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Abstract

In this thesis, we present an abstract view of Image and Video quality assessment algorithms. Most of the
research in the area of quality assessment is focused on the scenario where the end-user is a human observer
and therefore commonly known as perceptual quality assessment. In this thesis, we discuss Full Reference
Video Quality Assessment and No Reference image quality assessment.

With the massive increase in video content being generated and viewed, it is very important to be able
to objectively measure the quality of the content. This would in turn allow for better content management
and for the provision of quality aware services. We are addressing the problem of objective video quality
assessment in full reference setting by quantifying the change in sparsity of natural video sequences. This
algorithm is inspired by sparse representation of videos in human visual system (HVS). It is well known
that primary visual cortex adopts sparse coding strategy to visual stimulus. By using the over complete
dictionaries we can represent the natural scenes sparsely. Primary visual cortex can be modelled well using
such over complete dictionaries. Our hypothesis is that the sparse representation of natural videos are altered
in the presence of distortion. We plan to measure this deviation in Sparsity of distorted video with respect to
undistorted video in order to quantify perceptual quality.

In the case of no reference image quality assessment, we tried to improve the performance of Sparstiy-
based Blind Image Quality Evaluation (SBIQE) using salience features.

vi



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Nomenclature viii

1 Introduction To Quality Assessment 1
1.1 Subjective Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Full Reference Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Reduced Reference Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 No Reference Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Backgournd Theory 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sparse Representation of Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 OMP Algorithm for Approximate Sparse Solution . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 K-SVD Algorithm For Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Salience Based Visual Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Sparsity Based No Reference Image Quality Assessment 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Sparse Representation of Natural Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 SBIQE-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Dictionary Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 “Reference” Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Image Quality Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 SBIQE-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 A Model of Saliency-Based Visual Attention For Rapid Scene Analysis . . . . . . . 15

3.4.2 Saliency based SBIQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



4 Sparsity Based Video Quality Assessment 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Sparse Representation of videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Dictionary Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Sparse Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 appproach-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.4 appproach-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 30

viii



Chapter 1

Introduction To Quality Assessment

There is a massive and ubiquitous role of digital multimedia-based applications in our day-to-day life rang-
ing from medical diagnosis to security to entertainment. Often, this data passes through different processing
stages before it reaches the end-user/system. At each processing stage, data is subjected to different distor-
tions which degrades the quality. Hence, the efficient and reliable evaluation of multimedia quality assessment
has gained importance - especially given the massive scale of multimedia data. Quality assessment is one of
the basic and challenging problems in the field of image and video processing as well as many practical appli-
cations, such as process evaluation, bench marking of algorithms, optimization, testing and monitoring. The
approach to evaluate the quality of image/video is task dependent i.e., depends on end-user/system. There
is extensive research in the area of quality assessment which is largely focused on perceptual based quality
since in most of the cases end-users are human observers.

Having understood the significance of quality assessment in various fields and the need to evaluate the
quality of image/video based on the end-user/system; the main contributions of my research are in the areas
of perception based image (no reference) and video (full reference) quality assessment and face quality as-
sessment. Quality assessment can be done in two ways.they are Subjective quality assessment and Objective
quality assessment. The approaches are briefly discussed in the following sections.

1.1 Subjective Quality Assessment

The most accurate and reliable way for perception based quality assessment is through subjective evaluations.
But these evaluations depend on environmental settings, time of the day and evaluation, utmost care needs
to be taken that the ideal settings should not alter with time, proper representative set of subjects has to
be considered so that evaluations wont be biased. All these above factors have made them expensive and
time-consuming; therefore, these evaluations are highly impractical in real time settings. Hence, there is a
necessity to design objective algorithms for estimating the quality score of an image/video which needs to be
highly correlated with the score given by average human observer. The effectiveness of quality assessment
algorithm is evaluated based on the correlation of predicted scores with the subjective evaluations. When the
correlation is high, algorithm is able to mimic the average human observer with high probability.

