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Abstract

First-principles calculations were carried out to study the structural, mechanical, dynamical and

transport properties of zintl phase materials CaLiPn (Pn = As, Sb and Bi). We have used two

distinct density functional approaches to investigate these properties. The plane wave pseudopoten-

tial approach was used to study the structural and dynamical properties. The full potential linear

augment plane wave method has been used to study the electronic structure, mechanical and ther-

moelectric properties. The calculated ground-state properties agree quite well with experimental

values. The calculated electronic structure shows the investigated compounds to be direct band gap

semiconductors. Further we have calculated the thermoelectric properties of all the investigated

compounds as a function of both carriers at various temperatures. We found a high thermopower

for both the concentrations, especially with n-type doping to be more favourable, which enabled us

to predict that CaLiPn might have promising applications as a good thermoelectric material. Fur-

ther the phonon dispersion curves of the investigated compounds showed flat nature of the phonon

bands and we also find low lying optical and acoustic modes are cutting each other at the lower

frequency range, which indicate that the investigated compounds might have an reasonable low

thermal conductivity.
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Chapter 1

Introduction

Thermoelectric (TE) materials are of current interest for a number of energy related applications

such as waste heat recovery, terrestrial cooling and thermoelectric power generation[1, 2]. Since TE

materials have the property to convert thermal energy directly to electrical energy, improvement

of their efficiency[3] can lead to wider applications in energy technology. The energy conversion

efficiency of a TE material is characterised by its dimensionless quantity called figure of merit,

ZT = σS2T/κ , where σ, S, T, κ are electrical conductivity, the Seebeck coefficient, the absolute

temperature, and the thermal conductivity, respectively. Thermal conductivity has both electronic

κe, and lattice κl, contributions, i.e. κ = κe+κl. The contradicting nature of thermopower, |S|, and

electrical conductivity, σ, would suggest that achieving high figure of merit will require a fine tuning

configuration of contributing parameters[4]. In addition to high temperature and high effective mass

m∗, the carrier concentration can also ensure high thermopower. Low carrier concentration insulators

and semiconductors can deliver high thermopower. However lowering carrier concentration can also

result in lower electrical conductivity (since σ = neµ, where n is the carrier concentration, e is the

charge of an electron and µ is the mobility). Even though metals offer high electrical conductivity

which translate to high carrier concentration, they may not be suitable as a high performing TE

material because not only the carrier concentration but also the mobility, which depend on effective

mass is also in disagreement with that of high thermopower. Because of this conflicting nature, a

compromise has to be made between high mobility and high effective mass. Typically materials with

small electro negativity differences posses high mobility and low effective mass and materials with

narrow bands can offer low mobility and high effective mass[5] because of the relationship between

density of states and the whole dispersion relation in the momentum space. In addition to that an

1



other conflict in parameters stem from acquiring low thermal conductivity. The difficulty of achieving

low electronic thermal conductivity because of its proportionality to electrical conductivity according

to Wiedmann-Franz law and because of this at a fixed temperature electronic thermal conductivity

cannot be lowered without compromising ZT . Nevertheless lattice thermal conductivity can be

reduced, thereby reducing the thermal conductivity. In effect an efficient TE material must have

a low lattice thermal conductivity as that of an amorphous glass. Zintl phase compounds have

complex structures which enable them to have low thermal conductivity[6, 7, 8].

Research over the years point to the direction that zintl phase materials offer desired charac-

teristics of a good thermoelectric material. These materials are considered to be valence precise[9]

and majority of them form the requisite small band gap semiconductors with complex structures.

Materials of this class often contains cationic sites that allow for the addition of disordered scat-

tering and the change in carrier concentration, which results in tuning of electronic properties[13].

This characteristic of zintl materials allow control of the carrier concentration through precise dop-

ing without disrupting the carrier mobility. Since ZT is sensitive to carrier concentration, this

tune-ability attribute of zintl phases can be used to improve the figure of merit. Over the years

we have known materials with ZT > 1 especially from zintl phases[14] and they offer favourable

thermal conductivity at temperatures near 1200 K because of their complex crystal structures and

optimal charge-transport because of their electronic structure[15]. Ca5Al2Sb6, Y b14AlSb11, and

Sr3AlSb3[6, 7, 8] are a few examples of such compounds. Ca5Al2Sb6 has a low lattice thermal

conductivity (0.6 W/mK at 850 K) and a ZT which is more than 0.6 at 1000 K. An optimally doped

Sr3AlSb3 and Y b14AlSb11 can achieve ZT of 1.0 at high temperatures such as 1000 to 1250 K, and

they have lattice thermal conductivity less than 0.75 W/mK at 1000 - 1300 K respectively. Recently

studied strontium based pnictogen compound SrLiAs has been demonstrated to have characteristics

of a reasonable TE material[17]. This provoke us to search for other possible new zintl phase mate-

rials for a better TE candidates. In the present study, we are interested in investigating the calcium

based zintl phase materials of CaLiPn (Pn = As, Sb, and Bi) for a possible good TE properties.

