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Abstract

In this thesis, the performance of energy efficient light sources in free space is analyzed. Metrics

for irradiance based coverage of a light source are proposed and evaluated analytically. These light

sources are generated by arranging point sources in various geometries. The coverage metrics of

these sources are calculated over a circular region. Numerical results are then obtained to determine

the efficiency of these sources, highlighting the usefulness of this work.

In this thesis, we derive the closed form expressions for the outage probability of a directional

and omnidirectional antenna system in the physical layer perspective of Wireless local area net-

works (WLAN) in lossy wireless networks.Analytical expression for outage probability of directional

antenna systems was calculated in the presence of shadowing and Nakagami-m fading considering

various pathloss exponent values(i.e., α=2,4). The numerical results shows that our approximate

analytical model matches with the simulation results. In this thesis, a directional antenna based

wireless local area network (WLAN) is considered in a lossy environment. For the directional WLAN,

explicit expressions for outage probability are derived in the presence of shadowing and Rayleigh

fading. Further, numerical results are presented that show that the derived results match closely

with cross-layer simulation results. The presented results are highly relevant for any cross-layer

performance evaluation of directional WLAN based systems.
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Chapter 1

Geometry and Coverage of Energy

efficient Light Sources

1.1 Introduction

Light is a electromagnetic wave that propagates through free space. Traditionally, it has been used

for making objects visible to the naked eye. Lately, there has been tremendous interest in using

it for free space communication [29]. This has simultaneously been accompanied by significant

interest in light emitting diodes (LEDs) that have been replacing conventional light sources in

almost all applications[13]. Fair amount of existing literature has focused on achieving uniform

illuminanace over a planar surface [14]-[19], beginning with the problem of finding the optimal LED

geometry at the light source to achieve uniform irradiance [20]. This was done by using the irradiance

distributions at the closest points on the incident surface. The case of LEDs using a freeform lens

with a large view angle has been considered in [21]. More literature on similar themes is available

in [22]-[24].

In all the above, the focus was on achieving uniform irradiance on the incident surface. While

this is important in many applications like biomedical instruments, there are other applications e.g.

street lights where coverage with a predefined intensity threshold is more important than uniformity.

Further, the effect of the distance between the light source and incident area was not thoroughly

investigated, though it is an important factor [30]. Also, power consumption of the source, which is

a significant parameter, has not been considered in the available literature on uniform irradiance.

In this thesis, we focus on finding appropriate geometry of point light sources for maximizing

the coverage over a circular area, assuming that the irradiance in this area is sufficient enough.

This is done by also taking the power consumption of the sources into account. In the process,

coverage metrics are proposed and analytically evaluated for different geometries. While earlier

literature considered LEDs as imperfect Lambertian soures, for simplicity of analysis, point sources

are considered in the present work.
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1.1.1 Point Sources Vs LEDs

LEDs (Light Emitting Diodes), semiconductor light sources, have been introduced and developed for

several decades. LEDs are applied in many devices as indicators and general illumination products

such as lighting components. As a green light source, LEDs can provide a long life time and high

efficiency light for many applications. However, for some special applications, standard LEDs are

not always the perfect choice. Point Source Emitters (PSEs) offer a great alternative in applications

needing a precise beam of light such as encoders, machine vision and medical fiber.

A PSE is a semiconductor diode similar in structure to a standard LED, however, the light

is emitted through a well-defined circular area, typically 25 µm - 200 µm in diameter. The light

produced appears as a spot. The output light produces very narrow, almost parallel viewing angles.

These two characteristics are well suited for applications that require a near parallel light source

and lower power, as compared with laser diodes.

The first difference in these two structures is emitting light direction. Standard LED output

light is directed to the side. In order to refocus the light direction, standard LEDs normally need a

reflective cavity to force the light from the side to the top. This can cause light output loss, power

dissipation, and variations in final output light beam and viewing angle. However, PSEs emit light

to the upper surface through an aperture / window on top of the structure.

The second difference in these two structures is the position of the cathode contact. The cathode

contact pad of a standard LED is typically located in the center of the structure, which can obstruct

light output due to the top wire bond. SEs can easily solve this problem by locating the cathode

contact wire bond to the side of the aperture window, eliminating any obstructions and dark spots.

The light emitted from the standard LED has several dark spots due to the bonding pad, ob-

struction from the wire bond as well as the reflector cup . A PSE has a much more narrow, defined,

and precise beam with no dark spots.

1.1.2 Expression of Intensity

Intensity is defined as the energy per unit time per unit area.

Which can be expressed as Intensity = Engergy
Time∗Area

The fraction of Energy
Time is considered as power.

Hence the Intensity can be taken as Intensity = Power
Area [31].

As we considered light propagate through free space in all directions taking a shape of spherical

wave, we have the expression of Area as Area = 4πr2 where r is the radius of the sphere.

Finally intensity may be written as

Intensity =
Power

4πr2
(1.1)

If we consider a user a distance of d and if it has multiple intensities from multiple users, the

intensity at that user is nothing but the sum of intensities from different users[32].

Intensity = I1 + I2 + I3 + ..... (1.2)

where, I1 and I2 are intensities of first and second point sources respectively.
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1.2 Arrangement of Point sources considered

Arrangements that are considered in this thesis are as shown in Figure. 1.1

(0,0,0)

Point source at center of circle

(0,0,0)

Circle of radius r

r

(0,0,0)

Outer circle of radius r and inner circle of radius
r

3

(0,0,0)

Outer circle of radius r and inner circle of radius
r

3

Figure 1.1: System Models considered

• Point source of power P placed at the center of circle at a distance of d from the circle where

intensities are been evaluated.

• Six point sources of power P
6 placed on the circumference of circle of radius r uniformly.

• Four point sources of power P
6 placed on the circumference of circle of radius r and two point

sources on circle of radius r
3 uniformly.

• Three point sources of power P
6 placed on the circumference of circle of radius r and three

point sources on the circle of radius r
3 uniformly.

1.2.1 Point source placed at the center of the circle

In Figure.1.2 point source with power P is present at the center of the circle and is projecting on

to circle of radius R and the distance between the centers of the two circle is d. Consider a small

rectangle at a distance of x from the center of the circle of radius of R making an angle of dθ and

has a width of dx. Now the length of the arc becomes xdθ, hence the area of the small rectangular

area can be considered as xdxdθ.

We have the expression for the intensity of the light originating from a point at a point present

at a distance of a from it as

I =
P

4πa2
(1.3)

where,

P is the power of the point sources

a is the distance from the source and the point of observation.

3



Figure 1.2: Point souce at the center of the circle

Now any point on the circle of radius R at a distance of x from the center can be represented

as (xcosθ, xsinθ, d) where θ varies between 0 and 2π. Calculating distance between (0, 0, 0) and

(xcosθ, xsinθ, d) we get

distance =
√

(xcosθ)2 + (xsinθ)2 + d2 =
√
x2 + d2 (1.4)

Hence the expression of intensity at any point at a distance of x from the center of the circle of

radius R is

I1 =
P

4π(d2 + x2)
(1.5)

Plotting the intensity profile over the circle of radius R = 5 where the distance between the centers

of circles considered d = 10 looks like Figure.1.3

Figure 1.3: Intensity profile with point souce at center of one circle

Now we need to average the expression of intesity over the entire area of the circle of radius R.
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This can be calculated as follows

I1avg =
1

πR2

∫ 2π

0

∫ R

0

P

4π(d2 + x2)
xdxdθ (1.6)

I1avg =
1

πR2
(2π)

P

4π

∫ R

0

x

d2 + x2
dx =

P

4πR2

∫ R

0

2x

d2 + x2
dx

=
P

4πR2

(
log(x2 + d2)

)R
0

=
P

4πR2

(
log

(
R2 + d2

d2

))
=

P

4πR2
log

(
1 +

(
R

d

)2
)

(1.7)

Hence the expression in equation (1.7) is the average intensity over area for a point source

projecting on to circle of radius R.

Peak to Average Value

We have the expressions of Intensity at any point and average value from equation (1.5) and (1.7)

We obtain maximum or peak value at least value of x2, Hence peak occurs when x = 0.