1



1.2 Objective Quality Assessment

In objective quality assessment we write algorithms to evaluate the quality of image/video.The goal of objec-
tive image and video quality assessment research is to design the quality metrics that can predict perceived
image and video quality automatically. Generally speaking, an objective image and video quality metric can
be employed in three ways [1]:

1. It can be used to monitor image quality for quality control systems. For example, an image and video
acquisition system can use the quality metric to monitor and automatically adjust itself to obtain the best
quality image and video data. A network video server can examine the quality of the digital video transmitted
on the network and control video streaming.

2. It can be employed to benchmark image and video processing systems and algorithms. If multiple
video processing systems are available for a specific task, then a quality metric can help in determining
which one of them provides the best quality results.

3. It can be embedded into an image and video processing system to optimize the algorithms and the
parameter settings. For instance, in a visual communication system, a quality metric can help optimal de-
sign of the pre filtering and bit assignment algorithms at the encoder and the optimal reconstruction, error
concealment and post filtering algorithms at the decoder.

Based on the availability of reference signal (image/video) which is considered to be pristine and distortion-
free, objective quality assessment algorithms are broadly classified into three categories viz., full-reference,
reduced-reference, and no-reference algorithms. In this work, I have primarily focused on the first and third
categories.

1.2.1 Full Reference Quality Assessment

In Full Reference Quality Assessment both test and reference signal are available to evaluate the perceived
quality. Quality of test signal is evaluated with respect to the reference signal. The most widely used FR
objective image and video distortion/quality metrics are mean squared error (MSE) and peak signal-to-noise
ratio (PSNR), which are defined as:

MS E =
1
N

N∑
i=1

(xi − yi)2 (1.1)

PS NR = 10 log10
L2

MS E
(1.2)

where N is the number of pixels in the image or video signal, and xi and yi are the i-th pixels in the
original and the distorted signals, respectively. L is the dynamic range of the pixel values. For an 8bits/pixel
monotonic signal, L is equal to 255. MSE and PSNR are widely used because they are simple to calculate,
have clear physical meanings, and are mathematically easy to deal with for optimization purposes (MSE is
differentiable, for example). However, they have been widely criticized as well for not correlating well with
perceived quality measurement [2]. There are a number of reasons why MSE may not correlate well with the
human perception of quality [1]:

1. Digital pixel values on which the MSE is typically computed, may not exactly represent the light
stimulus entering the eye.
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2. The sensitivity of the HVS to the errors may be different for different types of errors, and may also
vary with visual context. This difference may not be captured adequately by the MSE.

3. Two distorted image signals with the same amount of error energy may have very different types of
errors.

4. Simple error summation, like the one implemented in the MSE formulation, may be markedly different
from the way the HVS and the brain arrives at an assessment of the perceived distortion.

In the last three to four decades, a great deal of effort has been made to develop objective image and
video quality assessment methods (mostly for FR quality assessment), which incorporate perceptual quality
measures by considering human visual system (HVS) characteristics.

VQA Algorithm

Initial VQA methods attempted to extend image quality metrics (like SSIM,VIF) to videos, where videos are
divided into frames and then image metrics are applied on frames and frame wise scores are used to generate
the final quality score for video. More recent approaches (like MOVIE [3],FLOSIM [4]) use temporal in-
formation (motion information) along with the spatial information. In these approaches spatial and temporal
scores are calculated separately and combined generate the final quality score.

In our approach we are trying calculate the perceived quality score by quantifying the change in sparsity
of natural video sequences. This algorithm is inspired by sparse representation of videos in human visual
system (HVS). It is well known that primary visual cortex adopts sparse coding strategy to visual stimulus.
By using the over complete dictionaries we can represent the natural scenes sparsely. Primary visual cortex
can be modeled well using such over complete dictionaries. our hypothesis is that the sparse representation
of natural videos are altered in the presence of distortion. We plan to measure this deviation in Sparsity
of distorted video with respect to undistorted video in order to quantify perceptual quality.In our approach
final spatio-temporal score is calculated directly instead of calculating spatial scores and temporal scores and
pooling them to find a final score. The proposed FR-VQA algorithm will be discussed in detail in subsequent
chapters.

1.2.2 Reduced Reference Quality Assessment

Complete reference signal is not available; however partial information like features of reference signal are
available to evaluate the quality of test signal.

