

Hardware Software Co-Design for Protein Identification

THALLADA SANDEEP

A Dissertation Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Electrical Engineering

June, 2016

ii

Declaration

I declare that this written submission represents my ideas in my own words, and

where others’ ideas or words have been included, I have adequately cited and

referenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or

falsified any idea/data/fact/source in my submission. I understand that any violation

of the above will be a cause for disciplinary action by the Institute and can also

evoke penal action from the sources that have thus not been properly cited, or from

whom proper permission has not been taken when needed.

 (Signature)

THALLADA SANDEEP

 EE13M1028

iii

iv

Acknowledgements

I would like to acknowledge my guide Dr.Amit Acharyya for his guidance and

continuous support in my M.Tech thesis. I am grateful for his confidence on me that

I could do a good job with my thesis. It has been a great pleasure, in fact, an honor

to work with him. Also I would like to acknowledge my Research team members

Gudur Venkateshwarlu, Abhinay and Venkata Krishna for their valuable suggestions

and Discussions. Also I would like to acknowledge my friends and family for

motivating and encouraging me for completion of my M.Tech thesis. Thank you all

very much.

v

Dedicated to

My Parents, Teachers and Friends

vi

Abstract

Recently new technologies and research in computational bioinformatics have

revolutionized the rate of biological data generation. A vast amount of proteomics

and genomics data is contributed to the life science society by researchers especially

in the domain of high throughput next generation sequencing methods and it is

doubling at every 18 months. Protein identification is a fundamental step in protein

sequence analysis and it needs efficient solutions to match the data growth. Rapid

methods are focused in the quest for faster protein sequence analysis to scan

databases and identify a protein accurately. This benefits the discipline of disease

biomarker identification and aid disease diagnosis and prognosis.

The problem of identifying a protein is similar to the string matching problem, i.e.

the problem of finding a substring in another string; in particular in this case the

problem consists in matching a string identifying a peptide of an unknown protein,

against a string identifying a whole well known protein. String matching algorithms

like Boyer-Moore and Knuth-Morris-Pratt (KMP) search single pattern strings in a

larger string. These approaches have a requirement of high computational

complexity. Aho Corasick algorithm (ACA) is a widely used multi-pattern string

matching algorithm that has a linear computational complexity. Hardware

accelerated solutions for protein identification are used to address the bottlenecks in

the computational biology pipeline. Hardware Software codesign approach is used

for reconfigurable string matching and simultaneously harness the advantages of

both hardware and software. Reconfigurable string matching is performed in the

disciplines of protein identification and biomarkers discovery. With the generation

of plethora of sequenced data and number of biomarkers for several diseases, it is

becoming necessary to have an accelerated processing and on-the-fly reconfigurable

system design methodology to bring flexibility to its usage in the medical science

community without the need of changing the entire hardware every time with the

advent of new bio-marker or protein.

In this Thesis on-the-fly reconfigurable hardware-software co-design based

reconfigurable solution for protein identification in real-time is presented. We use

vii

on-chip memory based implementation to realize FSM design using ACA algorithm.

We demonstrate the way proposed design can be used in real life with plethora of

test cases.

The proposed methodology where implementing an accelerated and reconfigurable

multi-pattern string matching platform does not require any step of fixed hardware

system design when used in an application making it reconfigurable enabling the

sequencing with any number of biomarkers for as many diseases as possible.

The proteome database of human at UniProtKB (Proteome ID up000005640)

comprising of 20192 reviewed proteins and 42132 canonical, and isoform proteins

with variable database-size are used for testing the proposed design and the

performance of the proposed system has been found to compare favorably with the

state-of-the art approaches with the additional advantage of real-time re-

configurability.

viii

Contents

Declaration .. ii

Approval Sheet ... ii

Acknowledgements.. iv

Abstract .. vi

Nomenclature ... viii

1 Introduction 1

2 Proteomics and Protein sequencing 4

3 ACA Algorithm for Protein Identification 7

 3.1 Theoretical Background .. 7

 3.2 Pseudo Code for ACA FSM Implementation.. 10

 3.3 Proposed Methodology ... 11

 3.4 Results and Discussions .. 14

 3.5 Conclusion... 16

4 Bit Split ACA Algorithm for Protein Identification ...17

4.1 Theoretical Background .. 17

4.2 Pseudo Code for Bit Split ACA FSM Implementation .. 23

4.3 Future work ... 27

5 Conclusion ...28

References ...29

1

Chapter 1

Introduction

The ability to quickly identify proteins is a major concern in many medical

applications such as cancer monitoring and recognition and pharmaceutical research.

Due to the fast increment of data available thanks to technological improvements,

we need to take proteins identification a step further, improving

its identification speed to match the growth of both proteomics and genomics

databases. Because of the fast data growth inside both proteomic and genomic

databases, protein identification requires an increasing amount of computation.

Many researches will benefit from accurate protein identification and the ability to

produce more accurate results at faster rates. For instance, disciplines, such as

detecting biomarkers within diagnostic field, in order to recognize and monitor

cancer disease with serum proteomic [1], bacterial identification, and

pharmaceutical research will take advantage of this possibility.
The problem of identifying a protein is similar to the string matching problem, i.e.

the problem of finding a substring in another string; in particular in this case the

problem consists in matching a string identifying a peptide of an unknown protein,

against a string identifying a whole well known protein. After all the peptides of the

unknown protein have been searched a score can be assigned to the proteins in the

database to find the one that best matches the unknown protein we are trying to

identify. Unfortunately the computational complexity of this problem grows as

Lpep × Lpro if we identify the length of the peptide as Lpep and the length of the

protein as Lpro. Furthermore as we have to search for all the unknown peptides

forming the protein, U in the whole database composed of P proteins we have a

worst case computational complexity of

U × Lpre × P × Lpro

This complexity refers to a single protein identification, and obviously another

multiplication factor has to be added to the formula to take in consideration the

scenario of multiple proteins identification.

