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Abstract 

Imaging through a highly random media e.g. biological tissue has been one of 

the prime challenges in the field of optical imaging. Developing optical 

techniques for imaging through highly turbid media has potential 

applications mostly in the areas of astronomy and biomedical research and 

medical care. Over the years numerous efforts have been laid down in the 

direction of developing optical techniques which can detect the area of 

interest hidden in the scattering layers. One of the solutions for imaging 

under turbid media can be derived from the statistical properties of the laser 

speckle. Shape and Size of the laser speckle carries significant information of 

scatters and thus can provide a solution to the challenges of optical imaging 

in highly random scattering media. From Statistical approach, incoherent 

source is related with far field speckle distribution by Van-Cittert Zernike 

theorem. A method for imaging through the scattering medium is suggested 

and demonstrated using principle of speckle holography and intensity 

correlation technique. Here, spatially averaged far field provides only 

amplitude of complex coherence function where phase is also important. Lost 

phase is recovered by averaging speckle hologram with frequency domain 

spatial filtering i.e. Fourier fringe analysis. The complex coherence function 

is further explored for the reconstruction of object in the scattering medium 

in a single shot. In the present research work, we have concentrated on 

theoretical understanding of practical problem to achieve object information 

through multiple scattering by simulation study. An experimental study 

based on intensity correlation is practically demonstrated and object is being 

recovered with theoretical approach which finds numerous applications in 

optical imaging science mainly in biological imaging.  
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� Speed of light 
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Chapter 1 
 

Introduction 

  

 

1.1 Motivation 

Optical Imaging methods form the backbone of various fields of research and 

engineering. Due to its non-invasive nature and use of non-ionizing light, the 

applications of optical imaging has grown in the fields of metrology, life sciences, 

biomedical studies etc. The main goal of these modalities has been to replace the 

conventional imaging techniques that are costly and which use ionizing radiations 

for investigation. The optical imaging removes the ionizing effects of conventional 

imaging techniques by making use of infrared and invisible regions of the 

electromagnetic spectrum. Even after several advances and development of various 

types of techniques, imaging through a highly scattering media e.g. biological tissue 

has been one of the prime challenges for optical imaging. 

 

Scattering media is a media that scatters the incident light randomly due to the 

random nature of medium. Tissues or biological samples are made up of organic 

fibrous materials from which incident light waves get scattered thereby the presence 

of any malignant tumor, cancer or object information cannot be detected easily. 

The study of wave propagation through a random or scattering media has profound 

applications in biomedical optics and imaging through random media is basically 
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aimed to obtain the relevant information regarding the shape, depth and size of 

objects hidden in a tissue but being able to image through the scattering media is 

problematic as the disordered turbid media distorts the incoming light wavefront 

thus degrading the image formation of the optical system. Due to the extensive 

research efforts to study the phenomenon of light propagation through the random 

media several breakthroughs in the field have been established. Over the years 

many techniques have been investigated to tackle the fundamental problem of 

imaging through turbid media but only recently methods have been investigated 

which make use of the coherent propagation of laser light for focusing and imaging 

through a scattering medium and the subsequent progresses made in the 

development of advanced digital numerical reconstruction methods has shown their 

significant progress and applications in biomedical research. 

 

The coherent light scattering resulting from the inherent inhomogenity of complex 

media results in the formation of complex speckle pattern. Speckle phenomenon is 

fundamentally a statistical process and can be completely understood from the 

perspective of statistical optics. The phenomena of laser speckle can be utilized for 

extracting the information about the illuminated surface that generates it.  From 

optical imaging perspective Van Cittert-Zernike theorem in coherence theory of 

light plays a significant role and defines a relation connecting incoherent source 

structure with the far field speckle properties through a Fourier transform. The two 

point correlation between the two points at far field is related to the spatial 

fluctuating random object field. When the medium is highly scattering, the phase 

and amplitude of the field coming from it becomes fluctuating thus hiding any 

determinable information.  

 

The invention of lasers also marked the arrival of a revolution in the holographic 

imaging technique.  Holography is a novel imaging method by which with suitable 

coherent scattered and un-scattered light from an object source, it is possible to 
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record and reconstruct the complete information of the object in the recording 

media which responds only to the intensity of light. Holographic imaging with the 

coherent light has opened doors of possibilities for imaging through free space and 

scattering layers. Two main steps are mainly involved in the holography; recording 

and reconstruction of the complex waves that emerge from the object. Gabor 

originally developed the earlier form of holography technique known as in-line 

holography but it had a main drawback. Holographic imaging causes the object 

under investigation to produce two images; one real and one virtual on the camera 

plane. The real image in in-line holography gets superimposed by un-diffracted part 

of the reconstruction wave resulting in ‘twin image’ problem. In order to remove 

this drawback, Leith and Upatnieks introduced an off-axis holography technique in 

1962. 

 

By combining the principles of holographic imaging with the statistical nature of 

laser speckle and by making use of their second order properties mainly 

autocorrelation of the speckle intensity, a new method can be developed to image 

through the scattering media. One of the main advantages of such a technique 

would be its single shot operation which is of utmost importance in bioimaging 

applications. Since the human tissue is highly turbid and scatters the light, the role 

of complex correlation function in optical imaging and the subsequent recovery of 

the object in the scattering media in a single shot are highly advantageous with its 

applicability in various research fields such as microscopy, biomedical science, 

astronomy, and so on. 

 

1.2 Scope of the thesis 

The primary objective of the thesis is to introduce the speckle statistics along with 

the concept of two point intensity correlation and its application in random 

inhomogeneous media. The development of optical imaging technique which is 

capable of imaging through scattering layers is carried out by measuring the second 
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order correlation i.e. complex correlation function of a spatially fluctuating speckle 

at far field using the principle of speckle holography. An experimental geometry is 

discussed and further demonstrated from application point of view of complex 

correlation function. An object placed in a scattering regime would be recovered 

and reconstructed. Initially I will discuss a method that retrieves the complex 

coherence function of the object in the single scattering regime. Later on, I will 

focus and develop the experimental basis of recovering the complex coherence 

function and its subsequent use in recovering the object hidden behind the multiple 

scattering layers (white paint in our case).      

 

1.3 Organization of the thesis 

Chapter 2 of this thesis mainly deals with the introductory work. In this chapter 

the challenges and basic theory of imaging through random media will be presented. 

Next, we will look into few techniques which also attempt to solve the fundamental 

problem of optical imaging through random medium along with their limitations 

and drawbacks. Also the method of holographic imaging and its applications in 

optical imaging will be explained and in the concluding part of the chapter an 

insight into the basic understanding of digital holography imaging technique is 

discussed. 

 

Chapter 3 of the thesis will be devoted to the coherence theory of light and the 

effect of laser light when passing through a scattering medium. First and second 

order speckle statistical properties will be discussed. Also an experimental method 

based on speckle holography to retrieve the complex coherence function will be 

demonstrated through which both phase and amplitude of the randomly varying 

speckle field can be recovered. 

 

Chapter 4 will mainly deal with the recovery of an object in a multiple scattering 

medium. The experimental setup for imaging through the scattering layers will be 
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presented and the speckle field complex coherence function of an object in the 

scattering medium will be recovered and the object information will be 

reconstructed. 