I1peak =
P

4πd2
(1.8)

R1 =
P

4πd2

P
4πR2 log

(
1 +

(
R
d

)2)
=
R2

d2

(
log

(
1 +

(
R

d

)2
))−1

(1.9)

1.2.2 Six point sources on the circumference of the circle of radius r

Figure 1.4: Light sources on the circumference of circle of radius r
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In Figure.1.4 six point sources of power P
6 are placed uniformly on the circumference of circle

of radius r and are projected on to circle of radius R and the distance between the two circles is d.

Any point on the circumference on the circle of radius r is considered as (r1, r2, 0) where r1 = rcosφ

, r2 = rsinφ and φ is the angle where the point source is located. Considering a small area xdxdθ

on the circle of radius R, the coordinates on any such point at a distance of x from the center are

(x1, x2, d) where x1 = xcosθ,x2 = xsinθ and θ is the angle where the point is located on the circle.

Now the intensity expression can be calculated once we know the distance between the point

source and the point considered on the circle of radius R. It is nothing but the eucledian distance

between (rcosφ, rsinφ, 0) and (xcosθ, xsinθ, d).

dist =
√

(xcosθ − rcosφ)2 + (xsinθ − rsinθ)2 + d2

=
√
x2 + r2 + d2 − 2xrcos(θ − φ)

The expression for intensity can be taken as

I2 =
∑
φεΦ

P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ))
(1.10)

Here φ takes values of {0, π3 ,
2π
3 ,

3π
3 ,

4π
3 ,

5π
3 } depending on the point considered on the circumference

of the circle and θ takes any value between 0 and 2π depending on the position of the coordinate

where the intensity calculation is made.

where, set Φ ={0, π3 ,
2π
3 ,

3π
3 ,

4π
3 ,

5π
3 }

Figure.1.5 was plotted considering r = 5,R = 15 and d = 10. Observing the plot it gives six different

Figure 1.5: Intensity profiles when point sources placed at various φ positions

peaks each occuring at the respective φ values. The overall intensity profile can be obtained by

summing up all these individual profiles.

Figure.1.6 represents the overall intensity profile.

Now we need to calculate the average intensity profile over the entire area of the circle of radius

6



Figure 1.6: Overall Intensity Profile

R.This can be calculated as follows

I2avg =
1

πR2

∑
φεΦ

∫ R

0

∫ 2π

0

P
6

4π(x2 + r2 + d2 − 2xrcos(θ − φ))
xdxdθ (1.11)

I2avg =
1

πR2

∑
φεΦ

∫ R

0

P
6 x

4π

∫ 2π

0

1

(d2 + r2 + x2) + (−2rxcos(θ − φ))
dθdx

=
1

πR2

∑
φεΦ

∫ R

0

2P
6 x

4π

∫ π

0

1

(d2 + r2 + x2) + (−2rxcos(θ − φ))
dθdx

=
1

πR2

∑
φεΦ

∫ R

0

2P
6 x

4π

∫ π

0

dθdx

(d2 + r2 + x2) + (−2rxcosφcosθ − 2xrsinφsinθ)
(1.12)

From [27, (2.558)] in the equation (1.12) (d2 + r2 + x2)2 > (−2rx)2 and we have the expression

for the integral of 1
a+bcosx+csinx if a2 > b2 + c2 as 2√

a2−b2 tan
−1

(
(a−b)tan( x2 )+c
√
a2−b2−c2

)
. Substituting the

respective value in the equation (1.12) we get

I2avg =
1

πR2

∑
φεΦ

∫ R

0

P
6 x

4π

2√
(d2 + r2 + x2)2 − (2rx)2

×

(
tan−1

(
((d2 + r2 + x2) + 2rx))tan

(
θ
2

)
− 2xrsinφ√

(d2 + r2 + x2)2 − (2rx)2

))2π

0

dx

=
1

πR2

∑
φεΦ

∫ R

0

P
6 x

4π

(
2√

(d2 + r2 + x2)2 − (2rx)2
π

)
dx (1.13)

In the equation (1.13) there is no φ term involved hence all the values over the set will just get

7



added up and results the following expression.

I2avg =
1

πR2

∫ R

0

Px

4π

(
2√

(d2 + r2 + x2)2 − (2rx)2
π

)
dx

=
P

4πR2

∫ R

0

2x√
(d2 + r2 + x2)2 − (2rx)2

dx (1.14)

Considering x2 = t in the above expression and rewriting the integral we get,

I2avg =
P

4πR2

∫ R2

0

dt√
t2 + 2t(d2 − r2) + (d2 + r2)2

dt

=
P

4πR2

∫ R2

0

dt√
(t+ (d2 − r2))2 + (2dr)2

dt

We have the integral of 1√
x2+a2

as log(x+
√
x2 + a2)

I2avg =
P

4πR2

(
log
(

(t+ (d2 − r2)) +
√

(t+ (d2 − r2))2 + (2dr)2
))R2

0

=
P

4πR2

(
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + 4d2r2

d2 − r2 +
√

(d2 − r2)2 + 4d2r2

))

=
P

4πR2

(
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + 4d2r2

2d2

))
(1.15)

Peak to Average Value

We have the expressions for intensity and average intensity from equations (1.10) and (1.15)

We have the peak value of I2 when the cos(θ − φ) takes a value of 1 and x = 0 and sum for all six

point sources.

I2peak =
P

4π(r2 + d2)
(1.16)

Now the ratio of peak to average can be taken as

R2 =

P
4π(r2+d2)

P
4πR2

(
log

(
R2+d2−r2+

√
(R2+d2−r2)2+4d2r2

2d2

))

=
R2

d2 + r2

(
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + 4d2r2

2d2

))−1

(1.17)

1.2.3 Four point sources on the circumference of circle and two at the

center

In Figure.1.7 point sources are arranged such that four point sources of power P
6 are placed on the

circumference of the circle of radius r uniformly and two point sources of same power are placed

on a circle of radius r
3 uniformly on either side of diameter. The individual intensities of the point

8



Figure 1.7: Arrangement of point sources on the circle of radius r

sources will be same as that of equation (1.10).

where, for the four point sources on the circumference of circle of circle of radius r the expression is

I31 =
P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ1))
(1.18)

where, φ1 takes values of {π4 ,
3π
4 ,

5π
4 ,

7π
4 } and the two point sources placed on the circle of radius r

3

takes value of

I32 =
P/6

4π
(
x2 +

(
r
3

)2
+ d2 − 2x

(
r
3

)
cos(θ − φ2)

) (1.19)

where,φ2 takes values of {0, π}
Hence the expression of intenisty is given by

I3 =
∑
φ1εΦ1

P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ1))
+
∑
φ2εΦ2

P/6

4π
(
x2 +

(
r
3

)2
+ d2 − 2x

(
r
3

)
cos(θ − φ2)

)
(1.20)

In Figure.1.8 there are six peaks occuring at six points because of six different positions of point

Figure 1.8: Individual intensity profiles

sources that are present. Combining all gives the overall intensity profile over the circle of radius R.

Figure.1.9 gives the overall intensity profile summing all the individual intensity profiles.

9



Figure 1.9: Overall Intensity Profile

The average expression for this case may be calculated as follows

I3avg =
1

πR2

 ∑
φ1εΦ1

∫ R

0

∫ 2π

0

I31drdθ +
∑
φ2εΦ2

∫ R

0

∫ 2π

0

I32drdθ



I3avg =
1

πR2

 ∑
φ1εΦ1

∫ R

0

∫ 2π

0

P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ1))
drdθ

+

1

πR2

 ∑
φ2εΦ2

∫ R

0

∫ 2π

0

P/6

4π
(
x2 +

(
r
3

)2
+ d2 − 2x

(
r
3

)
cos(θ − φ2)

)drdθ
 (1.21)

Solving the equation (1.21) we get

I3avg =
P

6πR2
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + 4d2r2

2d2

)

+
P

12πR2
log

(
R2 + d2 − (r/3)2 +

√
(R2 + d2 − (r/3)2)2 + 4d2(r/3)2

2d2

)
(1.22)

Peak to Average Value

We have the expressions for intensity at any point and average values from equations (1.18),(1.19)

and (1.22)

Now the peak value occurs when both cos terms become 1 and x = 0 and adding up all the cases

I3peak =
P

24π

(
4

r2 + d2
+

2

d2 + (r/3)2

)
(1.23)