2

 Efficient substring search algorithms such as Boyer-Moore[2] and Knuth-Morris-

Pratt [3] that locate single pattern strings within a larger text string can be used in a

multipass manner (i.e., one pass for each string in the set of

peptides). However, this approach does not scale well with an increasing number of

pattern strings. In particular, assuming p patterns with an average length of n and a

text string of length m, naïve, multi-pass, approaches have

computational complexity of O(p(m + n)).

 The Aho-Corasick algorithm [4] provides a scalable solution to the string set

matching problem in that it incorporates the search mechanism for the entire set of

patterns into a single finite state machine (FSM). The power of Aho-Corasick stems

from the ability of the algorithm to find the location of the strings in the pattern set

in the text string in a single pass. The computational complexity of

Aho-Corasick search is O(m + k) where k is the total number of occurrences of the

pattern strings in the text. This linear processing time complexity has resulted in the

widespread use of Aho-Corasick in string matching application.

 The performance of the Aho-Corasick algorithm can be further enhanced by

implementing it in hardware. Tan and Sherwood [5] were the first to describe an

area-efficient hardware approach for implementing the Aho-Corasick for network

intrusion detection systems implemented in application specific integrated circuits

(ASICs). However, the complexity and costs associated with ASIC development is a

significant impediment in their adoption in computational biology. Field

programmable gate array (FPGA) devices, on the other hand, can be repeatedly

reconfigured to create a variety of application-specific processing elements. This

reconfigurable nature makes FPGAs a popular low-cost alternative to the

development of specialized ASICs for a variety of application domains, including

computational biology.

In [6] realized a HW implementation of Aho Corasick that aims at optimizing the

utilized area on the FPGA device, while maintaining good performance, by

partitioning the Finite State Machine (FSM) that performs the string matching

analysing a small number of peptides in parallel. Although it has been

demonstrated how Aho Corasick is the fastest string matching algorithm, it suffers

from a great limitation for what concern HW implementation. It relies on the

3

creation of an ad-hoc HW component to match a single peptide, which causes the

need to synthesize different HW components for each possible

peptide.

Therefore there is need for Reconfigurable string matching is required at

bioinformatics disciplines where patterns to be searched are changed, for example, a

newly discovered biomarker is added into the database of known biomarkers.

Multiple biomarkers can be searched in a given sample and many diseases can be

found simultaneously. Pure hardware solution is not feasible in this scenario where

patterns to be searched are updated continuously. All the steps of a hardware system

design are necessarily run in pure hardware solutions. In a hardware system design

steps like writing programs in hardware description language (HDL), synthesis,

translation, mapping, place and route, programming file generation and configuring

FPGA using bit stream file are run. In the scenario of only hardware solution, these

steps are repetitively carried that add substantial amount design time. These require

dedicated computer systems with sophisticated proprietary tools. Repetitive running

of these steps can be avoided by employing reconfigurable systems with intelligent

hardware software partitioning and codesign. We use hardware software codesign

approach in our design.

4

Chapter 2

Proteomics and Protein Sequencing
Proteins are complex molecules. They are biochemical molecules consisting of one

or more polypeptides, where polypeptide is a macromolecular chain of linked amino

acids. Proteins and their interactions regulate the majority of processes in the human

body. From mechanical support in skin and bones to enzymatic functions, the

operation of the human body can be characterized as a complex set of protein

interactions. Despite the efforts of scientists, many proteins and their functions have

yet to be discovered. The wealth of information that lies in these unknown proteins

may well be the key to uncovering the mysteries that govern life [7].

Proteomics investigates the proteins that make up an organism. Protein identification

is a fundamental problem in Proteomics [7]. The ability to identify proteins and to

determine their covalent structures has been central to the life sciences. The amino

acid sequence of proteins provides a link between proteins and their coding genes

via the genetic code, and, in principle, a link between cell physiology and genetics.

The identification of proteins provides a window into complex cellular regulatory

networks. For the identification of proteins, their sequencing, quantification and

other tasks, mass spectrometry is currently the tool of choice.

Over the past 20 to 30 years, the analysis of tandem mass spectrometry data

generated from polypeptide fragments has become the dominant method for the

identification and classification of unknown protein samples. Tandem mass

spectrometry (MS/MS) now plays a very important role in protein identification due

to its speed and high sensitivity. It is emerging as the standard method for this

important protein identification problem. With wide-ranging application in

numerous scientific disciplines such as pharmaceutical research, cancer diagnostics,

and bacterial identification, the need for accurate protein identification remains

important and the ability try to produce more accurate identifications at faster rates

would be of great benefit to society as a whole. Protein mixtures are first digested

into suitable sized peptides for mass spectrometric analysis using site-specific

5

proteases (usually Trypsin). Then the peptides are ionized via electro-spray

ionization (ESI). Some of the peptides are fragmented by collision-induced

dissociation (CID) and their tandem mass (MS/MS) spectra are collected. These

peptides can then be analysed computationally to reveal their complete sequence.

