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Abstract

This thesis deals with signal detection which is very essential in wireless communications, RADAR

and Cognitive radio. In particular, detection of digitally modulated signals is considered in this

thesis. Due to presense of carrier in digital modulated signal, certain symmetries can be identified

in the received signal. Assuming the knowledge of signal bandwidth, we propose a novel detector for

digital modulated signals using identified symmetry properties. A very good amount of literature

survey is given for existing detectors and followed by design and analysis of our proposed detector

named Symbol PEriod based Energy Detector(SPEED). Extensive simulation results are given for

BPSK and 16-QAM signals to corrobarate analysis of SPEED and are compared with Conventional

energy detector, Improved energy detector and Cyclostationary detector. These results show that

SPEED performs much better than other detectors.

We also analyze computational complexity of SPEED and compare with existing detectors. This

analysis clearly depicts the reduction in computational complexity of SPEED. Computations are

reduced by half when compare with Conventinal energy detector. Simulation results also show that

performance degradation in SPEED is negligible due to the frequency mismatch at the receiver.
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Chapter 1

Introduction

1.1 Introduction

Signal detection is considered as one of the most fundamental problem and as such has been well

studied in RADAR, spectrum sensing for cognitive radio and in wireless communication systems. In

general, signal detection performance is characterized by Receiver Operating Characteristics (RoC),

which is a plot between probability of false alarm (PF ) and probability of detection (PD). PF is

completely dictated by the noise considered in the signal detection problem. PD depends on SNR

of the received signal. In practical applications, we require a detector which achieves high PD with

low computational complexity as such the Conventional Energy Detector (CED) is a popular choice.

Optimal detectors which maximize the PD may not be practically feasable to implement as they often

suffers from high computational complexity. Design and analysis of optimal detectors is often very

cumbersome due to complexity of mathematics involved and results in loss of intuition. Hence, It is

of our interest to design suboptimal detectors by using the knowledge available about the signal for

its detection. Suboptimal detectors can give good performance as comapared with optimal detectors

and involes very less computation when compare with optimal detectors.

When prior information about primary user signal is not available, the obvious choice of the

detector is energy detector. Hence, it is very certain that in most of the cases energy detector is

not optimal. When some information about primary signal (probability distribution) is available,

we can design optimal detectors assuming noise signal is additive white gaussian noise (AWGN).

When we have additional information such as waveform shape and period, we can further design

better detector such as matched filter detector. Hence as the information about primary user signal
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increases, probability of detection also increases.

1.2 Related work

CED compares the received signal energy against a threshold to detect the presence or absence of a

signal and is the simplest[1]. The Matched Filter Detector (MFD) correlates the received signal with

a copy of the transmitted signal and compares with a threshold. As such, it is also computationally

simple but requires knowledge of the signal, which may not be practical at the detection stage

as the receiver has not yet synchronized with the transmitter. Cyclostationary feature detectors

extracts inherent symmetry in communication signals in terms of cyclic frequency which depends

on the carrier frequency [2]. Cyclostationary detectors however have practical limitations due to

cyclic frequency mismatch and computational complexity. Comprehensive surveys on spectrum

sensing can be found in [1],[3]. Signal detection is being studied as problem of spectrum sensing

in cognitive radio. Excellent treatment of conventional energy detector was considered in [4]. In

[5], Chen proposed improved energy detector(IED) by replacing square operation in CED with

power p for which probability of detection is maximized. Computationally efficient algorithms

to analyse cyclostationary signls was given in [6]. Magnitude squared coherence(MSC) function

of cyclostationary signals and detection is considered in [7]. Performance comparison of various

spectrum sensing techniques is considered in [2].

1.3 Organization and Main contributions of the Thesis

A few signal detection techniques which are very popular because of their low complexity and nonco-

herent in nature are given in the following chapter with detailed description. They are conventional

energy detector(CED), Improved energy detector(IED) and cyclostationary detector. Main contrib-

tion of this thesis is design and analysis of new detector for digital modulation signal detection and

comaparing with other detectors. Proposed detector is also useful for Code Division Multiple Access

(CDMA) and tone modulated signals as well. The following is summarizes the contrinutions of this

thesis.

In this thesis, we propose Symbol PEriod based Energy Detector (SPEED) which is suitable

for most digital modulated signals. SPEED exploits the symmetry in the received signal due to

the symbol duration by appropriately choosing the intermediate frequency and the sampling rate.

The test statistic for SPEED is obtained by suitably modifying the CED test statistic. We then
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derive analytical expressions of PF and PD and verify the performance of the proposed detector with

simulations for the case of BPSK and 16-QAM signals. We also give computational complexity of

SPEED and compare with other detectors with favourable results.

This thesis is organized as follows. In chapter 2, we give good survey of existing detectors and

their theoretical analysis. In chapter 3, we present the discrete signal model of a digital modulated

signal for signal detection in a practical scenario. We then develops the symmetry properties inherent

in a digital modulated signal and then present the SPEED that exploits the symmetry properties. We

derive analytical expressions for PF and PD for the proposed SPEED. We compare the computational

complexity of all the detectors. In chapter 4, we give present simulation results for BPSK and 16-

QAM signals, followed by summary and discussions in chapter 5.
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Chapter 2

Existing Detectors

2.1 Introduction

The signal detection can be considered as a binary hypothesis testing problem with multiple obser-

vations [8], such that

H0 :yi[n] = w[n]

H1 :yi[n] = xi[n] + w[n] (2.1)

where 0 ≤ n ≤ Nb − 1,0 ≤ i ≤ N − 1, yi[n] represents nth sample in ith received symbol, N is the

number of symbol durations and w[n] is Additive White Gaussian Noise (AWGN) with zero mean

and variance σ2.