The present work is a theoretical study of CaLiPn (Pn = As, Sb, Bi) to determine its TE

properties. This thesis is organized as follows: chapter 2 describes the theoretical background, and

chapter 3 explains computational aspects of the present study. In chapter 4 we have presented the

results and discussions, and finally chapter 5 gives the conclusions and future work.
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Chapter 2

Theoretical Background

The fundamental postulates of quantum mechanics assert that microscopic system are described by

wave function that completely characterize all the physical properties of the system called observ-

ables of various operators defined in quantum mechanics. For a solid system with large number

of such microscopic systems (atoms) and having a huge number of particles, it is difficult to solve

the Schrödinger equation Hψ = Eψ. For such systems the main interest is to find approximate

solution of non-relativistic time independent Schrödinger equation. In general Hamiltonian of such

a system is defined by kinetic energy of the electron and nuclei, electron-electron interaction, nuclei-

nuclei interaction, electron-nuclei interaction. These interactions can be expressed in the following

Hamiltonian (in atomic units ~ = |e| = me = 1
4πε0

= 1, E = 27.21eV , r = a0),

H = −
∑
i

1

2
∇2
i −

∑
I

1

2
∇2
I +

∑
I,J
I 6=J

1

2

1

|~ri − ~rj |
−
∑
i,I

ZI

| ~RI − ~ri|
+
∑
I,J
I 6=J

ZIZJ

| ~RI − ~RJ |
(2.1)

The small indexes(i,j) are referring to electrons and capital (I,J) are for nuclei. The H of the above

equation is known as many body Hamiltonian. Approximations are needed to solve this many body

Hamiltonian, which are explained in detail below.
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2.1 Approximation to solve Many-Body Problem

2.1.1 Born-Oppenheimer Approximation

Since nuclei are much heavier than electrons, their velocities are much smaller. To a good approxi-

mation, the Schrödinger equation can be separated into two parts: One part describes the electronic

wavefunction for a fixed nuclear geometry. The second describes the nuclear wavefunction, where the

electronic energy plays the role of a potential energy. In other words, the kinetic energy of the nuclei

can be treated separately. This is the Born-Oppenheimer (BO) approximation. As a result, the

electronic wave function depends only on the positions of the electrons. We assume that electrons

move in an electrostatic field generated by the nuclei. Since we consider the nuclei to be at rest we

can rewrite the Hamiltonian as

H = −
∑
i

1

2
∇2
i −

�
�
�
�∑

I

1

2
∇2
I +

∑
i,j
i 6=j

1

2

1

|~ri − ~rj |
−
∑
i,I

ZI

| ~RI − ~ri|
+
∑
I,J
I 6=J

ZIZJ

| ~RI − ~RJ |
(2.2)

In BO approximation, the total wave function is limited to one electronic surface, i.e. a particular

electronic state. The BO approximation is usually very good, but breaks down when two (or more)

electronic states are close in energy at particular nuclear geometries. Further approximations are

needed to solve this Hamiltonian.

2.1.2 The Hartree approximation

For non interacting particles we can write the wave function as a product of individual particle wave

function. Hartree considered each system to obey a Schrödinger equation and one can write the

wave equation for an n particle system as,

ψ(~ri) = CN

n∏
i

φi(~ri) (2.3)

Here interaction of one electron with the others are incorporated in an average way. We can write

the Schrödinger equation as

(
1

2
∇2 + Vext(~r) + Vadditional(~r)

)
φi = εiφi (2.4)
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Where

Vext(~r) = −
∑
i,I

ZI

| ~RI − ~ri|
+
∑
I,J
I 6=J

ZIZJ

| ~RI − ~RJ |

Which is the last two terms from eq-(1) and

Vadditional(~r) =
1

2

∑
i,j
i 6=j

1

|~ri − ~rj |

Vadditional is the Coulomb interaction. The limitations of this approximation are, they do not include

correlation, the wavefunction is not antisymmetric and it does not remove the (n,l) - accidental

degeneracy of the hydrogenoid atom.

2.1.3 Hartree-Fock Method

One must include the antisymmetry as well in order to describe a wave function. The slater determi-

nant takes care of the spin. Interchanging the position of two electrons is equivalent to interchanging

the corresponding column. If two electrons at the same spin interchange positions, ψD must change

sign. This is known as exchange property and is the manipulation of Pauli principle. The wave

function approach to systems with many atom does not offer a satisfactory approach to the one

electron approximation. One of the most common ways of dealing with many - Fermion problem is

to assume that each electron can be considered separately in the one electron approximation.

ψD(~r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~r1) χ2(~r1) . . . χn(~r1)

χ1(~r2) χ2(~r2) . . . χn(~r2)

...
...

. . .
...

χ1( ~rn) χ2( ~rn) . . . χn( ~rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.5)

H =

(
−
∑
i

1

2
∇2
i + Vext(~ri)

)
+

1

2

∑
i,j
i 6=j

1

|~ri − ~rj |
(2.6)

Solving the Schrödinger equation with the slater determinant as the wave function we will arrive at

the equation given below,

−1

2
∇2 + Vext +

∫
ρ(~r′)

|~r − ~r′|
dr′ − 1

2

∑
i,j,σ

∫
φ∗j,σ(~r′)φi,σ(~r′)φj,σ(~r)

φi,σ(~r′)|~r − ~r′|
drdr′

φi,σ(~r) = εiφi,σ(~r) (2.7)
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This is called the Hartree-Fock equation. The Hartree-Fock equations describe non-interacting

electrons under the influence of a mean field potential consisting of the classical Coulomb potential

and a non-local exchange potential. The correlation energy is the difference between the full ground

state energy and the exchange correlation energy. The correlation energy accounts for the energy

lowering due to quantum fluctuations. Since this is still a 3N dimensional problem and solving

this would be difficult. In addition to that regardless of this method’s success in describing various

systems, it failed because of the poor exchange and correlation limits of electrons. Adopting further

approximations were needed to minimise the problem. The triumph came with the formulation of

Density Functional Theory in solving this complex problem. The same is explained in the following

sections.