One way to interpret these MS/MS spectra is to compare the spectra with a protein

sequence database to find the peptide whose predicted mass spectrum matches the

experimental MS/MS spectra best. The original proteins present in the sample are

then inferred based on the list of peptides matched to MS/MS spectra. These are

referred as database search algorithms [8].

Protein identification is a fundamental step in protein sequence analysis and it needs

efficient solutions to match the data growth. Rapid methods are focused in the quest

for faster protein sequence analysis to scan databases and

identify a protein accurately [9]. This benefits the discipline of disease biomarker

identification and aid disease diagnosis and prognosis [10].

Protein identification using peptide fragments obtained by mass spectrometry

involves database searching that is similar to string matching [11]. In string

matching a database or text is searched to find locations of one or more strings also

called patterns.

String matching algorithms like Boyer-Moore [2] and Knuth-Morris-Pratt (KMP)

[3] search single pattern strings in a larger string. These approaches have a

requirement of high computational complexity [6]. Aho Corasick algorithm (ACA)

is a widely used multi-pattern string matching algorithm that has a linear

computational complexity [4][12].

The Aho-Corasick algorithm (ACA) is widely used in computational biology for a

variety of pattern matching tasks. For example, Brundo and Morgenstern use a

simplified version of ACA to identify anchor points in their CHAOS

algorithm for fast alignment of large genomic sequences [13,14]. The TROLL

algorithm of Castelo, Martins, and Gao uses ACA to locate occurrences of tandem

repeats in genomic sequence [15]. Farre et al. use Aho-Corasick as

the search algorithm for predicting transcription binding sites in their tool PROMO

v. 3. [16] Hyyro et al. demonstrate that Aho-Corasick outperforms other algorithms

for locating unique oligonucleotides in the yeast genome [12]. The SITEBLAST

6

algorithm [17] employs the Aho-Corasick algorithm to retrieve all motif anchors for

a local alignment procedure for genomic sequences that makes use of prior

knowledge. Sun and Buhler use Aho Corasick deterministic finite automata (DFA)

to design simultaneous seeds for DNA similarity search [18]. The AhoPro software

package adapts the Aho-Corasick algorithm to compute the probability of

simultaneous motif occurrences [19].

Aho-Corasick is arguably the best and the widest used multiple pattern matching

algorithm that searches all occurrences of any of a finite number of keywords in a

text string. Dandass et al. have used this algorithm for hardware

acceleration of peptide pattern matching for the first chromosome of human genome

[6]. We have used this algorithm and proposed a Methodology to make the system

reconfigurable by partitioning into Hardware and software with usage of Xilinx

Zync FPGA for peptide matching. This algorithm consists of two phases;

constructing a finite state machine from keywords and then using these state

machines for locating the keywords by processing the text string in a single pass.

In the Next Chapter construction of Finite State Machine for set of peptides using

ACA and Hardware Software Co Design Implementation of ACA [26] for locating

the peptides in the protein Database is explained.

7

Chapter 3

ACA Algorithm for Protein Identification

3.1 Theoretical Background

The Aho-Corasick algorithm consists of an initial pre-processing phase that creates

the FSM from the set of pattern strings. The FSM resulting from the pre-processing

phase is subsequently used for performing the string set matching.

The pre-processing phase has a runtime complexity of O (pn) and the search phase

has a runtime complexity of O (m + k). Detailed description and analysis of Aho-

Corasick can be found in [4]. A brief description follows below

 In the pre-processing phase, the FSM is constructed using two steps. In the first

step, a set of target strings is organized into a "keyword" tree. The root of the tree

represents the state when no part of any pattern string has been found in the input

message. The remaining nodes of the tree represent states where the pattern strings

have been partially or fully matched. The edges in the tree represent the transitions

resulting from the occurrence of specific symbols in the text string. The path from

the root node to any node on the tree represents the subset of pattern strings that are

potential matches.

 In the second pre-processing step, "failure links" are added to the tree. Failure links

lead from nodes on one branch of the tree to nodes on other branches. Failure links

are needed because patterns strings can overlap in the text string and when the

current branch of the tree fails to produce a match because of the current symbol in

the text string, the FSM needs to resume processing from a new branch, without

having to rescan input symbols.

 In a computer, the FSM state transitions can be represented in the form of a table.

Figure 1 illustrates the organization of the FSM for an implementation of

8

Aho-Corasick that matches the peptide set {ACACD, ACE, and CAC}; Table 1

presents a table-oriented representation used for implementation of the same FSM.

In Figure 1, the state 0 is the start state and the shaded states 4, 5, 6, and 9Match

peptides CAC, ACACD, ACE, and CAC, respectively.

Figure1

An FSM for matching peptide set {ACACD, ACE, and CAC}.

When the FSM is in any state and receives an input symbol not shown in the figure,

the FSM transitions to state 0. At runtime, the FSM interpreter reads the row

corresponding to the current state from the table, reads the next input symbol from

the reading frame, and determines the next state from the row entry corresponding to

the input symbol.

When the FSM transitions to as state, it looks at the pattern match column of the

table's corresponding row in order to determine if a match has occurred.

9

A non-null entry in the pattern match entry of row specifies the pattern that has been

located by the FSM.