Now the ratio of peak to average can be calculated as follows

10



R3 =

1
4

(
4

r2+d2 + 2
d2+(r/3)2

)
1
R2 log

(
R2+d2−r2+

√
(R2+d2−r2)2+4d2r2

2d2

)
+ 1

2R2 log

(
R2+d2−(r/3)2+

√
(R2+d2−(r/3)2)2+4d2(r/3)2

2d2

)
(1.24)

1.2.4 Three point sources on the circumference of outer circle and three

on the inner circle

Figure 1.10: Arrangement of point sources on the circle of radius r

In Figure.1.10 point sources are arranged such that three point sources of power P
6 are placed

on the circumference of the circle of radius r uniformly and three point sources of same power are

placed on a circle of radius r
3 uniformly. The individual intensities of the point sources will be same

as that of equation (1.10).

where, for the three point sources on the circumference of circle of circle of radius r the expression

is

I41 =
P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ1))
(1.25)

where, φ1 takes values of {0, 2π
3 ,

4π
3 } and the three point sources placed on the circle of radius r

3

takes value of

I42 =
P/6

4π
(
x2 +

(
r
3

)2
+ d2 − 2x

(
r
3

)
cos(θ − φ2)

) (1.26)

where,φ2 takes values of {π3 , π,
5π
3 }

Hence the expression of intenisty is given by

I4 =
∑
φ1εΦ1

P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ1))
+
∑
φ2εΦ2

P/6

4π
(
x2 +

(
r
3

)2
+ d2 − 2x

(
r
3

)
cos(θ − φ2)

)
(1.27)

In Figure.1.11 there are six peaks occuring at six points because of six different positions of point

sources that are present. Combining all gives the overall intensity profile over the circle of radius

R. Figure.1.12 gives the overall intensity profile summing all the individual intensity profiles. The

average expression for this case may be calculated as follows

I4avg =
1

πR2

 ∑
φ1εΦ1

∫ R

0

∫ 2π

0

I31drdθ +
∑
φ2εΦ2

∫ R

0

∫ 2π

0

I32drdθ


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Figure 1.11: Individual intensity profiles
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Figure 1.12: Overall Intensity Profile

I4avg =
1

πR2

 ∑
φ1εΦ1

∫ R

0

∫ 2π

0

P/6

4π(x2 + r2 + d2 − 2xrcos(θ − φ1))
drdθ

+

1

πR2

 ∑
φ2εΦ2

∫ R

0

∫ 2π

0

P/6

4π
(
x2 +

(
r
3

)2
+ d2 − 2x

(
r
3

)
cos(θ − φ2)

)drdθ
 (1.28)

Solving the equation (1.28) we get

I3avg =
P

8πR2
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + 4d2r2

2d2

)

+
P

8πR2
log

(
R2 + d2 − (r/3)2 +

√
(R2 + d2 − (r/3)2)2 + 4d2(r/3)2

2d2

)
(1.29)
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Peak to Average Value

We have the expressions for intensity at any point and average values from equations (1.25),(1.26)

and (1.29)

Now the peak value occurs when both cos terms become 1 and x = 0 and adding up all the cases

I4peak =
P

8π

(
1

r2 + d2
+

1

d2 + (r/3)2

)
(1.30)

Now the ratio of peak to average can be calculated as follows

R4 =

(
1

r2+d2 + 1
d2+(r/3)2

)
1
R2 log

(
R2+d2−r2+

√
(R2+d2−r2)2+4d2r2

2d2

)
+ 1

R2 log

(
R2+d2−(r/3)2+

√
(R2+d2−(r/3)2)2+4d2(r/3)2

2d2

)
(1.31)

1.3 Comparisions between all the arrangements considered

1.3.1 Relation between d, R and r so that case 2 perform better than

case 1 beyond radius R1

Considering expressions of average intensity of first and second cases i.e., a point source present at

the center and six point sources placed on the circumference of the circle.

Here we derive an expression for distance between the source and destination and the radius R1

after which the case 2 performs better.

Considering two circles of radius R1 and R and we consider the average intensity obtained in

first case should be less than the average intensity of second case since case 2 performs better in this

region.

We have the expressions of average intensities of both cases in that region as

I1avg =
P

4π(R2 −R2
1)
log

(
R2 + d2

R2
1 + d2

)
I2avg =

P

4π(R2 −R2
1)
log

(
R2 + d2 − r2 +

√
(R2 + d2 + r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 + r2)2 + (2dr)2

)

Now the relation between I1avg and I2avg should be I1avg < I2avg.

13



P

4π(R2 −R2
1)
log

(
R2 + d2

R2
1 + d2

)
<

P

4π(R2 −R2
1)
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

log

(
R2 + d2

R2
1 + d2

)
< log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)
(
R2 + d2

R2
1 + d2

)
<

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

(R2 + d2)(R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2) <

(R2
1 + d2)(R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2)

R2
1r

2 + (R2 + d2)
√

(R2
1 + d2 − r2)2 + (2dr)2 < R2r2 + (R2

1 + d2)
√

(R2 + d2 − r2)2 + (2dr)2

Now expressing R1,d and R in terms of r, as

d = αr

R1 = βr

R = γr

Rewriting the above equation we get.,

β2 + (γ2 + α2)
√

(β2 + α2 − 1)2 + 4α2 < γ2 + (β2 + α2)
√

(γ2 + α2 − 1)2 + 4α2 (1.32)

We already know the value of γ since the relation between r and R is known.

Now fixing either of the values of β or α we will get the relation of other.

1.3.2 Average intensities of case 3 and case 4 are always greater than

case 2

I2avg < I3avg:

Let us consider case 3 performs over case 2 over a radius of R1.

Hence the average intensity over radius of R1 of case 3 should be greater than that of the average

intensity of case 2.

P

4π(R2
1)
log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
<

P

6π(R2
1)
log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
+

P

12π(R2
1)
log

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d r

3
)2

2d2


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P × log
(
R2

1+d2−r2+
√

(R2
1+d2−r2)2+(2dr)2

2d2

)
12π(R2

1)
<

P × log

(
R2

1+d2−( r3 )
2
+
√

(R2
1+d2−( r3 )

2
)2+(2d r3 )2

2d2

)
12π(R2

1)

log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
< log

R2
1 + d2 −

(
r
3

)2
+

√
(R2

1 + d2 −
(
r
3

)2
)2 + (2d r3 )2

2d2


(1.33)

I2avg < I4avg:

Let us consider case 4 performs over case 2 over a radius of R1.

Hence the average intensity over radius of R1 of case 4 should be greater than that of the average

intensity of case 2.

P

4π(R2
1)
log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
<

P

8π(R2
1)
log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
+

P

8π(R2
1)
log

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d r

3
)2

2d2



P × log
(
R2

1+d2−r2+
√

(R2
1+d2−r2)2+(2dr)2

2d2

)
8π(R2

1)
<

P × log

(
R2

1+d2−( r3 )
2
+
√

(R2
1+d2−( r3 )

2
)2+(2d r3 )2

2d2

)
8π(R2

1)

log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
< log

R2
1 + d2 −

(
r
3

)2
+

√
(R2

1 + d2 −
(
r
3

)2
)2 + (2d r3 )2

2d2


(1.34)

In both the cases the expressions in 1.33 and 1.34 are the same and can be solved as follows,

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
<

R2
1 + d2 −

(
r
3

)2
+

√
(R2

1 + d2 −
(
r
3

)2
)2 + (2d r3 )2

2d2


R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2 < R2

1 + d2 −
(r

3

)2

+

√(
R2

1 + d2 −
(r

3

)2
)2

+ (2d
r

3
)2

√
(R2

1 + d2 − r2)2 + (2dr)2 <
8r2

9
+

√(
R2

1 + d2 −
(r

3

)2
)2

+
(

2d
r

3

)2

Now considering all variables in terms of r as follows,

R1 = βr

d = αr

√
(β2 + α2 − 1)2 + 4α2 <

8

9
+

√(
β2 + α2 − 1

9

)2

+
4α2

9
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Squaring on both sides

(β2 + α2 − 1)2 + 4α2 <
64

81
+ (β2 + α2 − 1

9
)2 +

4α2

9
+

16

9

√
(β2 + α2 − 1

9
)2 +

4α2

9

1− 2(α2 + β2) + 4α2 <
65

81
− 2

9
(α2 + β2) +

4α2

9
+

16

9

√
(β2 + α2 − 1

9
)2 +

4α2

9

16

81
− 16

9
(β2 − α2) <

16

9

√
(β2 + α2 − 1

9
)2 +

4α2

9

1

9
− β2 + α2 <

√
(β2 + α2 − 1

9
)2 +

4α2

9

Again squaring on both sides(
α2 −

(
β2 − 1

9

))2

<

((
β2 − 1

9

)
+ α2

)2

+
4α2

9

−2α2

(
β2 − 1

9

)
< 2α2

(
β2 − 1

9

)
+

4α2

9

−2α2β2 < 2α2β2

α2β2 > 0 (1.35)

Hence from equation (1.35) which is always true, irrespective of the values of α and β average

values in case 3 and case 4 are always greater than the average value in case 2.

