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Abstract 

 

The experimental investigation was led for a better understanding about the reduction of 

exhaust emissions in CRDI diesel engine such as NOx, HC and CO employing the multiple 

injection strategies. Two multiple injection strategies were used: pilot injection and split 

injection. It was revealed that maximum value of combustion pressure in two pilot injections 

was increased to almost the same level of single injection combustion although its 

maximum heat release rate (HRR) was decreased compared to single injection combustion. 

It was also observed that two pilot injections improves combustion efficiency, based on the 

results of increased IMEP (0.8% and 2.4% under medium and high load respectively). 

Moreover, in early pilot injection combustion, more CO formation and less HC emission 

were observed during combustion process. Reduction of NOx up to 22.23% and 6.7% was 

recorded under medium and high load.  

 

Remarkable reductions of 41.5% and 63.8% were observed in NOx levels with split 

injection technique but the combustion pressure and HRR values also degraded due to the 

retarding of SOI timing to limit the combustion noise occurring because of discontinuous 

combustion. 

 

Availability analysis of the various processes involved in engine operation under different 

injection strategies are also reported. 
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Nomenclature 

AFR  Air-Fuel ratio 

ATDC  After top dead centre 

𝐴𝑡𝑚                Thermo-mechanical availability 

b.m.e.p Brake mean effective pressure 

bsfc Brake specific fuel consumption 

BTDC Before top dead centre 

CA Crank angle 

CI Compression Ignition 

CR  Compression ratio 

CRDI Common rail direct injection 

CO                Carbon monoxide 

CO2              Carbon dioxide 

COV              Coefficient of variation 

DI Direct injection 

∆𝐴                    Change of availability of the system 

ECU  Electronic control unit 

HC                Unburned hydrocarbons 

IC  Internal combustion engine 

IMEP             Indicated mean effective pressure 

HRR  Net heat release rate  

NOx              Oxides of nitrogen 

PM                     Particulate matter 

SOI Start of injection 

TDC Top dead centre 

  



7 
 

Contents 
1 Introduction: .................................................................................................................. 10 

1.1 Background ........................................................................................................... 10 

1.2 Motivation ............................................................................................................. 12 

1.3 Objectives of research ........................................................................................... 14 

2 Literature Review .......................................................................................................... 15 

2.1 Fuel Blending ........................................................................................................ 15 

2.1.1 Alcohols in CI Engines ................................................................................. 15 

2.1.2 Biodiesels in CI Engines ............................................................................... 18 

2.2 Multiple Injection .................................................................................................. 19 

2.3 Availability Analysis ............................................................................................. 22 

3 Experimentation ............................................................................................................ 24 

3.1 Experimental Setup ............................................................................................... 24 

3.2 Experimental Procedure ........................................................................................ 27 

3.2.1 Test methodology .......................................................................................... 27 

3.2.2 Test procedure ............................................................................................... 27 

3.3 Injection Strategies ................................................................................................ 27 

3.3.1 Pilot Injection ................................................................................................ 27 

3.3.2 Split Injection ................................................................................................ 28 

4 Results and Discussions ................................................................................................ 29 

4.1 Single Injection ..................................................................................................... 29 

4.2 Multiple Injections ................................................................................................ 33 

4.2.1 Effects on Combustion Performance ............................................................. 33 

4.2.2 Effects on Exhaust Emissions and IMEP ...................................................... 38 

4.2.3 Availability Analysis ..................................................................................... 41 

5 Conclusions ................................................................................................................... 46 

6 Future scope .................................................................................................................. 47 

7 References ..................................................................................................................... 48 

 

  



8 
 

List of Figures 
 

Figure 1: Emissions as a function of Equivalence ratio for a CI engine[9]. ......................... 11 

Figure 2: Year-wise global population and energy consumption.......................................... 13 

Figure 3: soot density and NOx emissions[4]. ...................................................................... 16 

Figure 4: smoke opacity and NOx emissions[5]. .................................................................. 17 

Figure 5: Fuel properties[12]. ............................................................................................... 18 

Figure 6: Effects of pilot injection strategies[10]. ................................................................. 20 

Figure 7: Effect of pilot injection strategies on combustion parameters[11]. ....................... 21 

Figure 8: Effect of pilot injection strategies on Pressure-rise rate[11] .................................. 21 

Figure 9: Optical access research engine .............................................................................. 24 

Figure 10: CRDI system. (a) Schematics of fuel flow in CRDI; (b) CRDI kit ..................... 26 

Figure 11: Injection timings and fuel distribution for different injection strategies ............. 28 

Figure 12: Pressure vs. crank angle curves for different SOI at various loads. .................... 30 

Figure 13:  IMEP vs. LOAD curve for different SOI timings. ............................................. 31 

Figure 14: COV vs. LOAD variation with different SOI timings. ........................................ 31 

Figure 15: CO emissions with different SOI timings. ........................................................... 32 

Figure 16: NOx emissions with different SOI timings. ........................................................ 32 

Figure 17: HC emissions with different SOI timings. ........................................................... 33 

Figure 18: Pressure data for 4kg load with different Multi-injection strategies.................... 34 

Figure 19: HRR data for 4 kg load with different Multi-injection techniques. ..................... 35 

Figure 20: Pressure rise rate for 4kg load with different injection strategies. ....................... 35 

Figure 21: Pressure data for 8kg load with different Multi-injection strategies.................... 36 

Figure 22: HRR data for 4 kg load with different Multi-injection techniques. ..................... 36 

Figure 23: Pressure rise rate for 8kg load with different injection strategies. ....................... 37 

Figure 24: NOx emissions with different injection strategies. .............................................. 38 

Figure 25: HC emissions with different injection strategies. ................................................ 39 

Figure 26: CO emissions with different injection strategies. ................................................ 39 

Figure 27: IMEP variation with different injection strategies at 4kg load. ........................... 40 

Figure 28: IMEP variation with different injection strategies at 8kg load. ........................... 40 

Figure 29: Percentage variation in IMEP. ............................................................................. 41 

Figure 30: Availabilty input and distribution under 4kg load ............................................... 43 

Figure 31: Availability distribution for varying fuel input in %age under 4 kg load ............ 43 

