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Abstract 

 

Recently new technologies and research in computational bioinformatics have 

revolutionized the rate of biological data generation. A vast amount of proteomics 

and genomics data is contributed to the life science society by researchers especially 

in the domain of high throughput next generation sequencing methods and it is 

doubling at every 18 months. Protein identification is a fundamental step in protein 

sequence analysis and it needs efficient solutions to match the data growth. Rapid 

methods are focused in the quest for faster protein sequence analysis to scan 

databases and identify a protein accurately. This benefits the discipline of disease 

biomarker identification and aid disease diagnosis and prognosis. 

The problem of identifying a protein is similar to the string matching problem, i.e. 

the problem of finding a substring in another string; in particular in this case the 

problem consists in matching a string identifying a peptide of an unknown protein, 

against a string identifying a whole well known protein. String matching algorithms 

like Boyer-Moore and Knuth-Morris-Pratt (KMP) search single pattern strings in a 

larger string. These approaches have a requirement of high computational 

complexity. Aho Corasick algorithm (ACA) is a widely used multi-pattern string 

matching algorithm that has a linear computational complexity. Hardware 

accelerated solutions for protein identification are used to address the bottlenecks in 

the computational biology pipeline. Hardware Software codesign approach is used 

for reconfigurable string matching and simultaneously harness the advantages of 

both hardware and software. Reconfigurable string matching is performed in the 

disciplines of protein identification and biomarkers discovery. With the generation 

of plethora of sequenced data and number of biomarkers for several diseases, it is 

becoming necessary to have an accelerated processing and on-the-fly reconfigurable 

system design methodology to bring flexibility to its usage in the medical science 

community without the need of changing the entire hardware every time with the 

advent of new bio-marker or protein. 

In this Thesis on-the-fly reconfigurable hardware-software co-design based 

reconfigurable solution for protein identification in real-time is presented. We use 
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on-chip memory based implementation to realize FSM design using ACA algorithm. 

We demonstrate the way proposed design can be used in real life with plethora of 

test cases. 

 

The proposed methodology  where implementing an accelerated and reconfigurable 

multi-pattern string matching platform does not require any step of fixed hardware 

system design when used in an application making it reconfigurable enabling the 

sequencing with any number of biomarkers for as many diseases as possible.  

 

The proteome database of human at UniProtKB (Proteome ID up000005640) 

comprising of 20192 reviewed proteins and 42132 canonical, and isoform proteins 

with variable database-size are used for testing the proposed design and the 

performance of the proposed system has been found to compare favorably with the 

state-of-the art approaches with the additional advantage of real-time re-

configurability. 
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Chapter 1 
 

Introduction 

The ability to quickly identify proteins is a major concern in many medical 

applications such as cancer monitoring and recognition and pharmaceutical research. 

Due to the fast increment of data available thanks to technological improvements, 

we need to take proteins identification a step further, improving 

its identification speed to match the growth of both proteomics and genomics 

databases. Because of the fast data growth inside both proteomic and genomic 

databases, protein identification requires an increasing amount of computation. 

Many researches will benefit from accurate protein identification and the ability to 

produce more accurate results at faster rates. For instance, disciplines, such as 

detecting biomarkers within diagnostic field, in order to recognize and monitor 

cancer disease with serum proteomic [1], bacterial identification, and 

pharmaceutical research will take advantage of this possibility. 
The problem of identifying a protein is similar to the string matching problem, i.e. 

the problem of finding a substring in another string; in particular in this case the 

problem consists in matching a string identifying a peptide of an unknown protein, 

against a string identifying a whole well known protein. After all the peptides of the 

unknown protein have been searched a score can be assigned to the proteins in the 

database to find the one that best matches the unknown protein we are trying to 

identify. Unfortunately the computational complexity of this problem grows as  

Lpep × Lpro if we identify the length of the peptide as Lpep and the length of the 

protein as Lpro. Furthermore as we have to search for all the unknown peptides 

forming the protein, U in the whole database composed of P proteins we have a 

worst case computational complexity of 

U × Lpre × P × Lpro 

This complexity refers to a single protein identification, and obviously another 

multiplication factor has to be added to the formula to take in consideration the 

scenario of multiple proteins identification. 
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 Efficient substring search algorithms such as Boyer-Moore[2] and Knuth-Morris-

Pratt [3] that locate single pattern strings within a larger text string can be used in a 

multipass manner (i.e., one pass for each string in the set of 

peptides). However, this approach does not scale well with an increasing number of 

pattern strings. In particular, assuming p patterns with an average length of n and a 

text string of length m, naïve, multi-pass, approaches have 

computational complexity of O(p(m + n)). 