1.2.3 No Reference Quality Assessment

In most of the practical settings, the reference signal is not available for quality assessment. Hence, there is a
need to evaluate the quality solely based on the test signal.

IQA Algorithm

These algorithms generally follow one or a combination of three approaches:

1. Distortion-specific approaches: In this approach, algorithms quantify the distortions such as blur [5],
ringing effect [6], or blockiness [7] and evaluate the image accordingly.

2. Training-based approaches: In this approach, the algorithm predicts the quality of an image by training
a model from the features extracted [ [8], [9]].
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3. Natural scene statistics (NSS) approaches: These algorithms assume that undistorted/pristine images
occupy a small subspace of the space of all possible images and estimates the quality of test image by calcu-
lating the distance between the test image and subspace of pristine images [10].

In SBIQE a combination of the second and third approaches used to predict the quality of images. we
tried to improve the performance of SBIQE using salience features. The proposed NR-IQA algorithm will be
discussed in detail in subsequent chapters.
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Chapter 2

Backgournd Theory

2.1 Overview

In this chapter we provide the related theory used in this thesis. We first define the concept of sparse repre-
sentation, followed by the techniques used for obtaining sparse solution and dictionary learning. The concept
of sparse representation and dictionary learning is used in the work related to perceptual quality assessment.
Then, we define the concepts Salience Based Visual Attention and Gaussian Mixture Models and are used
for perceptual quality assessment.

2.2 Sparse Representation of Signals

The objective of sparse representation of signals is to represent the signal with a few number of representative
elements. Using an overcomplete dictionary matrix D ∈ Rn×K that contains K representative signal-atoms, a
signal y ∈ Rn can be represented with linear combination of fewer atoms.

The representation of y w.r.t dictionary may be exact y = Dx in a noiseless scenario [11]. But in real-life
situations, the representation can be approximated as ‖y − Dx‖p ≤ ε. The typical norms used for measuring
deviation are the lp norms where p varies from 1 to∞ [12]. But in most of the cases p is preferably considered
as 2.

As D is overcomplete matrix, there is possibility of infinite number of solutions to represent the signal
y and hence there is a need to set the constraints on solution set. To acquire a sparse representation, the
solution with fewest number of coefficient is certainly an appealing constraint on solution set. This sparse
representation is solution of either

min
x
‖x‖0 subject to y = Dx (2.1)

min
x
‖x‖0 subject to ‖y − Dx‖2 ≤ ε (2.2)

where the operator ‖.‖0 counts the number of non-zero elements. A similar objective as mentioned in Eq. 2.2
is alternately met by considering either

min
x
‖y − Dx‖2 subject to ‖x‖0 ≤ L (2.3)
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min
x

1
2
‖y − Dx‖2 + λ‖x‖0 (2.4)

where the parameter L ≥ 1 controls the degree of sparsity and λ ≥ 0 balances the residual and degree of
sparsity.

In the subsequent subsections, we first review the Orthogonal Matching Pursuit(OMP) algorithm [13] to solve
for approximate sparse solution and then K-SVD algorithm [14] for dictionary learning.

2.3 OMP Algorithm for Approximate Sparse Solution

Solving the equations 2.1 and 2.2 is NP hard and computationally expensive. There are many algorithms tried
to approximate the objective function with alternatives and one such algorithm is OMP algorithm, a simplest
and effective approximation method among greedy pursuit methods. It finds the locally optimum solution
at each iteration by searching the basis which most resembles a residual. Considering an overcomplete
dictionary A and a compressible sample b, the OMP algorithm is stated as follows:

Task: (P0) : minx‖x‖0 subject to Ax = b.
Parameters: We are given the matrix A, the vector b, and the error threshold ε0.
Initialization: Initialize k = 0, and set solution as x0 = 0, residual as r0 = b − Ax0 = b and solution support
as S 0 = S upport{x0} = 0
Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε( j) = minz j‖a jz j − rk−1‖
2
2 for all j using the optimal choice z j

∗ = a j
T rk−1/‖a j‖2

2

• Update Support: Find a minimizer, j0 of ε( j) : ∀ j < S k−1, ε( j0) < ε( j), and update S k = S k−1 ∪ { j0}.