Figure 32: Availability input and distribution under 8 kg load ............................................. 44 

Figure 33: Availability distribution for varying fuel input in %age under 8 kg load ............ 44 

Figure 34: Exergetic Efficiency with different injection strategies ...................................... 45 

  



9 
 

 

List of Tables 
 

Table 1: Specifications of research engine ............................................................................ 25 

Table 2: Properties of a fuel .................................................................................................. 25 

Table 3 : Tested SOI timings ................................................................................................ 29 

Table 4: B.M.E.P values for corresponding load values. ...................................................... 29 

Table 5: Ignition Delay (in CA) for different injection strategies under different loading. .. 37 

 

  



10 
 

1 Introduction: 

1.1 Background 
The internal combustion engines were first developed in 1876 when Nicoulas A. Otto 

introduced the first spark-ignition engine and, in 1892 Rudolf Diesel invented the first 

compression-ignition engine. The internal combustion engines have continued to evolve in 

development since that time as there has been a continuous increment in our knowledge of 

engine and combustion processes, as new technologies became available, as the variety of 

fuels got introduced, as the emissions legislation gets more stringent day by day. The 

internal combustion engines have a wide area of application, they have been extensively 

used in transportation (land, sea and air) facilities and power generation units. As the 

population of the world is increasing at a very fast rate, there has been a tremendous 

increment in the use of IC engines over past several decades for transportation as well as 

power generation sectors, enormous increase in the number of vehicles have started 

dominating over the demand of fuel. 

 

Diesel engine usually operates on the overall lean equivalence ratio over the entire operating 

range. So it offers greater thermal efficiency, but produces the greater amount of exhaust 

emissions like particulate matter and smoke. The major emissions, which generates from a 

diesel engine are NOx and particulates. Particulates are the solid carbon soot particles that 

are generated in the fuel-rich zones within the cylinder during combustion in spite of the 

lean operating conditions due to very low volatility of the diesel fuel. However, UHC and 

CO emissions are quite less owing to the lean operating conditions. Alternate bio-fuels such 

as alcohols and bio-diesels have drawn attention of many researchers owing to their ability 

to significantly reduce particulate matter emissions, without seriously penalizing the NOx, 

unburned HC and CO emissions. Former researchers have experimented many alcohols, 

biodiesels, their esters, ethers to investigate the impact of these oxygenates on the 

performance and emissions of diesel engine[1]–[8]. A common conclusion is that with the 

increment in the oxygen concentration of the fuel PM decreases, especially at high loads. At 

this condition maximum amount of fuel is injected into the combustion chamber to supply 

maximum power but due to low volatility of the diesel fuel results in local rich regions. 

Carbon spheres are generated where the mixture is locally rich and there is not enough 

oxygen to convert all the carbon to CO2. Fuel with oxygenated additives can effectively 
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introduce more oxygen into those locally rich mixtures and convert the left out carbon atoms 

into CO2. 

HC emissions are generally due to the unburned fuel components from the combustion. But, 

due to overall lean burning conditions HC emissions are very low in diesel engine. Some 

HC particles condenses onto the surface of the solid soot particles generated during 

combustion, Most of it gets burned as the combustion proceeds, only a small amount comes 

unburned into the exhaust. This contributes to the HC emissions of CI engine. CO emissions 

are generated when the engine operates with a fuel-air rich equivalence ratio, when there is 

scarcity of oxygen to convert all carbons to CO2. But due to lean burning characteristics of 

diesel engine CO emissions are very low in CI engine operation.  

At low temperatures nitrogen exists as a stable diatomic molecule. However, at high 

temperatures some diatomic nitrogen breaks down to monoatomic nitrogen atoms ‘N’. Other 

gases which are stable at lower temperatures such as oxygen and water vapour becomes 

reactive at higher temperatures and contribute to the formation of NOx. Considerable 

amount of N is generated at the very high temperatures of about 2500 K which is possible 

inside an IC engine. The higher the combustion temperature, more and more diatomic 

nitrogen will break down to monoatomic nitrogen atom and more NOx will be generated. 

Although, maximum flame temperatures occur at a stoichiometric air-fuel ratio. When the 

equivalence ratio is close to stoichiometric conditions and slightly lean flame temperatures 

are very high and there is an excess of oxygen to react with the monoatomic nitrogen atoms 

to form NOx. 

 

Figure 1: Emissions as a function of Equivalence ratio for a CI engine[9]. 
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Figure 1 shows the qualitative picture of HC, CO and NOx emissions with respect to the 

equivalence ratio for a four stroke DI diesel engine. HC will decrease slightly with the 

increase in the equivalence ratio due to higher cylinder temperatures, making it suitable to 

burn up any locally lean or rich region. However, at high loads HC may rise again if the fuel 

in regions is too rich to burn. Due to excess air CO emissions will always be very low. NOx 

will increase gradually with the increase in the equivalence ratio due to increasing fraction 

of cylinder contents being burnt gases close to stoichiometric during combustion, and also 

due to higher peak temperatures and pressures. 

Because of a conjunction of factors, such as environmental pollution, increment in demand 

and depleting of petroleum products, increasing oil prices, development of alternate fuels for 

petroleum products has become a subject of great concern for many governments and 

vehicle manufacturers around the world. Owing to the fact that petroleum fuels are not 

renewable and a constant and very fast increase in the automobile density across the world, 

a day would come in the near future when the pressing requirements for these fuels would 

exceed the supply, triggering a notable world crisis. One more reason for the development 

of alternative fuels is the fact that a large fraction of the petroleum is imported from the 

other countries and the majority of oil fields are associated with problems- both political and 

economic. 

Multiple injection technique has been widely investigated by the researchers as a measure of 

reducing the NOx and the combustion noise as well[10]–[12]. The ignition delay in a CI 

engine is defined as the interval between the start of injection and the start of combustion. In 

a multiple injection strategy, a small amount of fuel is injected prior to the main injection in 

the form of one or two pilot injection during the compression stroke which gives 

comparatively an improved fuel-air mixture than the conventional single main injection 

technique, when this small amount of fuel injected combusts results in slight increase in 

combustion chamber temperature prior to the main injection which further leads to reduction 

of ignition delay and decreased pressure rise rate due to smooth pressure rise rate. 