 The Aho-Corasick algorithm [4] provides a scalable solution to the string set 

matching problem in that it incorporates the search mechanism for the entire set of 

patterns into a single finite state machine (FSM). The power of Aho-Corasick stems 

from the ability of the algorithm to find the location of the strings in the pattern set 

in the text string in a single pass. The computational complexity of 

Aho-Corasick search is O(m + k) where k is the total number of occurrences of the 

pattern strings in the text. This linear processing time complexity has resulted in the 

widespread use of Aho-Corasick in string matching application.  

 The performance of the Aho-Corasick algorithm can be further enhanced by 

implementing it in hardware. Tan and Sherwood [5] were the first to describe an 

area-efficient hardware approach for implementing the Aho-Corasick for network 

intrusion detection systems implemented in application specific integrated circuits 

(ASICs). However, the complexity and costs associated with ASIC development is a 

significant impediment in their adoption in computational biology. Field 

programmable gate array (FPGA) devices, on the other hand, can be repeatedly 

reconfigured to create a variety of application-specific processing elements. This 

reconfigurable nature makes FPGAs a popular low-cost alternative to the 

development of specialized ASICs for a variety of application domains, including 

computational biology. 

In [6] realized a HW implementation of Aho Corasick that aims at optimizing the 

utilized area on the FPGA device, while maintaining good performance, by 

partitioning the Finite State Machine (FSM) that performs the string matching 

analysing a small number of peptides in parallel. Although it has been 

demonstrated how Aho Corasick is the fastest string matching algorithm, it suffers 

from a great limitation for what concern HW implementation. It relies on the 
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creation of an ad-hoc HW component to match a single peptide, which causes the 

need to synthesize different HW components for each possible 

peptide. 

Therefore there is need for Reconfigurable string matching is required at 

bioinformatics disciplines where patterns to be searched are changed, for example, a 

newly discovered biomarker is added into the database of known biomarkers. 

Multiple biomarkers can be searched in a given sample and many diseases can be 

found simultaneously. Pure hardware solution is not feasible in this scenario where 

patterns to be searched are updated continuously. All the steps of a hardware system 

design are necessarily run in pure hardware solutions. In a hardware system design 

steps like writing programs in hardware description language (HDL), synthesis, 

translation, mapping, place and route, programming file generation and configuring 

FPGA using bit stream file are run. In the scenario of only hardware solution, these 

steps are repetitively carried that add substantial amount design time. These require 

dedicated computer systems with sophisticated proprietary tools. Repetitive running 

of these steps can be avoided by employing reconfigurable systems with intelligent 

hardware software partitioning and codesign. We use hardware software codesign 

approach in our design. 
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Chapter 2 
 

Proteomics and Protein Sequencing 
Proteins are complex molecules. They are biochemical molecules consisting of one 

or more polypeptides, where polypeptide is a macromolecular chain of linked amino 

acids. Proteins and their interactions regulate the majority of processes in the human 

body. From mechanical support in skin and bones to enzymatic functions, the 

operation of the human body can be characterized as a complex set of protein 

interactions. Despite the efforts of scientists, many proteins and their functions have 

yet to be discovered. The wealth of information that lies in these unknown proteins 

may well be the key to uncovering the mysteries that govern life [7]. 

Proteomics investigates the proteins that make up an organism. Protein identification 

is a fundamental problem in Proteomics [7]. The ability to identify proteins and to 

determine their covalent structures has been central to the life sciences. The amino 

acid sequence of proteins provides a link between proteins and their coding genes 

via the genetic code, and, in principle, a link between cell physiology and genetics. 

The identification of proteins provides a window into complex cellular regulatory 

networks. For the identification of proteins, their sequencing, quantification and 

other tasks, mass spectrometry is currently the tool of choice.  

Over the past 20 to 30 years, the analysis of tandem mass spectrometry data 

generated from polypeptide fragments has become the dominant method for the 

identification and classification of unknown protein samples. Tandem mass 

spectrometry (MS/MS) now plays a very important role in protein identification due 

to its speed and high sensitivity. It is emerging as the standard method for this 

important protein identification problem. With wide-ranging application in 

numerous scientific disciplines such as pharmaceutical research, cancer diagnostics, 

and bacterial identification, the need for accurate protein identification remains 

important and the ability try to produce more accurate identifications at faster rates 

would be of great benefit to society as a whole. Protein mixtures are first digested 

into suitable sized peptides for mass spectrometric analysis using site-specific 
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proteases (usually Trypsin). Then the peptides are ionized via electro-spray 

ionization (ESI). Some of the peptides are fragmented by collision-induced 

dissociation (CID) and their tandem mass (MS/MS) spectra are collected. These 

peptides can then be analysed computationally to reveal their complete sequence. 

