− Ω cos2(θ)− 2ζsin(θ) cos(θ) +

f(x, ϑ) cos(θ)

ΩR
(4.11)

The above Eq. (4.10) and Eq. (4.11) can be averaged over one cycle of θ. In these equations R and

Φ are slowly varying compare to θ so assume R and Φ as constants. By averaging equations are,

Ṙ =
1

2π

∫ 2π

0

−γ cos(Ωt)sin(θ)

Ω
− ΩRsin(θ) cos(θ)− 2ζRsin2(θ) +

f(x, ϑ)sin(θ)

Ω

 dθ (4.12)

Φ̇ =
1

2π

∫ 2π

0

−γ cos(Ωt) cos(θ)

ΩR
− Ω cos2(θ)− 2ζsin(θ) cos(θ) +

f(x, ϑ) cos(θ)

ΩR

 dθ (4.13)

Solution of Eq. (4.12) and Eq. (4.13) are,

Ṙ =
−γsin(Φ)

2Ω
− ζR+

1

2π

∫ 2π

0

f(x, ϑ)sin(θ)

Ω

 dθ (4.14)

Φ̇ =
−γ cos(Φ)

2ΩR
− Ω

2
+

1

2π

∫ 2π

0

f(x, ϑ) cos(θ)

ΩR

 dθ (4.15)

These above equations (Eq. (4.12) and Eq. (4.13)) are output of method of averaging. These dif-

ferential equations of R and Φ are used to plot frequency response curves of amplitude and phase

respectively. To plot frequency response curves solve these equations at equilibrium.

At equilibrium,

Ṙ =
−γsin(Φ)

2Ω
− ζR+

1

2π

∫ 2π

0

f(x, ϑ)sin(θ)

Ω

 dθ = 0 (4.16)

Φ̇ =
−γ cos(Φ)

2ΩR
− Ω

2
+

1

2π

∫ 2π

0

f(x, ϑ) cos(θ)

ΩR

 dθ = 0 (4.17)
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For solving integration term in equilibrium equation, assume Fourier series as,

f(x, ϑ) =
y0

2
+

N∑
i=1

Un cos(nΩt) + Vnsin(nΩt) n = 1, 2....N

f(x, ϑ) =
y0

2
+

N∑
i=1

Un cos(n(θ − Φ)) + Vnsin(n(θ − Φ)) n = 1, 2....N (4.18)

Substitute Eq. (4.18) in Eq. (4.16) and Eq. (4.17), yield equilibrium equations by solving integration

terms. In final form of equilibrium equations Un and Vn are Fourier coefficients, to calculate these

Fourier coefficients use the iterative algorithm based on the evaluation of R and Φ. From values

of R and Φ calculate values of x for timespan of [0 2π
Ω ]. In isothermal case ϑ is constant. Using

values of x and ϑ obtained the values of ξ by using numerical integration. Obtained the values of

f(x, ϑ) using values of x, ϑ and ξ. Finally, calculate the values of Un and Vn by using IFFT (Inverse

Fast Fourier Transform). In order to obtained a unstable branch of frequency response curve used

arc continuation method. Here, spherical arclength continuation method is used to obtained a

constrained equation. The constrained equation are as follows,

(x− xi)
T (x− xi)− (∆s)2 = 0

Here, x is unknown quantity of current step and xi known quantity of previous step. In above

constrained equation s is arclength along a curve and ∆s is step size. In this thesis, predictor-

corrector algorithm is used for iterative method. Here, secant predictor algorithm used and proposed

as following,

xi+1 = xi + pi(xi − xi−1)

Where, pi is step-dependent parameter. For corrector algorithm used Newton-Raphson iterative

method and by using predictor-corrector method obtained values of unknown constant.

4.3 Result and Discussion

The investigation and detailed study of SMA devices was done in Chapter 2 with frequency response

curves. To draw frequency response curves various numerical methods are used. These methods are

multiple scale method, method of averaging and harmonic balance method etc. In Chapter 2 fre-

quency response curves are obtained by using harmonic balance method, to validate these frequency

response curves implement method of averaging on same constitutive equations. The material of

SMM device keep as Ni-Ti alloy.