Therefore, decreases the NOx formation and combustion noise. 

1.2 Motivation 
The statistics show that both the population and demand for energy are growing with the 

increase in worldwide population the global demand for energy has also at even more faster 

rates every year. The trend is shown in Fig. 2. The major fuel source of the IC engines are 

the fossil fuels which have started to deplete slowly. With the increment in the demand and 
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depletion of fossil fuels, Alternative fuels have become part of the major research in the 

field of IC engines. 

 

Figure 2: Year-wise global population and energy consumption. 

The increasing urbanization and mechanization of the world has led to a sudden rise in the 

environmental degradation and demand of fuels derived from petroleum products. 

Petroleum products are extracted from crude oil and there are limited reserves in the world 

from which the crude oil is obtained. These reserves are mostly concentrated in certain areas 

in the world. Therefore, the countries which are not having these resources are facing energy 

foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary 

to look for alternative bio-fuels which can be produced from resources available locally 

within the country such as alcohol, vegetable oils, biodiesel etc. Owing to different chemical 

and physical properties these biofuels and their blends with diesel fuel are capable in 

reducing exhaust emissions while maintaining a satisfactory engine performance[1]–[8]. 

The direct advantage of using bio-fuels are reduction in the petroleum fuel quantity used and 

reduction in exhaust emissions. 
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Gasoline and diesel engine are the two most commonly used IC engines. Diesel engine 

having advantages of higher compression ratio and overall lean equivalence ratio running 

conditions offers greater thermal efficiency than the gasoline engine, but induces higher 

exhaust emissions such as NOx and particulate matters. There has been a noticeable drop in 

the fuel economy compared to the earlier models because the modern diesel engines need to 

be designed in order to meet even more stringent future emission legislations. These 

restrictions have provoked the researchers and corporations to explore advanced 

technologies to control diesel emissions. One such technology is multiple injection 

technique. Multiple injection technique has been widely investigated by the researchers as a 

measure of reducing the NOx and PM emissions simultaneously[10]–[13], as well as 

combustion noise[10]. The aim of this research is to evaluate the technique of multiple 

injection with diesel-oxygenated fuel blend to check whether the combination potentially 

reduces the exhaust emissions while maintaining a decent engine performance. 

1.3 Objectives of research 
This study focuses on analysing the performance, combustion and the exhaust emissions of 

the compression ignition engine equipped with the common rail diesel injection system 

employing the ‘multiple injection’ strategies. In this study two different multiple injection 

strategies (split injection and pilot injection) are employed. The effect on combustion, 

performance and emissions of the engine has been carried out by varying the injection 

timings, injection rates and injection concentrations under the employed strategies. Second 

law (Availability) analysis is applied to each process and sub-process to determine the 

combustion exergetic efficiency and the availability transfer. 

This study will help in providing a comparison between engine performance, combustion 

and exhaust characteristics of a single main injection and the multiple injection strategies. 

Availability analysis will provide an idea about the exergetic quantification of the multiple 

injection strategies.  
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2 Literature Review 

2.1 Fuel Blending 

Auto mobiles are the major contributors to the increasing air pollution across the world. As 

the emissions legislation is getting more and more stringent day-by-day diesel engines need 

to further reduce the emissions to meet the legislation, this fact has led the researchers and 

companies to search for the advanced technologies. Lot of efforts have been gone into for 

mitigating the emissions of diesel and gasoline fuelled engine. However, more efforts are 

needed for the improvement of the ever-increasing air-pollution due to automobile 

population. The world is facing a dual challenge of fossil fuels depletion and environmental 

deterioration. Alternate fuels which can provide a balanced correlation between energy 

conservation and environmental preservation has become highly essential due to oil crisis 

and stringent emission legislation throughout the world. Several alternative energy resources 

have been investigated by the researchers in order to get the solution for the obstacle of ever 

increasing energy thirst of the world’s population. Studies demonstrate that the blends of 

bio-fuels (alcohols[1]–[5] and biodiesels and their esters[6]–[8]) and diesel reduce the 

engine exhaust emissions like CO, UHC, oxides of nitrogen, particulates and soot 

maintaining the performance comparable to that of fuelled with diesel fuel. Engines fuelled 

with alternate fuels have always been in use since the discovery of the IC engines in small 

numbers. Because of the high cost of the petroleum products, some developing countries are 

trying to use alternate fuels for the vehicles. 

2.1.1 Alcohols in CI Engines 

Alcohols are an appealing alternate fuel because they can be prepared from both renewable 

and non-renewable sources. Apart from the manufacturability alcohols have some other 

advantages which include[9] lesser exhaust emissions compared to diesel fuel, higher flame 

speeds, high latent heat of vaporization reduces the in-cylinder combustion temperature 

which results in lower NOx emissions, oxygen content which results in reduction of soot 

particles. Despite having many advantages it has some disadvantages which restrict the 

direct use of alcohols in IC engines such as lower Cetane number, low energy content, 

produces more aldehydes, poor cold weather starting characteristics. But to exploit the 

advantages of alcohol it can be utilized in IC engines as fuel blends Regulations to lower the 

NOx emissions are getting stringent year by year. Studies show that, Alcohols when used as 
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a blend with diesel fuel up to a great deal reduces the particulate emissions without inducing 

a serious penalty on NOx [2]–[5]. 

Rakopoulos et al.[4] investigated the impacts of using the blends of n-butanol and 

conventional diesel fuel on a single cylinder Ricardo/Cussons ‘Hydra’, naturally aspirated 

diesel engine with a constant speed of 2000 rpm at 19.8:1 compression ratio. It was 

demonstrated from the results that exhaust smoke (soot) density emitted by the diesel-

butanol blends was significantly lower than the one emitted by the conventional diesel. The 

reduction in soot density is higher with the increasing percentage of butanol in the blend 

fuel because of the enrichment of oxygen content even in the locally fuel rich zones in the 

combustion process. NOx levels for the blends were also slightly lower than the base fuel, 

which can be explained with the slightly lower exhaust gas temperatures recorded with the 

fuel blends in the experiments compared to nest diesel, the reductions being higher with the 

higher percentages of butanol in the blend. There was a slight increase in brake thermal 

efficiency with the blends. Figure 3 demonstrates the soot density and the nitrogen oxides 

(NOx) exhaust emissions for the neat diesel and the various concentrations of butanol blend. 