One way to interpret these MS/MS spectra is to compare the spectra with a protein 

sequence database to find the peptide whose predicted mass spectrum matches the 

experimental MS/MS spectra best. The original proteins present in the sample are 

then inferred based on the list of peptides matched to MS/MS spectra. These are 

referred as database search algorithms [8]. 

Protein identification is a fundamental step in protein sequence analysis and it needs 

efficient solutions to match the data growth. Rapid methods are focused in the quest 

for faster protein sequence analysis to scan databases and 

identify a protein accurately [9]. This benefits the discipline of disease biomarker 

identification and aid disease diagnosis and prognosis [10]. 

Protein identification using peptide fragments obtained by mass spectrometry 

involves database searching that is similar to string matching [11]. In string 

matching a database or text is searched to find locations of one or more strings also 

called patterns. 

String matching algorithms like Boyer-Moore [2] and Knuth-Morris-Pratt (KMP) 

[3] search single pattern strings in a larger string. These approaches have a 

requirement of high computational complexity [6]. Aho Corasick algorithm (ACA) 

is a widely used multi-pattern string matching algorithm that has a linear 

computational complexity [4][12].  

The Aho-Corasick algorithm (ACA) is widely used in computational biology for a 

variety of pattern matching tasks. For example, Brundo and Morgenstern use a 

simplified version of ACA to identify anchor points in their CHAOS 

algorithm for fast alignment of large genomic sequences [13,14]. The TROLL 

algorithm of Castelo, Martins, and Gao uses ACA to locate occurrences of tandem 

repeats in genomic sequence [15]. Farre et al. use Aho-Corasick as 

the search algorithm for predicting transcription binding sites in their tool PROMO 

v. 3. [16] Hyyro et al. demonstrate that Aho-Corasick outperforms other algorithms 

for locating unique oligonucleotides in the yeast genome [12]. The SITEBLAST 
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algorithm [17] employs the Aho-Corasick algorithm to retrieve all motif anchors for 

a local alignment procedure for genomic sequences that makes use of prior 

knowledge. Sun and Buhler use Aho Corasick deterministic finite automata (DFA) 

to design simultaneous seeds for DNA similarity search [18]. The AhoPro software 

package adapts the Aho-Corasick algorithm to compute the probability of 

simultaneous motif occurrences [19]. 

Aho-Corasick is arguably the best and the widest used multiple pattern matching 

algorithm that searches all occurrences of any of a finite number of keywords in a 

text string. Dandass et al. have used this algorithm for hardware 

acceleration of peptide pattern matching for the first chromosome of human genome 

[6]. We have used this algorithm and proposed a Methodology to make the system 

reconfigurable by partitioning into Hardware and software with usage of Xilinx 

Zync FPGA for peptide matching. This algorithm consists of two phases; 

constructing a finite state machine from keywords and then using these state 

machines for locating the keywords by processing the text string in a single pass. 

 

In the Next Chapter construction of Finite State Machine for set of peptides using 

ACA and Hardware Software Co Design Implementation of ACA [26] for locating 

the peptides in the protein Database is explained. 
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Chapter 3 

 

ACA Algorithm for Protein Identification 

 

3.1 Theoretical Background 

 

The Aho-Corasick algorithm consists of an initial pre-processing phase that creates 

the FSM from the set of pattern strings. The FSM resulting from the pre-processing 

phase is subsequently used for performing the string set matching. 

The pre-processing phase has a runtime complexity of O (pn) and the search phase 

has a runtime complexity of O (m + k). Detailed description and analysis of Aho-

Corasick can be found in [4]. A brief description follows below 

 In the pre-processing phase, the FSM is constructed using two steps. In the first 

step, a set of target strings is organized into a "keyword" tree. The root of the tree 

represents the state when no part of any pattern string has been found in the input 

message. The remaining nodes of the tree represent states where the pattern strings 

have been partially or fully matched. The edges in the tree represent the transitions 

resulting from the occurrence of specific symbols in the text string. The path from 

the root node to any node on the tree represents the subset of pattern strings that are 

potential matches.  

 In the second pre-processing step, "failure links" are added to the tree. Failure links 

lead from nodes on one branch of the tree to nodes on other branches. Failure links 

are needed because patterns strings can overlap in the text string and when the 

current branch of the tree fails to produce a match because of the current symbol in 

the text string, the FSM needs to resume processing from a new branch, without 

having to rescan input symbols. 

 In a computer, the FSM state transitions can be represented in the form of a table. 

Figure 1 illustrates the organization of the FSM for an implementation of  
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Aho-Corasick that matches the peptide set {ACACD, ACE, and CAC}; Table 1 

presents a table-oriented representation used for implementation of the same FSM. 

In Figure 1, the state 0 is the start state and the shaded states 4, 5, 6, and 9Match 

peptides CAC, ACACD, ACE, and CAC, respectively. 

  

  

Figure1  

An FSM for matching peptide set {ACACD, ACE, and CAC}. 