We assume that the ensemble average energy of the message signal is unity, i.e.

E{|xi[n]|2} = E{|mi|2} = 1 (2.2)

where mi = mir + jmiq.

In general, performance of the detector is characterized by Receiver Operating Characteris-

tics(ROC). ROC is the plot between Probability of false alarm(PF ) and probability of detection(PD).

PF and PD can derived from probability density function(pdf) of teststatics for the binary hypoth-

esis testing problem. PF is derived from the pdf of teststatic using the case of null hypothesis. PD
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is derived from the pdf of teststatic when we have alternative hypothesis. Mathematically,

PFZ = Pr(T (y/H0) > λ), (2.3)

=

∞∫
λ

fT (y/H0)(y)dy (2.4)

= 1− CDF{T (y/H0)} (2.5)

and

PD = Pr(T (y/H1) > λ), (2.6)

=

∞∫
λ

fT (y/H1)(y)dy (2.7)

= 1− CDF{T (y/H1)} (2.8)

where T (Y/H0) is the teststatic for null hypothesis(H0) and T (Y/H1) is the teststatic for alternative

hypothesis(H1). λ is the threshold which is critical to take decision. If calculated teststatic is greater

than threshold, we consider it as presence of signal. If teststatic is less than threshold, it will be

considered as noise.

In this chapter, we present the literature survey of practcle detectors used in wireless communica-

tions and cognitive radio. In the next section, detailed description of conventional energy detector is

given followed by improved energy detector. Finally, we give cyclostationary of signal and detection.

Further, we conclude the chapter by summarising the key points regarding existing detectors.

2.2 Conventional Energy Detector

The teststatic for the conventional energy detector (CED) is given by,

T (y) =
1

NNb

NNb∑
n=1

(
|y[n]|
σ

)2
H0
≶
H1

λ (2.9)

CED teststatic involves simply squaring and additional operations. Hence, it has very low com-

putational complexity. CED is also a noncoherent detector which is often used when we have no

knowledge about singal of our interest for detection. Due to this, Most of the times CED is the

natural choice for signal detection of any kind of signal. Hence, In this thesis, we treat CED as
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benchmark for all other detectors.

(2.9) is a sum of squares of guassian random variable which is written as chi-square disibution.

In the case of H0, each gaussian random variable in (2.9) has zero mean and unity variance. Hence,

In H0 case 2.9 follows central chi-square distribution with degrees of freedom (k) is given as NNb.

Degrees of freedom is the number of terms in the summation given in (2.9). In the case of H1,

each guassian random variable in (2.9) has unit variance and mean is governed by the signal under

consideration. Hence, T (Y/H1) follows noncentral chi-square distribution with degrees of freedom

is given as NNb and non-central parameter is defined as follows:

γ =

NNb∑
i=1

µ2
i (2.10)

where µi is the mean of the ith guassian random variable in (2.9).

The pdf of a central chi-square distribution is given by [9]

f(x; k) =
1

2
k
2 Γ(k2 )

x
k
2−1e

−x
2 , (2.11)

and the pdf of noncentral chi-square distribution is given by [9]

f(x; k, λ) =
1

2
e
−(x+λ)

2

(x
λ

) k
4−

1
2

I k
2−1

(√
λx
)
, (2.12)

From the pdf expressions, we can derive PF and PD expressions for CED. The expression for PF

is given as,

PF = 1− FT (Y/H0)

(
k

2
,
λ

2

)
(2.13)

From (2.13), threshold is given by

λ = 2F−1T (Y/H0)

(
k

2
, 1− PF

)
(2.14)
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Probability of detection(PD) is given by

PD = Qk/2

(√
γ,
√
λ
)

(2.15)

Hence, ROC equation is given as,

PD = Qk/2

(
√
γ,

√
2F−1T (Y/H0)

(
k

2
, 1− PF

))
, (2.16)

where FT (Y/H0)(a, x) is given by incomplete gamma function which is CDF of central chi-square

distribution [9] and it is defined as follows:

FT (Y/H0)(a, x) =
1

Γ(a)

x∫
0

e−tta−1dt (2.17)

QM (a, b) is Marcum-Q-function which is given by [9]

QM (a, b) =

∞∫
b

x
(x
a

)M−1
exp

(
−x

2 + a2

2

)
IM−1(ax)dx (2.18)

with modified bessel function IM−1 of order M − 1.

2.3 Improved Energy Detector

Improved Energy detector(IED) is slight modification of CED. The exponent 2 operation in CED is

replaced by p where p can be varied to maximize the PD. The teststatic for IED is given as follows:

T ′(y) =
1

NNb

NNb∑
n=1

(
|y[n]|
σ

)p
H0
≶
H1

λ′ (2.19)

Here, probability distributions of (2.19) varies with p. Probability distributions of teststatics are

approximately using noncentral chi-square distribution with suitable parameters. Further analysis

of IED is given in [5].
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2.4 Cyclostationary detector

Digitally modulated signals are cyclostationary signal due to presense of carrier, repeated waveforms

and symbols. Cyclostationary features of the signal can be extracted by estimaing spectral density

function or Magnitude squared coherence function for the given samples of the signal.