 

Figure 3: soot density and NOx emissions[4]. 

Another study from Rakopoulos et al.[5] investigated the comparison of effects of ethanol 

and n-butanol blends with diesel fuel on the combustion behaviour of a turbocharged, six 

cylinder ‘Mercedes Benz’ engine at engine speeds of 1200 and 1500 rpm at compression 

ratio of 18:1. The key results demonstrated a significant reduction in particulates (smoke 

opacity) which is due to the oxygen enrichment of the locally fuel rich regions which leads 
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to the oxidation of carbon atoms. A very slight decrease in NOx emissions is because of the 

slightly lower combustion temperatures being dominant over the recorded increase in the 

ignition delay with the increasing concentration of biofuels in the blends. Figure 4 shows the 

NOx and soot emissions. 

 

Figure 4: smoke opacity and NOx emissions[5]. 

Some properties of n-butanol makes it a suitable alternative fuel for CI engines as compared 

to methanol and ethanol. The Cetane number and Calorific values of n-butanol is higher as 

compared to the other widely used alcohols such as methanol and ethanol. Water affinity 

characteristic of n-butanol is low which allows it to easily mix with petroleum fuels. As it 

can be observed from the Fig. 5 that almost all the properties of n-butanol are closer to the 

diesel fuel as compared to methanol and ethanol. Generally speaking, (1) methanol and 

ethanol have very low cetane numbers of only 3 and 8, and the latent heat values are much 

higher than the diesel fuel. These attributes prolong the ignition delay, and result in much 

higher pressure rise rate, and worse engine cold start performance,(2) the auto-ignition 
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temperatures of methanol and ethanol are also much higher than the diesel fuel thus it is 

necessary to add combustion improver to help ignition. (3) solubility of methanol and 

ethanol to diesel are not very good. 

 

Figure 5: Fuel properties[12]. 

2.1.2 Biodiesels in CI Engines 

Many researchers have reported that with the use of edible oil ester as a fuel in diesel 

engines, harmful exhaust emissions can be reduced while maintaining a satisfactory engine 

performance[6]–[8]. Most of the esterified oils tried in diesel engines were soybean, 

sunflower, safflower, and rapeseed. Vegetable oils having high cetane number and calorific 

values near to diesel fuel can be directly used in CI engines without any major 

modifications. However, due to high viscosity and very low volatility vegetable oils result in 

lower brake thermal efficiency than diesel fuel, because of poor atomization of fuel and 

mixing with air. Several other methods have been tried by the researchers to utilize 

vegetable oils efficiently in diesel engines. Some of them are transesterification, blending 

with diesel fuel and dual fuelling with gaseous and liquid fuels.  

M. Senthil Kumar et al.[6]experimentally compared the different methods to use methanol 

and Jatropha oil on a single cylinder, direct injection, CI engine at a constant speed of 1500 

rpm and compression ratio 15:1. Three different methods of using methanol with Jatropha 

oil were employed which are blending, transesterification and dual fuel operation. From the 

experiments, reduction in smoke with all three methods and minimum with dual-fuel 

operation was recorded, NO level compared to Diesel fuel was lower with Jatropha oil. With 
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the increased amount of methanol in dual-fuel operation Brake thermal efficiency increased 

in comparison to the standard diesel operation but showed poor performance at lower 

outputs.  

H. Raheman and A.G. Phadatre[7] demonstrated the results of investigations carried out in 

studying the fuel properties of karanja mthyl ester and its blend with diesel fuel. The karanja 

methyl ester and its blends with diesel were used to test a single cylinder, DI, water-cooled 

diesel engine having a rated output of 7.5 KW at 3000 rpm and compression ratio of 16:1. 

The investigation performed reported the decrease in exhaust emissions together with 

increase in engine performance parameters like torque, brake power, brake thermal 

efficiency and reduction in brake-specific fuel consumption. 

2.2 Multiple Injection 
Nitrogen oxides are the major emissions generated in the exhausts of diesel engine along 

with particulates (soot). A substantial reduction in the NOx emissions in the diesel engine 

exhaust, with low levels of PM, HC and CO is a major issue in the field of IC engine, due to 

the stringent emission legislations, which is further getting stricter year by year. Further 

reduction of NOx from the diesel engine exhaust has prompted many researchers to explore 

advanced technologies. Multiple injection technique has be researched by many researchers 

as a means of reducing the NOx and PM emissions together[10]–[12]. 

 

Hotta et al.[10] investigated the effects of multiple injection strategies on a single cylinder 

diesel engine with low to high loading conditions with different speeds and injection 

pressures. Figure 6 shows the effect of pilot injection timing on engine performance and 

emissions. IMEP starts dropping after 40 BTDC and increases after 40 BTDC that can be 

directly explained by the plot of equivalence ratio after 40 BTDC the equivalence ratio is 

almost unity. The stoichiometric conditions will generate higher combustion temperatures 

and pressures leading to higher IMEP. HC emissions are more when equivalence ratio is 

close to one. ‘Early’ pilot injection will result in proper mixing of fuel and air, and a mild 

pressure rise rate whereas ‘close’ pilot injection will result in the accumulation of pilot 

injection with the main injection and when together it will combust will give a higher 

pressure rise rate that explains the ‘noise’ trend. 
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Figure 6: Effects of pilot injection strategies[10]. 

 

At medium loads, splitting up the single pilot injection into double injection results in lower 

noise, HC and CO emissions, but slightly higher NOx emissions for the same quantity of 

fuel as shown in Fig. 6 because splitting up the pilot injection will reduce the fuel adhered to 

the combustion chamber walls. 

Hyun Kyu Suh[11] conducted an experimental analysis for understanding the combustion 

stability and reduction of exhaust emissions in a single cylinder low compression ratio 

engine. Analysis demonstrated that single injection had the highest values of heat release 

rate and combustion pressure among different injection strategies. 



21 
 

 

Figure 7: Effect of pilot injection strategies on combustion parameters[11]. 