1.3.3 Relation between d,R and r so that case 3 has higher coverage than

case 1 beyond radius R1

Let I1avg is the average value of intensity for case 1 over the annulus between radius R and radius

R1 and I3avg is the corresponding average.

P

4π(R2 −R1
2)
log

(
R2 + d2

R2
1 + d2

)
<

P

6π(R2 −R1
2)
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

+
P

12π(R2 −R1
2)
log

R2 + d2 −
(
r
3

)2
+
√

(R2 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2



1

2
log

(
R2 + d2

R2
1 + d2

)
<

1

3
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

+
1

6
log

R2 + d2 −
(
r
3

)2
+
√

(R2 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2


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(
R2 + d2

R2
1 + d2

) 1
2

<

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

) 1
3

R2 + d2 −
(
r
3

)2
+
√

(R2 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2


1
6

Introducing a power of 6 on both sides

(
R2 + d2

R2
1 + d2

)3

<

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)2

×

R2 + d2 −
(
r
3

)2
+

√
(R2 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+

√
(R2

1 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2


Now writing all the values in terms of r as follows

d = αr

R1 = βr

R = γr

We get,

(
γ2 + α2

β2 + α2

)3

<

(
γ2 + α2 − 1 +

√
(α2 + γ2 − 1)2 + 4α2

β2 + α2 − 1 +
√

(α2 + β2 − 1)2 + 4α2

)2
 γ2 + α2 − 1

9 +
√

(α2 + γ2 − 1
9 )2 + 4α2

9

β2 + α2 − 1
9 +

√
(α2 + β2 − 1

9 )2 + 4α2

9


We already have the value of γ since we know the relation between r and R, substituting either of

the value of α or β the relation of other can be obtained.

1.3.4 Relation between d,R and r so that case 4 has higher coverage than

case 1 beyond radius R1

Let I1avg is the average value of intensity for case 1 over the annulus between radius R and radius

R1 and I4avg is the corresponding average.

P

4π(R2 −R1
2)
log

(
R2 + d2

R2
1 + d2

)
<

P

8π(R2 −R1
2)
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

+
P

8π(R2 −R1
2)
log

R2 + d2 −
(
r
3

)2
+
√

(R2 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2



log

(
R2 + d2

R2
1 + d2

)
<

1

2
log

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

+
1

2
log

R2 + d2 −
(
r
3

)2
+
√

(R2 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2


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(
R2 + d2

R2
1 + d2

)
<

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

) 1
2

R2 + d2 −
(
r
3

)2
+
√

(R2 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2


1
2

Introducing a power of 2 on both sides

(
R2 + d2

R2
1 + d2

)2

<

(
R2 + d2 − r2 +

√
(R2 + d2 − r2)2 + (2dr)2

R2
1 + d2 − r2 +

√
(R2

1 + d2 − r2)2 + (2dr)2

)

×

R2 + d2 −
(
r
3

)2
+

√
(R2 + d2 −

(
r
3

)2
)2 + (2d

(
r
3

)
)2

R2
1 + d2 −

(
r
3

)2
+

√
(R2

1 + d2 −
(
r
3

)2
)2 + (2d

(
r
3

)
)2


Now writing all the values in terms of r as follows

d = αr

R1 = βr

R = γr

We get,

(
γ2 + α2

β2 + α2

)2

<

(
γ2 + α2 − 1 +

√
(α2 + γ2 − 1)2 + 4α2

β2 + α2 − 1 +
√

(α2 + β2 − 1)2 + 4α2

) γ2 + α2 − 1
9 +

√
(α2 + γ2 − 1

9 )2 + 4α2

9

β2 + α2 − 1
9 +

√
(α2 + β2 − 1

9 )2 + 4α2

9


We already have the value of γ since we know the relation between r and R, substituting either of

the value of α or β the relation of other can be obtained.

1.3.5 Average intensity of case 4 is always greater than case 3

Let us consider case 4 performs over case 3 over a radius of R1.

Hence the average intensity over radius of R1 of case 4 should be greater than that of the average

intensity of case 3.

P

6πR2
1

log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
+

P

12πR2
1

log

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d r

3
)2

2d2


<

P

8πR2
1

log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
+

P

8πR2
1

log

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d r

3
)2

2d2


(1.36)

P

24πR2
1

log

(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
<

P

24πR2
1

log

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d r

3
)2

2d2


(
R2

1 + d2 − r2 +
√

(R2
1 + d2 − r2)2 + (2dr)2

2d2

)
<

R2
1 + d2 −

(
r
3

)2
+
√

(R2
1 + d2 −

(
r
3

)2
)2 + (2d r

3
)2

2d2


(1.37)
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This expression is same as that in 1.33 hence is true for any value of R1.

1.4 Metric that defines best case

Following metrics are considered to define the best case

• Coverage

• Average intensity

Some of the considerations that are to be made during the selection of a particular case are

Peak to average value should be as low as possible. Only then the distribution will be flat else at

the edges the value will be very low compared to that at the center.

At the same time the average value should be comparable with that of the average value when a

single point source is placed at the center of the circle of radius r.

Considering the expressions from the comparisions made in the above section, we prove the

coverage of single point source is less when compared to case where six point sources present on the

circumference of the circle.

Also the average value of case 4 ie., case where three point sources are placed on the outer circle

and three on the inner circle is better compared to case 2 ie., case where all six point sources placed

on the circumference of the outer circle.

1.5 Results and Discussion
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Figure 1.13: Comparing case 1 and case 2

Observing the plots in Figure. 1.13 we observe that the coverage is high for case 2 compared

to that of case1 ie., the point source. At the center over some radius point source perform better,

where as over the remaining annulus case where point sources placed on the circumference perform

better.

Similarly observing plots in Figure. 1.14 and 1.15 we observe the coverage in both the cases ie.,

case 3 and case 4 is higher compared to that of point sources.
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Figure 1.14: Comparing case 1 and case 3
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Figure 1.15: Comparing case 1 and case 4
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Figure 1.16: Comparing case 2 and case 3
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Figure 1.17: Comparing case 2 and case 4

Now observering plots in Figure. 1.16 placing two point sources in the inner circle will improve

the intensity in some parts of the projection plane but not in other places.

Also from Figure. 1.17 we observe that there is improvement in some parts of the plane.
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Figure 1.18: Comparing case 3 and case 4

Finally, observing plot in Figure. 1.18 there is improvement in one portion of the plot.

Through all the above mentioned plots coverage is being defined. Plot were drawn considering

P = 1 in all the aforementioned plots.

Other metric in our consideration is to have comparable average intensity along with coverage.

Considering average values for various cases from the Table 1.1 we observe the average values

in case 4 ie., case where three point sources place in inner circle has better values comparable with

that of point source.

Also the coverage is better with this case. Hence case where three point sources placed on

circumference of inner circle and three on the outer circumference performs over all the other cases.
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Table 1.1: Average intensity over area for various values of R,d,r

r R d case 1 case 2 case 3 case 4
5 5r 10 0.0908 0.0894 0.0898 0.0900
5 3r 10 0.1501 0.1433 0.1453 0.1463
5 3r 15 0.0883 0.0848 0.0858 0.0863
5 5r 15 0.0609 0.0599 0.0602 0.0604
2 5r 10 0.1986 0.1957 0.1966 0.1970
2 5r 5 0.4611 0.4537 0.4559 0.4570

1.6 Conclusion

Hence placing point sources on the circumference improves the coverage area of the point sources

when compared to a point source placed at the center of the circle. Where as the intensity at the

center of the region where all the point sources are projecting, will be low for the case where point

sources are placed on the circumference compared to a point source at the center.