2.2 Density Functional Theory

Density Functional Theory (DFT) emanate from Hohenberg-Kohn theory and Kohn-Sham equation.

This uses density as a fundamental quantity instead of wavefunction, which leads to a situation where

the complexity of the problem can be effectively reduced from 3N to 3. The density of the electron

can be ρ(r) and can be expressed as,

ρ(r) = N

∫
d3r2d

3...d3rNψ(r, r2, ...rN )ψ∗(r, r2...rN ) (2.8)

The indication that the density can be used as a fundamental parameter as the wavefunction is

originated from Thomas-Fermi equation, which is explained in the following section.

2.2.1 Thomas-Fermi Equation

Thomas and Fermi independently considered the first three terms of the Hartree-Fock equation. At

that time they were not aware of the exchange energy and neglected the correlation term. For a

plane wave systems like homogeneous electron gas one can solve the HF equation and find out the

approximate energy as follows. For a homogeneous electron gas φi(~r) = 1√
V
ei
~k.~r. If we use this and

minimise the total energy we get,

5Ck
3
ρ(~r)2/3 + Vext +

1

2

∫
ρ(~r′)

|~r − ~r′|
dr′ −

(
3ρ(~r

π

)1/3

= µ (2.9)
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The Lagrangian multiplier µ will be the chemical potential of the homogeneous electron gas. It shows

that given a density it will give a number. The idea of using density as a fundamental variable is

originated from this concept. Thomas-Fermi becomes relevant when the system is dense or the

kinetic energy is more.

2.2.2 Hohenberg - Kohn Theorem

The question of treating ρ(~r) as a fundamental variable is answered by Hohenberg - Khon Theorem

(HK). In 1964 Hohenburg and Kohn proved the two theorems. The first theorem may be stated as

follows: for any system of interacting particles in an external potential Vext(~r), the density is uniquely

determined. If this statement is true then it immediately follows that the electron density uniquely

determines the Hamiltonian operator. The second theorem establishes a variational principle: For

any positive definite trial density ρi(~r),such that
∫
ρi(~r)dr = N then E[ρi(~r)] ≥ Eo

HK theorem provides evidence for the one-to-one correspondence between external potential Vext(~r)

and ground state density ρ0(r). It gives good approximation to the ground density as well as the

energy. But still we have to solve many electron shrodinger equation. A practical implementation

can be carried out using Kohn-Sham method which is discussed in the next section.

2.2.3 Khon-Sham Method

Since density is a fundamental variable we can re write the Shrodinger equation eq-(2.11) as,

E[ρ(~r)] = T [ρ(~r)] + Vext[ρ(~r)] + Vee[ρ(~r)] (2.10)

Here Vext[ρ(~r)] =
∫
Vextρ(~r)dr. But the kinetic and electron-electron functionals are unknown. If

good approximations to these functionals could be found direct minimisation of the energy would

be possible. Kohn and Sham proposed the following approach to approximating the kinetic and

electron-electron functionals. They introduced a fictitious system of N non- interacting electrons

to be described by a single determinant wavefunction in N orbitals φi. In this system the kinetic

energy and electron density are known exactly from the orbitals;

Ts[ρ(~r)] = −1

2

N∑
i

〈
φi
∣∣∇2

∣∣φi〉 (2.11)

Here the suffix (s) emphasises that this is not the true kinetic energy but is that of a system of

non-interacting electrons, which reproduce the true ground state density; ρ(~r) =
∑N
i |φ2i |. The
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construction of the density explicitly from a set of orbitals ensures that it is legal and it can be

constructed from an asymmetric wavefunction. The energy functional can be rearranged as;

E[ρ(~r)] = Ts[ρ(~r)] + Vext[ρ(~r)] + VH [ρ(~r)] + EXC [ρ(~r)] (2.12)

Where, VH = 1
2

∫ ρ(~r)n(~r′)

|~r−~r′|
drdr′ and EXC is called exchange correlation functional;

EXC [ρ(~r)] = T [ρ(~r)]− Ts[ρ(~r)] + Vee[ρ(~r)]− VH [ρ(~r)] (2.13)

which is simply the sum of the error made in using a non-interacting kinetic energy and the er-

ror made in treating the electron-electron interaction classically. This set of non-linear equations

(the Kohn-Sham equations) describes the behaviour of non-interacting electrons in an effective lo-

cal potential. For the exact functional, and thus exact local potential, the orbitals yield the exact

ground state density. These Kohn-Sham equations have the same structure as the Hartree-Fock

equations with the non-local exchange potential replaced by the local exchange-correlation potential

VXC = δEXC(~r)
δρ(~r) .