 

When the FSM is in any state and receives an input symbol not shown in the figure, 

the FSM transitions to state 0. At runtime, the FSM interpreter reads the row 

corresponding to the current state from the table, reads the next input symbol from 

the reading frame, and determines the next state from the row entry corresponding to 

the input symbol.  

When the FSM transitions to as state, it looks at the pattern match column of the 

table's corresponding row in order to determine if a match has occurred.  
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A non-null entry in the pattern match entry of row specifies the pattern that has been 

located by the FSM. 

 

Table-1. A table oriented representation of the FSM for the peptide set 

{ACACD, ACE, and CAC} 

                                                              Input Text Symbol 

Current State        A          B           C           D            E           F ….…………………..                 Z            Match Vector 

 0  1  0  7  0  0  0  0  0  0  0  0 

 1  1  0  2  0  0  0  0  0  0  0  0 

 2  3  0  7  0  6  0  0  0  0  0  0 

 3  1  0  4  0  0  0  0  0  0  0  0 

 4  3  0  7  5  6  0  0  0  0  0  2 

 5  1  0  7  0  0  0  0  0  0  0  1 

 6  1  0  7  0  0  0  0  0  0  0  4 

 7  8  0  7  0  0  0  0  0  0  0  0 

 8  1  0  9  0  0  0  0  0  0  0  0 

 9  3  0  7  0  6  0  0  0  0  0  2 
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3. 2 Pseudo code for ACA FSM Implementation 

#define M=1000.  *** M is Sum of the length of all the peptides 

#define N=25   *** N is the number of Amino Acid Symbols 

#define N1=1 *** N1 is Peptide Match Vector column used for Representing at which state Peptide Matches  

Consider a set of peptides 

Create ACA FSM for the above Peptides 

Extract FSM into Matrix A [M][N] 

Copy matrix A [M][N] in to the matrix BRAM_table [M][N] 

 For (k=1 to M) 

Initialize l1 = 0; p1 = 0;      

 For (j=0 to N) 

 If (A [0][j]!= 0)  

          If (BRAM_table[k][j] == 0) 

                                     BRAM_table[k][j] = A [0][j]; 

             Else 

                       l1 = A [0][j]; 

                        p1 = A[k][j];                               

     If (p1! = 0) 

           Recursive (l1, p1); 

Void Recursive (int l1, int p1) 

 Initialize j, l = 0, p = 0; 

 For (j = 0 to N) 

  If (A [l1][j]!= 0) 

            If (BRAM_table[p1][j] == 0) 

                          BRAM_table[p1][j] = A[l1][j]; 

             Else 

                    l = A[l1][j]; 

      p = A[p1][j]; 

  If (p != 0) 

Recursive (l, p); 

 



11 

The Above Algorithm Implementation creates FSM Table for the peptides ACACD, 

ACE, CAC as shown in table-1 above 

  

The Above Algorithm for FSM Table is implemented in C language which is the 

software part of our Hardware Software Co-Design. The above table is stored in 

BRAM of Xilinx ZYNQ FPGA and it is interfaced with generic custom IP such that 

it forms the FSM logic in Hardware. 

 

The FSM logic Hardware is implemented in PL (Programmable Logic) Section of 

Xilinx Zed Board and controlled by ZYNQ Processor which is in the PS (Processing 

System) section of ZYNC-7000 SOC. 

 

3.3 Proposed Methodology 

The architectural diagram of the proposed system is depicted in Fig. 3. The 

architecture has a Zynq-7000 All Programmable SoC (AP SoC) ZYNQ7 processing 

system as the master. The FPGA device on board is XC7Z020 and it has an ARM 

Cortex-A9 MP Core CPU. A processor system reset module is used to reset and 

synchronize all modules in the design by resetting them as per the reset conditions 

given by master at its input. Advanced extensible Interface (AXI) interconnect is 

used to interface the memory-mapped ZYNQ7 master with the memory-mapped 

slaves. 

 

Figure 2. Architecture of the proposed system 
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Block memory generator module is used for generating block memory. Block 

memory is used for storing data during program run time. AXI block RAM (BRAM) 

controller acts as a bridge to Block memory generator module is used for generating 

block memory. Block memory is used for storing data during program run time. 

AXI block RAM (BRAM) controller acts as a bridge to communicate between 

ZYNQ7 via AXI interconnect and BRAM created by block memory generator. 

Custom hardware module is the necessary hardware logic required to realize FSM 

using memory communicate between ZYNQ7 via AXI interconnect and BRAM 

created by block memory generator. Custom hardware module is the necessary 

hardware logic required to realize FSM using memory. A detailed diagram of the 

interface between block memory and hardware logic is depicted in Fig. 3 (a). The 

custom hardware is a generic hardware and along with memory implements a 

memory based FSM. Block memory is stored with contents that realize Aho-

Corasick algorithm with the hardware logic. Depending on an input character value 

the corresponding input lines at the multiplexer (MUX) are activated and are 

available at the output of multiplexer. A state register is used to latch the multiplexer 

output and it feeds block memory generator with the necessary address. 