Table-1. A table oriented representation of the FSM for the peptide set

{ACACD, ACE, and CAC}

 Input Text Symbol

Current State A B C D E F ….………………….. Z Match Vector

 0 1 0 7 0 0 0 0 0 0 0 0

 1 1 0 2 0 0 0 0 0 0 0 0

 2 3 0 7 0 6 0 0 0 0 0 0

 3 1 0 4 0 0 0 0 0 0 0 0

 4 3 0 7 5 6 0 0 0 0 0 2

 5 1 0 7 0 0 0 0 0 0 0 1

 6 1 0 7 0 0 0 0 0 0 0 4

 7 8 0 7 0 0 0 0 0 0 0 0

 8 1 0 9 0 0 0 0 0 0 0 0

 9 3 0 7 0 6 0 0 0 0 0 2

10

3. 2 Pseudo code for ACA FSM Implementation

#define M=1000. *** M is Sum of the length of all the peptides

#define N=25 *** N is the number of Amino Acid Symbols

#define N1=1 *** N1 is Peptide Match Vector column used for Representing at which state Peptide Matches

Consider a set of peptides

Create ACA FSM for the above Peptides

Extract FSM into Matrix A [M][N]

Copy matrix A [M][N] in to the matrix BRAM_table [M][N]

 For (k=1 to M)

Initialize l1 = 0; p1 = 0;

 For (j=0 to N)

 If (A [0][j]!= 0)

 If (BRAM_table[k][j] == 0)

 BRAM_table[k][j] = A [0][j];

 Else

 l1 = A [0][j];

 p1 = A[k][j];

 If (p1! = 0)

 Recursive (l1, p1);

Void Recursive (int l1, int p1)

 Initialize j, l = 0, p = 0;

 For (j = 0 to N)

 If (A [l1][j]!= 0)

 If (BRAM_table[p1][j] == 0)

 BRAM_table[p1][j] = A[l1][j];

 Else

 l = A[l1][j];

 p = A[p1][j];

 If (p != 0)

Recursive (l, p);

11

The Above Algorithm Implementation creates FSM Table for the peptides ACACD,

ACE, CAC as shown in table-1 above

The Above Algorithm for FSM Table is implemented in C language which is the

software part of our Hardware Software Co-Design. The above table is stored in

BRAM of Xilinx ZYNQ FPGA and it is interfaced with generic custom IP such that

it forms the FSM logic in Hardware.

The FSM logic Hardware is implemented in PL (Programmable Logic) Section of

Xilinx Zed Board and controlled by ZYNQ Processor which is in the PS (Processing

System) section of ZYNC-7000 SOC.

3.3 Proposed Methodology

The architectural diagram of the proposed system is depicted in Fig. 3. The

architecture has a Zynq-7000 All Programmable SoC (AP SoC) ZYNQ7 processing

system as the master. The FPGA device on board is XC7Z020 and it has an ARM

Cortex-A9 MP Core CPU. A processor system reset module is used to reset and

synchronize all modules in the design by resetting them as per the reset conditions

given by master at its input. Advanced extensible Interface (AXI) interconnect is

used to interface the memory-mapped ZYNQ7 master with the memory-mapped

slaves.

Figure 2. Architecture of the proposed system

12

Block memory generator module is used for generating block memory. Block

memory is used for storing data during program run time. AXI block RAM (BRAM)

controller acts as a bridge to Block memory generator module is used for generating

block memory. Block memory is used for storing data during program run time.

AXI block RAM (BRAM) controller acts as a bridge to communicate between

ZYNQ7 via AXI interconnect and BRAM created by block memory generator.

Custom hardware module is the necessary hardware logic required to realize FSM

using memory communicate between ZYNQ7 via AXI interconnect and BRAM

created by block memory generator. Custom hardware module is the necessary

hardware logic required to realize FSM using memory. A detailed diagram of the

interface between block memory and hardware logic is depicted in Fig. 3 (a). The

custom hardware is a generic hardware and along with memory implements a

memory based FSM. Block memory is stored with contents that realize Aho-

Corasick algorithm with the hardware logic. Depending on an input character value

the corresponding input lines at the multiplexer (MUX) are activated and are

available at the output of multiplexer. A state register is used to latch the multiplexer

output and it feeds block memory generator with the necessary address.

We use Xilinx Vivado Design Suite software tools to design our system. Vivado

Design Suite has all the features of a hardware system design along with system on a

chip development. We built the design in Vivado as depicted in Fig. 1. We use

Creating and Packaging Custom IP utility available in Vivado to design the

hardware logic as depicted in Fig. 3 (a) and interface it to the ZYNQ7processing

system. A hardware description file (hdf) is generated in Vivado and exported along

with bit stream file to Xilinx Software Development Kit (SDK) tool. Complete

hardware of the system is ready before begin SDK. We write a C

language application program in SDK to run on the ZYNQ7 processing system. A

flowchart describing the application program execution is depicted in Fig.3 (b). A

brief idea of all the steps performed in the system and its working is

described as follows.

13

Figure 3. Proposed (a) Memory based FSM design (b) Flow diagram describing steps

followed in the application program

A file containing patterns which are to be searched is stored on a portable Secure

Digital High Capacity (SDHC) card with FAT32 file system. The database in which

search is performed is also residing on the SDHC card. The FPGA device on board

is configured with the bit stream file along with the application program. Patterns

are read from patterns file and ACA algorithm is run for searching these patterns.