2.4.1 Spectral correlation density function

Spectral correlation density(SCD) is extension of power spectrum. SCD is evaluated by shifting the

singal by cylclic frequency(α). Since AWGN is a stationary process, it doesn’t exhibit spectrum

at non zero cyclic frequency(α). Digital modulated signals are cyclostationary by nature due to

sinusoidal carrier and repetitive codes. Hence by evaluating spectral correlation density (SCD) of

received signal at appropriately chosen α 6= 0, the signal and AWGN can be separated.

It is given as follows:

H0 : Sαy (f) = Sαw(f)

H1 : Sαy (f) = Sαx (f) + Sαw(f)

(2.20)

where Sαy (f) is the spectral correlation density and is given as follows:

Sαy (f) =

∞∫
−∞

Rαy (τ) exp−i2πfτ dt (2.21)

Rαy (τ) is cyclic autocorrelation and is given by

Rαy (τ) = lim
T−>∞

∞∫
−∞

x(t+ τ/2)x∗(t− τ/2) exp−i2παt dt (2.22)

Cyclic spectral analysis alogorithm fall into two categories. one is time smoothing algrithms and

other is frequency smoothing algorithms. Time smoothing algorithms are considered as computa-

tionally efficient than frequency smmothing algorithms. There are popular algorithms to estimate

SCD of a signal. They are FFT accumulation method (FAM) and strip spectral correlation al-

ogorithm(SSCA). Since FAM is more computationally efficient than SSCA, we conder estimation
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SCD using FAM.

FFT Accumulation method for estimating the SCD

FFT Accumulation Method(FAM) method incorporates the idea of time smoothing using FFT (Fast

Fourier Transform) and which can be implemented digitally using samples of the signal. For given

K samples of the signal, signal is divided into blocks of length N ′ such that succesive blocks have

overlap of 75 %. Then , FFT of each block performed followed by frequency shifting α
2 . The value

of N ′ depends on frequency resolution required and chosen as N ′ = fs
δf . Later, time smoothing is

done using P point FFT and the value of P is chosen as P = fs
Kδα . Generally, the value of K is

chosen as N ′

4 . Here, fs denotes sampling frequency and δf and δα denotes frequency resolution and

cyclic frequency resolution respectively. Block diagram of the FAM is given below.

Figure 2.1: FAM block diagram[2]

2.4.2 Magnitude squared coherence function

The spectral autocoherence of a signal x(t) at cyclic frequency(α) and spectrum frequency(f) is

defined as [2]

Cαx =
Sαx (f)

[S0
x(f − α

2 )S0
x(f − α

2 )]
1
2

(2.23)

(2.23) can also be written as follows:
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Cαx =
Suv(f)√
Su(f)Sv(f)

= γuv(f) (2.24)

where Su(f) and Sv(f) are power spectral densities of u(t) and v(t), and Suv(f) is cross spectral

density. Here, u(t) = x(t)e−iπαt and v(t) = x(t)eiπαt are frequency shifted versions of x(t). The

magnitude squared coherence is defined as |γuv(f)|2. In practice, MSC is estimated as follows:

Let u[n] and v[n] denote N-length complex sequences which are segmented with 75% overlap,

segments ul[n] and vl[n], l=1,2..L, each of lengh M. Let Ul(k) = F (ul[n]) and Vl(k) = F (vl[n]),

where F () denotes FFT opetation. From these, spectral densities are estimated as follows:

MSC Estimation

Ŝu(k) =

L∑
l=1

|Ul(k)|2

Ŝv(k) =

L∑
l=1

|Vl(k)|2
(2.25)

and

Ŝuv(k) =

L∑
l=1

|Ul(k)V ∗l (k)|2 (2.26)

From this, MSC is estimated as follows

|γuv(f)2| = |Ŝuv(f)|2

Ŝu(f)Ŝv(f)
(2.27)

2.5 Chapter Summary

In this chapter, we give detailed literature about CED, IED and CSD. Conventionally, energy detec-

tor is popular choice for unknown signals. When exponent 2 in the CED is replaced with p, we get

improved energy detector. IED gives better performance than CED at low SNR values. Analytically,

IED is very difficult to analyse but using simulations we can show slight gain in the performance over

CED. Cylcostationary features in the digital modulated signals can be used to detect signal. Magni-

tude squared coherence detector is better than Spectral correlation density detector [2]. Magnitude

10



squared coherence(MSC) detector performace depends on segment size, overlap among segments

and correlation between samples. Hence, Eventhough MSC detector is noncoherent, we need to take

care of different parameters which can affect the performace of detector drastically.
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Chapter 3

The SPEED

3.1 Introduction

In this chapter, practical signal detection model has been considered. Practicle signals are trans-

mitted at higher frequencies which are downconverted to some intermediate frequency. This signal

is sampled and applied to the detector which is designed based on symmetry present in the signals.

Due to presence of carrier in the digital modulation signals, we can observe certain kind of symmetry

in their waveform. Using the symmetries in the time domain of the signal, we design Symbol PEriod

based Energy Detector(SPEED). SPEED is also an energy detector but its parameters are different

from conventional energy detector. In SPEED, we align the samples and multiply with the complex

exponential to coherently add the signal samples. This coherent addition will boost the SNR of the

signal which results in better detection probability than other detectors. Since SPEED uses only

additions and multiplications, its comupational complecity is comparable to that of CED. In some

cases, computational complexity of SPEED is the least when it is compared with other detectors.