To improve this we can place three point sources on the circumference of the circle and three on

the circumference of the inner circle uniformly. This improves performance at the center compared

to all point sources placed on the circumference case. It will degrade the performance at the edges

compared to case where all point sources placed on the circumference but not as much as where a

point source placed at the center of circle.
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Chapter 2

Geometry and Coverage analysis

for LED sources

2.1 Introduction

In the recent days with the development of high brightness LEDs there was a change in the lighing

world.LEDs are being replaced with the convensional light sources in almost all the applications[11]-

[13]. Many efforts were made to achive uniform illuminanace over a planar surface by increasing

the source-to-target distance [14]-[19]. In all these techniques irradiance distributions of the LEDs

are being merged to produce uniform distribution on planar surfaces. Many research’s were made

on arrangement of these LEDs to achive uniform distribution as one LED may not give sufficient

brightness. Moreno proposed a method for optimizing LED-to-LED spac- ing to achieve uniform

irradiance by considering each LED as an imperfect Lambertian source [20]. Freeform lens with

large view angle for LED uniform illumination was considered in [21]. Many similar arrangements

were considered in [22]-[25] In all the mentioned techniques they have considered a plane of sources

that is parallel to the plane where illuminance is measured.In this thesis we consider a circular space

of radius r which has point sources of light projecting on to a cicular surface of radius R placed in

parallel to the source circle at a distance of d. Here we are evaluating the geometrical arrangement

which gives better coverage and average intensity comparably. We have considered peak to average

ratio as a metric to evaluate the perfomance of all the arrangements considered.

Light is a electromagnetic wave that propagate through free space. In free space communications

we consider there is nothing between the transmitter and the receiver [28]-[29] and the light travels

with the speed of light. Light originating from free space take a spherical shape and propagate

in all directions since it is isotrpic. Hence the intensity vary at different instants of time depend-

ing on the radius.Therefore the distance between the source and the incident point also have high

importance[30].
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2.1.1 Expression of irradiance

Practical approximation of irradiance distribution may be considered as

E(r) = Eo(r)cos
mξ (2.1)

where, ξ is the viewing angle and m is a number that depends on the LED considered.

m can be taken as −ln2
ln(cosξ1/2) and m can take a value of greater than 30.

where, ξ1/2 is the view angle when irradiance is half of the value at 0o.

Considering a point source at (x0, y0, 0) and the plane of projection has points (xcosθ, xsinθ, d)

where θ varying form 0 to 2π and d is the distance between center of the source plane and the target

plane.

Now the illuminance expression can be written as

E(x, θ, d) = dmLLED
(
(x0 − xcosθ)2 + (y0 − xsinθ)2 + d2

)−(m+2)
2 (2.2)

where, LLED is the radiance of the LED (Wm−2Sr−1)

2.2 Arrangement of LED’s considered

Following arrangements of LED’s are being considered.

(0,0,0)

Point source at center of circle

(0,0,0)

Circle of radius r

r

(0,0,0)

Outer circle of radius r and inner circle of radius
r

3

Figure 2.1: System Models considered

• Single LED source is placed at the center of the source circle of radiance LLED

• Six LED sources are placed on the circumference of the circle of radius r with radiance LLED
6

uniformly

• Three LED sources are placed on the circumference of the circle of radius r and three on the

circumference of the circle of radus r
3 .

2.2.1 Point source placed at the center of the circle

Considering a point source at the center of the circle (0, 0, 0) i.e., x0 = 0 and yo = 0. Hence the

irradiance expression can be written as,

E1(x, θ, d) = dmLLED
(
x2 + d2

)−(m+2)
2 (2.3)
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Figure 2.2 represent the irradiance plot on the projection plane with r=5,R=5r,d=10 and m=70.
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Figure 2.2: LED placed at the center of the circle

Now we can calculate the average value over area for the expression of irradiance. Here dA =

xdxdθ and the expression is averaged over x and θ. x takes values between 0 and R since R is the

radius of the plane considered.

E1avg(x, θ, d) =
dmLLED
πR2

∫ 2π

0

∫ R

0

xdxdθ

(x2 + d2)
m+2

2

=
dmLLED
πR2

(2π)

∫ R

0

x

(x2 + d2)
m+2

2

dx

=
dmLLED

R2

∫ R

0

2x

(x2 + d2)
m+2

2

dx

=
dmLLED

R2

(
(x2 + d2)−

m
2

−m
2

)R
0

=
dmLLED

R2

2

m

(
(d2)−m/2 − (d2 +R2)−m/2

)
=

2dmLLED
mR2

(
1

dm
− 1

(
√
d2 +R2)m

)
(2.4)

Peak to Average Value

The maximum value of irradiance of a point source placed at the center ie., equation 2.3 is

E1peak = dmLLED
(
d2
)−(m+2)

2 (2.5)

The expression for peak to average value is

R1led =
dmLLED

(
d2
)−(m+2)

2

2dmLLED
mR2

(
1
dm −

1
(
√
d2+R2)m

)
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R1led =
mR2

2dm+2

1(
1
dm −

1
(
√
d2+m2)m

)
=
mR2

2d2

(
√
d2 +m2)m

(
√
d2 +m2)m − dm

=
m

2

(
R

d

)2

(
1 +

(
m
d

)2)m(
1 +

(
m
d

)2)m − 1
(2.6)

2.2.2 Six LED’s placed on the circumference of the circle of radius r

uniformly

Let the LED’s are placed on the circle at (rcosφ, rsinφ, 0) where φ takes values from the set Φ=

{0, π3 ,
2π
3 , π,

4π
3 ,

5π
3 }.

Now the expression for the intensity at any point on the circle of radius R.

E2(x, θ, d) =
∑
φεΦ

dmLLED

(r2 + x2 + d2 − 2xrcos(θ − φ))
m+2

2

(2.7)

Figures. 2.3 and 2.4 represent the individual and sum of individual irradiance plots. LED’s average
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Figure 2.3: Individual plots at six LED’s

intensity over any plane parallel to the source surface is always equal for all the LED’s present at a

constant radius. Hence the average intensity will just be 6 times that of value obtained at φ = 0

E2avg(x, θ, d) = 6
dmLLED

6

πR2

∫ 2π

0

∫ R

0

xdxdθ

(r2 + x2 + d2 − 2xrcos(θ))
m+2

2

(2.8)

From [27, (3.645)] we have the following integral

1

2

∫ 2π

0

dx

(a+ bcosx)n+1
=

π

2n(a+ b)n
√
a2 − b2

n∑
k=0

(2n− 2k − 1)!!(2k − 1)!!

(n− k)!k!

(
a+ b

a− b

)k
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Figure 2.4: Sum of all irradiance plots

Rewriting our integral in terms of above and asuming m to be even we get,

E2avg(x, θ, d) =
dmLLED
πR2

∫ R

0

x

(m/2)∑
k=0

2π(m− 2k − 1)!!(2k − 1)!!

2(m/2)((m/2)− k)!k!
×

(d2 + r2 + x2 − 2xr)k−m/2

(d2 + r2 + x2 + 2kr)k
√

(d2 + r2 + x2)2 − (2xr)2
dx

E2avg(x, θ, d) =
dmLLED

2(m/2)−1R2

(m/2)∑
k=0

(m− 2k − 1)!!(2k − 1)!!

((m/2)− k)!k!
×

∫ R

0

x(d2 + r2 + x2 − 2xr)k−m/2

(d2 + r2 + x2 + 2kr)k
√

(d2 + r2 + x2)2 − (2xr)2
dx

E2avg(x, θ, d) =
dmLLED

2(m/2)−1R2

(m/2)∑
k=0

(m− 2k − 1)!!(2k − 1)!!

((m/2)− k)!k!

∫ R

0

x((x− r)2 + d2)k−
m+1

2

((x+ r)2 + d2)k+ 1
2

dx (2.9)

2.2.3 Three LED’s placed on circumference of outer circle and three on

the circumference of inner circle of radius r
3

uniformly

Let three LED’s are placed on the circle at (rcosφ, rsinφ, 0) where φ1 takes values from the set Φ1=

{0, 2π
3 ,

4π
3 }.