Proceeding Numerically

Since the ground state electron density is the fundamental variable, it gives us an advantage by

reducing the 3N dimensional problem to a 3 dimensional problem. We start with an initial guess of

ρo(~r) then use it to calculate VKS [ρ(~r)] which is the effective potential. Then solving the Kohn-Sham

equations must be trivial task. We calculate the energy density again and obtain ρ(~r). And check

for self consistency i.e. whether ρ(~r) is nearly equal to ρo(~r) or not. If not we proceed to do the

calculation again using ρ(~r) as our new input ground state density and do the process again till the

self consistency is acquired. If the result is self consistent, we go on to calculating energy and force

etc. The self-consistent algorithm is shown in Fig. 2.1

2.2.4 Local Density Approximation (LDA)

LDA approximation is a key contribution by Kohn-Sham, which for computations of the quantum

ground state of many-particle systems proved to be superior to both Thomas-Fermi and Hartree-

Fock theories, the basis of the local density approximation for the exchange and correlation energy

functional is the theory of the homogeneous electron gas. This is a most important model system,

which of course does not exist in nature, but which can nowadays theoretically be treated with

8



Figure 2.1: Self-consistent algorithm of DFT

extremely high precision. So that EXC depends only on the local electron density around each

volume element dr in the system. Exchange Correlation Functional can be represented as,

EXC [ρ] =

∫
ρ(r)εXC [ρ(r)]dr

where εXC [ρ(r)] is the energy density in homogeneous electron gas. It provides us with much

successful results than expected, especially for solid, to describe the structural and vibrational

properties. LDA yields results that compare well to HF results even for molecules and atoms. LDA

is computationally much simpler than HF with the true exchange potential. It gives the correct

crystal structure which is usually found to have the lowest energy, bond lengths, bulk moduli,

phonon frequencies which are accurate within a few percent.

2.2.5 Generalised Gradient Approximation (GGA)

As the LDA approximate the energy of the true density by the energy of a local constant density, it

fails in the situations where the density undergoes rapid change such as in molecules. An improve-

ment to this situation can be made by considering the gradient of the electron density, so called

9



Generalised Gradient Approximation, symbolically it can be written as,

EGGAXC =

∫
f [ρ(r),∇rρ(r)]dr

This can lead to large improvement over LDA result. Some of these are semi-empirical, in that

experimental data e.g atomization energy is useful in their derivation. A commonly used functional

are PBE, PW91 functional, due to Predew-Burke-Ernzerhof parameterization, Perdew and Yan

respectively.

2.2.6 Tran-Blaha modified Becke-Johnson potential (TB-mBJ)

Even though traditional functions like LDA and GGA produce reasonably good results, they under-

estimate the band gaps of many semiconductors and insulators. Tran-Blaha modified Becke-Johnson

potential (TB-mBJ) can be one of the solutions to this problem since this exchange correlation func-

tion can capture the exact band gap. This is used in the present thesis in order to accurately

determine the band gaps of the investigated compounds. Tran-Blaha modified Becke-Johnson po-

tential is given by,

vTB−mBJx,σ (r) = cvBRx,σ (r) + (3c− 2)
1

π

√
5

6

√
tσ(r)

ρσ(r)

Where ρσ =
∑Nσ
i=1 |ψi,σ|2, tσ = 1

2

∑Nσ
i=1∇∗ψi,σ.∇∗ψi,σ, vBRx,σ (r) = − 1

bσ(r)
(1−e−xσ(r)− 1

2xσ(r)(exσ(r))),

are the electron density, kinetic energy density and the Becke-Roussel (BR) exchange potential re-

spectively here xσ is obtained from a non-linear equation involving ρσ, ∇ρσ, ∇2ρσ and tσ. The

bσ is calculated with bσ = [x3σe
xσ/(8π ∗ρσ)](1/3). Value of c is c = α+β

(
1

Vcell

∫
cell

∇ρ(r′)
ρ(r′)d3r′

)
. Where

Vcell is the unit cell volume and α and β are two free parameters whose values are α = −0.012 and

β = 1.023bhor(1/2). Using the TB-mBJ functional we have calculated electronic structure properties

and further evaluated the thermoelectric properties.

2.3 Introduction to Thermoelectric Materials

Thermoelectric materials are considered to be one of the ideal solutions for sustainable energy. Since

they can convert heat directly into electricity and vice-versa they are seen as green energy source

because of its ability to convert waste heat into electricity. Development of new materials and fab-

rication technologies enable us to explore more about these particular class of materials to improve

their efficiency and this objective became a key issue in the research field. In solids electrons not
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only conduct electricity but also conduct heat. These two phenomenon are coupled, since electrical

conductivity transport energy and thermal conductivity transport heat by means of charge from

hot junction to cold junction. Thus this coupling between electrical and thermal transport give

rise to thermoelectric phenomenon [55, 56]. Thermoelectric materials show thermoelectric effect i.e

either a temperature difference can create an electric potential or a potential difference can create a

temperature difference and their major application lies in (micro) cooling or electricity generation

from heat sources. There are three types of thermoelectric effect. Seebeck Effect, Peltier Effect and

Thomson Effect.

Seebeck effect

If two wires of dissimilar metals are joined end to end and two junctions are maintained at different

temperature i.e connected electrically in series and thermally in parallel, then a current flows through

the circuit. This is known as Seebeck Effect. Such a current is known as thermoelectric current

and emf producing it is called thermo-emf and was first reported by Thomas Seebeck in 1821. The

circuit formed by the two wires of dissimilar metals is called thermocouple. The direction and magni-

tude of the Seebeck voltage (V), depends on the temperature difference between the two junctions of

the thermocouple and on the materials making up the thermocouple i.e on the Seebeck coefficient[57]

Peltier Effect

If a current is made to flow through the circuit of two dissimilar metals by using an external source

then one junction gets heated whereas other gets cooled, depending on the direction of current flow,

this phenomenon is known as Peltier Effect[55], the heat evolved or absorbed as Peltier heat. The

rate of heating or cooling at a junction is found to be proportional to the strength of the current and

changes its sign on reversing the direction of current. Thus Peltier effect is reversible. The effect

is just the reverse of the Seebeck Effect. Thus materials exhibiting a large Seebeck effect also show

a large Peltier effect. The effect can be quantitatively described by the Peltier coefficient π. The

Peltier coefficient (π) is determined by the ratio of the rate of heating (Q) to the current (I).