 

Figure 8: Effect of pilot injection strategies on Pressure-rise rate[11] 

Pilot injections will result in locally fuel rich regions which will result in increase of CO 

emissions. HRR rate decreased to 27.8% and maximum pressure also reduced to 3.2% 

compared to single injection. Pressure rise rate of two pilot injection is the fastest because 

some fuel is injected before main injection, however it shows lowest peak pressure values. 

Multiple injection improves the complete combustion of main injection, thus, less unburned 

HC emission remained during combustion process. Remarkable reduction of NOx emission 

was observed in multiple injection combustion, 58.9% in two pilot injection. 25 % lesser 
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soot formation in both injections due to lower combustion temperatures resulting from 

decreased ROHR of multiple injections. 

 

Experimental study was conducted by Yao et al.[12] to investigate the influence of the 

diesel fuel n-butanol content on the performance and emissions of a heavy duty direct 

injection, six cylinders diesel engine with multi-injection capability at constant engine speed 

of 1849 rpm and compression ratio 16:1. Technique of multiple injection was employed for 

the experimentations which consisted of pilot-main, main-post and pilot-main-post injection 

strategies. Exhaust gas recirculation was employed to keep the NOx emissions at 2.0 

g/KWh. The results demonstrated similar impact of pilot and post injection of blends as 

diesel fuel. Early pilot injection reduces soot emissions but increases CO, because the early 

pilot injection will result in proper mixing of air and pilot fuel which will provide 

comparatively rich mixture than no pilot condition. Post injection reduces soot due to 

increase in the temperature just after the main combustion which results in oxidation of the 

left out carbon soot particles to CO and CO2. Addition of n- butanol significantly reduced 

CO and soot emissions without penalizing the bsfc and NOx emission and the triple 

injection strategy with highest n-butanol fraction resulted in lowest soot emission due to 

oxygen content of the butanol blends. 

 

2.3 Availability Analysis 
Diesel engines have the maximum thermal efficiency among IC engines. However, recent 

emission standards have considerably reduced the fuel economy compared to the past 

models. The first law of thermodynamics gives the quantitative measure of the process, 

whereas the second law deals with the quality of the process in the system. In simpler 

words, the efficiency based on the first law shows the completeness of the combustion, but 

the extent of the conversion of the chemical energy of fuel into mechanical work is 

indicated by the second law. 

 The availability of a system at a given state is defined as the amount of useful work that 

could be obtained from the combination of the system and its surrounding atmosphere, as 

the system goes through reversible processes to reach thermal, mechanical and chemical 

equilibrium with the atmosphere. It is a property of the system and its surrounding 

atmosphere. The entire fuel energy cannot be converted to the useful mechanical work 

because the availability of the fuel gets destroyed due to irreversible processes during 
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combustion. Exergetic efficiency by taking the irreversible losses into account represents the 

effectiveness of the fuel conversion to work. 

Sahoo et al.[14] performed the Availability analysis on the experimental data recorded from 

a four cylinder direct injection engine of Bajaj make Tempo, model D-301 at a CR of 

19.4:1. The main objective was to observe the effect of throttle opening position on engine 

speeds at a single engine load operation for several testing combinations. Saleel Ismail and 

Pramod S. Mehta[15] discussed the method of estimating the availability destructions and 

exergetic efficiencies of combustion for different classes of fuels using the MATLAB 

simulation of the combustion in constant volume and constant pressure processes. 
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3 Experimentation 

3.1 Experimental Setup 

Figure 9 shows the two cylinder optical access research engine having an operational range 

of 400 RPM to 1300 RPM. Compression ratio ranges from 6.7 to 18. A hydrodynamic 

dynamometer is coupled to the engine through which load is applied on the engine shaft. 

One out of two cylinder can work at a particular time, one is thermodynamic cylinder and 

other cylinder is optically accessed. The requirements of this study does not include the 

optical diagnosis of the combustion process, so the optical accessed cylinder is cut off 

throughout the experimentation. The combustion chamber geometry is toroidal bowl in a 

piston top, which ensures compact combustion chamber and faster burning. 4 inlet valves (2 

per cylinder) and 4 exhaust valves are driven by overhead camshafts equipped with the 

engine.  

 

Figure 9: Optical access research engine 
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The specifications and valve timings of the engine are given in the table 1. 

No of running cylinders 1 out of 2 

Stroke (mm) 100 

Bore (mm) 94 

Connecting rod length (mm) 235 

Compression ratio 18:1 

Speed range (rpm) 1050±30 

Inlet open (degree) 5 ATDC 

Inlet close (degree) 21 ABDC 

Exhaust open (degree) 25 BBDC 

Exhaust close (degree) 9 BTDC 

Injection system CRDI 

Injection pressure (bar) 500 

Injection timing (degree) -90 before start of intake stroke 

Table 1: Specifications of research engine 

An air box instrument measures the air flow rate, wherein, through an orifice plate air passes 

from a large volume box, the pressure drop is measured across the orifice is measured. For 

the accurate measurement of the air flow this pressure drop signal is fed to the ECU. The 

air-fuel ratio, NOx, THC, CO2 and CO emissions were measured using AVL. 

An automatic volumetric fuel flow meter measures the fuel flow rate injected into the 

combustion chamber. It contains two sensors, one at the top and another at the bottom of a 

100 ml measuring burette. The fuel is filled in this burette and the time is recorded for 

emptying the burette, and then fed to the ECU. The ECU calculates the mass flow rate of 

fuel based on density of fuel which is fed to it manually. The fuel properties are provided in 

table 2. 

Fuel property Value 

Name Diesel fuel 

Cetane rating ̴ 50 

Density (kg/m^3) 830 

Calorific value (kJ/kg) 43000 

Table 2: Properties of a fuel 
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The measurement of the in-cylinder pressure is done using a piezoelectric pressure 

transducer, which is fitted to the cylinder head. It collects the gas pressure through a passage 

drilled in the cylinder head, up to the centre of the cylinder, open to the combustion 

chamber. An eddy current type dynamometer is coupled directly to the crankshaft of the 

engine for application and measurement of load. The load range varies from 0kg to 10 kg.  

The engine is equipped with common rail diesel injection system. It consists of CRDI driver 

module and CRDI kit, which controls injection pressure, injection timing and duration. Fuel 

injection pressure ranges from 200 to 1000 bar. The schematic diagram of CRDI system is 

shown in Fig. 10. 