• Update Provisional Solution: Compute xk, the minimizer of ‖Ax − b‖2
2 subject to S upport{x} = S k.

• Update Residual: Compute rk = b − Axk.

• Stopping Rule: Stop, if stopping criteria holds. Otherwise, apply another iteration.

Output:The proposed solution is xk obtained after k iterations.

Generally, there are two stopping criterions for the OMP algorithm. First, the iterative process is performed
for a fixed number of iterations. Second, the OMP algorithm stops when the bounded noises are within the
predefined thresholds (‖rk‖

2
< ε0).

2.4 K-SVD Algorithm For Dictionary Learning

An overcomplete dictionary is used to approximate the given signal as a sparse signal. The types of dic-
tionary can be classified into analytic dictionary and learned dictionary. The atoms of analytic dictionary
is formulated analyticaly and is supported by optimally proofs and error rate bounds [15]. Examples of the
analytic formulation include Fast Fourier Transform (FFT) [16], Discrete Cosine Transform (DCT) [17] and
Gabor transform [18]. In contrast, the learned dictionary tends to learn the dictionary from the given train-
ing data, which benefits from the finer adaptation to the nature of the problem on hand. In general, learned
dictionaries often demonstrate state-of-the-art results in many of the applications [15]. In the past decade,
a large number of papers [14] have been devoted to dictionary training methods focusing on l0 norm and l1
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norm sparsity measurements, which lead to the development of more efficient sparse coding algorithms [15].
Among the dictionary training methods, the K-SVD algorithm [14], which takes its name from the Singular
Value Decomposition (SVD) process in the dictionary update stage, aims to train a dictionary D with a faster
and more efficient algorithm. It first initialises a random dictionary D with l2 normalised atoms and performs
the iterative two-stage process until convergence is stated as follows:

Task: Find the best dictionary to represent the data samples {yi}, i=1 to N as sparse compositions, by solving

min
D,X
‖Y − DX‖2F subject to ∀i, ‖xi‖0 ≤ T0

Initialization: Set the dictionary matrix D(0) ∈ Rn×K with l2 normalized columns.

Repeat until convergence(stopping rule):

Step 1: Sparse Coding stage: Use any pursuit algorithm to compute the representation vectors xi for each
example yi,by approximating the solution of

minxi‖yi − Dxi‖
2
2 subject to ‖xi‖0 ≤ T0

Step 2: Codebook Update Stage: For each column k = 1 to K in D,update it by

• Define the groups of examples that use this atom ωk = {i|1 ≤ i ≤ N, xk
T (i) , 0}.

• Compute the overall representation error matrix, Ek, by

Ek = Y −
∑
j,k

d jx
j
T

• Restrict Ek by choosing only the columns corresponding to ωk,and obtain ER
k .

• Apply SVD decomposition ER
k = U∆VT . Choose the updated dictionary column dk to be the first

column of U. Update the coefficient vector xR
k to be the first column of V multiplied by ∆(1, 1).

Stopping Rule: Stop, if stopping criteria holds. Otherwise, apply another iteration.

2.5 Salience Based Visual Attention

It is intuitively obvious that each region in an image may not bear the same importance as others. Visual
importance has been explored in the context of visual saliency, fixation calculation, and foveated image and
video compression. However, region-of-interest based image quality assessment remains relatively unex-
plored. It is the furtherance of this area of quality assessment that motivates this work. Under the hypothesis
that certain regions in an image may be visually more important than others, methods used to spatially pool
the quality scores from the SSIM maps are an appealing possibility for improving SSIM scores. The effect of
using different pooling strategies was evaluated, including local quality-based pooling. It was concluded that
the best possible gains could be achieved by using an information-theoretic approach deploying information
“content-weighted pooling”. In this paper, we further investigate quality based pooling and also consider
pooling based on predicted human gaze behavior.
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There are two hypotheses which may influence human perception of image quality. The first is visual
attention and gaze direction“where” a human looks. The second hypothesis is that humans tend to perceive
“poor” regions in an image with more severity than the “good” onesand hence penalize images with even a
small number of “poor” regions more heavily. Existing IQA algorithms, on the contrary, do not attempt to
compensate for this prejudice. By weighting more heavily quality scores from lower scoring regions, such a
compensation can be achieved. This idea of heavily weighting the lower scoring regions is a form of visual
importance. However, their approach, which involved weighting quality scores as a monotonic function of
quality, led to the conclusion that quality-weighted pooling yields incremental improvement, at best. By
contrast, in our approach, we show that quite significant gains in performance can be obtained using the right
strategy.