 

We use Xilinx Vivado Design Suite software tools to design our system. Vivado 

Design Suite has all the features of a hardware system design along with system on a 

chip development. We built the design in Vivado as depicted in Fig. 1. We use 

Creating and Packaging Custom IP utility available in Vivado to design the 

hardware logic as depicted in Fig. 3 (a) and interface it to the ZYNQ7processing 

system. A hardware description file (hdf) is generated in Vivado and exported along 

with bit stream file to Xilinx Software Development Kit (SDK) tool. Complete 

hardware of the system is ready before begin SDK. We write a C 

language application program in SDK to run on the ZYNQ7 processing system. A 

flowchart describing the application program execution is depicted in Fig.3 (b). A 

brief idea of all the steps performed in the system and its working is 

described as follows. 
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Figure 3. Proposed (a) Memory based FSM design (b) Flow diagram describing steps 

followed in the application program 

 

A file containing patterns which are to be searched is stored on a portable Secure 

Digital High Capacity (SDHC) card with FAT32 file system. The database in which 

search is performed is also residing on the SDHC card. The FPGA device on board 

is configured with the bit stream file along with the application program. Patterns 

are read from patterns file and ACA algorithm is run for searching these patterns. 

An ACA-FSM is designed on the run as per the given patterns. We use the memory 

based architecture for implementing FSM proposed in [20][21] and generate block 

RAM contents for the corresponding FSM and store them in block RAM. The 

database file in which patterns are searched is read from the SDHC card and 

characters are received by the custom hardware. These characters act as addresses to 

block memory and data stored at these addresses is made available out of the block 

memory. Multiplexer inputs are connected to this data and part of this data is 

selected depending on the character fed to custom hardware. Output match vector is 

also a part of the data and it gives the information about the pattern found after 

receiving characters. The system work till the end of the database file.UniProt 

(Universal Protein Resource) identifier for the protein in which the patterns are 

found along with their corresponding location in that protein is displayed on a 

console window. 
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3.4 Results and Discussions 

We implemented the proposed system using Avnet Zed board development board.  
From the available on-chip resources for the XC7Z020 FPGA device 9.18% FF,  

12.42% LUT, 1.23% Memory LUT and 35.71% BRAM resources are used for the  

System. The above figure for BRAM is maximum allotted and actual BRAM  

Utilization depends on the number of patterns and their size. Total on-chip power  

Comprising of static and dynamic is 1.891 watt for the complete board.  

 For testing the system with real world data we use the UniProt Knowledgebase 

(UniProtKB) [24]. The proteome database of human at UniProtKB (Proteome ID 

up000005640) is made up of 20192 reviewed proteins. This database, made of 

42132 canonical & isoform proteins, is chosen in FASTA format for testing our 

system. A set of well referred and standard disease biomarker proteins is selected 

[22]. Peptide Mass, an online tool for enzymatic cleavage of proteins, is used to 

digest these selected disease biomarker proteins. The peptides obtained after 

proteins digestion act as patterns and stored in different patterns file with identifier 

as their file names. The proposed system is run with these peptides and the time 

taken for searching the complete database is noted.  

We also studied the effect of database size in searching these proteins. The whole 

human proteome database is divided into four databases of 8404, 16830, 25256 and 

33682 proteins. We perform search for the previously mentioned ten pattern sets. 

Table- 2 shows both the results. We see that time taken for searching database is 

independent of the number of patterns. We take a maximum of 32 patterns obtained 

after protein digestion and perform search. In case of patterns more than 32, the next 

32 proteins are selected for searching. As a result of this the time taken for searching 

patterns greater than 32 and less than 64 in number is nearly doubled and for greater 

than 64 in number it is tripled. Fig. 3 shows the comparison bar chart. It is evident 

that time taken for search is linear and is independent of the number of patterns 

which is a characteristic of Aho-Corasick algorithm [4].  Table-3 compares the 

features available in the proposed design with few other designs available in 

literature. The proposed system does not have any limitation on the number of 

patterns to be searched but at the cost of time. It is a multi-pattern searching system 
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designed intelligently with hardware-software codesign. Table 2 and Fig. 4 shows 

that the proposed system is reconfigurable with the desired patterns to be searched. 

This can be done during run time by selecting the respective pattern file.    