E31(x, θ, d) =
∑
φ1εΦ1

dmLLED

(r2 + x2 + d2 − 2xrcos(θ − φ1))
m+2

2

(2.10)

Other three LED’s are placed on the circumference of circle of radius r
3 at angles of Φ2={π3 , π,

5π
3 } .

E32(x, θ, d) =
∑
φ2εΦ2

dmLLED

(
(
r
3

)2
+ x2 + d2 − 2x r3cos(θ − φ2))

m+2
2

(2.11)
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Now the expression for the intensity at any point on the circle of radius R

E3(x, θ, d) =
∑
φ1εΦ1

dmLLED

(r2 + x2 + d2 − 2xrcos(θ − φ1))
m+2

2

+
∑
φ2εΦ2

dmLLED

(
(
r
3

)2
+ x2 + d2 − 2x r3cos(θ − φ2))

m+2
2

(2.12)

Figures. 2.5 and 2.6 represent the individual and sum of irradiance profiles on the projected surface.
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Figure 2.5: Individual intensity plots
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Figure 2.6: Sum of all Intensity plots

LED’s average intensity over any plane parallel to the source surface is always equal for all the LED’s

present at a constant radius.

E3avg(x, θ, d) = 3
dmLLED

6

πR2

∫ 2π

0

∫ R

0

xdxdθ

(r2 + x2 + d2 − 2xrcos(θ))
m+2

2

+ 3
dmLLED

6

πR2

∫ 2π

0

∫ R

0

xdxdθ

(
(
r
3

)2
+ x2 + d2 − 2x r3cos(θ))

m+2
2

(2.13)
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From [27, (3.645)] we have the following integral

1

2

∫ 2π

0

dx

(a+ bcosx)n+1
=

π

2n(a+ b)n
√
a2 − b2

n∑
k=0

(2n− 2k − 1)!!(2k − 1)!!

(n− k)!k!

(
a+ b

a− b

)k
Rewriting our integral in terms of above and asuming m to be even we get,

E3avg(x, θ, d) =
dmLLED

2πR2

∫ R

0

x

(m/2)∑
k=0

2π(m− 2k − 1)!!(2k − 1)!!

2(m/2)((m/2)− k)!k!
× (d2 + r2 + x2 − 2xr)k−m/2

(d2 + r2 + x2 + 2kr)k
√

(d2 + r2 + x2)2 − (2xr)2
+

(d2 +
(
r
3

)2
+ x2 − 2x r3 )k−m/2

(d2 +
(
r
3

)2
+ x2 + 2k r3 )k

√
(d2 +

(
r
3

)2
+ x2)2 − (2x r3 )2

 dx

E3avg(x, θ, d) =
dmLLED
2(m/2)R2

(m/2)∑
k=0

(m− 2k − 1)!!(2k − 1)!!

((m/2) − k)!k!
×

∫ R

0

 x(d2 + r2 + x2 − 2xr)k−
m
2

(d2 + r2 + x2 + 2kr)k
√

(d2 + r2 + x2)2 − (2xr)2
+

x(d2 +
(
r
3

)2
+ x2 − 2x r

3
)k−

m
2

(d2 +
(
r
3

)2
+ x2 + 2k r

3
)k
√

(d2 +
(
r
3

)2
+ x2)2 − (2x r

3
)2

 dx

E2avg(x, θ, d) =
dmLLED
2(m/2)R2

(m/2)∑
k=0

(m− 2k − 1)!!(2k − 1)!!

((m/2)− k)!k!
×

∫ R

0

(
x((x− r)2 + d2)k−

m+1
2

((x+ r)2 + d2)k+ 1
2

+
x((x− r

3 )2 + d2)k−
m+1

2

((x+ r
3 )2 + d2)k+ 1

2

)
dx (2.14)

2.3 Metric that defines the best case

The following are the metrices considered to define the best case

• Coverage

• Average Irradiance over area

2.4 Results and Discussion

All the plots in this section were drawn with values of r=0.25,R=5r,d=1 and m=30.

Observing the plots in Figure. 2.7 we observe that the coverage is high for case 2 compared to

that of case1 ie., the point source. At the center over some radius point source perform better, where

as over the remaining annulus case where point sources placed on the circumference perform better.

Similarly observing plots in Figure. 2.8 we observe the coverage in case 3 is higher compared to

that of point sources.

Figure. 2.9 contains comparision of case 2 and case 3, wrt to coverage we cannot define anything

since case 2 performs over case 3 at some parts and case 3 performs over case 2 in other parts.

Hence Average Irradiance can be calculated for both case 2 and case 3 and the one that have

higher average value perform better than the other.
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Figure 2.7: Comparing case 1 and case 2
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Figure 2.8: Comparing case 1 and case 3
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Figure 2.9: Comparing case 2 and case 3
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Table. 2.1 contains various values of Average Irradiance for case1,case 2 and case 3 at varying

r,R,d,m. And we observe Average Irradiance of case 3 is higher compared to other cases.

r R d m case1 case 2 case 3
0.25 5r 1 30 0.0427 0.0432 0.0488
0.25 5r 1 20 0.0641 0.0643 0.0696
0.25 5r 1 10 0.1270 0.1265 0.1310
0.25 10r 1 30 0.0107 0.0108 0.0122
0.25 10r 1 50 0.0064 0.0066 0.0080
0.25 3r 1 20 0.1759 0.1721 0.1874

Table 2.1: Average intensities of all the cases over area

Therefore Case 3 ie., case where three LED’s placed on the circumference of outer circle and

three on the circumference of the inner circle of radius r
3 performs over the remaining arrangements.

2.5 Conclusion

Hence placing LEDs on the circumference improves the coverage area of the LEDs when compared

to a LED placed at the center of the circle. Where as the irradiance at the center of the region

where all the point LEDs are projecting, will be low for the case where LEDs are placed on the

circumference compared to a point source at the center.

To improve this we can place three LEDs on the circumference of the circle and three on the

circumference of the inner circle uniformly. This improves performance at the center compared to

all LEDs placed on the circumference case. It will degrade the performance at the edges compared

to case where all LEDs placed on the circumference but not as much as where a LED placed at the

center of circle.
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Chapter 3

Outage Probability for Directional

WLAN for Log-normal Shadowing

and Fading

3.1 Introduction

The latest IEEE 802.11ad based wireless local area networks (WLANs) operate on the GHz band[7].At

such a high frequency, the received signal power can frequently drop below the required threshold

resulting in an outage event. Thus, probability of an outage event, referred to as outage probability,

becomes an important system level performance metric. Even for the existing WLAN standards

that operate on relatively lower frequencies like IEEE 802.11ac [2], outage probability becomes an

important issue for higher pathloss exponents (denoted by α).

In this direction, outage probability has been expressed for a directional carrier sense multiple

access/collision avoidance (CSMA/CA) based WLANs in [3]. The analytical expression in [3] is

in the form of multiple integrals in the presence of shadowing and Rayleigh fading for pathloss

exponent α equal to 4. However, closed form or simplified expressions for the outage probabilities

in the presence of shadowing, Nakagami-m fading (of which Rayleigh is a special case), and other

pathloss exponents (like α = 2) are required. This is the motivation of this work.

The primary contributions of this thesis are as follows. Firstly, the issue of outage probability for

the directional WLAN in the presence of Log-normal shadowing, Nakagami-m fading (including the

Rayleigh case), and arbitrary pathloss exponent is investigated and suitable expression in terms of

integrals is obtained. Secondly, for the typically experienced value of pathloss exponent α equal to 2

a closed form expression in the form of easily computable series summation is derived. Further, for

α equal to 4, an approximate closed form expression is obtained. Simulation results are presented

that show that the derived results closely match with the expected values.
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Figure 3.1: System model.

3.2 System Model

We consider a CSMA/CA based WLAN system with an access point (AP) at the center as depicted

in Figure. 3.1. The AP has M directional antennas each corresponding to one of the M sectors.

The 3-dB beamwidth of any directional antenna is denoted by θ3dB . There exist N users that are

contending for access such that the users are uniformly distributed with in a coverage area of radius

L.