This is acheived by properly choosing down conversion frequency and sampling frequency which is

often choice of designer.
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3.2 Practical Signal Detction Model

In general, a digital modulated signal is given by [10],

xi(t) = Re{(mir + jmiq)g(t)ej2πfct}

= mirg(t)cos(2πfct)−miqg(t)sin(2πfct),

(3.1)

where 0 ≤ t ≤ Tb, Tb denotes the symbol duration and i = 0, 1, · · · is the symbol index. We

assume g(t) is a rectangular waveform with bandwidth W = 1/Tb. At the receiver, the signal is

down converted to an intermediate frequency f0 and then passed through a low pass filter. The

corresponding in-phase component is given by

xir(t) = mir cos(2πf0t+ θ)−miq sin(2πf0t+ θ), (3.2)

where θ is the phase shift. The quadrature component is similarly given by

xiq(t) = mir sin(2πf0t+ θ) +miq cos(2πf0t+ θ). (3.3)

Note that as we intend to derive the symmetry in the received signal, the noise component is

neglected initially. The signals xir(t) and xiq(t) are then sampled at t = nTs where Ts = Tb
Nb

, where

Nb is an integer (the period of the discrete time signal). Assuming Tsf0 = 1
Ns

where KNs = Nb,K ∈

{1, 2, · · · }, the corresponding discrete time signal is given by

xi[n] = xir[n] + jxiq[n], n = 0, 1, · · · , Nb − 1, i = 0, · · · , N − 1, (3.4)

where

xir[n] = mircos

(
2πn

Ns
+ θ

)
−miqsin

(
2πn

Ns
+ θ

)
,

xiq[n] = mirsin

(
2πn

Ns
+ θ

)
+miqcos

(
2πn

Ns
+ θ

)
,

(3.5)

which can be compactly represented as

xi[n] = (mir + jmiq)e
j( 2πn

Ns
+θ), (3.6)
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where mir and miq are the in-phase and quadrature components of the message symbol respectively

and Nb is the number of samples per symbol duration and is assumed to be an integer.

Remark 1 Note that in the signal model presented in this paper there are two important assump-

tions,

1. first the intermediate frequency is assumed to be an integer multiple of the signal bandwidth

and

2. second the sampling frequency is an integer multiple of the signal bandwidth.

These assumptions are essential for extracting the carrier symmetry as will be apparent in later

sections. However these assumptions are not restrictive as both the intermediate frequency and

sampling frequency are receiver design parameters that are not fixed by any standard and the designer

has the flexibility to choose them appropriately.

Remark 2 Note that this model can be used to represent various other signals which are enumerated

below:

1. using mir + jmiq = 1,∀i, the signal model of (3.6) can be used to represent the received signal

when a tone is transmitted.

2. assuming mir + jmiq to be the product of the message symbol and chipping sequence, (3.6) can

be used to represent a CDMA signal with Tb representing the chip duration.

3.3 Symmetry properties in digital modulation signals

We define

Definition 1 (Half wave Symmetry) A given signal x[n], with period Nb, is said to exhibit half

wave symmetry if

x[n] = ∓x
[
n+

Nb
2

]
, 0 ≤ n ≤ Nb

2
− 1. (3.7)

Definition 2 (Rotational Symmetry) A given signal x[n], with period Nb, is said to exhibit

rotational symmetry if

x[n] = x[n− k]e
j2πk
Ns , 0 ≤ k ≤ n ≤ Nb − 1. (3.8)
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We now show that any digital modulated signal exhibits rotational symmetry.

Propositon 1 A digital modulated signal exhibits rotational symmetry.

Proof

Consider the discrete signal xi[n− k]e
j2πk
Ns where xi[n] is as defined in (3.6). Substituting from (3.6)

and simplifying, we have

xi[n− k]e
j2πk
Ns = mie

j( 2π(n−k)
Ns

+θ)e
j2πk
Ns

= mie
j( 2πn

Ns
+θ)

= x[n]

(3.9)

completing the proof.

When Nb is even the digital modulated signal exhibits additional symmetry. We have

Propositon 2 A digital modulated signal exhibits half wave symmetry when the symbol duration,

Nb, is a even integer.

Proof

Using the signal model given in (3.6), we have

xi

[
n+

Nb
2

]
= mi exp

{
j

(
2π
(
n+ Nb

2

)
Ns

+ θ

)}

= mie
j2πn
Ns ejπK

= (−1)Kmie
j2πn
Ns

= ∓x[n].

(3.10)

3.4 SPEED testatics

We now present the statistic of an energy detector that takes utilizes the symmetry, presented in

section 3.3, in a digital modulated signal.

Nb Odd

Using Proposition 1, when Nb is odd, xi[n] signal exhibits rotational symmetry. Hence, we can align

the samples within a symbol duration as
Nb−1∑
n=0

xi[n]e
−j2πn
Ns . Applying the same logic to the received
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samples yi[n] and then taking the energy of the aligned samples within a symbol to give the test

statistic

T (Y ) =
2

Nbσ2

N∑
i=1

∣∣∣∣∣
Nb−1∑
n=0

yi[n]e
−j2πn
Ns

∣∣∣∣∣
2

. (3.11)

Nb even

When Nb is even, xi[n] exhibits both half wave and rotational symmetry. Following the odd case,

we can write test statistic for even Nb as

T (Y ) =
2

Nbσ2

N∑
i=1

∣∣∣∣∣∣
Nb
2 −1∑
n=0

(
yi[n]∓ yi

[
n+

Nb
2

])
e
−j2πn
Ns

∣∣∣∣∣∣
2

. (3.12)

Remark 3 Propositions 1,2 present symmetry in a digital modulated signal for all K ∈ {1, 2, · · · }

and in-particular for K = 1. When K > 1, a digital modulated signal offers more symmetry due to

multiple cycles of the carrier. The test statistics in (3.11) and (3.12) can be further sharpened to

incorporate the symmetry offered by the multiple carries. The corresponding test statistic, for odd

Nb, is given by

T (Y ) =
2

Nbσ2

N∑
i=1

∣∣∣∣∣
Ns−1∑
n=0

(
K−1∑
l=0

yi[n+ l ∗Ns]

)
e
−j2πn
Ns

∣∣∣∣∣
2

, (3.13)

and for even Nb is given by (3.14).