  

                      Table-2          Impact of database length on time for search 

 UniProt  

Identifier 

 Number 

of 

peptide 

 Time taken for searching (seconds) 

 DB (1)  DB (2)  DB (3)  DB (4)  Full DB 

 P01258  4  81.97  162.62  247.45  330.66  415.30 

 P61278  5  82.06  162.45  248.24  328.57  415.64 

 P01350  8  82.48  163.17  249.57  327.66  415.36 

 P15692  12  81.62  160.91  247.99  327.47  416.25 

 P07288  14  81.88  161.57  244.55  329.86  416.51 

 P01236  17  82.27  160.25  245.66  329.47  415.45 

 P06731  30  81.99  160.92  242.37  332.99  416.02 

 P03372  32  81.79  161.46  247.57  326.54  416.22 

 P02771  43  163.81  321.12  497.66  654.24  838.46 

 P02768  49  163.99  323.67  499.38  656.51  838.81 

 P00533  81  249.31  484.47  748.90  990.13  1264.61 

                                                                                                         *DB: Database 

 

                                    Figure 4. Effect of varying the length of database 
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          Table-3                                               Features available in proposed system 

 System Design  SMV [23] GB    [24] Proposed design 

Scheme of string matching 

algorithm 
 ACA  KMP  ACA 

 Simultaneous single pattern 

matching 
 ✔  ✔  ✔ 

 Simultaneous multi-pattern 

matching 
 ✔  ✖  ✔ 

 Real world data verification  ✖  ✔  ✔ 

 Hardware modules in system  FSM Logic 
KMP and DMA 

core 

Generic custom 

hardware 

 Need to run hardware system 

design flow repeatedly 
 ✖  ✔  ✔ 

 

                                          KMP: Knuth-Morris-Pratt           DMA: direct memory access 

 

 

3.5 Conclusion 

We presented a real-time reconfigurable string matching solution using hardware-

software codesign that does not require to carry the steps of hardware system design 

repeatedly. The proposed method has also been validated against the variable human 

proteomic data-bases. The proposed system can search multiple strings in a given 

text in quick-time and can be employed for applications real world 

proteomic/genomic variable data-size for emerging bioinformatics applications.  
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Chapter 4 

Bit Split ACA Algorithm for Protein Identification 

 

4.1 Theoretical Background  

The branching factor of the Aho-Corasick FSM tree depends on the number of 

symbols possible in the input text string. For example, the branching factor is 256 

when eight bits are used for representing the alphabet of valid symbols in the strings 

(as is the case with intrusion detection applications such as Snort). However, 

because only five bits are needed for representing all the 20 amino acids and 

additional special symbols (e.g., those representing ambiguous amino acids), the size 

of the table can be reduced significantly by reducing the total number of columns. 

 

Additional savings in storage can be obtained by splitting the FSM into smaller 

FSMs. Following are two approaches to make an FSM smaller: 

1. Reduce the number of peptides in the peptide set. This will reduce the number of 

states in the FSM, and therefore, will reduce the number of bits required to store the 

"next state" transition value. 

2. Split the FSM into simpler FSMs that are responsible for encoding and operating 

on individual bit positions of the symbols in the peptides patterns and the text string. 

For example, the FSM in Table 1 can be split into five separate 

bit-split FSMs, FSM0, FSM1, FSM2, FSM3, FSM4, one for each of the five bit 

positions it takes to encode all the peptides. Because the bit-split FSMs operate 

independently from each other, all of the separate bit-split FSMs must agree on a 

match before a peptide match is confirmed. 

The general bit-split FSM algorithm is described in detail in [25]. The bit split FSM 

process is described below for the FSM in Table 1, resulting in the five bit-split 

FSMs designated as FSM0, FSM1, FSM2, FSM3, and FSM4 shown in 

Tables 5, 6, 7, 8 and 9 respectively.  
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Consider the construction of FSM 0, the bit-split FSM corresponding to bit position 

0; table 4 describes the bitwise encoding of selected amino acids. State n in the 

original FSM is designated as FSM: n and state m in FSM0 is designated as FSM0: 

m. 

Initially, the root node FSM0:0 is added to FSM0. Next, all states in the original 

FSM that can be reached from FSM:0 (The root node from the original FSM) when 

the bit position in the transition is 0 are determined and aggregated 

into a new bit-split node FSM0:1. In the example, FSM:1 and FSM:7 are aggregated 

to form FSM0:1. Because FSM0:1 does not already exist in FSM0 (i.e., there is no 

state in FSM0 that is aggregated from FSM:1 and FSM:7), it is added to FSM0 with 

a transition from FSM0:0 when the input bit is 0. Next, all states in the original FSM 

that can be reached from FSM:0 when the bit position in the transition is 1 are 

determined and aggregated; in this example, there are no such states. Therefore, the 

transition from FSM0:0 goes back to FSM0:0 when the input bit is 1.This process is 

repeated for all newly added states in FSM0. 