 

Chapter 5 gives the summary and future work for the given project. 
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Chapter 2 
 

Random Media and Holography 

Imaging  

   

2.1 Historical overview of Optical Imaging 

Our current knowledge of optics and its related phenomenon has a very interesting 

background and history. In order to visually perceive things, humans and other 

animals have been bestowed by nature with the wonderful natural organ called eye. 

The Eye in collaboration with brain nerves lets us visualize objects around us with 

the help of light. The Greeks coined the term ‘optikos’ for such ability which simply 

means vision [1]. Though Archaeological findings suggests that the knowledge of 

optics was also known to ancient human civilizations but it was not well developed 

and fully understood. The works of Leonardo da Vinci (1452-1519) also reflect his 

knowledge of optics but it was not till 17th century that the development of 

scientific optics picked pace. The fundamental works in the field of optics was done 

through the contribution of many. Works done by notable scientists like Snellius, 

Isaac Newton, Descrates, Galileo, Huygens and others laid the foundation of present 

day optics [2]. 

 

The development of scientific theory and understanding of light was further 

enhanced throughout 18th and 19th century through the works of many great 

scientists. In the 19th century, Fraunhofer (1787-1826) known as the father of 

astrophysics and spectroscopy constructed the first spectroscope which he used for 
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the study of sun's spectrum. Fresnel (1788-1827) during the same time furthered 

the wave theory of light and explained the dependence of transmission on the 

incidence angle. The breakthrough works of Albert Einstein (1879-1955), Max 

Planck (1858-1947) and the formulation of Maxwell’s equations further broadened 

our understanding of light [3] and finally led to the invention of first laser in 1960 

by T. Maiman. Ever since the laser was invented, optical imaging has seen a 

tremendous growth and many techniques have been researched and developed 

across various fields especially in the field of bio-imaging. 

 

The optical imaging techniques help in removing the harmful ionizing effects of 

conventional imaging as they make use of “Near Infrared Region” (650-1350nm �) of 

the electromagnetic spectrum, additionally optical techniques are also cost effective 

and can measure various properties of the tissue or organ.  Since the human tissue 

is highly turbid and scatters light randomly, developing optical imaging techniques 

for imaging through highly turbid media has potential applications in the field of 

biomedical imaging. Before I go to the problem of imaging through the turbid 

media using speckle holography which is our ultimate goal, I would like to cover the 

introductory theory of the scattering medium and discuss few techniques which 

have been developed over a period of time to image through the scattering medium 

along with their limitations. We will also discuss the concept of holographic imaging 

technique in this chapter which will be utilized for the development of our imaging 

method. 

 

2.2 Optical Imaging through random media 

Random/scattering media is a media through which we cannot see clearly for e.g. 

clouds, milk and human tissue as light waves which are incident on them get 

scattered due to the random nature of the inhomogenous medium, therefore the 

detailed study of light wave propagation through an inhomogenous media has wide 

range of applications in biomedical research. Imaging through disordered non-
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homogenous media is difficult because the inhomogenity of the medium makes 

changes in wavefront of incoming light and degrades the quality of image formation 

of an optical system [4]. Also, the phase, polarization and the direction of 

propagation of the light is altered while travelling through the scattering media [5]. 

This uncertain and random deformation in the wave that has negative impact on 

the performance and efficiency of the optical imaging systems has been investigated 

using different optical methods over the period of time. The underlying idea has 

been that any medium, even a complex multiple-scattering medium, performs a 

transformation on the light field that you can undo by wavefront shaping thereby 

being able to image through a scattering medium. The optical imaging techniques 

through a random media can be broadly classified as incoherent imaging and 

coherent imaging depending upon the nature of light they use for investigation. In 

the coming section we will discuss some of the imaging methods which attempt to 

deal with the same optical problem of imaging through turbid media along with 

their limitations to get an idea of the fundamental problem of optical imaging 

through such a media.  

 

2.2.1 Transmission matrix Method 

The behavior of a complex media can usually be described by their average 

macroscopic properties which can be obtained through intensity measurements. 

There is an alternative approach for the study of scattering media which lies in the 

retrieval of transmission matrix (TM). Transmission matrix is the subpart of main 

scattering matrix as described in [6]. Within this foundation, basically the Green’s 

function is recorded between an array of sensors and an array of sources during 

transmission. The knowledge of the TM brings more explanatory insight into the 

scattering medium for example one can extract the multiple and the multiple single-

scattering components from the recording of TM. The distribution of the singular 

values of the TM can also be made to relate with the diffusion properties and may 

exhibit a coherence effect beyond the scattering transport regime like weak and 
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strong localization effects. Such techniques which are based on the reversibility and 

the reciprocity of the wave equations have found applications in various areas 

ranging from telecommunication to acoustic imaging and even seismology. For 

acoustic waves oscillation frequencies are compatible with electronic detection and 

transducers (antennas) are natural local receivers hence the TM can be measured in 

a straight forward way.  

 

 

Figure 2.1: Schematic of the apparatus for measurement of transmission matrix [8]. 

On the contrary, the transmission matrix reconstruction of a turbid medium is still 

an elusive problem in the optical imaging domain. Nevertheless few recent 

experiments have demonstrated that it is possible to manipulate light in a 

scattering medium in order to focus light through a turbid medium as well as 

efficiently couple it to the open channels of a complex disordered sample [7]. Figure 

2.1 shows the experimental setup of a transmission matrix based imaging technique. 

These experiments were made possible mainly due to the emergence of spatial light 

modulators (SLM) but the technique has its own limitations such as less resolution, 

high processing time and need of extensive sequencing of the smaller matrix. 

2.2.2 Time-Gated Imaging Methods 

This technique works on the gating mechanism and is utilized for separating the 

backscattered light from the host medium. In order to directly detect the object 

hidden in a highly turbid media the light component that diffuses is sorted out from 
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earlier arrived snake and ballistic photons [8]. Figure 2.2 shows the different classes 

of photons in a random media. The backscattered light imaging techniques have one 

major difference from the transmission method approaches. In the transmission 

approach the photons that arrive earlier at the detector array carry the information 

about the object hidden in the scattering media directly while as in backscattered 

investigational methods the photons that arrive at the detector first will be the 

photons that have been backscattered by the host material.  

 

Figure 2.2: The different classes of photons in a turbid medium [10]. 

The backscattered ballistic photons that arrive later from the host medium in which 

the object is hidden are mixed with other photons like ballistic, snake and diffusive 

[9]. 

 

Figure 2.3: Experimental setup of a back-scattered imaging system using NLOG [9] 

In time gated imaging technique a nonlinear optical based gated (NLOG) is applied 

for acquiring the backscattered time resolved images. The main principle that 

governs the NLOG implementation is based on the non-linear second order optical 

coefficient of materials like KTiOPO4 (KTP) under the condition of phase 
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matching [9]. The schematic experimental setup of the NLOG imaging system is 

shown in Figure 2.3. In time gating method a mode-locked laser system is used to 

emit a laser pulse for illuminating the host medium. The second harmonic of the 

NLOG system is used as the gating pulse. It also uses a long crystal as a gain 

medium. Additionally, it makes use of a pair of cross polarizers for adding them 

into the scattered signals after and before the crystal. In the absence of the gating 

pulse, the input signal polarization remains the same and light beam is blocked by 

the analyzer (Second polarizer). The amplified output polarization is perpendicular 

to the input signal of the system. In this way due to the gradual delaying and 

synchronizing the gated pulse with respect to the input signal, we can selectively 

slice the scattered intensity signal profile and can also reject the diffusive portion 

simultaneously. The output signal of the time sliced NLOG signal can be amplified 

and then further passed towards the analyzer. After this a narrow band centered 

filter is used to select the signal [9]. Though backscattered imaging based on NLOG 

system drastically improves the signal to noise ratio and sensitivity of the image by 

making use of parametric amplification but time gating methods suffer from various 

drawbacks like acquisition speed and complexity of hardware requirements.  