An ACA-FSM is designed on the run as per the given patterns. We use the memory

based architecture for implementing FSM proposed in [20][21] and generate block

RAM contents for the corresponding FSM and store them in block RAM. The

database file in which patterns are searched is read from the SDHC card and

characters are received by the custom hardware. These characters act as addresses to

block memory and data stored at these addresses is made available out of the block

memory. Multiplexer inputs are connected to this data and part of this data is

selected depending on the character fed to custom hardware. Output match vector is

also a part of the data and it gives the information about the pattern found after

receiving characters. The system work till the end of the database file.UniProt

(Universal Protein Resource) identifier for the protein in which the patterns are

found along with their corresponding location in that protein is displayed on a

console window.

14

3.4 Results and Discussions

We implemented the proposed system using Avnet Zed board development board.
From the available on-chip resources for the XC7Z020 FPGA device 9.18% FF,

12.42% LUT, 1.23% Memory LUT and 35.71% BRAM resources are used for the

System. The above figure for BRAM is maximum allotted and actual BRAM

Utilization depends on the number of patterns and their size. Total on-chip power

Comprising of static and dynamic is 1.891 watt for the complete board.

 For testing the system with real world data we use the UniProt Knowledgebase

(UniProtKB) [24]. The proteome database of human at UniProtKB (Proteome ID

up000005640) is made up of 20192 reviewed proteins. This database, made of

42132 canonical & isoform proteins, is chosen in FASTA format for testing our

system. A set of well referred and standard disease biomarker proteins is selected

[22]. Peptide Mass, an online tool for enzymatic cleavage of proteins, is used to

digest these selected disease biomarker proteins. The peptides obtained after

proteins digestion act as patterns and stored in different patterns file with identifier

as their file names. The proposed system is run with these peptides and the time

taken for searching the complete database is noted.

We also studied the effect of database size in searching these proteins. The whole

human proteome database is divided into four databases of 8404, 16830, 25256 and

33682 proteins. We perform search for the previously mentioned ten pattern sets.

Table- 2 shows both the results. We see that time taken for searching database is

independent of the number of patterns. We take a maximum of 32 patterns obtained

after protein digestion and perform search. In case of patterns more than 32, the next

32 proteins are selected for searching. As a result of this the time taken for searching

patterns greater than 32 and less than 64 in number is nearly doubled and for greater

than 64 in number it is tripled. Fig. 3 shows the comparison bar chart. It is evident

that time taken for search is linear and is independent of the number of patterns

which is a characteristic of Aho-Corasick algorithm [4]. Table-3 compares the

features available in the proposed design with few other designs available in

literature. The proposed system does not have any limitation on the number of

patterns to be searched but at the cost of time. It is a multi-pattern searching system

15

designed intelligently with hardware-software codesign. Table 2 and Fig. 4 shows

that the proposed system is reconfigurable with the desired patterns to be searched.

This can be done during run time by selecting the respective pattern file.

 Table-2 Impact of database length on time for search

 UniProt

Identifier

 Number

of

peptide

 Time taken for searching (seconds)

 DB (1) DB (2) DB (3) DB (4) Full DB

 P01258 4 81.97 162.62 247.45 330.66 415.30

 P61278 5 82.06 162.45 248.24 328.57 415.64

 P01350 8 82.48 163.17 249.57 327.66 415.36

 P15692 12 81.62 160.91 247.99 327.47 416.25

 P07288 14 81.88 161.57 244.55 329.86 416.51

 P01236 17 82.27 160.25 245.66 329.47 415.45

 P06731 30 81.99 160.92 242.37 332.99 416.02

 P03372 32 81.79 161.46 247.57 326.54 416.22

 P02771 43 163.81 321.12 497.66 654.24 838.46

 P02768 49 163.99 323.67 499.38 656.51 838.81

 P00533 81 249.31 484.47 748.90 990.13 1264.61

 *DB: Database

 Figure 4. Effect of varying the length of database

16

 Table-3 Features available in proposed system

 System Design SMV [23] GB [24] Proposed design

Scheme of string matching

algorithm
 ACA KMP ACA

 Simultaneous single pattern

matching
 ✔ ✔ ✔

 Simultaneous multi-pattern

matching
 ✔ ✖ ✔

 Real world data verification ✖ ✔ ✔

 Hardware modules in system FSM Logic
KMP and DMA

core

Generic custom

hardware

 Need to run hardware system

design flow repeatedly
 ✖ ✔ ✔

 KMP: Knuth-Morris-Pratt DMA: direct memory access

3.5 Conclusion

We presented a real-time reconfigurable string matching solution using hardware-

software codesign that does not require to carry the steps of hardware system design

repeatedly. The proposed method has also been validated against the variable human

proteomic data-bases. The proposed system can search multiple strings in a given

text in quick-time and can be employed for applications real world

proteomic/genomic variable data-size for emerging bioinformatics applications.

17

Chapter 4

Bit Split ACA Algorithm for Protein Identification

4.1 Theoretical Background

The branching factor of the Aho-Corasick FSM tree depends on the number of

symbols possible in the input text string. For example, the branching factor is 256

when eight bits are used for representing the alphabet of valid symbols in the strings

(as is the case with intrusion detection applications such as Snort). However,

because only five bits are needed for representing all the 20 amino acids and

additional special symbols (e.g., those representing ambiguous amino acids), the size

of the table can be reduced significantly by reducing the total number of columns.

Additional savings in storage can be obtained by splitting the FSM into smaller

FSMs. Following are two approaches to make an FSM smaller:

1. Reduce the number of peptides in the peptide set. This will reduce the number of

states in the FSM, and therefore, will reduce the number of bits required to store the

"next state" transition value.