  

(a)                                                            (b) 

Figure 10: CRDI system. (a) Schematics of fuel flow in CRDI; (b) CRDI kit 

The data acquisition software is developed by legion brothers. The system allows 

real-time, on screen display of the measured and recorded parameters such as in-

cylinder pressure, exhaust gas temperature, cooling water temperatures to the engine 

and the calorimeter. It also displays calculated parameters such as specific fuel 

consumption, air-fuel ratio, volumetric and brake thermal efficiency. Pressure data is 

recorded for 100 consecutive cycles and averaged, on every test point. The parameters 

like IMEP, peak pressure etc. are calculated for each cycle and then averaged.   
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3.2 Experimental Procedure 

3.2.1 Test methodology 

It is advisable to read the operating and safety manual of research engine, provided by the 

engine supplier before embarking any work on an engine first time. It is necessary to attend 

certain daily check points for better and uninterrupted operation, before cranking the engine. 

For steady state operation, it is required to warm up the engine approximately for 10 

minutes. 

3.2.2 Test procedure  

This study focuses on evaluating the performance, combustion and emissions parameters of 

the diesel engine employing different multiple injection strategies at different loads and 

constant speed. All the engine tests are conducted at the speed of 1050±30 rpm and the fuel 

injection pressure of 500 bar at a compression ratio of 18:1. Firstly, the experiments have 

been done to characterise the engine based on performance and emissions with multiple 

loads at 500 bar injection pressure, then the optimum start of injection is decided based on 

the experimental results.  

3.3 Injection Strategies 

Multiple injection strategies have been researched extensively as a measure of simultaneous 

reduction in PM and NOx emissions, along with combustion noise. To achieve cleaner 

exhaust emissions, two different types of multiple injection strategies including pilot 

injection and split injection have been incorporated in a diesel engine operation and the 

results based on combustion, performance and emissions were compared with that acquired 

from single injection operation. The injection strategies employed for the experiments and 

the fuel distribution is shown in Fig. 11. 

 

3.3.1 Pilot Injection 

The prime objective of pilot injection is to minimize the NOx emissions along with 

combustion noise from the CI engine. When a small quantity of fuel is injected prior to the 

main injection, it burns and increases the temperature and pressure inside the combustion 

chamber which results in reduction of the ignition delay of main injection. The main 

injection combustion takes place at a lower peak temperature compared to single injection 

which lowers the NOx formations. Single and double pilot injections are used in the 
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experiments. Pilot quantity is kept fixed in the experiments which is 20% of the total fuel 

input per cycle. 

 

Figure 11: Injection timings and fuel distribution for different injection strategies 

 

3.3.2 Split Injection 

Injection retardation reduces the NOx emissions in CI engine. A split injection strategy with 

retarded SOI is introduced to investigate the impact on the emissions while maintaining the 

satisfactory engine performance. An interval of 10º CA was introduced between the first and 

second injections to prevent the interaction between them. First injection timing is 5 BTDC 

and the second injection is timed at 5 ATDC.  
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4 Results and Discussions 

4.1 Single Injection 

In a diesel engine, retarding the injection timing has been a mutual means of controlling 

NOx emissions, by reducing the combustion temperature and pressure. However, overly 

retarded injection timing causes growing engine instability; sometimes, the engine can 

misfire. Therefore, an appropriate injection timing that concurrently satisfies exhaust 

emission and engine performance limitations should be picked for the engine. In this study, 

to assess the impact of multiple injection strategies on the CRDI Diesel engine, the 

experimental results of multiple injection strategies were compared with those acquired by 

single injection with the best suited injection timing that simultaneously fulfils exhaust 

emission and engine performance requirements. 

 

For determining the optimum start of injection timing for a single injection, various points 

have been chosen for the SOI under different loads ranging from 2kg to 8kg by the 

dynamometer. Table 3 is representing the crank angles at which the SOI has been checked. 

The load and the corresponding b.m.e.p values are shown in the Table 4. 

SOI Tested (in CA) 

4 BTDC 

7 BTDC 

9 BTDC 

12 BTDC 

15 BTDC 

18 BTDC 

Table 3 : Tested SOI timings 

Load (in 

dynamometer) 

Torque (Nm) B.M.E.P (in bars) 

2 kg 4.8 0.87 

4 kg 9.51 1.72 

6 kg 14.65 2.65 

8 kg 18.15 3.28 

Table 4: B.M.E.P values for corresponding load values. 
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Figure 12: Pressure vs. crank angle curves for different SOI at various loads. 

The pressure vs. crank angle data is shown in Fig. 12. As shown from the figure for 15 

BTDC and 18 BTDC the combustion starts early and the peak pressure values lie nearer to 

TDC. Which shows that the premixed combustion phase for these 2 SOI lies in compression 

stage which will increase the negative work on the engine which is not suitable for the 

economy and due to rapid burning pressure rise rate will be high which will increase the 

temperature inside the combustion chamber resulting in higher NOx formation. So it is 

concluded that 15 BTDC and 18 BTDC are not the optimum SOI for the research engine 

from emissions as well as economic point of view. Figures 13 and 14 represents the IMEP, 

COV and the emissions data for the 4, 7, 9 and 12 BTDC. In figures the IMEP and COV 

plots are shown for the medium (4 kg) and high (8 kg) load. The trend for both IMEP and 

COV increases with the advancement in the SOI, but after 9 BTDC it does not vary much. 

Figure 16 shows NOx emissions reduce with the retardation of the SOI [13], same trend can 

be seen here as well NOx emissions with 4 BTDC injection timing are the lowest and starts 

increasing with the advance of SOI timings due to start of combustion shifting towards TDC 

which results in more temperature inside the combustion chamber. Figure 17 shows HC 
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emissions are lowest with 9 BTDC SOI. Considering both emissions and IMEP trends 9 

BTDC comes out to be the most optimum SOI for the engine having lesser NOx and other 

emissions plus lesser variations in COV and higher IMEP values than the other later SOI 

timings. 

 

Figure 13:  IMEP vs. LOAD curve for different SOI timings. 