 

2.2.3 Continuous wave light source Imaging 

This method makes use of low coherence continuous wave sources along with the 

combination of temporal and spatial Fourier transforms to image through the 

scattering medium. In this technique, diffusive light is separated from the ballistic 

light by making use of their propagation and direction and uses a low power 

continuous source like diode laser or He-Ne laser which forms the input and is 

polarization modulated in time [10]. The need for a step scan in this method is also 

not required as partial discrimination formulated on the propagation direction is 

achieved by incorporating spatial filter instead of the pair of pin holes which allows 

for the 2-dimensional CCD camera recording. The input polarization modulation is 
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done to record the sequence of images and the fixed analyzer is used for passing the 

output light. By doing temporal Fourier transform on the sequence of images, the 

signal is extracted and the signal has the same modulation time as that of the input 

light. During post processing, polarization discrimination is achieved [10]. 

 

The experimental setup based on the continuous wave method is shown in Figure 

2.4. In the experimental analysis a linearly polarized light whose polarization plane 

rotates at an angular frequency �  is generated by passing it through rotating half-

wave plate or by passing through the rotating polarizer. The light after this is 

incident on the object under study and the light emerging out is spatially filtered 

by using a lens aperture system. This is done to significantly reduce the diffusive 

light component. Now, at the focal plane of the lens, light waves that are 

propagating along various directions are brought into focus at several points. 

 

Figure 2.4: Schematic diagram of the experimental setup [10]. 

The ballistic component of the light is focused at the focal point and is transmitted 

through the aperture; meanwhile the diffusive components are focused off-axis and 

thus will be blocked. Following this the signal that has been spatially filtered 

consists of snake, ballistic components with diffusive component reduced to a large 

amount. The signal is then made to pass through an analyzer which is fixed and 

finally recorded on to the CCD camera. Through this a sequence of images are 

recorded. These images differ as they have different input polarization. The input 
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polarization is rotated in steps and images are captured when the input modulating 

polarization element is stationary. Since ballistic component undergoes only 

coherent scattering therefore it maintains its polarization and on passing through 

the analyzer exhibits a variation in intensity [10]. 

 

 Similarly, snake component preserves its input polarization to a large extend but 

the diffuse component has a random variation both in polarization and the direction 

of propagation. The snake and ballistic photons are discriminated by the formation 

of time series for each pixel and then time series is Fourier transformed. At last, an 

image is formed by making a 2-dimensional gray scale plot. The intensity at each 

pixel is equal to the square of amplitude component at that pixel. The continuous 

light wave imaging methods as a whole are very sensitive and also fail to 

differentiate between tissue absorption and tissue scattering. 

 

Above mentioned techniques are based on estimation of the random scattering at 

different levels and they try to solve the problem of imaging through scattering 

media by using transmission matrix elements or by taking the ballistic, snake or 

diffusive light into consideration. Having provided an insight into the problem of 

imaging through turbid media, now I would like to discuss about the highly useful 

imaging technique named holography which is of utmost importance in our work. 

 

2.3 Basics of Holography Imaging 

Holography is an imaging technique which was invented in 1948 by an English 

scientist named Dennis Gabor as a method for recording and reconstructing 

amplitude and phase of a wave. He invented it while working to improve the 

resolution of an electron microscope [11]. He named the techniques as ‘holography’ 

from the Greek words ‘halos’ which means complete and ‘graphein’ which means to 

write. Although Gabor had developed the technique in 1948 but the practical 

application of holographic principles was not possible due to non-availability of 
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coherent sources but after the invention of laser in 1960 by T. Maiman, the field of 

holographic imaging got revolutionized. Since laser light releases powerful light 

bursts therefore it was ideal to develop the holograms. A hologram is the 

photographically recorded interference pattern between a wave field scattered from 

the object and a reference wave [12]. Holograms can record entire 3-dimensional 

wave field on a flat surface. The development of holograms and computationally 

fast reconstruction methods paved a way for wider application of holographic 

principles. The invention of electronic capture devices further brought holographic 

principles to the forefront of optical imaging. 

 

According to the principle of holography, with suitable coherent scattered and un-

scattered light from an object source it is possible to record and reconstruct the 

complete information of the object i.e. amplitude and phase in recording media 

which responds only to intensity of light [13]. Holographic imaging involves two 

main steps namely recording and reconstruction of complex waves that emerge from 

the object. The data is recorded in the form of a “hologram” which contains high 

spatial frequencies and cannot be seen by human eyes.  

 

Figure 2.5: Gabor’s In-line Holography setup [14]. 

Reconstruction of the image is carried out by illuminating the hologram by the 

reference wave again. The reconstructed image can be recognized by effects of 

perspective and depth of focus. Initially, Gabor had illuminated the hologram by a 
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parallel beam through the object known as in-line holography. Gabor’s original in-

line setup for recording the hologram is shown in Figure. 2.5. 

 

In in-line holography a monochromatic source after collimation by the lens is used 

to illuminate the object. The light that passes through the object is made up of two 

fields, scattered field (��) and unscattered field (��). Behind the object at some 

distance “�”, the distribution of intensity from the interference of these two fields 

can be written as [14]: 

 �(�, �) = |��|� + |��(�, �)|���
∗��(�, �) + ����

∗(�, �) 2.1 

Thus the object and reference beam will interfere at the photographic film. At a 

distance � from the object, a plane un-scattered wave and scattered field interfere 

and the detector records an intensity distribution generated by the interference of 

these two fields. The intensity distribution of two complex waves depends on the 

amplitude and unknown phase of waves. 

 

Now with an assumption of a linear response to the associated photographic plate 

intensity, we can find the transmission function which takes the form of:  

 �(�, �) = � + ��(�, �) 2.2 

Here, � and � are the constants. The hologram gets written and contains all the 

relevant object information in its transmission function. Reconstruction the image 

information is done by illuminating the hologram once again as if it’s a new object. 

Now the field that is scattered by the hologram can be represented as the 

multiplication of transmission function and the illuminating plane wave which can 

be represented as:   

 � (�, �) = ���(�, �)  

 = ��(� + �|��|�) + ���(|��(�, �)|�) + �|��|���
∗(�, �) 2.3 
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In above equation 2.3, the first term is spatially constant and the second term is 

negligible in comparison with the final two terms as for a transparent object the 

unscattered field is much stronger than the scattered field, therefore the last two 

terms are of utter importance. Significantly, these two terms contain the complex 

far field and its conjugate; hence an observer standing behind the hologram at a 

position � will see the image resembling the object.  

 

Figure 2.6: Image formation and Reconstruction in In-line Holography [14]. 

Figure 2.6 shows the formation of real and virtual images from Gabor’s in-line 

method. In-line holography provided a new method of imaging objects but it did 

suffer from few drawbacks as will be briefly explained.  