T (Y ) =
2

Nbσ2

N∑
i=1

∣∣∣∣∣∣
Ns
2 −1∑
n=0

{
K−1∑
l=0

(
yi[n+ lNs]∓ yi

[
n+ lNs +

Ns
2

])}
e
−j2πn
Ns

∣∣∣∣∣∣
2

. (3.14)

In what follows, we assume K = 1 for simplicity.

3.5 SPEED Analysis

We now derive the probability of false alarm and probability of detection for the SPEED whose

test statistics are give by (3.11) and (3.12) corresponding to whether Nb is odd or even. We can

observe from the test statistics that SPEED is also an energy detector. Hence, the probability

distribution functions (pdf) of the test statistic of the SPEED also follows central and noncentral
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chi-square distributions (as in the case of CED [4]) for the hypothesis H0 and H1 respectively;

but with different parameters. In Subsection 3.5.1, we derive the parameters for the probability

distributions of the test statistics given in (3.11) and (3.12)and then present the expressions for PF

and PD in Subsection 3.5.2.

3.5.1 Parameters of the Probability distributions

Nb even

For the hypothesis H1, T (Y ) in (3.12) follows noncentral chi-square distribution [8] with noncen-

trality parameter, λ, given by

λ =
2Nb
σ2

N∑
i=1

|mi|2 (3.15)

and degrees of freedom, k = 2N . Using (2.2), ensemble average value of noncentrality parameter

can be derived as

E [λ] =
2NNb
σ2

. (3.16)

For the hypothesis H0, T (Y ) in (3.12) follows central chi-square distribution with k = 2N .

Nb odd

Derivation of the parameters for Nb odd is similar to the case when Nb is even; for H1, (3.11) follows

noncentral chi-square distribution with noncentrality parameter given by (3.15), average value of

noncentrality parameter given by (3.16) and the degrees of freedom (k) is given by k = 2N . For H0

case, (3.11) follows central chi-square distribution k = 2N .

The degrees of freedom (k) and noncentrality parameter (λ) for the SPEED is summarized and

compared with the CED in Table 3.1.
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Table 3.1: Parameters of SPEED and CED

Parameters SPEED CED

k 2N 2NNb

E [λ] 2NNb
σ2

2NNb
σ2

The pdf of a central chi-square distribution is given by [9]

f(x; k) =
1

2
k
2 Γ(k2 )

x
k
2−1e

−x
2 , (3.17)

and the pdf of noncentral chi-square distribution is given by [9]

f(x; k, λ) =
1

2
e
−(x+λ)

2

(x
λ

) k
4−

1
2

I k
2−1

(√
λx
)
, (3.18)

where Iv(y) is the modified bessel function of first kind.

3.5.2 PF and PD expressions

Following [4], the Probability of false alarm is given as

PF = 1− F (τ ;N) (3.19)

where

F (τ ;N) =
γ
(
N, τ2

)
Γ (N)

. (3.20)

From (3.19), the threshold can be obtained as

τ = 2F−1 (N, 1− PF ) . (3.21)
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The probability of detection is given as

PD = QN

(√
2NNb
σ

,
√
τ
)
. (3.22)

Hence, the RoC is characterized by

PD = QN

(√
2NNb
σ

,
√

2F−1 (N, 1− PF )

)
, (3.23)

where F is the cumulative density function (cdf) of the central chi-square distribution, γ(,.,) is the

lower incomplete Gamma function, Γ is the Gamma function and QN is the Marcum Q-function [9].

3.6 Comparison of computational complexity

The number of computations required to compute a test statistic decides the practical feasibility

of the detector and sensing duration required for a particular detection technique. Hence, it is of

interest for us to find the computations required for CED, IED, SPEED and the MSC detector.

The computation require for the CED is calculated using test statistic given in [5]. It requires

2(NNb − 1) real additions and 4(NNb + 1) + 1 real multiplications. Similarly, computation for IED

is given using test statistic as given in [5]. It requires 2(NNb−1) real additions and 4p(NNb+1)+2

real multiplications, where p is the power operation replacing the exponent 2 in CED.

The computations required for SPEED can be calculated using (3.12) and (3.11). When Nb is

even, SPEED requires 2(N − 1)(Nb − 1) additions and 2Nb(N + 1)− 1 multiplications. When Nb is

odd, it requires 2NNb − 1 additions and 2Nb(2N + 1)− 1 multiplications.

As an example of a cyclostationary detector, we consider the Magnitude Squared Coherence

(MSC) detector [2]. Note that the MSC has better computational complexity among known cyclo-

stationary detectors; which is calculated as given below:

Step 1: For frequency shifting, we need 8NNb − 4 real multiplications and 2NNb − 2 additions.
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Table 3.2: Comparison of computational complexity for K=1

Real Additions Real Multiplications Total Real Operations (Approx.)