 

 

Figure 14: COV vs. LOAD variation with different SOI timings. 

6.08

7.68

6.36

8.04

6.57

8.12

6.59

8.14

0

1

2

3

4

5

6

7

8

9

4kg 8kg

IM
EP

 (
IN

 B
A

R
)

IMEP vs. LOAD

4BTDC 7BTDC 9BTDC 12BTDC

1.25
1.36

0.956 0.9880.94

0.727

0.933

0.663

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4kg 8kg

(%
)

COV (IMEP)

4BTDC 7BTDC 9BTDC 12BTDC



32 
 

 

   

Figure 15: CO emissions with different SOI timings. 

 

Figure 16: NOx emissions with different SOI timings.  
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Figure 17: HC emissions with different SOI timings. 

4.2 Multiple Injections 

4.2.1 Effects on Combustion Performance 

The combustion pressure and heat release rate (HRR) under different injection strategies 

under 4 kg load are shown in Fig. 18 and 19. The multiple injection strategies for fuel 

injection selected are single injection, one pilot with early and medium timing pilot 

injection, double pilot injection and split injection. Since most of the fuel gets injected 

during the ignition delay period in single injection, rapid premixed combustion takes place 

and the injected fuel is combusted immediately as soon as the mixture reaches the auto-

ignition temperature resulting in harmful emissions and combustion noise. The peak 

pressure for the double pilot injection was slightly reduced as compared to the other 
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combusts, it increases the temperature and pressure inside the combustion chamber prior to 

main injection which shortens the ignition delay. For early pilot injection i.e. pilot at 50 
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injection fuel quantity fuel comes it gets mixed with the premixed pilot-air mixture and 

combusts at a very faster rate resulting in high premixed combustion phase which leads to 

higher temperature inside the cylinder. The combustion pressure and the HRR values are 

lowest with the split injection technique because of the retardation in the SOI timing and the 

discontinuous combustion. The SOI timing in split injection technique were retarded to limit 

the combustion noise from the engine.  

 

Figure 18: Pressure data for 4kg load with different Multi-injection strategies. 

Figure 19 shows the HRR data. With pilot at 30 BTDC and double pilot injection, as it was 

expected the maximum HRR decreased because of increase in the temperature and pressure 

prior to main injection. In double pilot injection, air fuel mixture becomes rich due to fuel 

injections two times as compared to one pilot injection which results in less rapid 

combustion, that’s why the maximum HRR decreased more with double pilot than the single 

pilot at 30 BTDC. Maximum HRR was observed during early pilot injection even more than 

the single injection case due to accumulation of the pilot fuel and combined burning with 

the main injection which leads to rapid combustion phase. Split injection due to 

discontinuous combustion and the retarded SOI timing due to which the combustion occurs 

later during the expansion stage which results in lesser combustion pressure and maximum 

HRR. 
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Figure 19: HRR data for 4 kg load with different Multi-injection techniques. 

Figure 20 shows the pressure rise rate during the combustion under different multiple 

injection strategies. The pressure rise rate is fastest with the double pilot injection and the 

peak value is also lower than other pilot injections and single injection due to enhanced 

combustion because burning of two pilots with some interval results in smoother pressure 

rise rate. As discussed already early pilot injection has the highest rate of pressure rise. 

 

Figure 20: Pressure rise rate for 4kg load with different injection strategies. 
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Figure 21: Pressure data for 8kg load with different Multi-injection strategies. 

 

Figure 22: HRR data for 4 kg load with different Multi-injection techniques. 
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Figure 23: Pressure rise rate for 8kg load with different injection strategies. 

Figures 21, 22 and 23 represents the combustion pressure, HRR and pressure rise rate curves 

for different injection strategies. It is evident from all three curves that due to high 

temperature with high loading condition there is further reduction in the ignition delay for 

all the strategies. In Fig. 22 and 23 the combustion of pilot injection becomes prominent at 

high load with 30 BTDC one pilot injection and double pilot injection. The bump in the 

HRR and pressure rise rate curves prior to main injection represents the pilot injection 

combustion due to which there is an increment in pressure and temperature which 

significantly shortens the ignition delay period which results in smoother pressure rise and 

lower peaks of pressure rise rate. Due to higher temperatures at high load there is a slight 

reduction in delay period of early pilot injection resulting in slightly lesser HRR and 

pressure rise rate than single injection. 

 4kg load 8kg load 

Single injection 9 7 

One pilot @ 30 BTDC 7 6 

One pilot @ 50 BTDC 9 7 

Two pilot injection 7 6 

Split injection 9 8 

Table 5: Ignition Delay (in CA) for different injection strategies under different loading. 
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Table 5 shows the ignition delay values with the multiple injection strategies under different 

loadings. The injection delay is significantly reduced in one pilot at 30 BTDC and the 

double pilot injection strategies for the same reason as for the reduction in HRR and 

pressure rise rate. The delay period of early pilot injection is almost same as of single 

injection because of the accumulation of fuel inside the combustion chamber and split 

injection strategy also shows more delay like single injection due to retarded injection 

timing which results in lesser combustion pressure. 

4.2.2 Effects on Exhaust Emissions and IMEP 

NOx emissions are shown in Fig. 24. The trend observed under both the loading conditions 

are almost same. As expected the split injection strategy shows the minimum levels out of 

all other multiple injection strategies due to the drastic decrease in the combustion pressure 

because of the retardation in SOI timing to limit combustion noise under both loading 

conditions. With the same main injection timing of 9 BTDC, double pilot injection shows 

the best improvement in NOx emissions and one pilot at 30 BTDC remains close to it. Due 

to the smoother pressure rise rate in both the strategies premixed combustion phase is quite 

limited which also decreases the HRR values producing lesser combustion temperature than 

single and early pilot injections. Pilot fuel in early pilot injection does not combusts prior to 

the main injection to reduce the ignition delay but prepares a better air fuel mixture than the 

single injection resulting in slightly reduced premixed combustion and ultimately reduced 

NOx levels. 

 

Figure 24: NOx emissions with different injection strategies. 
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HC emissions originate in the regions where excessively diluted air prevents the combustion 

process form either starting or going to completion. The early pilot injection shows the 

highest levels of HC emissions under both loading conditions which can be observed from 

Fig. 25. The reason behind more HC emissions with early injection is the sticking of the 

pilot fuel to cylinder walls and the flame quenching due to which that stuck quantity 

remains partially burned and comes out in the engine’s exhaust. 