 

The main drawback of in-line holography was that the real image got superimposed 

by un-diffracted part of reconstruction wave, resulting in “twin image” degrading 

the image quality and thus rendering a significant problem in the Gabor’s 

technique. Due to the formation of twin image the virtual image is out of focus 

when the real image is brought to the focus thereby marking a physical constraint 

in holography. Since twin problem posed a significant problem in the practical 

applications of holography. Over the period of time various attempts and studies 

were done to remove and eliminate this problem in the in-line holography. A well 

established method of holography known as off-axis holography is used to remove 

the effects of twin image in the inline holography [15].  
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Two scientists namely Juris Upatnieks and Emmett Leith while working at the 

University of Michigan’s Radar and Optics lab invented a new modified technique 

to remove and solve the problem of twin image of the in-line holography [15]. Most 

of the limitations of the in-line method were overcome by going to an off-axis 

geometry that allows various image components to be separated. 

 

Figure 2.7: Basic setup for recording of Off-axis Hologram[16]. 

The main difference in off-axis method of holography is that a mutually coherent 

wave spatially separated from the object wave is used to record the hologram. In 

the analogy of the radio communication methods, off-axis holography basically adds 

carrier frequency to the field of interest. Recording of off-axis hologram is similar to 

the in-line holography. 

 

The geometry used for the recording of hologram is shown in above Figure 2.7. 

Here, laser is used as a source. The reference laser beam is the unaltered wave and 

object beam is the wave field that is scattered from the object under investigation, 

therefore we get the interference pattern in the form of a hologram on the 

photographic plate. Figure 2.8 shows how the object is reconstructed back. The 
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mathematical basis for the off-axis holography can be found in [17] for more 

elaboration on the off-axis holography. 

 

Figure 2.8: Reconstruction of images from a Leith-Upatnieks Hologram[16] 

The initial holographic techniques were mainly done optically meaning that both 

the hologram recording and recovering of the object field is done optically. The 

main disadvantage of optical holography is that the object that is reconstructed 

cannot be characterized properly. In order to remove it, digital holography 

technique is used which is explained in detail in the following section. 

 

2.4 Digital Holography 

Over the decades, the wonderful principles of holography had been known to many 

but the practical application of holography was hindered by the troublesome 

procedures and stringent reconstruction requirements. Traditionally recording the 

interference pattern of light in holography was done with the help of photographic 

plate. Digital holography replaced the conventional photochemical procedures of 

holography with the computationally efficient and fast electronic imaging. In digital 

holography the recording of holograms is mainly done with a charge coupled device 

(CCD) camera or a similar device. In 1994, Schnars and Jueptner became the first 

scientists to use a CCD camera directly connected to a computer as the input in a 
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holography which we will see in the next chapter is utilized in our imaging 

technique and has potential applications in biomedical research. 

 

Having discussed the holographic imaging techniques, I would now like to focus on 

developing the theoretical basics of our method for imaging through random media 

which will utilize the principles of holography imaging. In the next chapter, 

coherence theory will be discussed along with the speckle statistics which lays the 

foundational basis of our method.  
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Chapter 3 
 

 

 

Coherence Theory and Speckle 

Statistics  

 

Statistical knowledge plays a fundamental role in the analysis of physical and 

engineering problems. Though the statistical methods are somewhat complex but in 

the long run, they are far more superior and powerful than the deterministic 

methods. The interaction between the light and matter is also basically a statistical 

phenomenon which can be very well understood with the statistical analysis thereby 

statistical fluctuations of the light waves are of high value in optical imaging and 

plays an important role in determining the nature of the image formed [21]. 

Statistical optics basically involves the study of random effects of light. For random 

light, field dependence on the position and time cannot be predicted completely and 

one has to resort to the statistical methods. The random nature of light arises 

mainly due to the unpredictable and random nature of the medium in which the 

light wave is propagating or due to the randomness of the light source. Another 

factor that can cause randomness in the light waves is the scattering of light from 

the rough surfaces. While imaging through a vacuum, the statistical aspects of the 

imaging system do not change but if the medium is highly fluctuating then several 

other statistical aspects are added to the imaging problem which needs to be taken 

care of. 
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In a statistical process we make use of statistical measurements like standard 

deviation, correlation and averages etc to describe the optical fields. In the first 

order characterization of optical fields, the field behavior is observed in one point of 

space or time but statistical optics mainly makes use of second order statistics for 

the characterization of partially coherent fields [22]. If the coherent light is incident 

on the scattering layers then laser speckles are formed which will be discussed in 

detail in this chapter. When the coherent laser light is incident on a biological 

tissue or in-vitro tissue samples speckles termed as biospeckles are formed on the 

observation plane however there isn’t any noticeable difference between the 

properties of the biospeckles and the speckles generated from non biological 

scattering layers and both can be characterized by same optical properties [23]. In 

second order speckle statistics, the field is characterized by the field correlation at 

two separate points and complex coherence (Correlation) function can be used to 

describe the random field fluctuations. As already stated, coherence plays a vital 

role in the understanding of the field randomness and speckle coherence functions 

are completely adequate for imaging through the scattering media as the random 

field coherence function is connected to the source structure by the Van Cittert-

Zernike theorem [24]. The theorem and recovering the complex coherence function 

in the far field can be used to image through scattering layers which is the area of 

high interest in the biological studies and the upcoming sections will be devoted to 

the understanding of coherence theory and demonstrating the method to retrieve 

the speckle complex coherence function by using speckle characteristics in a 

scattering medium and utilizing the off-axis holography.  

 

3.1 Coherence 

Light waves have a property of interference; fundamentally the interference that is 

associated with the light waves emerges when individual electromagnetic fields of 

the combining waves interact with each other.  When two light waves interfere with 

each other then depending on their relative phase they can add up in such a way 
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that the amplitude of the resultant wave will be greater than their individual 

amplitudes and such type of interference is said to be constructive interference. 

Similarly, two waves can also interact with each other such that the resultant wave 

possess amplitude lesser than the individual amplitudes of the two waves and this 

type of interference is known as destructive interference. An ordinary light source 

e.g. Light bulb is not able to produce the interference effects mainly because the 

waves from such sources do not maintain zero or constant relative phase and such 

types of light sources are known as incoherent light sources therefore waves are said 

to be coherent when they have a constant relative phase relationship, similarly light 

sources are coherent if the waves emitted by them have same frequency and are 

phase linked with constant or zero phase difference [25]. It was very difficult to 

produce the coherent waves earlier but after the invention of lasers, the coherence 

theory has been developing rapidly as one of the main characteristic properties of 

laser light is the coherence of its emitted radiations. Laser an acronym for “Light 

Amplification by Stimulated Emission of Radiation” is a device that emits light 

through the method of optical amplification based on stimulated emission of 

photons. As the common stimulus is used to trigger the emission events in the laser 

that provides the light amplification therefore photons that are emitted have a 

definite phase relationship with each other. The emitted laser light has got high 

degree of coherence which is unachievable using other sources. Also, laser beam can 

be focused on very minute spots thereby attaining very high irradiance and can be 

used as a beam of low divergence in order to concentrate their power at a large 

distance. 

 

The light coherence can now be defined in a much precise way as the correlation of 

the fields either in time or space. Coherence shows how similar (correlative) two 

time varying electric field distributions are. The coherent light intensity distribution 

is the absolute square of the field at the observation plane in terms of time and 

position and can be mathematically represented as:  
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 �(�, �) = |�(�, �)|� 3.1 

Also, the Average Intensity for a random light at an observation plane can be 

represented by: 

 �(�, �) = < |�(�, �)|� > 3.2 

Where <> represents ensemble average. 