CED 2(NNb − 1) 4(NNb + 1)+1 6NNb + 3

IED 2(NNb − 1) 4p(NNb + 1) + 2 NNb(2 + 4p) + 4p

SPEED (Even) 2NNb − 2N − 2Nb + 2 2NNb + 2Nb − 1 4NNb − 2N + 1

SPEED (Odd) 2NNb − 1 4NNb + 2Nb − 1 6NNb + 2Nb − 3

MSC 26NNb − 19M − 3 40NNb − 20M − 4 32NNblog2M + 18NNb − 3M − 24Mlog2M − 7

Step 2 : Total number of segments of length M is 4NNb
M − 3. Assuming split radix FFT, as it

requires the least number of computations [11] of 4M log2M−6M+8 additions and multiplications;

the number of real multiplications and additions required for FFT of all segments for two frequency

shifted signals is 2( 4NNb
M − 3)(4M log2M − 6M + 8)

≈ 32NNb log2M − 48NNb + 36M − 24M log2M.

Step3: To estimate spectral densities, we require 32NNb−24M real multiplications and 24NNb−

21M real additions

Step 4: To estimate spectral correlation, we need 4M real multiplications and 2M − 1 real

additions. Hence the total computations required for MSC is 32NNblog2M + 18M − 21NNb −

24Mlog2M − 1.

Table 3.2 summarizes the number of additions/subtractions, multiplications and divisions. Typ-

ically, p for IED is greater than 2. Observe that the computational complexity of the SPEED when

the discrete period Nb is even is almost half of the CED. When the discrete period is odd then the

complexity is almost same as that of CED. Also note that the computational complexity of SPEED

is significantly smaller than IED and MSC.

Example 1 Given the parameters N = 10,Nb = 10,K = 1, p = 3 and M = 16, Computations

require for CED, IED, SPEED (Even), SPEED (Odd) and MSC are 603, 1412, 381, 617 and 13009

respectively.

Remark 4 Note that when K > 1 then the complexity of SPEED reduces by a factor of K as K−1

multiplications are not required in each symbol period. Further when Ns = 2, 4 then the complexity of

SPEED further reduces by a factor of two or four respectively. This is because the multiplications of

the term e
j2πn
Ns becomes trivial. As such significant reduction in complexity of SPEED can be obtained

by proper design of K,Nb, Ns which in turn depend on choice of the intermediate frequency, fo, and

the sampling frequency, fs.
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Table 3.3: Comparison of computational complexity for K > 1

Real Additions Real Multiplications Total Real Operations (Apprx.)

CED 2(NNb − 1) 4(NNb + 1)+1 6NNb + 3

IED 2(NNb − 1) 4p(NNb + 1) + 2 NNb(2 + 4p) + 4p

SPPED (Even) 2NNb + 2N −NNs +Ns − 4 2NNs + 4N 2NNb + 6N +NNs +Ns − 4

SPEED (Odd) 2NNb + 2N − 2NNs + 2Ns − 4 4N(Ns + 1) 2NNb + 6N + 2NNs + 2Ns − 4

MSC 26NNb − 19M − 3 40NNb − 20M − 4 32NNblog2M + 18NNb − 3M − 24Mlog2M − 7

For K > 1 also computational analysis is carrie out which is given in table 3.3. From the given

table, we can observe the drastic reduction in the computational complexity of SPEED detector.

SPEED(even) < SPEED(odd) < CED < IED < MSC

Example 2 Given the parameters N = 50,Nb = 24, Ns = 6, p = 3 and M = 16, Computations

require for CED, IED, SPEED (Even), SPEED (Odd) and MSC are 7203, 16812, 3002, 3308 and

173609 respectively.
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Chapter 4

Results and Discussion

4.1 Simulation Results for K=1

In this section we present simulation results that corroborate the theoretical analysis for BPSK and

16-QAM modulations for various values of Nb, N . The intermediate frequency is set to f0 = 512 KHz

for all simulations except for frequency mismatch where we assume fc = 1MHz, f0 = 300KHz.

Sampling frequency is taken as fs = Nbf0. We use the results presented in [5], to simulate the

performance of CED and IED. In IED, we use p values ranging from 1 to 10 with an interval of

0.1. For each PF value, we choose a p value that maximizes the value of PD. The MSC detector

simulations follow [2] with length of each segment (M) of the signal equal to 64. SPEED is simulated

by using (3.12) for the case of Nb even and (3.11) for the case of Nb odd. We use (3.23), to give

theoretical plots of SPEED.

4.1.1 ROC Simulations

Figure 4.1 gives the simulation and theoretical results of RoC for SPEED and CED for 16-QAM

modulated signals with N = 10 and Nb = 8 at SNR = -20 dB. From this plot, we can observe

the exact match between theoretical and simulation results of CED and SPEED. Also this plot

highlights the improved performance of SPEED as compared to the CED. We also observed that

the SPEED has a SNR gain of approximately 3 dB as compared to CED (ie the RoC of the CED

for SNR=-17dB matches the SPEED RoC for -20dB).
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Figure 4.1: RoC for 16-QAM, N = 10, Nb = 8 at SNR=-20 dB.

Figure 4.2 gives the RoC plots of CED, IED, MSC detector and SPEED in the case of BPSK

modulated signals withN = 100,Nb = 8 at SNR = -20 and -10 dB. Note that the SPEED significantly

outperforms all other detectors. Since SPEED has different test statistics for even and odd, the RoC

plots of all detectors in the case of BPSK modulated signals with N = 100, Nb = 7 at SNR = -20

and -10 dB in Fig. 4.3 with similar conclusions.