 

                            Table-4 Bit encoding of selected peptides 

                                           Bit Encoding of Selected Peptides 

 Peptide  4  3  2  1  0 

 A  0  0  0  0  0 

 C  0  0  0  1  0 

 D  0  0  0  1  1 

 E  0  0  1  0  0 

 ….  0  0  0  0  0 

 M  0  1  1  0  1 

 …  0  0  0  0  0 

 Y  1  1  0  0  1 
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FSM0:1 was added previously and is examined next. Note that FSM 0:1 is an 

aggregate of FSM:1 and FSM:7. Therefore, all states in the original FSM that can be 

reached from either FSM:1 or FSM:7 when the input at bit position is 0 are 

aggregated into FSM0:2. In this example, FSM0:2 is created from FSM:2 and 

FSM:8. Because FSM0:2 does not already exist in FSM0, it is added to FSM0 with a 

transient of 0 from FSM0:1. Again, there is no transition from FSM0:1 when the 

input bit is 1, therefore, state FSM0:1 transitions back to FSM0:0 when the input bit 

is 1.This process is continued until there are no new states added to FSM0. Note that 

only unique new nodes are added to FSM0. When a new node FSM0:n is created by 

aggregation but another node, FSM0:k, created by aggregating the same set of nodes 

already exists in FSM0, then instead of inserting the new node, FSM0:n, a transition 

to FSM0:k is inserted into FSM0. Peptide matches are also handled using 

aggregation (i.e., state FSM0:k matches all the peptides that are matched by the 

states in the original FSM that were aggregated into FSM0:k). This process is 

repeated for all bit positions resulting in the five separate bit-split FSMs depicted in 

tabular form in Tables 5, 6, 7, 8 and 9. 

 

                Table-5 The Bit Split FSM corresponding to Bit position 0 (FSM0) 

 State  0  1  Match Vector 

 0  1  0  0  (000) 

 1  2  0  0  (000) 

 2  3  0  0  (000) 

 3  4  0  6  (110) 

 4  4  5  6  (110) 

 5  1  0  1  (001) 
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             Table-6  The Bit Split FSM corresponding to Bit position 1 (FSM 1) 

     State        0        1       Match Vector 

       0        1        2        0 (000) 

       1        1        3        0 (000) 

       2        7        2        0 (000) 

       3        4        2        0 (000) 

       4        1        5        2 (010) 

       5        4        6        4 (100) 

       6        7        2        1 (001) 

       7        1        8        0 (000) 

       8        4        2        4 (100) 

 

 

            Table-7 The Bit Split FSM corresponding to Bit position 2 (FSM 2) 

 State  0  1 Match vector 

 0  1  0    0  (000) 

 1  2  0    0  (000) 

 2  3  4    0  (000) 

 3  5  4    4  (100) 

 4  1  0    2  (010) 

 5  6  4    4  (100) 

 6  6  4    5  (110) 
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      Table-8  The Bit Split FSM corresponding to Bit position 3 (FSM 3) 

 State  0  1  Match Vector 

 0  1  0    0 (000) 

 1  2  0    0 (000) 

 2  3  0    0 (000) 

 3  4  0    6 (110) 

 4  5  0    6 (110) 

 5  5  0    7 (111) 

  

  

  

 Table-9  The Bit Split FSM corresponding to Bit position 4 (FSM 4) 

 State  0  1  Match Vector 

 0  1  0    0 (000) 

 1  2  0    0 (000) 

 2  3  0    0 (000) 

 3  4  0    6 (110) 

 4  5  0    6 (110) 

 5  5  0    7 (111) 

 

 Because several states from the original FSM that match different peptides may 

be combined into a single state in a bit-split FSM, a mechanism to indicate 

multiple matches is required. In the bit-split FSM, a vector of bits is used to 

encode the peptide matching attribute of for each state. For example, state 

FSM0:3, matches peptides 2 and 4, and therefore, has a peptide matching bit 

vector containing 110. Using this mechanism, after the various state machines 

enter their respective new states, a bitwise logical and operation can be used to 
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determine the peptide match that all five FSMs agree on. For example, assume 

that at some point in time, the bit-split FSMs in Tables 5, 6, 7,8and 9 are in 

states FSM0:3, FSM1:5, FSM2:6, FSM3:5, andFSM4:5 with match bit vectors 

of 110, 100, 101, 111, and111, respectively. The bitwise logical AND of the five 

match bit vectors results in the bit vector 100 that indicates that peptide 3 is 

matched in this case. However, if FSM0 is in state FSM0:5, with a matching bit 

vector of 001, then the result of the logical and will result in 000,indicating that 

no peptides are currently matched. 