Thomson Effect

In order to connect the thermoelectric effects as observed by Seebeck and Peltier, William Thomson

described the third thermoelectric effect, Thomson effect which describes the resulting electric cur-

rent that develops in a single conductor when a small temperature gradient is applied [29-31]. This

relationship is described by the equation Q = βI4T , where Q is the rate of heating, I is electric

11



current, 4T is change in temperature, and β is the Thomson coefficient. This relationship holds if

the temperature difference, 4T , is small.

12



Chapter 3

Methodology

All the total energy calculations based on first principle density functional theory (DFT) were per-

formed using pseudopotential method as implemented in the Plane wave self-consistent field (Pwscf)

program [18] and full-potential linear augmented plane wave (FP-LAPW) method as implemented

in the WIEN2k [19]. The Pwscf method is used to perform the structural optimization, whereas

FP-LAPW method is used to study the electronic, mechanical and transport properties. The total

energies are obtained by solving the Kohn-Sham equation self consistently within the Generalized

Gradient Approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) potential [20]. A plane wave

kinetic energy cut-off of 50 Ry is used and the first Brillouin zone is sampled according to the

Monkhorst-Pack scheme [21] by means of a 8× 8× 8 k-mesh in order to ensure that the calculations

are well converged. Since the traditional functionals such as local density approximation and gener-

alised gradient approximation methods were underestimating the band gap, we adopted Tran-Blaha

modified Becke-Johnson potential (TB-mBJ)[22, 23] to attain a proper band gap for the investigated

compounds. TB-mBJ is found to be quite successful in reproducing the experimental band gaps as

compared to standard GGA [22, 24, 25, 26, 27]. Considering the presence of heavy elements, we

have included spin orbit coupling in our calculations. All the calculations were performed with the

optimized lattice parameters with an energy convergence criterion of 10−6 Ry per formula unit.

The carrier concentration (p for holes and n for electrons) dependent transport properties like

thermopower (S), electrical conductivity scaled by relaxation time (σ/τ) and power factor (S2σ/τ)

were calculated using the BoltzTraP[28] code. This fraction of code is an implementation of semi-

classical Boltzmann transport equation using constant relaxation-time approximation (CSTA) and

rigid band approximation (RBA). The detailed explanation about the CSTA is given in Ref. [29,

13



31, 30] and the references cited therein. It is evident that CSTA has been quite successful in the

past in predicting the thermoelectric properties of many materials [32, 33, 34, 30, 35]. According

to the RBA approximation, doping a system does not alter its band structure but varies only

the chemical potential, and it is a good approximation for doped semiconductors to calculate the

transport properties theoretically when doping level is not very high [36, 37, 38, 39, 40]. However

certain types of dopant can drastically modify the nature of electronic structure near the gap giving

rise to resonant states in which case the RBA can fail [41]. The crystal structures are generated

using the VESTA [42] software and the charge density plots are generated with the help of Xcrysden

molecular structure visualization program [43].
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Chapter 4

Results and Discussions

4.1 Structural and Mechanical properties

The investigated compounds CaLiPn (Pn = As, Sb, Bi) crystallize in orthorhombic structure with

space group Pnma(62), and the crystal structure is given in Fig. 4.1. In Table 4.1 we have presented

the optimized ground state properties along with available experimental reports. From Table 4.1, it is

quite evident that the calculated optimized parameters are in good agreement with the experimental

reports.

Elastic constants are the fundamental material parameters that describe the resistance of the

material against applied mechanical deformation. This will also indicate the mechanical stability

of the investigated compounds. All the investigated compounds crystallise in an orthorhombic

structure and it has nine independent elastic constants, namely, C11, C22, C33, C44, C55, C66, C12,

C13, and C23. The calculated single-crystal elastic constants at the theoretical equilibrium volume

Figure 4.1: Crystal structure of CaLiPn (Pn = As, Sb, Bi)
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Table 4.1: Calculated structural parameters of CaLiPn (Pn = AS, Sb, Bi) along with the experi-
mental [16] parameters

Compounds CaLiAs CaLiSb CaLiBi
Present Exp Present Exp Present Exp

a(in Å) 7.289 7.233 7.693 7.642 7.832 7.729
b(in Å) 4.334 4.313 4.655 4.632 4.750 4.713
c(in Å) 7.945 7.895 8.310 8.292 8.497 8.422

are tabulated in Table 4.2.