 

Before 1950’s the coherence concept was limited to the electromagnetic field 

interference however in the mid and latter half of the 1950’s Hanbury Brown and 

Twiss were able to perform and demonstrate the effects of coherence through the 

correlation of light intensities [26]. The phenomenon developed rapidly after the 

invention of lasers and led to the development of quantum coherence theory which 

is now an integral part of modern optics. In our work we will be using the similar 

concept of two point intensity correlation for imaging through the random media.  

 

The coherence is basically of two types namely spatial coherence and temporal 

coherence. Our main interest is on the spatial characteristic of the coherent light 

and its applications therefore we will concentrate more on spatial properties of light 

rather than the temporal properties but for better understanding of coherence 

concepts, we will discuss temporal along with spatial coherence.  

 

3.1.1 Temporal Coherence  

The temporal coherence is the ability of light wave to interfere with its temporally 

delayed version and can be described with the help of a Michelson interferometer as 

shown in Figure 3.1. In a Michelson interferometer light beam from the source is 

divided into two by the beam splitter. Beams after splitting reach two mirrors 

individually placed at different positions. One of the mirrors is moveable so that 

path difference can be introduced [27]. The light beams after getting reflected by 

the mirrors travel back towards the beam splitter and the unified beam reaches the 
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detector. For a smaller path differences interference fringes will be formed in the 

observation plane. 

 

Figure 3.1: Experimental setup of Michelson interferometer [28]. 

The observed fringes are caused by the temporal coherence that occurs between two 

interacting light beams. The fringe characteristics depend on the time delay ∆� that 

has been introduced and is known as coherence time which can be given by the 

following equation: 

 ∆� =
1

∆�
 3.3 

Where, � is the bandwidth. 

Also, the coherent length can be mathematically represented as:  

 ∆� = �∆� 3.4 

Where, � is the velocity of light, ∆� is also known as the coherence length. 

 

The coherence time is very important quantity and provides the time interval 

during which correlations of the light waves at a particular point in the optical field 

continue to exist and the concept of correlation plays a fundamental role in the 

understanding of above phenomenon. There exists a strong correlation effect 

between the interfering waves in succession if the time delay between the light 

waves is less than the coherence length [21]. On the contrary if the coherence length 

is greater than the time delay then no correlation exists thereby leading to the 



28 

absence of interference fringes. In the case of temporal coherence Wiener-Khintchine 

theorem plays a critical role for measuring the autocorrelation by relating it to the 

spectral density and the detailed explanation for the same is given in [29]. 

The temporal autocorrelation function can be represented mathematically by: 

 �� = [�∗(�)�(� + ∆�)] 3.5 

Here, � and �∗ represents the field and its conjugate. 

The temporal coherence shows how monochromatic a source is. In a polychromatic 

beam of light, the rate of temporal change is high and higher the change more is 

the polychromaticity. Thus a temporally coherent monochromatic beam of light has 

a high coherent length. 

 

3.1.2 Spatial Coherence 

Spatial coherence is concerned with the ability of light beam to interfere with its 

own spatially shifted version or in other words spatial coherence represents the 

correlation of two spatial points with respect to time thereby giving an insight 

regarding the uniformity of the phase. The graphical representation of spatial 

coherent waves is shown in Figure 3.2.  

 

Figure 3.2: Graphical representation of Spatial waves [14]. 

The phenomenon of spatial coherence can be best explained with the help of 

Young’s experiment as shown in Figure 3.3. Suppose light from the source 

propagates through the space towards the screen with two slit holes as shown in the 
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Figure 3.3. When pinholes �� and �� are held close to each other than interference 

fringes are observed on the screen. The fringe formation is considered as a 

manifestation of spatial coherence and is the resultant of superposition of two waves 

that emerge from the slits. Basically two beams form the fringes due to the 

correlation they share provided the condition of spatial separation is fulfilled [21]. 

Also, the time delay of the source should be less than its coherence time for 

observing the fringes. The observed interference fringes are spread throughout the 

neighborhood and the visibility of these fringes depends on the degree of correlation 

of the light waves. 

  

 

Figure 3.3: Young’s double slit experiment 

If ��(�)and ��(�) are the electric fields from the two slits which are superimposed at 

the detector then spatial coherence or complex degree of coherence ��� can be 

mathematically represented as suggested in [25]: 

 
��� =

1
2 < ��(�)��

∗(�) + ��
∗(�)��(�) >

2�����

 3.6 

Where, �� and �� are the intensities of the beams from two slits which are 

superimposed at the screen or detector.  
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 Further, the intensity distribution at the observation plane can be represented as:  

 � =  �� + �� + 2� ���� ���cos θ 3.7 

Where, θ is the phase difference in the path at the screen from two slits.  

Also, Visibility (�) of interference pattern can be defined mathematically as:   

 � =
���� − ����

���� + ����
 3.8 

For higher values of � fringe contrast will be high whileas when � = 0, fringes get 

washed away. From the above equations we can derive a relationship between the 

degree of coherence and the Visibility and can be written mathematically as:  

 � =
2�����    |���|

�� + ��
 3.9 

The values of correlations are of infinite orders and Young’s double slit experiment 

provides the information about the second order spatial coherence of the optical 

field. Having discussed temporal and spatial coherence in detail, we now focus our 

attention to the coherent scattering and look in detail the spatial speckle statistics. 

Though sources like mercury green line or spectral sources do show a certain degree 

of spatial coherence but their coherence does not match with that of the laser 

source. 

 

3.2 Laser Speckle - Coherent Scattering 

With the arrival of laser in 1960 the world of imaging got revolutionized. Since laser 

light has a high coherence therefore when an optically rough surface or scattering 

layer is illuminated with it, the light that is backscattered produces an interference 

pattern on the recording screen [30]. The interference pattern generated by the laser 

light on scattering from an optically rough surface or by propagating through the 

random medium having random fluctuations of refractive index, consists of bright 

and dark areas which scientists had termed initially as “Granularity” but later it 

became known as “Speckle” [31]. Figure 3.4 shows the origin of speckle in free space 

once the incident light on rough surface is scattered. 
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Figure 3.4 Physical origin of speckle pattern in free space [33]. 

Although the laser speckle phenomenon we are concerned with is the result of 

coherent light scattering but similar phenomenon can be witnessed due to the 

scattering of X-rays by fluids and due to the electron scattering from carbon 

(Amorphous) films [32].  A typical experimentally generated speckle pattern from a 

coherent laser through diffused media is shown in the Figure 3.5.  

 

Although at first speckle was considered as a noise and nuisance as it used to affect 

the resolution but as more research efforts were utilized in studying of the laser 

phenomenon, its utility for imaging especially holographic imaging was found out 

[33]. The phenomena of laser speckle can be utilized for extracting the information 

about the illuminated surface that generates it. Even small changes in the 

conditions of imaging can cause changes in the shape of generated speckle pattern. 

As already mentioned, the interference intensity resulting at a specific point on the 

image is due to the superposition of all waves arriving at that point. The maximum 

amplitude of the recorded intensity at a single point can be observed when all the 

waves arriving at a point are in same phase and a bright spot can be seen at the 

point of maximum intensity. Similarly minimum intensity of the recorded intensity 



32 

at a single point can be observed when all the individual waves interacting at a 

single point cancel out thereby creating a dark speckle spot.   