Let us focus on a random user at a distance r from the AP in a sector such that r ≤ L. For this

user, let θ denote the incident angle and G(θ) represents the corresponding directivity gain. Then,

the probability distribution functions (pdfs) of θ and r are given by [4]

fΘ(θ) =

 1
2θ3dB

−θ3dB < θ < θ3dB

0 otherwise
, (3.1)

fR(r) =

 2r
L2 , 0 < r < L

0 otherwise
. (3.2)

Further, the directivity gain is equal to

G(θ) =
θ3dB

π
. (3.3)

Let PT denote the transmit power of any user. Then, the received signal power at the AP from the

user under consideration is equal to

P = PT r
−αG(θ)10ξ/10x2 , (3.4)

where, ξ ∼ N
(
0, σ2

)
represents the Log-normal shadowing coefficient in dB, α is the pathloss

exponent considered and x considered is the fading coefficient which can be Rayleigh or Nakagami-

m.
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Considering z to be Rayleigh fading coefficient,the pdf of z is given by

fZ(z) =

2ze−z
2

z > 0

0 otherwise
(3.5)

and, considering x to be Nakagami-m fading coefficient. The pdf of x is given by

fX(x) =

 2
Γ(m)

(
m
Ω

)m
x2m−1e

−mx2

Ω x > 0

0 otherwise
(3.6)

where m and Ω are the parameters of the Nakagami-m distribution such that m > 0.5 and Ω > 0.

Note that Γ(m) is the standard Gamma function such that Γ(m) = (m− 1)! when m is an integer.

We consider only integer values of m in this thesis.

Given the received power in (3.4), the SNR of the user under consideration can be defined as

SNR =
P

N0
, (3.7)

where, N0 is the noise power. Thus, the frame outage probability for Rayleigh and Nakagami fadings

are defined as follows [3].

3.2.1 For Rayleigh Fading with path loss exponent 4

Po = Pr {SNR < z0}

= Pr

{
P

N0
< z0

}
(3.8)

= Pr

{
PT r

−4G(θ)10ξ/10z2

N0
< z0

}
.

= Pr

{
z2 <

z0N0

PT r−4G(θ)10ξ/10

}
= Pr

{
y<

z0N0

PT r−4G(θ)10ξ/10

}
(3.9)

= FY

(
z0N0

PT r−4G(θ)10ξ/10

)
,

where y = z2 and z0 is the SNR threshold. Note that y is obtained from a normalized Rayleigh

distribution and will have a cumulative distribution function (CDF) given by [5],

FY (y) = Pr{Y ≤ y} = 1− e−y (3.10)

By averaging over respective PDF’s the average value of outage probability becomes

Po=

θ3dB∫
−θ3dB

∞∫
−∞

L∫
0

FY

(
z0N0

PT r−4G(θi)10ξ/10

)
fR(r)fΞ(ξ)fΘ(θ)drdξdθ. (3.11)
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3.2.2 For Nakagami Fading with α as pathloss exponent

Po = Pr {SNR < z0} = Pr

{
P

N0
< z0

}
(3.12)

= Pr

{
PT r

−αG(θ)10ξ/10x2

N0
< z0

}
= Pr

{
x2 <

z0N0

PT r−αG(θ)10ξ/10

}
= Pr

{
y<

z0N0

ΩPT r−αG(θ)10ξ/10

}
(3.13)

= FY

(
z0N0

ΩPT r−αG(θ)10ξ/10

)
where, y = x2/Ω and z0 denotes the required SNR threshold. Note that y is obtained from a

normalized Nakagami-m distribution and will have a cumulative distribution function (CDF) given

by [5], for integer m,

FY (y) = Pr{Y ≤ y} = 1− e−my
m−1∑
i=0

(m)
i
yi

(i)!
. (3.14)

By averaging over the respective pdfs, the outage probability in (3.12) can be expressed as

Po =

θ3dB∫
−θ3dB

∞∫
−∞

L∫
0

FY

(
z0N0

ΩPT r−2G(θ)10ξ/10

)
fR(r)fΞ(ξ)fΘ(θ)drdξdθ . (3.15)

Substituting the expressions from (3.1), (3.2), (3.3), and (3.14) in (3.15) and integrating with respect

to θ results in

Po =

∞∫
−∞

L∫
0

1−
m−1∑
i=0

e
−m

(
πz0N0

θ3dBΩPT r
−α10ξ/10

)( πmz0N0

θ3dBΩPT r−α10ξ/10

)i
i!

 2r

L2

e
−ξ2

2σ2

√
2πσ

drdξ (3.16)

Given this system setting, the outage probability for a single user for α equal to 2 and 4 is derived

next.

3.3 Outage Probability Derivation

3.3.1 Outage Probability for Rayleigh Fading with α = 4

Substituting (3.1) and (3.3) in (3.11), and integrating w.r.t. θ results in

Po =

∞∫
−∞

L∫
0

FY

(
z0N0π

PT r−4θ3dB10ξ/10

)
fR(r)fΞ(ξ)drdξ . (3.17)
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Using (3.2) and expanding fΞ(ξ), the expression in (3.17) becomes

Po =

∫ ∞
−∞

∫ L

0

(
1− e−z0

N0
PT

θ3dB
π r410−ξ/10

)
e

−ξ2

2σ2
2r

L2

1√
2πσ

drdξ

= 1−
∫ ∞
−∞

∫ L2

0

(
e
−z0 N0

PT

θ3dB
π 10−ξ/10t2

)
e

−ξ2

2σ2
1√
2πσ

dtdξ,

= 1−
∫ ∞
−∞

e
−ξ2

2σ2

√
2πσL2

∫ L2

0

e−a(ξ)t2dtdξ , (3.18)

where,

a(ξ) = z0
N0

PT

θ3dB

π
10−ξ/10 . (3.19)

The expression in (3.18) can be evaluated in the form of Q-function as follows.

Po=1− 1√
2πσL2

∫ ∞
−∞

√
π

2
√
a(ξ)

e
ξ2

2σ2

(
1− 2Q(

√
2a(ξ)L2)

)
dξ . (3.20)

Substituting a(ξ) in (3.20) results in

Po = 1 − 1

2
√

2σL2

√
πPT

2z0N0θ3dB

∫ ∞
−∞

e
−ξ2

2σ2 10ξ/20

1− 2Q

√
2z0N0θ3dBL4

PTπ
10ξ/20

 dξ . (3.21)

Let,

b1 =
1

2σL2

√
πPT

z0N0θ3dB
and b2 =

√
2z0N0θ3dBL4

PTπ
. (3.22)

Then, (3.21) can be expressed as

Po = 1− b1
∫ ∞
−∞

e
−ξ2

2σ2 10ξ/20
[
1− 2Q

(
b210−ξ/20

)]
dξ

= 1− b1
∫ ∞
−∞

e
−ξ2

2σ2 10ξ/20dξ + 2b1

∫ ∞
−∞

e
−ξ2

2σ2 10ξ/202Q
(
b210−ξ/20

)
dξ . (3.23)

Note that for the range of values of interest, the second integral in (3.23) can be neglected and we

obtain

Po ≈ 1− b1
∫ ∞
−∞

e
−ξ2

2σ2 10ξ/20dξ

= 1− b1
√

2πσe(σ ln(10))2/800 . (3.24)

The expression in (3.24) is one of the main results of this thesis and can be easily computed for

various values of all the parameters involved. Next, we derive the results for Nakagami fading with

α = 2.
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Figure 3.2: Variation of (1-P0), where P0 is the outage probability of Rayleigh Fading versus the
SNR threshold z0.

3.3.2 Outage Probability for Nakagami Fading with α = 2

In (3.16), substituting α = 2 and r2 = t results in

Po = 1−
∞∫
−∞

L2∫
0

m−1∑
i=0

e
−m

(
πz0N0t

θ3dBΩPT 10ξ/10

)( πz0N0mt
θ3dBΩPT 10ξ/10

)i
i!

 1

L2

e
−ξ2

2σ2

√
2πσ

dtdξ (3.25)

Let,

β(ξ) =
πmz0N010−ξ/10

θ3dBΩPT
. (3.26)

Then (3.25) can be written as

Po = 1−
∞∫
−∞

L2∫
0

m−1∑
i=0

e−β(ξ)t (β(ξ)t)i

i!

e
−ξ2

2σ2

L2
√

2πσ
dtdξ , (3.27)

which can be further expressed as

Po = 1−
m−1∑
i=0

∞∫
−∞

e
−ξ2

2σ2

L2
√

2πσ

(β(ξ))i

i!