Table 4.2: Elastic constant (Cij), Young modulus, Bulk modilus (in GPa), sound velocities (υl, υt,
υm, km/sec) and Debye Temperature (ΘD, K) of CaLiPn

Elastic Constant CaLiAs CaLiSb CaLiBi
C11 100.50 81.69 64.93
C22 104.95 89.25 72.64
C33 79.23 73.59 58.75
C44 45.78 37.46 31.21
C55 35.37 31.39 24.02
C66 38.73 33.11 24.71
C12 16.25 17.15 12.44
C13 17.39 17.09 13.11
C23 25.11 21.55 18.35

Young modulus 89.88 77.09 61.0686
Bulk modulus 44.43 39.44 31.45
υLongitudinal 5.57 4.81 3.59
υTransverse 3.48 2.97 3.16
υMean 3.83 3.27 2.43

Debye Temperature 411.2 331.1 242.6

All the calculated single-crystal elastic constants satisfied the Born’s mechanical stability criteria

for orthorhombic structure [44] thereby implying that the investigated compounds are mechanically

stable under ambient conditions. By using the calculated single-crystal elastic constants, we have

further computed the polycrystalline aggregate properties such as bulk moduli (BX , X = V,R, orH),

shear moduli (GX , X = V,R, orH) using the Voigt, Reuss, and Hill approaches. Apart from these,

we have also calculated the Debye temperature (ΘD) using sound velocities. ΘD is a fundamental

quantity that correlates several physical properties such as specific heat, thermal conductivity, and

melting point of the crystal with elastic constants. At low temperatures, ΘD can be estimated

from the average sound velocity (υm), which is the average of longitudinal(υl) and transverse(υt)

sound velocities. The calculated values of υl, υt, υm and ΘD are shown in Table 4.2. This is the

first qualitative prediction of the mechanical properties of zintl phase CaLiPn. As the investigated

compounds are newly synthesised [16], there are no much information available in the literature to
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compare the mechanical properties of the present studied compounds. But we tried to compare

the elastic constant coefficients of the present investigated compounds with the prototype family of

SrLiAs material [17]. It is found that in SrLiAs C11>C22<C33, and the same order is also observed in

all the investigated compounds of CaLiPn. Further we also find that the order of Debye temperature

of SrLiAs and the investigated compounds of CaLiPn are almost similar. This indicates that the

investigated compounds might also possess low thermal conductivity in comparison with SrLiAs.

4.2 Electronic properties

Optimised lattice parameters from Pwscf are used further to calculate electronic and transport

properties. The electronic structure of CaLiPn (Pn = As, Sb, Bi) compounds were calculated using

TB-mBJ functional. The band structure of all the investigated compounds along the high symmetry

directions of the Brillouin zone are presented in Fig. 4.2.

It can be observed that all the compounds are found to be direct band gap semiconductors since

the valence band maximum and conduction band minimum are located at the centre of the Brillouin

zone. The band gaps for CaLiAs, CaLiSb and CaLiBi are 1.57 eV, 0.89 eV and 0.6 eV respectively.

The calculated band gaps are found to decrease from CaLiAs to CaLiBi. The calculattions using TB-

mBJ method is found to be fairly accurate in these kind of zintl phase materials such as SrLiAs[17]

which has similar structure and similar space group as CaLiPn. The band dispersion along three

crystallographic direction Γ -X, Γ -Y and Γ -Z of CaLiPn are found to be having similar pattern in

valence band for all three compounds. In the valence band and conduction band the dispersion along

Γ -Y is found to be more compared to other two axes for all the compounds. Because of this higher

dispersion, Γ -Y direction will have less effective mass compared to other directions. The principal

aim of the present work is to calculate the thermoelectric properties of CaLiPn and to study its

variation with carrier concentration. It is necessary to estimate the effective masses of the carriers

in various electron and hole pockets at the band edges. We have calculated the mean effective mass

of the carriers at the conduction and valence band edges by fitting the energy of the respective

bands to a quadratic polynomial in the reciprocal lattice vector ~k. The calculated effective masses

for CaLiPn in crystallographic directions of the Brillouin zone are tabulated in Table 4.3.

It can be observed from the table that for all three compounds, the calculated effective masses

in the Γ -Y direction for the valence bands are m∗y = 4.5me, m
∗
y = 3.59me, and m∗y = 2.58me for

CaLiAs, CaLiSb and CaLiBi respectively. These values are low when compared with other directions

which is expected because of the high dispersion bands along the Γ− Y in all the compounds. The
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(a) (b)

(c)

Figure 4.2: Calculated band structure of (a) CaLiAs (b) CaLiSb and (c) CaLiBi
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Table 4.3: Calculated effective mass of CaLiPn in crystallographic directions of the Brillouin zone
are given in the units of electron rest mass

CaLiAs CaLiSb CaLiBi CaLiAs CaLiSb CaLiBi
Direction Valence Band Conduction Band

Γ−X 6.49 4.51 4.67 1.19 1.04 1.05
Γ− Y 4.5 3.59 2.58 0.71 0.46 0.69
Γ− Z 6.29 4.00 3.40 1.86 1.58 1.68

values of effective masses of conduction bands also follow the same trend as that of the valence band.

The flat bands are observed along R− S high symmetric direction.

Further analysis of the electronic properties requires the total and partial density of states of

these compounds, and the same is represented in Fig 4.3. In the valence band anion Pn states are

dominating and in the conduction band Ca-states are dominating for all the three compounds. From

CaLiAs to CaLiBi, the contribution of Li-s states are found to be increased near the Fermi level. The

heavy band found just below the valence band maximum arises from the Pn-p states, and the light

band lying just below is contributed mainly by Ca-p and Li-s states. Compared to valence band,

more hybridised Ca states are observed in the conduction band. Further we have also calculated

the charge density of CaLiAs to analyse the bonding nature of the investigated compounds and the

same is presented in Fig. 4.4. From this figure it is evident that there exists covalent nature between

Li-As. In general the weak electro-negativity of ‘Li’ atom will form the ionic bond in most of the

cases [10, 11, 12], but in the present case it is making a covalent bond as similar to SrLiAs [17].