 

Figure 3.5: Speckle pattern generated from a coherent laser source 

 It is now established that this fundamental random interference phenomenon of the 

laser speckle has applications in various branches of engineering and research. Due 

to the significant applications of laser speckle in other areas of research, the term 

“speckle” has achieved a far more general meaning than what could have been 

imagined when laser speckle was first introduced in 1960 [34]. In the next section 

we will look into the first and second order speckle statistical properties. A brief 

introduction to first order properties will be presented followed by the second order 

speckle properties especially intensity correlation function which can be utilized for 

imaging through the turbid media. 

 

3.2.1 First-Order Speckle Statistics 

As speckle pattern is caused by the superimposition of statistically independent 

waves due to the scattering media therefore it can be characterized by intensity, 

amplitude and phase. The values of these quantities in the scattered field vary 

randomly from one point of detection to another [23]. In first order speckle statistics 

speckle properties are calculated at one point. In order to calculate these values at a 

detection point, scattered field probability distribution functions play a vital role as 
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by using them one can calculate the first order speckle statistics of the speckle 

pattern mainly mean values and variances [22].   

 

Figure 3.6: Formation of speckle pattern in a fraunhofer plane [35]. 

Let a speckle pattern be formed from the coherent light in an observation plane as 

shown in the Figure 3.6. 

We can write the complex amplitude of the scattered wave as suggested in [35] as:  

 �(�, �) = � ����������������(����)

�

���

  3.10 

Here � is the number of scatterers, 

�� is the modulus of the scattered wave due to scatterer, 

�(�)�(�)is the two dimensional Dirac delta function, 

�� is the phase of the wave. 

Taking the Gaussian far field assumptions, the complex amplitude �(�, �) can be 

written as: 

 �(�, �) = ∫ ∫ �(�, �) �[
����

��
(�����)]�����

��
  3.11 

 

From equation 3.10, 3.11 and by making use of Fourier transform we get: 

 �(�, �) = ∑ ���������
��� �[

����

��
(�������)  3.12 

Also, the probability density distributions of the scattered complex field amplitude 

have a Gaussian form which can be derived from central limit theorem [22]. The 
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probability density of the field phase can be characterized by the uniform 

distribution and accordingly the probability density for developed speckles has a 

negative exponential form as shown below: 

 �(�) =
1

< � >
�

�(
�

���
)
 3.13 

The above property can be manifested as the unit value of the speckle contrast 

which can be written as follows: 

 � =
��

< � >
= 1 3.14 

The contrast is the ratio between the standard deviation and mean value of the 

speckle intensity fluctuations. Also, the relation between the developed speckle 

patterns for first and higher order statistical moments can be written as:  

 
< �� >

< � >�
= �! 3.15 

And can be easily calculated from the statistical moments as shown in equation 

3.16:  

 < �� >= � ���(�)��
�

�

 3.16 

A scattering surface consisting of many equal sized facets produces non-Gaussian 

speckle distribution characterized by the dependency of second order normalized 

moment of intensity fluctuations upon the system parameters as shown in equation: 

 
< �� >

< � >�
= 2(1 − ���) + [

����

4��(�)
]��� 3.17 

In the above equation �  is the wave number of the light. 

N is the number of facets within the area of illumination.  

� is the radius. 

�(�)is the probability of finding the facet.  

If the speckle is fully developed, the first order statistics of the speckle fluctuations 

are completely non-dependent on the scattering object structural properties 

therefore they cannot be utilized for characterization of the scattering but they are 
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enough to explain the brightness fluctuations. The speckle intensity statistics for a 

known illumination are the basis for several speckle technologies. The detailed 

study of first order speckle statistics can be found in [36] for better understanding. 

We now look into our main topic of interest i.e. the second order speckle statistics. 

 

3.2.2 Second-Order Speckle Statistics 

The statistical properties of a scattered field can also be characterized by 

simultaneous analysis of the correlation of the complex amplitude values for two 

spatially separated observation points and for different moments of time. Van 

Cittert-Zernike theorem is one of the central theorems in the coherence theory and 

according to it, in the far field; two-point spatial coherence function shares a 

definite relationship with an incoherent source structure [37]. Let us consider a 

monochromatic light that is incident on a rough surface. The scattered field can be 

observed in the observation plane as shown in Figure 3.7. 

 

Figure 3.7: Geometry for speckle formation [34]. 

The scattered fields from the rough surface can be described in the adjacent plane 

to that surface by a complex valued function (�,h). The speckle field of interest is 

represented by the complex field �(�, �) which is observed across the plane parallel 

to the (�, �) plane. Intensity distribution in the (�, �) can be represented from 

equation 3.1 and can be reproduced as: 

 �(�, �) = |�(�, �)|� 3.18 
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Our main goal is to calculate the autocorrelation function of the intensity 

distribution in (�, �) plane. The autocorrelation function in terms of its intensity 

can be represented by the below equation as in [34]: 

 
 ��(��, ��; ��, ��) = < �(��, ��)�(��, ��) > 3.19 

Here average is taken over ensemble of rough surfaces.  

The autocorrelation function in this form provides a considerable measure of speckle 

width. In order to calculate the above autocorrelation function, we take into 

consideration the fact that if a surface is rough as compared with the wavelength 

then the field �(�, �) behaves as a complex random Gaussian variable at each point 

on (�, �). In case of such fields; the intensity autocorrelation function can be 

represented by: 

 ��(��, ��; ��, ��) = < �(��, ��)�∗(��, ��) > 3.20 

The above equation represents the mutual intensity of the field. 

For complex circular Gaussian fields, the relationship between the  �� and �� after 

taking into consideration the fact that ��(�, �; �, �) = < �(�, �) > can be written as: 

 
��(��, ��; ��, ��) = < �(��, ��)�(��, ��) > +|��(��, ��; ��, ��)|� 3.21 

From above equation the calculation of �� is reduced to the measurement of ��. 

Now, from the Fresnel approximation of the Huygens-Fresnel principle as suggested 

in [38], we can write:  

 �(�, �) =  
1

��
�

[
���
�� �������]

� �(�,h)

�

��

�
[
���
�� ����h��]

�
���
��

(����h)]���h
 3.22 

Here �(�,h) is the complex valued function which represents the linear polarization 

component of the field. Now, after interchanging the orders of integration and 
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averaging we get a relationship between  �� at the observation plane and �∝ at the 

scattering plane as follows: 

 

��(��, ��; ��, ��) =

 
�

����
�

�
��

��
���

����
����

����
���

× ∬ ∬ �∝���,h�, ��,h�� �
�

��

��
���

����
����

����
���

×

�
�

���

��
��������h���������h�������h�����h�  

3.23 

Here, we area mainly concerned with the modulus of �� thereby we ignore the 

initial exponential factors in (��, ��) and(��, ��).  

Also we have: 

 
�∝���,h�, ��,h�� ≅ ��(��,h��∗(��,h�)�(�� − ��,h� − h�) 3.24 

� here is a constant of proportionality and �(�, �) is the amplitude of incident field. 