2. Split the FSM into simpler FSMs that are responsible for encoding and operating

on individual bit positions of the symbols in the peptides patterns and the text string.

For example, the FSM in Table 1 can be split into five separate

bit-split FSMs, FSM0, FSM1, FSM2, FSM3, FSM4, one for each of the five bit

positions it takes to encode all the peptides. Because the bit-split FSMs operate

independently from each other, all of the separate bit-split FSMs must agree on a

match before a peptide match is confirmed.

The general bit-split FSM algorithm is described in detail in [25]. The bit split FSM

process is described below for the FSM in Table 1, resulting in the five bit-split

FSMs designated as FSM0, FSM1, FSM2, FSM3, and FSM4 shown in

Tables 5, 6, 7, 8 and 9 respectively.

18

Consider the construction of FSM 0, the bit-split FSM corresponding to bit position

0; table 4 describes the bitwise encoding of selected amino acids. State n in the

original FSM is designated as FSM: n and state m in FSM0 is designated as FSM0:

m.

Initially, the root node FSM0:0 is added to FSM0. Next, all states in the original

FSM that can be reached from FSM:0 (The root node from the original FSM) when

the bit position in the transition is 0 are determined and aggregated

into a new bit-split node FSM0:1. In the example, FSM:1 and FSM:7 are aggregated

to form FSM0:1. Because FSM0:1 does not already exist in FSM0 (i.e., there is no

state in FSM0 that is aggregated from FSM:1 and FSM:7), it is added to FSM0 with

a transition from FSM0:0 when the input bit is 0. Next, all states in the original FSM

that can be reached from FSM:0 when the bit position in the transition is 1 are

determined and aggregated; in this example, there are no such states. Therefore, the

transition from FSM0:0 goes back to FSM0:0 when the input bit is 1.This process is

repeated for all newly added states in FSM0.

 Table-4 Bit encoding of selected peptides

 Bit Encoding of Selected Peptides

 Peptide 4 3 2 1 0

 A 0 0 0 0 0

 C 0 0 0 1 0

 D 0 0 0 1 1

 E 0 0 1 0 0

 …. 0 0 0 0 0

 M 0 1 1 0 1

 … 0 0 0 0 0

 Y 1 1 0 0 1

19

FSM0:1 was added previously and is examined next. Note that FSM 0:1 is an

aggregate of FSM:1 and FSM:7. Therefore, all states in the original FSM that can be

reached from either FSM:1 or FSM:7 when the input at bit position is 0 are

aggregated into FSM0:2. In this example, FSM0:2 is created from FSM:2 and

FSM:8. Because FSM0:2 does not already exist in FSM0, it is added to FSM0 with a

transient of 0 from FSM0:1. Again, there is no transition from FSM0:1 when the

input bit is 1, therefore, state FSM0:1 transitions back to FSM0:0 when the input bit

is 1.This process is continued until there are no new states added to FSM0. Note that

only unique new nodes are added to FSM0. When a new node FSM0:n is created by

aggregation but another node, FSM0:k, created by aggregating the same set of nodes

already exists in FSM0, then instead of inserting the new node, FSM0:n, a transition

to FSM0:k is inserted into FSM0. Peptide matches are also handled using

aggregation (i.e., state FSM0:k matches all the peptides that are matched by the

states in the original FSM that were aggregated into FSM0:k). This process is

repeated for all bit positions resulting in the five separate bit-split FSMs depicted in

tabular form in Tables 5, 6, 7, 8 and 9.

 Table-5 The Bit Split FSM corresponding to Bit position 0 (FSM0)

 State 0 1 Match Vector

 0 1 0 0 (000)

 1 2 0 0 (000)

 2 3 0 0 (000)

 3 4 0 6 (110)

 4 4 5 6 (110)

 5 1 0 1 (001)

20

 Table-6 The Bit Split FSM corresponding to Bit position 1 (FSM 1)

 State 0 1 Match Vector

 0 1 2 0 (000)

 1 1 3 0 (000)

 2 7 2 0 (000)

 3 4 2 0 (000)

 4 1 5 2 (010)

 5 4 6 4 (100)

 6 7 2 1 (001)

 7 1 8 0 (000)

 8 4 2 4 (100)

 Table-7 The Bit Split FSM corresponding to Bit position 2 (FSM 2)

 State 0 1 Match vector

 0 1 0 0 (000)

 1 2 0 0 (000)

 2 3 4 0 (000)

 3 5 4 4 (100)

 4 1 0 2 (010)

 5 6 4 4 (100)

 6 6 4 5 (110)

21

 Table-8 The Bit Split FSM corresponding to Bit position 3 (FSM 3)

 State 0 1 Match Vector

 0 1 0 0 (000)

 1 2 0 0 (000)

 2 3 0 0 (000)

 3 4 0 6 (110)

 4 5 0 6 (110)

 5 5 0 7 (111)

 Table-9 The Bit Split FSM corresponding to Bit position 4 (FSM 4)

 State 0 1 Match Vector

 0 1 0 0 (000)

 1 2 0 0 (000)

 2 3 0 0 (000)

 3 4 0 6 (110)

 4 5 0 6 (110)

 5 5 0 7 (111)

 Because several states from the original FSM that match different peptides may

be combined into a single state in a bit-split FSM, a mechanism to indicate

multiple matches is required. In the bit-split FSM, a vector of bits is used to

encode the peptide matching attribute of for each state. For example, state

FSM0:3, matches peptides 2 and 4, and therefore, has a peptide matching bit

vector containing 110. Using this mechanism, after the various state machines

enter their respective new states, a bitwise logical and operation can be used to

22

determine the peptide match that all five FSMs agree on. For example, assume

that at some point in time, the bit-split FSMs in Tables 5, 6, 7,8and 9 are in

states FSM0:3, FSM1:5, FSM2:6, FSM3:5, andFSM4:5 with match bit vectors

of 110, 100, 101, 111, and111, respectively. The bitwise logical AND of the five

match bit vectors results in the bit vector 100 that indicates that peptide 3 is

matched in this case. However, if FSM0 is in state FSM0:5, with a matching bit

vector of 001, then the result of the logical and will result in 000,indicating that

no peptides are currently matched.