L2∫
0

tie−β(ξ)tdtdξ . (3.28)

After appropriate substitution,

Po = 1−
m−1∑
i=0

∞∫
−∞

e
−ξ2

2σ2

L2
√

2πσi!β(ξ)

β(ξ)L2∫
0

e−rridrdξ (3.29)

= 1−
m−1∑
i=0

∞∫
−∞

e
−ξ2

2σ2

L2
√

2πσβ(ξ)

(
1−

i∑
k=0

(β(ξ)L2)ke−β(ξ)L2

k!

)
dξ .
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using [27, (3.351.1)]. Rearranging the terms in (3.29) results in

Po = 1 −
∞∫
−∞

me
−ξ2

2σ2

√
2πσL2β(ξ)

dξ

︸ ︷︷ ︸
I1

+

m−1∑
i=0

∞∫
−∞

e
−ξ2

2σ2

L2
√

2πσβ(ξ)

(
i∑

k=0

(β(ξ)L2)ke−β(ξ)L2

k!

)
dξ

︸ ︷︷ ︸
I2

. (3.30)

From [27, (3.321.3)],

I1 =

∞∫
−∞

me
−ξ2

2σ2

√
2πσL2β(ξ)

dξ =
θ3dBΩPT
πz0N0L2

e
(σlog(10))2

200 . (3.31)

after substituting for β(ξ) from (3.26). Similarly,

I2 =

m−1∑
i=0

∞∫
−∞

e
−ξ2

2σ2

L2
√

2πσβ(ξ)

(
i∑

k=0

(β(ξ)L2)ke−β(ξ)L2

k!

)
dξ

=

m−1∑
i=0

i∑
k=0

∞∫
−∞

e
−ξ2

2σ2

√
2πσ

(πmz0N010−ξ/10

θ3dBPt
L2)k−1e

−πmz0N010−ξ/10

θ3dBΩPT
L2

k!
dξ . (3.32)

Let,

B =
πmz0N0L

2

θ3dBΩPT
. (3.33)

Then,

I2 =

m∑
i=1

i∑
k=0

Bk−1

k!
√

2πσ

∞∫
−∞

e
−ξ2

2σ2 10
−ξ(k−1)

10 e−B10−ξ/10

dξ . (3.34)

Using the power series expansion for the exponential in the above integral we obtain,

∞∫
−∞

e
−ξ2

2σ2 10
−ξ(k−1)

10 e−B10−ξ/10

dξ =

N∑
j=0

(−B)j

j!

∞∫
−∞

e
−ξ2

2σ2 10
−ξ(k−1+j)

10 dξ

=

N∑
j=0

(−B)j

j!
e

((k+j−1)σlog(10))2

200 . (3.35)

Thus,

I2 =

m−1∑
i=0

i∑
k=0

Bk−1

k!
√

2πσ

N∑
j=0

(−B)j

j!
e

((k+j−1)σlog(10))2

200 . (3.36)

Substituting the expressions from (3.31) and (3.36) in (3.30), we obtain

Po = 1− θ3dBΩPT
πz0N0L2

e
(σlog(10))2

200 +

m−1∑
i=0

N∑
j=0

i∑
k=0

(−1)jBk+j−1

j!k!
√

2πσ
e

((k+j−1)σlog(10))2

200 . (3.37)

The expression in (3.37) is second main results of this thesis and can be easily computed for various

values of all the parameters involved. Next, we derive the results for α = 4.
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3.3.3 Outage Probability for Nakagami Fading with α = 4

For pathloss exponent α = 4, the outage probability in (3.12) can be expressed using the approach

in the previous subsection as

Po = 1−
∞∫
−∞

L∫
0

m−1∑
i=0

e−β(ξ)r4 (β(ξ)r4)i

i!

(2r)e
−ξ2

2σ2

L2
√

2πσ
drdξ , (3.38)

which after appropriate substitution results in,

Po = 1−
m−1∑
i=0

∞∫
−∞

(β(ξ))−0.5

2(i)!

e
−ξ2

2σ2

√
2πσL2

β(ξ)L4∫
0

e−tti−
1
2 dtdξ . (3.39)

The expression in (3.39) can be simplified to

Po = 1−
m−1∑
i=0

∞∫
−∞

(β(ξ))−0.5

2(i)!

e
−ξ2

2σ2

√
2πσL2

γ

(
i+

1

2
, β(ξ)L4

)
dξ , (3.40)

where, γ (·, ·) is the incomplete gamma function [26, (6.5.2)]. From [26, (6.5.3)],

γ(x, a) = Γ(a)− Γ(x, a) ,

which implies the following inequality

γ(x, a) < Γ(a) . (3.41)
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From (3.40) and (3.41), we can obtain a bound on Po. Thus,

Po ≤ 1−
m−1∑
i=0

∞∫
−∞

(β(ξ))−0.5

2(i)!

e
−ξ2

2σ2

√
2πσL2

Γ

(
i+

1

2

)
dξ . (3.42)

Substituting the value of β(ξ) from (3.26) in the previous expression,

P0 ≤ 1−
m−1∑
i=0

∞∫
−∞

e
−ξ2

2σ2

(
θ3dBΩPT

πmZ0N010−ξ/10

) 1
2

√
2πσL22(i)!

Γ

(
i+

1

2

)
dξ

= 1−
m−1∑
i=0

Γ
(
i+ 1

2

) (
θ3dBΩPT
πmZ0N0

) 1
2

√
2πσL22(i)!

∞∫
−∞

e
−ξ2

2σ2 10ξ/20dξ . (3.43)

The integral in (3.43) can be solved using [27, (3.321.3)] resulting in

Po = 1−
m−1∑
i=0

Γ
(
i+ 1

2

) (
θ3dBΩPT
πmZ0N0

) 1
2

L22(i)!
e

(σlog(10))2

800 . (3.44)

The expression in (3.44) is the third main result of this thesis.. Next, we present the numerical

results, comparing the derived results with those obtained from simulation.

3.4 Numerical Results

In this section, we compare the analytical expressions derived in the previous section with results

obtained through Monte-Carlo simulations. For simulations, we consider an AP at the center with

a circular coverage area of radius L = 100 m. The users are uniformly randomly distributed in this

region. We consider σ = 6 dB, PT = 20 dBm, and N0 = −90 dBm as in [3]. For a single user in the

system, the variation of one minus the outage probability of Rayleigh Fading versus z0 is plotted in
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Figure. 3.2 . As observed from Figure. 3.2, the closed form approximation in (3.24) matches closely

with the results generated through simulations for various values beam widths (θ3dB= 60 and 120

degrees).

The value of Nakagami distribution parameter m is taken as m ∈ {1, 2, 5} and Ω = 1. For a

single user in the system, the variation of one minus the outage probability (1-Po) versus the SNR

threshold (z0) is plotted in Figure. 3.3 and Figure. 3.4 for a pathloss exponent of α = 2 and the

beam widths (θ3dB) equal to π/3 and 2π/3 degrees, respectively. The closed form approximation

results for various m are obtained by substituting suitable values in (3.37). It is observed from

Figure. 3.3 and Figure. 3.4, that the closed form approximation derived in (3.37) matches closely

with the results generated through simulations for various values of beam widths.
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Figure 3.5: Variation of one minus the outage probability (1-Po) with the SNR threshold (z0), for a
path loss exponent of 4 and θ3dB = π/3.
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Figure 3.6: Variation of one minus the outage probability (1-Po) with the SNR threshold (z0), for a
path loss exponent of 4 and θ3dB = 2π/3.

In Figure. 3.5 and Figure. 3.6, the variation of one minus the outage probability (1-Po) versus

the SNR threshold (z0) is presented for a pathloss exponent of α = 4 and the beam widths (θ3dB)
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equal to π/3 and 2π/3 degrees, respectively. It can be observed that the closed form approximation

for a path loss exponent of α = 4 given in (3.44) is a good approximation of the results obtained

through simulations for varying values of z0.

3.5 Conclusions

We have considered a directional WLAN system in the presence of Log-normal shadowing and

Rayleigh and Nakagami-m fading considering. We have derived approximate expression for outage

probability for single user for two different pathloss exponents (α equal to 2 and 4) in Nakagami

fading case and for α = 4 in Rayleigh fading case. Further, we have compared the derived results

with simulation results and shown that they match closely. In future, similar expressions of outage

probabilities for a more diverse physical setting can be derived.
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