The covalent bond bewtween Li-As reduces the mass of the carriers at the band edge resulting in

light carriers. The heavy bands usually contribute to high thermopower since it is proportional to

effective mass (m∗)[13], while the lighter bands donate to high mobility (mobility, µ = τe/m∗, where

e is the charge). A favourable combination of the two may lead to an excellent TE performance

in materials[5]. For CaLiAs, the variation of density of states near Fermi level is almost similar

for valence band and conduction band, whereas in the case of other two compounds the change in

density of states near Fermi level is more in conduction band than in valence band. This behaviour

indicate that for CaLiAs, the TE properties for holes and electrons might be similar, whereas for

the other two the electron doping will be more favourable.

4.3 Thermoelectric properties

In this section we have presented the thermopower (in µV K−1) and electrical conductivity scaled by

relaxation time ( in Ω−1m−1s−1), as a function of carrier concentration and temperature, using the
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(a)

(b)

Figure 4.3: Calculated density of states of (a) CaLiPn (Pn = As, Sb and Bi) (b) partial density of
states of CaLiAs
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Figure 4.4: Calculated charge density of CaLiAs

Boltzmann transport equation approach as implemented in BoltzTraP [28] code. As the investigated

compounds crystallise in orthorhombic structure, we have calculated TE properties along three

crystallographic directions. The variation of thermoelectric properties of the investigated compounds

as a function of temperature at concentrations around 1019 and 1020 cm−3 for both electrons and

holes, along different crystallographic directions are reported in Fig. 4.5-4.7.

The thermopower of all the investigated compounds are found to be higher for the electrons

compared to holes throughout the studied temperature range. The difference in the thermopower

between electrons and holes is of the order of 150-200 µ V/K for all the investigated compounds

through out the studied temperature range. The higher values in the case of electrons as carriers

might be due to the increased number of minima in the conduction band region compared to the

valence band [49]. In the case of thermopower, almost isotropic behavior is observed along different

crystallographic directions and this might be due to the similar band structure nature along different

crystallographic direction. Thermopower is found to decrease as we move from As to Sb, which is

due to the decreasing band gaps as we move from As to Sb (see in section 3-B). Among the three

investigated compounds, n-type CaLiAs has more thermopower than the other two compounds. At

high temperature above 800 K, for CaLiBi we have observed bipolar conductivity (containing both

free electrons and holes) which may lead to low, compensated thermopower and therefore low ZT,
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Figure 4.5: Calculated thermoelectric properties of CaLiAs for both electron and hole concentration
at 1019 (solid lines with filled symbols) and 1020 cm−3 (dotted lines with open symbols) as function
of temperature
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Figure 4.6: Calculated thermoelectric properties of CaLiSb for both electron and hole concentration
at 1019 (solid lines with filled symbols) and 1020 cm−3 (dotted lines with open symbols) as function
of temperature
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Figure 4.7: Calculated thermoelectric properties of CaLiBi for both electron and hole concentration
at 1019 (solid lines with filled symbols) and 1020 cm−3 (dotted lines with open symbols) as function
of temperature
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which restrict the performance of CaLiBi at high temperature.

Almost a similar type of variation is observed in the case of electrical conductivity scaled by

relaxation time in all the compounds. All the investigated compounds have almost similar value

of σ/τ at all the studied temperatures. Higher value of electrical conductivity is noticed in the

case of electron concentration compared to holes, which is very similar to that of the thermopower

of the investigated compounds. Further we find a considerable anisotropic nature in the case of

electrons along the b-axis compared to the a and c-axes. This might be due to the lower value

of the effective mass along the Γ − Y direction compared to other two directions in the case of

conduction band. The strong dispersion along the Γ− Y direction for all three compounds induced

by the Li-Pn covalent bonding result in a low reduced mass and therefore increased conductivity

along that direction. In the case of holes almost isotropic behavior in σ/τ is observed along different

crystallographic directions. For further analysis, we have plotted the power-factor as a function of

temperature. It is obvious that the power-factor for electron doping will be higher as compared

to hole doping, because of the higher value of S and σ/τ in the case of electrons and it is further

noticed that b-axis power-factor will be higher due to the higher value of σ/τ along this direction.

In the case of hole doping, the power-factor values are found to be almost isotropic along different

crystallographic direction. Overall we can say that the electron doping is more favourable for TE

properties for all the investigated compounds.

In order to analyse how better is the TE properties of the investigated compounds we have

compared them with SrLiAs. For this we have calculated S, σ/τ , and S2σ/τ as a function of both

electron and hole carrier concentration at 1000 K and the same is presented in Fig. 4.8.

As mentioned earlier electron doping is more favourable compared to holes in CaLiAs and a

similar situation is also seen in the case of SrLiAs. From the Fig. 4.8, it is quite evident that the

thermopower of CaLiAs is found to be little higher compared to SrLiAs. Almost similar value of

σ/τ is observed in both the compounds. Further little higher value of the thermopower in the case

of CaLiAs resulted in a higher value of the power-factor compared to SrLiAs. To conclude we find

almost similar thermoelectric properties in both CaLiAs and SrLiAs, but more favourable case is

observed with CaLiAs.