 The above tables 5,6,7,8 and 9 generated are stored in Bram 0, Bram 1,Bram 2

 Bram 3, and Bram 4.The Generic Custom IP along with Bram’s forms FSM

logic. The FSM table is generated in C language by ZYNC processor and stored

in Bram’s. The Block diagram of the system is presented below which

acceralates the pattern matching of peptides by exploiting bit level parallelism

 5 bit split FSM and the memory consumption of the design is low compared to

ACA FSM

 Figure-5 Bit Split ACA System Design Block Diagram

23

4.2 Pseudo Code for Bit Split ACA Implementation

#define N=26

#define N1=1

#define N2=2

#define M=1000

#define N3=3

Consider ACA FSM A1[M][N+N1]

Create Structure consist of array" a[N]" and variable "value" for representing state number.

create Array FSM0[M][N3]

create structure states S0[M]

initialize l1=0 ,input_0[1]=0,match_vector=0,vector[26]

(S0[0].a)[0] = 0;

S0[0].value = 1;

l1 = l1+1;

create0 (input_0, 1, 0, 0);

for(i=0 to l1)

{

match_vector=0;

 for(j=0 to S0[i].value)

 {

 vector[j]=(S0[i].a)[j];

 match_vector=match_vector|B0 [vector[j]][26];

 }

 FSM0[i][N2]=match_vector;

}

24

Void create0 (int * input_0, int n, int s, int b)

{

initialize i,j,a,kl=0,kr=0,x=0,y=0,Left[N],Right[N],Pl[M],Pr[M],sl,sr,w,w1,Ql=0,Qr=0;

for (i=0 to M)

 {

 Pl[i]=0;

 Pr[i]=0;

 }

for(j=0 to n)

{

 for(i=0 to 26)

 {

 w=i;

 w=w%2;

 if(Pl[A1[input_0[j]][i]] == 0 && w == 0)

 {

 Left[x] = A1[input_0[j]][i];

 x=x+1;

 Pl[A1[input_0[j]][i]] = 1;

 }

 if(Pr[A1[input_0[j]][i]] == 0 && w == 1)

 {

 Right[y] = A1[input_0[j]][i];

 y=y+1;

 Pr[A1[input_0[j]][i]] = 1;

 }

 }

 }

25

for(i=0 to l1)

{

 if(x == S0[i].value)

 {

 for(j=0 to x)

 {

 if(Left[j]== (S0[i].a)[j])

 {

 kl = kl+1;

 }

 }

 if(kl==x)

 {

 sl=i;

 Ql=x;

 }

 }

 if(y == S0[i].value)

 {

 for(j=0 to y)

 {

 if(Right[j]== (S0[i].a)[j])

 {

 kr = kr+1;

 }

 }

 if(kr==y)

 {

 sr=i;

 Qr=y;

 }

 }

 kl = 0;

 kr = 0;

}

26

if(Ql!=x)

{

 for(i=0 to 26)

 {

 (S0[l1].a)[i] = Left[i];

 }

 S0[l1].value = x;

 FSM0[s][0]=l1;

 l1=l1+1;

 }

else

{

FSM0[s][0]=sl;

}

if(Qr != y)

{

 for(i=0 to 26)

 {

 (S0[l1].a)[i] = Right[i];

 }

 S0[l1].value = y;

 FSM0[s][1]=l1;

 l1=l1+1;

}

else

{

FSM0[s][1]=sr;

}

 if(Ql !=x)

 {

 create0(Left,x,FSM0[s][0],0);

 }

 if(Qr !=y)

 {

 create0(Right,y,FSM0[s][1],0);

 }

return;

}

27

4.3 Future work

In the above Bit Split Algorithm Implementation we have given the idea about the

system design which we envisioned. The above system can be implemented on Real

time Xilinx Zync FPGA by introducing the concept of Hardware Software Co-

Design with Re-Configurability and Parallel Architecture by exploiting the concept

of bit level parallelism with less memory consumption with all these advantages the

system can be used to accelerate the Bio-Informatics Research for protein

Identification which has numerous Bio medical applications.

28

5. Conclusion

In this Thesis I have proposed a Reconfigurable Hardware Software Co-Design

Methodology for Protein Identification which has real time application for Bio

Informatics Research and I also given the idea about the Hardware Software Co-

Design of Bit Split Algorithm a System Design Approach which is a parallel

Architecture which can further accelerate the Protein Identification with less

memory consumption.

29

References

[1] W. Liu, Q. Yang, B. Liu, and Z. Zhu, “Serum proteomics for gastric

cancer,” Clinica Chimica Acta, vol. 431, pp. 179–184, 2014.

[2] Boyer RS, Moore JS: A Fast String Searching Algorithm. Communications of the ACM

1977, 20:762-772.