4.3.1 SMA Oscillator without Cubic Nonlinearity

The behavior of system and implications of frequency response curves studied in Chapter 2. In

isothermal case, temperature is constant, so investigation deals with only displacement frequency

response curves. In method of averaging, values of non-dimensional parameters keep same as men-
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tioned in isothermal case of Chapter 2. By using method of averaging obtained the displacement

frequency response curves as shown in Figure 4.1(a). The comparison of results between harmonic

balance method and method of averaging shown in Figure 4.1(c). The variation between results

obtained by two methods are very small. Here variation occur because of procedures followed by

these methods and difference in numerical solutions. In numerical method, selection of initial values,

Figure 4.1: (a)Frequency response curves of SMA for displacement in non-isothermal case by
method of averaging (b)Frequency response curves of SMA for temperature in non-isothermal
case (c)Comparison of frequency response curves of SMA for displacement between harmonic bal-
ance solution and method of averaging in non-isothermal case (γ = 0.2)

tolerance limit, method used for continuation of bifurcation points and method of predictor-corrector

etc. factors have influence on graph plotting in MATLAB [24]. So because of these factors varia-

tions occur between results obtained by these two methods. For γ = 0.1 i.e for low forcing there

is no variation in results of these two methods. The very small variation occur for higher forcing

(γ = 0.2). The amount of variations is slightly high in higher forcing because of various factors

influence on plotting of frequency response curve in MATLAB. The difference between two results

are (for γ = 0.2), peak of curve is high in harmonic balance solution than method of averaging

and resonance frequency is slightly less in harmonic balance solution than method of averaging.

Figure 4.1(c) shows that nature and values of curves are nearly same and variations are very small.

So by using this reference, validate the result of harmonic balance method by using the method of

averaging.

In method of averaging two differential equations obtained for amplitude and phase. In Fig-

ure 4.1(a) and Figure 4.1(c) results obtained from solution for amplitude are shown. The solution of
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differential equation for phase give a phase frequency response curve. The phase frequency response

curve shown in Figure 4.1(b). It can be seen that the phase is distorted by the nonlinearity to

exhibit a multivalued region. Also, same method is used to plot frequency response curves for phase

as used for amplitude. Two frequency response curves of phase at different excitation amplitudes

γ = 0.1 and γ = 0.2. At -90◦ curve changes its response. It can also be found that, as the excitation

frequency increases, the non-linearity exhibited in plots and for low frequencies it disappeared.

4.3.2 SMA Oscillator with Cubic Nonlinearity

Figure 4.2: Comparison of frequency response curves of SMA based cubic oscillator for displacement
between harmonic balance solution and method of averaging in isothermal case (γ = 0.2)

Method of averaging [23] applied to SMA based cubic oscillator to obtained a frequency response

curves for displacement. In Eq. (4.3) expression of f(x, ϑ) taken as f(x, ϑ) = (x− sgn(x)λξ+β0x
3),

cubic term added in expression. In Figure 4.2 blue curves drawn by method of averaging and red

curves drawn by harmonic balance solution. Frequency response curves drawn for range of β0 =-0.1

to 1.1 by both methods. Comparison between two methods is necessary to find the most correct

approximation methods suitable for SMA based cubic oscillator. From Figure 4.2, it is found that

difference between two method is very less. This difference is occur due to tolerance difference or

initial values or method of numerical integration. But for some curves response by two methods are

exactly matching. In this way we can state that both approximation method giving almost correct

results.
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4.4 Summary

The behavior of SMA device is investigated by frequency response curves obtained using the method

of averaging and harmon balance method. It is found that the averaging method underestimate the

results as compared to the method of harmonic balance. However, both the methods can be used

to study the influence of forcing on the response of SMA based oscillators.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, we present the governing equation to describe the theromomechanical behavior of

shape-memory alloys (SMA) using the equation of motion and the constitutive equation of SMA

under isothermal and non-isothermal condition. Subsequently, we discuss the method of harmonic

balance to solve the coupled equation to obtain the linear and nonlinear frequency response. Af-

ter validating the solution obtained by harmonic balance method with the numerical solution and

the available results in the literature, we obtain the solution under isothermal and non-isothermal

conditions.

To analyze the influence of cubic and quadratic nonlinear stiffness on the response of SMA based

oscillator, we add the nonlinear terms in the governing equation and solve it using the method of

harmonic balance under non-isothermal condition. On comparing the results, we found that by

varying the coefficient of cubic and quadratic nonlinearity, the frequency response of SMA based

oscillator can be tunned effectively. Subsequently, we also present the method of averaging to obtain

nonlinear frequency response of SMA based oscillator under isothermal condition with and without

cubic nonlinearity. On comparing the solutions obtained from the method of harmonic balance and

the method of averaging, we found that the averaging solution underestimate the results. Finally, we

state that we have presented different solution methods to obtain the nonlinear frequency response

of SMA based oscillator with or without cubic and quadratic oscillators under isothermal as well

as non-isothermal condition. It can be used in analyzing the SMA based phenomena in varieties of

applications.

5.2 Future work

The methods presented in the thesis in analyzing SMA based oscillators are based on single time

scale. To analyze the relative importance of time scale associated with beam resonator and SMA,

we can employ more general approach based the method of multiple scale. Moreover, a typical

experimental studies can also be performed to capture the above effects accurately.
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