 

Figure 25: HC emissions with different injection strategies. 

 

Figure 26: CO emissions with different injection strategies. 

11.3
9.67

16

13

9

7 7.6

11.3

6.6
5.6

0

5

10

15

20

P
P

M

HC EMISSIONS
4 kg load 8 kg load

single main 
inj. @ 9btdc

one pilot inj. 
@ 30 btdc

one pilot inj.
@ 50 btdc

two pilot inj. 
@50 & 30 btdc

split inj. 
@5btdc & 
5atdc

0.046
0.05 0.05 0.05

0.046
0.05

0.06

0.08

0.06

0.045

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(%
)

CO% EMISSIONS
4 kg load 8 kg load

single main 
inj. @ 9btdc

one pilot inj. 
@ 30 btdc

one pilot inj.
@ 50 btdc

two pilot inj. 
@50 & 30 btdc

split inj. 
@5btdc & 
5atdc



40 
 

The CO emissions are shown in Fig. 26. More CO formations were observed in multiple 

injection case compared to single injection because the lower combustion temperature 

during the multi-stage combustion event induces the low CO oxidation rate. 

 

Figure 27: IMEP variation with different injection strategies at 4kg load. 

 

Figure 28: IMEP variation with different injection strategies at 8kg load. 

The IMEP values are described in Fig. 27 and 28. The higher IMEP values indicate the 
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improved combustion efficiency originated from low heat radiation of the flame which 

might reduce cooling loss through the combustion chamber wall. The IMEP values 

increased 0.8% and 2.4% with 4kg and 8kg load respectively. Split injection technique has 

been most disadvantageous in this parameter. 

 

Figure 29: Percentage variation in IMEP. 

4.2.3 Availability Analysis 

Availability is not a conserved property; availability is destroyed by irreversibility in any 

process the system undergoes. The change in availability of any system undergoing any 

process where work, heat, and mass transfer across the system boundary occur can be 

written as, 

∆𝐴 = 𝐴𝑖𝑛 − 𝐴𝑜𝑢𝑡 − 𝐴𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑  

When availability destruction occurs, the potential for the system to do useful mechanical 
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• 𝐴𝑙𝑜𝑠𝑠 𝑖𝑛 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑔𝑎𝑠𝑒𝑠 = 𝑄𝑒𝑥 + [(𝑚𝑒𝑥/3600) ∗ 𝑇0 ∗ {(𝑐𝑝𝑒𝑥 ∗

                                            𝑙𝑛 (
𝑇0

𝑇𝑒𝑥𝑜
⁄ ))−(𝑅𝑒𝑥 ∗ ln⁡(

𝑃0
𝑃𝑒𝑥𝑜
⁄ )}]; 

• 𝐴𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 = 𝐴𝑖𝑛 − (𝐴𝑠ℎ𝑎𝑓𝑡 +

                          𝐴𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑜 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟+𝐴𝑙𝑜𝑠𝑠 𝑖𝑛 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑔𝑎𝑠𝑒𝑠); 

• 𝐴𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = {1 −
𝐴𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑

𝐴𝑖𝑛
⁄ } ∗ 100. 

 

The availability calculated in various processes with the equations gives us an account of 

how much available energy is lost in those processes and how much we were able to extract 

from the engine operation. This data provides to us the capability try to minimise the exergy 

destructions in combustion process. The availability input and variation with different 

injection strategies under different loading conditions is shown in Fig. 31 and 33. 

 In the present research engine we don’t have the facility to control the fuel injection 

quantity per cycle, so the fuel injected per cycle is different for different injection strategies. 

Now, to have a bench mark and to compare the availability associated with processes in 

different injection strategies the availability input and distribution is converted into the 

percentage form for better understanding. Figure 32 and 34 represents the availability input 

and distribution for varying fuel input in percentage under different loading conditions. 

The exergetic efficiency gives us the second law quantification of the quality of the 

combustion process under different injection strategies. Figure 35 shows the exergetic 

efficiency calculated with the above equations for different injection strategies. 
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Figure 30: Availability input and distribution under 4kg load 

 

Figure 31: Availability distribution for varying fuel input in %age under 4 kg load 
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Figure 32: Availability input and distribution under 8 kg load 

 

Figure 33: Availability distribution for varying fuel input in %age under 8 kg load  
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Figure 34: Exergetic Efficiency with different injection strategies  
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5 Conclusions 
 

In this study, the impact of multiple injection strategies on the capability of exhaust 

emissions reduction were investigated in a CRDI diesel engine while maintaining a 

satisfactory engine performance. The conclusions of this work are as follows: 

 
 

1. Pressure rise rate with two pilot injections is the fastest because of the 

combustion of two injections with interval prior to the main injection which 

results in enhanced combustion of main injection and lesser premixed 

combustion phase. 

 

2. Split injection shows the minimum values for the combustion pressure, 

HRR. The reason behind is the retardation in the SOI timing to limit the 

noise produced due to discontinuous combustion. 

 

3. The IMEP with double pilot injection increased 0.8% and 2.4% with 

medium and high loads. The splitting of early pilot into two pilot injections 

results in lesser fuel sticking to the cylinder walls and more fuel burning 

prior to main injection which improves the combustion efficiency. 

 

4. More CO and HC emissions with early pilot injection because most of the 

fuel gets accumulated in the combustion chamber and some part gets stick 

to the cylinder walls which increases CO and HC emissions. 

 

5. Minimum NOx levels were obtained by split injection strategies but the 

engine performance also went down. Split injection resulted in more 

combustion noise which was limited by retarding the SOI timings. 

 

6. Among the pilot injections, double pilot is the most promising strategy for 

NOx reduction. Under medium and high loads 22.23% and 6.7% reductions 

in NOx levels was recorded. 
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6 Future scope 
 

 

Combination of other emissions reduction techniques with multiple injection strategies: 

1. Exhaust gas Recirculation. 

2. Employing alternate fuels such as biodiesels, alcohols etc. and their blends 

with diesel fuels. 
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