�(�, �) represents the two dimensional delta function. Now, due to the 

simplifications we can write: 

 ��(��, ��; ��, ��) ≅
�

����
� |����,h��|�

�

��

�
{
���
�� ���(�����)�h�(�����)�}������ 3.25 

The above equation clearly depicts that the observed field at the plane is dependent 

only on the coordinate difference at the (�, �) plane and can be calculated by 

Fourier transforming the intensity distribution|�(�, �)|�. The relation is analogous 

with the Van Cittert-Zernike theorem of the coherence theory. Now, we can define 

the more convenient normalized version of the mutual intensity which is known as 

the complex coherence factor as follows: 

 μ�(��, ��; ��, ��) =
��(��, ��; ��, ��)

[��(��, ��; ��, ��)��(��, ��; ��, ��)]�/�
 3.26 

Comparing it with equation 3.25, the complex coherence factor can be written as:   
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 μ�(∆�, ∆�) =
∬ |�(�,h)|��

��
�

[
���
��

[�∆��h∆�]���h

∬ |�(�,h)|����h
�

��

 3.27 

Finally, we can write the speckle intensity autocorrelation factor as:  

 

��(∆�, ∆�) = < �� > [1 + |μ�(∆�, ∆�)|�] 

=  < � >� 1 + �
∬ |�(�,h)|��

��
�

[
���
��

[�∆��h∆�]���h

∬ |�(�,h)|����h
�

��

�

�
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From the perspective of second order speckle statistics, Power spectral density of 

the intensity distribution �(�, �) is an important quantity. The power spectral 

density ℊ�(��, ��) is given by the Fourier transform of correlation function 

��(∆�, ∆�) which is written mathematically as:  

 ℊ�(��, ��) = < � >� {�(�� + ��) + �
∬ |�(�,h)|��

��
�

[
���
��

[�∆��h∆�]���h

∬ |�(�,h)|����h
�

��

�

�
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In case of a uniform and square scattering spot, power spectral density can be 

written in the following form:  

 ℊ�(��, ��) = < � >� {�(�� + ��) + �
��

�
�

�

∃(
��

�
v�)∃(

��

�
v�) 3.30 

Here ∃(x) = 1 − |�| for |�|≤ 1 and zero for other values. 

 

3.3 Measurement of Complex Intensity Correlation Function Using Speckle 

Holography 

Over the period of time various methods have been developed to measure the 

complex correlation function (Amplitude and phase) so that it can be utilized for 

various research needs but most of these techniques are inefficient, also phase of 

complex function is lost in many existing techniques and they require multiple shots 

for the retrieval of complex coherence (correlation) function but recently an 
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alternate single shot imaging method has been put forward which measures the 

complex coherence function in a single scattering medium with the help of 

holographic principles. It works on the principle of two-point intensity correlation 

and is able to retrieve the phase of the complex function efficiently by utilizing the 

fact that two point intensity correlation is related with the source structure through 

a Fourier transform. The imaging methodology has its foundations in the 

Michelson-Stellar interferometry imaging wherein the image of a distant star is 

retrieved from the propagated mutual coherence function modulus [22].  

 

In two point intensity correlation the coherence function of the randomly time 

varying field distribution originating from laser speckle having Gaussian statistics is 

measured by replacing ensemble averaging with the spatial averaging provided the 

conditions of spatial ergodicity and stationarity are fulfilled [39]. Here, a method to 

measure complex correlation function using the two point intensity correlation 

(fourth order field correlation) with the help off axis holography in a single shot as 

suggested in [39] is discussed. The major objective of it is to measure the complex 

coherence function of the laser speckle in a scattering media. This method is highly 

efficient and recovers both the phase and amplitude of the coherence function by 

using Intensity interferometer and CCD/CMOS camera which otherwise is very 

difficult to achieve. 

 

 If a quasi-monochromatic coherent source of laser light is incident on a scattering 

layer, a random spatial distribution of intensity called speckle pattern in the 

observation plane is generated. 

 

This random distribution of electric field ��(�) as shown in Figure 3.8 at 

observation plane can be represented as [39]: 

 ��(�) = � ��(�̂) �[�∅(�̂)]�
(
���
��

�.�̂)��̂
 3.31 
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Where � and �̂ are the position vectors in observation/Fourier transform plane and 

object plane/scattering plane. 

 ��(�̂)is the random field distribution at scattering plane ∅(�̂). 

�  is the wavelength,  

� being the focal length of Fourier transforming lens, 

suffice ‘�’ for object speckle distribution. 

  

Figure 3.8: Conceptual diagram for generation of speckle [39]. 

Now we can express the second order correlation ��(�) after spatial averaging at 

the observation plane as:  

 ��(�) = < ��
∗ (�1)�0(�2) >

�
  

 = � ��
∗ (��)��(�� + ∆�)��� 

 

3.32 

Where, �� + �� ; �� and �� are position vectors in observation plane, and <>� is 

spatial average. 

 

In case of a random field obeying Gaussian statistics, there exists a relationship 

between second order and fourth order correlations which can be expressed as: 

 ��(∆�) = < ∆��(�)∆��(� + ∆�) >� 3.33  

And spatial fluctuation of intensity can be written as;  
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 ∆��(�) = ∆��(�)−< ∆��(�) > 3.34 

Where, ��(∆�) is covariance function, ∆��(�) is object intensity at Fourier 

transforming plane, ∆� is spatial fluctuation with respect to mean value of intensity. 

By using speckle statistics phenomena, the cross covariance is proportional to the 

modulus square of second order correlation at the same plane which can be 

expressed as: 

 ��(∆�) ∝ |��(∆�)|� 3.35  

In the above equation only the amplitude of the complex coherence function can be 

calculated while as phase part is lost. The lost phase can be recovered by employing 

speckle holographic principle suggested in [39], [40] and [41]. 

 By using the off-axis holographic technique, the resultant coherence function at 

Fourier transforming plane can be expressed as:  

 

�(∆�) = < �∗(��)�(�� + ∆�) >�; 

             = < {��(��) + ��(��)}∗{{��(�� + ∆�) + ��(�� + ∆�)} >� 
3.36 

 

Also, from [39] < ��
∗(�1)�(�1 + ∆�) >= 0. Therefore, the resultant coherence 

function can take the form:  

 �(∆�) = ��(�) + ��(�) 3.37 

Hence we get, 

 

 
�(∆�)|� = |��(�) + ��(�)|� 

                = |��(∆�)|� + |��(∆�)|� + ��(∆�)��
∗(∆�) + ��

∗ (∆�)��(∆�) 

 

3.38 

��
∗ and ��

∗ are the complex conjugates of the respective coherence functions. 

 

From Equation 3.38, it can be seen that the complex part of the coherence function 

is encoded in an interferometric equation and with the use of a proper techniques 

one can recover complex part of correlation function. The optical setup for the 
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retrieval of speckle field coherence function is discussed in the following section and 

results are shared. 

 

3.3.1 Optical Setup 

In the setup a basic model of Mach-Zehnder interferometer is used which is a major 

tool for an experimental setup working on the principle of off-axis holography as 

shown in Figure 3.9. Using the holography technique it is demonstrated here how to 

measure the complex correlation function of the speckle field in the scattering 

media. A spatially filtered light is collimated by a lens and then the collimated light 

is divided by a beam splitter ��1 into two beams, the transmitted beam emerging 

from ��1 acts as an object arm of the interferometer while as the other beam acts 

as the reference arm of the interferometer. The transmitted beam from ��1 is 

reflected by mirror �2 and illuminates the ground glass GG1 and generates the 

object speckle pattern. The beam in reference arm is reflected by mirror �1 and 

passes through a microscopic objective and illuminates the ground glass GG2 which 

generates an independent reference speckle pattern. The speckle pattern from the 

object and reference ground glasses are coherently combined using beam splitter 

BS2 and the coherent superposition is Fourier transformed using a common lens. 