Similarly, the RoC of all the detectors are given for the case of 16-QAM signals with N =

100, Nb=8 at SNR = -20 and -10 dB in Fig. 4.4 and with Nb = 7 in Fig. 4.5 for 16-QAM

modulated signals. From these plots, we can observe that the conclusions obtained from plots of

BPSK modulated signals also hold for 16-QAM signals.

23



10
−2

10
−1

10
0

10
−2

10
−1

10
0

P
F

P
D

BPSK, N=100, Nb=8	

 

 

SPEED, SNR= −20 dB

SPEED, SNR= −10 dB

CED, SNR = −20 dB

CED, SNR = −10 dB

IED, SNR = −20 dB

IED, SNR = −10 dB

SPEED Theoretical, SNR = −20 dB

SPEED Theoretical, SNR = −10 dB

MSC, SNR = −20 dB

MSC, SNR = −10 dB

Figure 4.2: RoC for BPSK, N = 100, Nb=8.

We next show the performance improvement of SPEED as Nb increases. Figure 4.6 gives the

RoC plots of SPEED and CED with N = 100, Nb = 1, 2, 3, 4, 5, 6 at SNR = -20 dB. Observe that

at Nb = 1, SPEED is exactly same as CED. Also note that the SPEED starts to outperforms the

CED from Nb = 2 and the performs improves as Nb increases.

In practical situations, there is always a frequency mismatch at the receiver. Hence, we simulate

the RoC of the SPEED for BPSK modulated signals with frequency mismatch of 1, 100 and 10000

parts per million (ppm) in Fig. 4.7. Observe that the SPEED is as robust as CED for frequency

mismatch.
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Figure 4.3: RoC for BPSK, N = 100, Nb = 7.
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Figure 4.4: RoC for 16-QAM, N = 100, Nb = 8.

25



10
−2

10
−1

10
0

10
−2

10
−1

10
0

P
F

P
D

QAM−16, N=100, Nb=7	

 

 

SPEED, SNR = −20 dB

SPEED, SNR = −10 dB

CED, SNR = −20 dB

CED, SNR = −10 dB

IED, SNR = −20 dB

IED, SNR = −10 dB

SPEED, Theory, SNR = −20 dB

SPEED, Theory, SNR = −10 dB

MSC, SNR = −20 dB

MSC, SNR = −10 dB

Figure 4.5: RoC for 16-QAM, N = 100, Nb = 7.
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4.1.2 SNR Vs. PD Simulations

We next present PD for various SNR values ranging from −20 to 0 dB for a fixed PF = 0.01 for

all detectors. Figure 4.8 gives the plot for BPSK with N = 100 and Nb = 8 and Fig.4.9 gives

the corresponding plot for BPSK with N = 100 and Nb = 7. Observe that IED is slightly better

than CED at low SNR values but SPEED is better than all the detectors (and has a SNR gain of

approximately 3 dB) at all the SNR values. We also give similar results for the case of 16-QAM

in Fig.4.10 with N = 100, Nb = 8 and Fig.4.11, with N = 100, Nb = 7. From these plots, we can

observe that SPEED performs much better than all other detectors at all SNR values for 16-QAM

and BPSK signals. Note also that MSC performance is inferior to CED. This is because MSC

estimation depends on correlation between the signal samples. When received signal is complex as

in (3.5), MSC detector performance is inferior due to absence of spectral coherence as was shown in

[12].
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Figure 4.8: SNR vs. PD for BPSK, N = 100, Nb = 8.
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Figure 4.11: SNR vs. PD for 16-QAM, N = 100, Nb = 7.
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4.2 Simulation results for K > 1

In these simulations, we take the carrier frequency of modulated waveform as fc = 1 MHz, f0 =

500 KHz and K = 4. We use [5], to simulate the performance of CED and IED. In IED, we use p

values ranging from 1 to 10 with an interval of 0.1. For each PF value, we choose a p value that

maximizes the value of PD. MSC detector is simulated using estimates as given in [2], and length

of each segment(M) of the signal is considered as 64. CASE detector is simulated by using (3.12)

for the case of Nk even and (3.11) for the case of Nk odd. We use (3.23), to give theoretical plots of

CASE detector for Nk even and Nk odd cases. SNR values range from −20 to 0 dB are considered

to plot SNR vs. PD. In the first subsection, ROC plots of the detectors are given. SNR Vs. PD

plots are given in the second subsection of simulation results.

4.2.1 ROC Simulations

Fig.4.12 gives the simulation and theoretical results of ROC for CASE detector and CED in the case

of 16-QAM signals with N = 20, Nb = 24 and Nk = 6 on left side of figure and with N = 20,Nb = 20

and Nk = 5 on right side of figure at SNR = -20 dB. From this plot, we can notice the exact match

between theoretical and simulation results of CED and CASE detector. This plot clearly depicts the

better performance of CASE detector than that of CED. We can also observe that as Nb increases,

PD of CASE detector is much better than that of CED. In Fig.4.13, we simulate the ROC plots of

CED, IED, MSC detector and CASE detector in the case of BPSK signals with N = 50,Nb = 24 and

Nk = 6 at SNR = -20 dB. This plot also shows the better performance of CASE detector than all

other detectors. Since CASE detector has different teststatics for even and odd number of samples

per perdiod (Nk), We give ROC plots of all detectors in the case of BPSK signals with N = 50,

Nb = 20 and Nk = 5 at SNR = -20 dB in Fig.4.14. CASE detector also performs much better than

all other detectors when Nk is odd for the case of BPSK signals.