[3] Knuth DE, Morris JH, Pratt VB: Fast pattern matching in strings.

SIAM Journal of Computing 1977, 6:323-350.

[4] Aho A, Corasick M: Efficient string matching: an aid to bibliographic search.

Communications of the ACM 1975, 18:333-340.

[5] Tan L, Sherwood T: A High Throughput String Matching Architecture for Intrusion

Detection and Prevention: Madison, Wisconsin US. ; 2005.

[6] Y.S.Dandass,S.C. Burgess, M. Lawrence, and S. M. Bridges,“Accelerating string set

matching in fpga hardware for bioinformatics research,” BMC bioinformatics, vol. 9, no. 1,

p. 197, 2008.

[7] A. Alex, J. Rose, R. Isserlin-Weinberger and C. Hogue, "Hardware Accelerated Novel

Protein Identification", Field Programmable Logic and Application- Lecture Notes in

Computer Science, vol. 3203, 2004, pp. 13-22.

[8] Jian Zhang, McQuillan I., Fang Xiang Wu, "Speed improvements of peptide spectrum

matching using SIMD instructions”, Bioinformatics and Biomedicine Workshops

(BIBMW), 83-88, Dec. 2010.

[9] W.J. Henzela, C. Watanabea and J.T. Stults, "Protein identification: the origins of

peptide mass fingerprinting," Journal of the American Society for Mass Spectrometry, Vol.

14, no. 9, pp. 931-942. 2003.

[10] Sahab, Z. J., Semaan, S. M., & Qing-Xiang, A. S. (2007).Methodology and

applications of disease biomarker identification inhuman serum. Biomarker Insights, 2, 21

[11] T. A. Anish , M. Dumontier , J. S. Rose and C. W. V. Hogue,"Hardware-accelerated

protein identification for mass spectrometry”, Rapid Communi. Mass Spectrom., vol. 19,

pp. 833-837, 2005

[12] H. Hyyrö, M. Juhola, M. Vihinen, "On exact string matching of unique

oligonucleotides". Comput Biol Med, vol. 35, no. 2, pp. 173-81, 2005.

[13] Brudno M, Morgenstern B: Fast and sensitive alignment of large genomic sequences.

Proc IEEE Comput Soc Bioinform Conf 2002,1:138-147.

30

[14] Brudno M, Steinkamp R, Morgenstern B: The CHAOS/DIALIGNWWW server for

multiple alignment of genomic sequences.Nucleic Acids Res 2004, 32(Web Server

issue):W41-4.

[15] Castelo AT, Martins W, Gao GR: TROLL--tandem repeat occurrence locator.

Bioinformatics 2002, 18(4):634-636.

[16] Farre D, Garcia D, Alba MM, Messeguer X: Prediction of Transcription Factor Binding

Sites with PROMO v. 3: Improving the Specificity of Weight Matrices and the Searching

Process. In 5th Annual Spanish Bioinformatics Conference Barcelona Spain; 2004

[17] Michael M, Dieterich C, Vingron M: SITEBLAST--rapid and sensitive local alignment

of genomic sequences employing motif anchors. Bioinformatics 2005, 21(9):2093-2094.

[18] Buhler J, Keich U, Sun Y: Designing seeds for similarity search in genomic DNA.

Journal of Computer and System Sciences 2005,70(3):342-363.

[19] Boeva V, Clement J, Regnier M, Roytberg MA, Makeev VJ: Exact pvalue calculation

for heterotypic clusters of regulatory motifs and its application in computational annotation

of cisregulatory modules. Algorithms Mol Biol 2007, 2(1):13.

[20] I. Garcia-Vargas et al., "Rom-based finite state machine implementation in low cost

fpgas," in Industrial Electronics, 2007ISIE 2007. IEEE International Symposium on, June

2007, pp. 2342-2347

[21]R. Senhadji-Navarro, I. Garcia-Vargas and J. L. Guisado, “Performance evaluation of

RAM-based implementation of finite state machines in FPGAs," Proc. 19th IEEE Int. Conf.

Electron. Circuits Syst. (ICECS) , pp.225 -228.

[22] "UniProt: a hub for protein information", Nucleic Acids Res., vol. 43,pp. D204-D212,

2015.

[23] Vidanagamachchi, S.M.; Dewasurendra, S.D.; Ragel, R.G., "Hardware software co-

design of the Aho-Corasick algorithm: Scalable for protein identification?," in Industrial and

Information Systems (ICIIS),2013 8th IEEE International Conference on , vol., no., pp.321-

325,17-20 Dec. 2013.

[24] Bianchi, G.; Casasopra, F.; Durelli, G.C.; Santambrogio, M.D., "A hardware approach

to protein identification," in Biomedical Circuits and Systems Conference (BioCAS), 2015

IEEE , vol., no., pp.1-4, 22-24 Oct. 2015.

[25] Jung HJ, Baker ZK, Prasanna VK: Performance of FPGA Implementation of Bit-split

Architecture for Intrusion Detection Systems. 2006.

31

[26] Venkateshwarlu Y. Gudur, Sandeep Thallada, Abhinay R. Deevi, Venkata Krishna

Gande, Amit Acharyya, Member, IEEE, Vasundhra Bhandari, Paresh Sharma, and Ganesh

R. Naik, Senior Member,IEEE, Saqib Khursheed , Reconfigurable Hardware-Software Co-

Design Methodology for Protein Identification ,IEEE EMBC 2016