The resultant speckle field is captured by a camera in the form of speckle hologram.  

Figure 3.9: Experimental setup for measurement of complex correlation function [39]. 
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By providing a spatial angular shift between the object and reference arm which is 

adjustable through the microscopic objective, we can separate the object from the 

direct current (DC) term or central background. 

 

3.3.2 Recovering Speckle Complex Coherence Function 

The resultant speckle field after the coherent super position of object and reference 

speckles is captured in the form of a hologram. The speckle hologram captured by 

CCD is shown in figure 3.10 for 1.5mm size of aperture introduced on ground glass 

which generated the spatially fluctuating intensity distribution that is imaged onto 

the CCD by a Fourier transforming lens. The obtained speckle hologram is spatially 

averaged for finding out covariance function which is further utilized for the 

purpose of measuring complex correlation function [39]. 

     

Figure 3.10: Resultant speckle pattern [39]. 

 

 

Once the hologram is averaged out, fringes will appear. The phase of correlation 

function is encoded in this fringe pattern. By employing a Fourier fringe analysis 

technique on the obtained fringe pattern we can recover the complex correlation 
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function from two point intensity correlation. A detailed analysis of Fourier fringe 

technique is given by Takeda in [42].   

 

Figure 3.11: Steps involves in retrieving complex correlation function 

Figure 3.11 shows the steps for retrieving the complex correlation function of the 

speckle field. By following these steps one can retrieve the complex correlation 

function. The retrieved complex coherence function for the aperture diameter of 1.5 

is shown in Figure 3.12. Along with the experimental calculation, analytical 

evaluation of the retrieved complex coherence function by this method is also 

performed and is shown in Figure 3.13. 

 

    

                                         (a)                                                                                                          (b) 
 

Fig. 3.12 Retrieved complex correlation function (a) amplitude, (b) phase [39]. 
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Fig. 3.13 Amplitude profile obtained by analytical and experimental results [39]. 

 

In the next chapter we will mainly target the retrieval of correlation function for a 

multiple scattering regime which will be further utilized for the recovery of an 

object hidden behind multiple scattering layer. The experimental setup for the 

reconstruction of object hidden behind multiple scattering layer will be 

demonstrated which will have applications in various areas of research especially 

biomedical imaging. 
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Chapter 4 
 

 

Experiments and Results 

 

When an object is placed in a random medium, a speckle pattern is generated as 

already discussed in chapter 3. We will develop a method that will be able to 

reconstruct the object information in the multiple scattering medium. The recovery 

of the object information from the randomly scattered field is realized by the Van 

Cittert-Zernike theorem which connects the statistical light properties in the far 

field with the source structure.  

.  

4.1 Simulations 

The computationally generated letter “L” here will act as an object for simulation 

study. The interferometric technique is utilized by generating the reference as well 

as the object field computationally. The two point intensity correlation is performed 

on the obtained speckle hologram. The speckle hologram as shown in figure 4.2 is 

spatially averaged for measuring the covariance function which is further utilized 

for the purpose of retrieving complex correlation function along with its amplitude 

and phase. Computationally generated object “L” is shown in figure 4.1. The 

covariance function of the hologram is shown in Figure 4.3. Once the spatial 

averaging has been done, Fourier fringe analysis is performed and spectrum is 

moved towards the center. Figure 4.4 shows the spectrum along with DC. After 

spectrum selecting and moving it to center, the complex coherence function can be 

retrieved. Figure 4.5 shows the reconstructed amplitude and phase of the object. 
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Figure 4.1: “L” Object 

 

 

Figure 4.2: Speckle pattern 
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Figure.4.3: Covariance function 

 

 

 

Figure 4.4: Spectrum along with DC                                     
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Figure 4.5: Correlation function 

 

 

(a) 

 

(b) 

Figure 4.6: (a) Reconstructed object (b) Phase 

 

4.2 Experimental Setup 

We devise an experimental strategy based on an interferometric technique. The 

setup here serves as an off-axis holography method to retrieve the complex 

coherence function of the speckle field and recover the object placed in a multiple 

scattering medium. We make use of the basic Mach-Zehnder interferometer that 

works on the principle of off-axis holography. The white painted glass serves as a 
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multiple scattering layer here. The schematic diagram for the setup is given in the 

figure 4.7.  The laser light of wavelength 780nm has been used in the experimental 

setup.  

. 

 

Figure 4.7: Experimental setup 

The collimated light from laser source is spatially filtered by the combination of 

lenses ��(Microscopic objective) and pinhole of size 15 micron. The spatially filtered 

light is then collimated with lens  �� of focal length 150��. The collimated beam of 

light then reaches the beam splitter (���) and beam is divided into two. The laser 

beam transmitted through the ��� acts as the reference arm of the interferometer 

and the reflected beam from mirror (��) acts as the object arm of the 

interferometer. The reflected beam from �� passes through the “5” object and 

scattering media. On the USAF test chart number “5” serves as the object whose 

information is to be retrieved. Mirror (��) is used in the reference arm to direct the 
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beam towards beam splitter ���. The laser beam in the object arm reaches the 

white painted scattering layer and the object. Beam splitter (���) is used to 

combine the beams emerging from reference arm and object arm of the 

interferometer. Here, Fourier transforming lenses are used to make the spatial 

stationarity over the CCD plane. The coherent superposition is captured by the 

CCD camera which has the pixel width of 8 micron in the form of a speckle 

hologram. The obtained speckle hologram is spatially averaged for finding out 

covariance function which is further utilized for the reconstruction of object.  

 

4.3 Results  

The speckle hologram generated by the object in the scattering medium is given in 

figure 4.8. Here, we make use of spatial averaging to calculate the covariance 

function of the object which is given in figure 4.9. Fourier fringe analysis is 

performed then to carry the spectrum towards the center. Figure 4.10 shows the 

field spectrum along with DC. Further, we then calculate the correlation function of 

the object hidden behind the scattering layer.  

 

Figure 4.8: Speckle pattern generated by object hidden behind white paint layer 
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The complex correlation function is shown in figure 4.11. Finally by making use of 

the coherence function, the object information is reconstructed as shown in figure 4. 

12. One of the main advantages of this method is that we can reconstruct the object 

information in a single shot. 

 

Figure 4.9: Covariance function of recorded speckle 

 

 

Figure 4.10: Spectrum along with DC 
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Figure 4.11: Retrieved complex coherence function 

 

 

Figure 4.12: Recovered object information of an object hidden behind multiple scattering 

layer. 
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Chapter 5 
 

Summary and future work  

 

 

This thesis presents the problem of imaging through scattering medium. Here we 

have developed and demonstrated the experimental setup for imaging based on the 

principle of speckle holography and two point intensity correlation. The detailed 

theory of complex correlation function is presented and its recovery is shown.  

 

The complex coherence function is further explored for the reconstruction of object 

in the scattering medium in a single shot. The experimental setup for object hidden 

behind the multiple scattering medium is also developed and the object is 

reconstructed. The reconstruction of the object in the scattering medium is achieved 

by the application of the Fourier fringe analysis technique to the spatially averaged 

speckle hologram. 

 

Future work can be aimed to develop the technique with appropriate changes in the 

optical setup for imaging through more turbid media and also for monitoring of the 

Liquid/fluid flow by taking into consideration the dynamic nature of speckle 

interference thereby developing the presented technique as a full field flow 

visualization method. 

 

. 
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