Similarly, ROC of all the detectors are given for the case of 16-QAM signals with N = 50,

Nb = 24 and Nk = 6 at SNR = -20 dB in Fig.4.15. With N = 50, Nb = 20 and Nk = 5 at SNR

= -20 dB, ROC of all the detectors are given in Fig.4.16 for the case 16-QAM signals. From the

given plots, we can notice that the observations given for BPSK signals also hold for 16-QAM signals.
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Figure 4.12: ROC for 16-QAM with N = 20, Nb = 24 and 20.
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Figure 4.14: ROC for BPSK with N = 50, Nb = 20 and Nk = 5.
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Figure 4.15: ROC for 16-QAM with N = 50, Nb = 24 and Nk = 6.
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Figure 4.16: ROC for 16-QAM with N = 50, Nb = 20 and Nk = 5.

We are interested to show the performance improvement of CASE detector as Nb increases.

Hence, we give theoretical ROC plots of CASE detector and CED with N = 20, Nb = 4, 8, 12, 16, 20

and 24 at SNR = -20 dB. We can note that PD of the CASE detector increases at the faster rate

than that of CED. In practical situations, there is always some frequency mismatch at the receiver.

Hence, we simulate the ROC of CASE detectors for 16-QAM signals with frequency mismatch of

1, 10 and 100 PPM in Fig.4.18 and show that CASE detector is as robust as CED for frequency

mismatch.
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Figure 4.17: ROC for 16-QAM with N = 100 and varying Nb at SNR = -20 dB.

38



10
−2

10
−1

10
0

10
−2

10
−1

10
0

16−QAM with N=50, N
b
=24 at SNR = −20 dB

P
F

P
D

 

 

CED, No Error

CED, 1 PPM Error

CED, 10 PPM Error

CED, 100 PPM Error

CASE Detector, No Error

CASE Detector, 1 PPM Error

CASE Detector, 10 PPM Error

CASE Detector, 100 PPM Error

Figure 4.18: ROC for 16-QAM with N = 50, Nb = 24 and Nk = 6 at SNR =-20 dB having frequency
mismatch of 1, 10, 100 PPM in f0 and fs.

4.2.2 SNR Vs. PD Simulations

To analyze further, we show the PD for various SNR values ranging from −20 to 0 dB with a fixed

PF = 0.01 for all detectors. In Fig.4.19, we give the results for BPSK with N = 50, Nb = 24 and

Nk = 6. In Fig.4.20, we give results for BPSK with N = 50, Nb = 20 and Nk = 5 to verify the

performance of our detector when Nk is odd. We also give similar results for the case of 16-QAM

in Fig.4.21 for N = 50, Nb = 24 and Nk = 6 and in Fig.4.22 for N = 50, Nb = 20 and Nk = 5.

From these plots,we can observe that IED detector is slightly better than CED at low SNR values

but CASE detector is always better than all other detectors and has more than 6 dB SNR gain for

the given PF and PD values with Nb = 24 and Nb = 20. we can also notice that CASE detector

performs much better than all other detectors at all SNR values for 16-QAM and BPSK signals.

When received signal is of the form given in (3.5), MSC detector performance is very poor due to

absense of spectral coherence as given in [12]. From the SNR vs. PD plots of BPSK signals, we

can observe that CED is always better than MSC detector at low SNR values. At high SNR values,
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MSC detector is slightly better than CED when Nk is even and performance of MSC detector is

comparable to that of CED when Nk is odd.
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Figure 4.19: SNR vs. PD for BPSK with N = 50, Nb = 24 and Nk = 6.

40



−20 −15 −10 −5 0
10

−2

10
−1

10
0

P
F

P
D

BPSK with N=50, N
b
=20 at P

F
=0.01

 

 

CED

CASE Detector

IED

MSC Detector

Figure 4.20: SNR vs. PD for BPSK with N = 50, Nb = 20 and Nk = 5.
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Figure 4.21: SNR vs. PD for 16-QAM with N = 50, Nb = 24 and Nk = 6
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Figure 4.22: SNR vs. PD for 16-QAM with N = 50, Nb = 20 and Nk = 5.
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Chapter 5

Summary and Discussion

In this thesis, we give literature survey of three signal detection techniques named Conventional

Energy Detector(CED), Improved Energy Detector(IED) and CycloStationary Detector(CSD). De-

tailed theoretical analysis of conventional energy detector along with simulation results are presented.

Since Mathematical tractability of IED is very difficult, we give simulation results of IED in com-

parison with other detectors. As our target signal is digital modulation signals which possess some

cyclostationary property, we give Magnitude squared detector(MSC) which is an example of cy-

clostaionary detector. As we can observe, IED is better than CED and CED is better than MSC.

MSC performs better than CED when we have more number of signal samples and when the sig-

nal has good cyclic specral properties. MSC detector also depends on block size of FFT and it is

computationally intensive.

As contribution of this thesis, we present a method for utilizing knowledge of symbol duration by

appropriately selecting the sampling frequency and the intermediate frequency at the receiver. The

proposed novel energy detector’s performance depends on the knowledge of the signal period Nb,

with computational complexity comparable to conventional energy detector. Exact analytical results

along with simulations confirms the better performance of SPEED. As the number of samples per

symbol duration increases the performance of the detector improves further. From the computational

complexity analysis and simulation results, we can observe that SPEED with Nb even is superior to

Nb odd. Since detection is a part of the receiver in almost all present wireless standards, wherein the

symbol duration is known apriori, the proposed detector will be useful in detecting the signal. The

proposed detector might also be useful in cognitive radio where it is essential to detect the signal in

less time to improve spectrum utilization.
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