 

 The above tables 5,6,7,8 and 9 generated are stored in Bram 0, Bram 1,Bram 2 

 Bram 3, and Bram 4.The Generic Custom IP along with Bram’s forms FSM 

logic. The FSM table is generated in C language by ZYNC processor and stored 

in Bram’s. The Block diagram of the system is presented below which 

acceralates the pattern matching of peptides by exploiting bit level parallelism  

 5 bit split FSM and the memory consumption of the design is low compared to 

ACA FSM 

 

                Figure-5 Bit Split ACA System Design Block Diagram 
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4.2 Pseudo Code for Bit Split ACA Implementation 

#define N=26 

#define N1=1 

#define N2=2 

#define M=1000  

#define N3=3 

Consider ACA FSM A1[M][N+N1] 

Create Structure consist of array" a[N]" and variable "value" for representing state number. 

create Array FSM0[M][N3] 

create structure states S0[M] 

initialize l1=0 ,input_0[1]=0,match_vector=0,vector[26] 

(S0[0].a)[0] = 0; 

S0[0].value = 1; 

l1 = l1+1; 

create0 (input_0, 1, 0, 0); 

for(i=0 to l1) 

{ 

match_vector=0; 

    for(j=0 to S0[i].value) 

             { 

              vector[j]=(S0[i].a)[j]; 

              match_vector=match_vector|B0 [vector[j]][26]; 

                      } 

     FSM0[i][N2]=match_vector; 

} 
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Void create0 (int * input_0, int n, int s, int b) 

{ 

initialize i,j,a,kl=0,kr=0,x=0,y=0,Left[N],Right[N],Pl[M],Pr[M],sl,sr,w,w1,Ql=0,Qr=0; 

for (i=0 to M) 

 { 

          Pl[i]=0; 

          Pr[i]=0; 

 } 

 

for(j=0 to n) 

{ 

     for(i=0 to 26) 

    { 

    w=i; 

    w=w%2; 

    if(Pl[A1[input_0[j]][i]]  == 0 && w == 0) 

            { 

                 Left[x] = A1[input_0[j]][i]; 

                      x=x+1; 

                 Pl[A1[input_0[j]][i]] = 1; 

             } 

     if(Pr[A1[input_0[j]][i]]  == 0 && w == 1) 

            { 

               Right[y] = A1[input_0[j]][i]; 

                       y=y+1; 

               Pr[A1[input_0[j]][i]] = 1; 

            } 

       } 

  } 
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for(i=0 to l1) 

{ 

    if(x == S0[i].value) 

   { 

     for(j=0 to x) 

           { 

               if(Left[j]== (S0[i].a)[j]) 

                  { 

                         kl = kl+1; 

                  } 

           } 

          

  if(kl==x) 

          { 

                 sl=i; 

               Ql=x; 

           } 

     } 

       if(y == S0[i].value) 

       { 

              for(j=0 to y) 

                { 

                     if(Right[j]== (S0[i].a)[j]) 

                         { 

                                 kr = kr+1; 

                         } 

                   } 

                    if(kr==y) 

                    { 

                        sr=i; 

                       Qr=y; 

                     } 

          } 

      kl = 0; 

     kr = 0; 

} 
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if(Ql!=x) 

{ 

            for(i=0 to 26) 

            { 

             (S0[l1].a)[i] = Left[i]; 

            } 

           S0[l1].value = x; 

           FSM0[s][0]=l1; 

            l1=l1+1; 

 } 

else 

{ 

FSM0[s][0]=sl; 

} 

if(Qr != y) 

{ 

       for(i=0 to 26) 

        { 

       (S0[l1].a)[i] = Right[i]; 

       } 

          S0[l1].value = y; 

        FSM0[s][1]=l1; 

        l1=l1+1; 

} 

else 

{ 

FSM0[s][1]=sr; 

} 

            if(Ql !=x) 

              { 

                   create0(Left,x,FSM0[s][0],0); 

              }  

         if(Qr !=y  ) 

          { 

            create0(Right,y,FSM0[s][1],0); 

          } 

return; 

} 
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4.3 Future work 

In the above Bit Split Algorithm Implementation we have given the idea about the 

system design which we envisioned. The above system can be implemented on Real 

time Xilinx Zync FPGA by introducing the concept of Hardware Software Co-

Design with Re-Configurability and Parallel Architecture by exploiting the concept 

of bit level parallelism with less memory consumption with all these advantages the 

system can be used to accelerate the Bio-Informatics Research for protein 

Identification which has numerous Bio medical applications. 
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5. Conclusion 

In this Thesis I have proposed a Reconfigurable Hardware Software Co-Design 

Methodology for Protein Identification which has real time application for Bio 

Informatics Research and I also given the idea about the Hardware Software Co-

Design of Bit Split Algorithm a System Design Approach which is a parallel 

Architecture which can further accelerate the Protein Identification with less 

memory consumption. 
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