4.4 Lattice dynamics

Further we have studied the phonon dispersion of CaLiPn at ambient using DFPT [45]. The unit

cell of CaLiPn contains 12 atoms and hence it has 36 phonon modes for each wave-vector, out of
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Figure 4.8: Calculated thermoelectric properties of CaLiAs as function of carrier concentration at
1000 K

which three are acoustic and remaining modes are optical modes. The calculated phonon dispersion

relation along with the phonon density of states of all three compounds are shown in Fig. 4.9. From

the figure, it is clearly evident that the lower frequency modes originate mainly due to the vibrations

of Pn atom, middle frequencies are due to Ca and finally the upper frequencies are from Li atom.

In the case of CaLiAs, low-frequency optical branches intersect the acoustic branches starting below

80 cm−1, below 60 cm−1 for CaLiSb and below 44 cm−1 for CaLiBi. From this observation it can

be inferred that the phonon-phonon scattering is strong in all three compounds and comparatively

more in CaLiSb and CaLiBi than CaLiAs. Because of these anharmonic lattice interactions, there

is a coupling between different phonons which will limit the value of mean free path and thereby

limiting thermal conductivity at temperatures relevant to thermoelectrics (mean free path of the

particle l = 1/T , where T is the temperature) [48, 39]. The feature of strong phonon-phonon

scattering is also seen in other zintl phase materials [46, 47].

Further we tried to estimate the order of the thermal conductivity of the investigated compounds.

For this purpose we have used analytical relation leading to the minimum thermal conductivity given

by Clark [50, 51] and Cahill [52] model. According to these model the minimum thermal conductivity

was given by,

Clarke’s model: κmin = 0.87kbM
(−2/3)
a E1/2ρ1/6

Cahill’s model: κmin = kB
2.48n

2
3 (vl + 2vt)
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(a)

(b)

(c)

Figure 4.9: Calculated phonon dispersion of (a) CaLiAs (b) CaLiSb and (c) CaLiBi
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Here, Ma =
[

M
(m.NA)

]
is the average mass per atom, E is the Youngs modulus, ρ is the density, M

is the molar mass, m is the total number of atoms per formula, kB is Boltzmanns constant, NA is

Avogadros number, n is the density of number of atoms per volume, and vl and vt are the average

longitudinal and transverse sound velocities, respectively. These two methods are appropriate in

predicting the minimum thermal conductivity for various materials [53, 54, 17]. In the present case

we have also tried to predict the minimum thermal conductivity for all the investigated compounds

and the same is presented in Table 4.4.

Table 4.4: Calculated minimum thermal conductivity of the investigated compounds of CaLiPn
using the Clarke and Cahill models

κmin in W/m K
Clarke Model Cahill Model

CaLiAs 0.85 0.92
CaLiSb 0.65 0.71
CaLiBi 0.46 0.50

To cross check with the calculated values, we also repeated the calculation of κmin for SrLiAs

using both the methods. It has been shown that κmin is 0.65 and 0.70 W/m K for both Clarke

and Cahill model, which is almost similar to the one presented in Ref.[17]. From the Table 4.4, it

is quite evident that the κmin of the investigated compounds are found to be below unity. This

confirms that investigated zintl phase Ca-based pnictides might show a promising TE performance.

Except CaLiAs, other compounds are found to posses lesser κmin compared to SrLiAs [17]. The

calculated value of κmin for the investigated compounds are also found to be in the same order of

other Ca-based zintl phase compound Ca5Al2Sb6 [6]. This further confirms that the investigated

Ca-based pnictide compounds are good TE candidates in comparison with SrLiAs. We look forward

for the experimentalist to confirm the TE nature of Ca-based pnictides.
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Chapter 5

Conclusion

Zintl phase materials of CaLiPn (Pn = As, Sb and Bi) are investigated for the structural, mechan-

ical, dynamical and transport properties using first-principles calculations. Two distinct density

functional methods are used to investigate above properties. The plane wave pseudopotential ap-

proach was used to study the structural and dynamical properties. The full potential linear augment

plane wave method has been used to study the electronic structure, mechanical and thermoelectric

properties. The calculated structural properties of lattice parameters are in good agreement with

available experimental data. The calculated electronic structure shows the investigated compounds

to be direct band gap semiconductors. Further analysis of the electronic structure indicate the

investigated compounds to possess mixed heavy and light bands, which is an indication to have

good thermoelectric properties. We have also calculated the thermoelectric properties of all the

investigated compounds for both carrier concentrations at various temperatures. We found a high

thermopower for both the carriers, especially n-type doping is more favourable, which enabled us to

predict that CaLiPn might have promising applications as a good thermoelectric material. Among

the investigated compounds, we find that CaLiBi has bipolar conductivity at high temperatures

which might be due to the lower band gap of this material compared to the rest of the compounds.

Further the phonon dispersion curves of the investigated compounds reveals a flat phonon band,

which will absorb more heat thereby resulting in low thermal conductivity. We have also observed

the crossing of lower optical and acoustic branches which also further indicate that the investigated

compounds may have an reasonable low thermal conductivities. The low value of the thermal con-

ductivity is also confirmed through the empirical relation of Clarke and Cahill models, which has

shown κmin to be below unity. With these findings, we predict that the investigated compounds are
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good thermoelectric materials which need to be examined further by the experimental study.
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