Research into the general area of how humans deploy eye movements in visual tasks has received sig-
nificant attention for many decades. Competing theories for gaze selection can be broadly classified into
two general categories: top-down (cognitive/high-level) and bottom-up (precognitive/low-level). Top-down
approaches for gaze prediction emphasize a high-level understanding of the scene and has been popular in
task-specific experiments. Yarbus, in his pioneering work on eye movements, demonstrated that human eye
movements are strongly influenced by high-level mechanisms such as the specific visual task given to the
observer. Top-down implementations of gaze-selection have incorporated spatial relationships of object and
scene schema representations and shown significant improvements in search times in visual search tasks.
While such top-down implementations provide possible directions of exploration in gaze selection, cognitive
interpretation of scenes is far from being sufficiently mature to generalize to natural viewing tasks. Given
the rapidity and sheer volume of saccades during search tasks (over 15, 000 each hour), it is reasonable to
suppose that there is a significant bottom-up, computationally inexpensive component to selecting fixation
locations. The goal of this paper is to investigate bottom-up, image-based mechanisms that guide eye fixa-
tions. Moreover, we believe that the development of future high-level visual search systems may benefit from
the insights gained from successful low-level search strategies.

2.6 Gaussian Mixture Models

One of the most important task when working with mixture model-based clustering is precisely, selecting the
type of function which offers a better adjust to the data field and the type of task we face up to. Between
the different types of mixture model-based clustering, one of the most commonly used is clustering based in
Gaussian Mixture Models (GMMs) [17]

Gaussian mixture model as a simple linear superposition of Gaussian components, aimed at providing
a richer class of density models than the single Gaussian. Techniques based on GMM are applied to many
different tasks. Some of the most common applications are speaker identification, speech recognition, image
segmentation, biometric verification or detection of image color and texture.

Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted
sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probabil-
ity distribution of continuous measurements or features in a biometric system, such as vocal-tract related
spectral features in a speaker recognition system. GMM parameters are estimated from training data using
the iterative Expectation-Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation from a
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well-trained prior model.

Fig. 2.1 illustrates the joint density capturing capabilities of GMM, using 2-dimensional data uniformly
disturbed along a circular ring. The red ellipses, superimposed on the data (blue) points, correspond to the
locations and shapes of the estimated Gaussian mixtures.

Figure 2.1: Illustration of distribution capturing capability of GMM. GMM trained with diagonal covariance
matrices (a) 4-mixtures (b) 10-mixtures and (c) 10-mixture GMM trained with full covariance matrices

A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by the equa-
tion,

p(x|λ) =

M∑
i=1

wi g(x|µi,Σi) (2.5)

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), wi, i = 1,.....,M,
are the mixture weights, and g(x|µi,Σi), i = 1,....,M, are the component Gaussian densities. Each component
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density is a D-variate Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|
1/2 exp

{
−

1
2

(x − µi)′Σ−1
i (x − µi)

}
(2.6)

with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint that
∑M

i=1 wi = 1.

The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices and
mixture weights from all component densities. These parameters are collectively represented by the notation,

λ = {wi, µi,Σi} , i = 1, 2, ...,M (2.7)

EM Algorithm for Gaussian Mixture Models:

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the
parameters (comprising the means and covariances of the components and the mixing coefficients).

1. Initialize the means µi, covariances Σi and mixing coefficients wi, and evaluate the initial value of the
log likelihood.

2. E-Step: Evaluate the responsibilities using the current parameter values

γ(zni) =
wig(xn|µi,Σi)∑M

j=1 w jg(xn|µ j,Σ j)
(2.8)

3. M-Step: Re-estimate the parameters using the current responsibilities

µnew
i =

1
Nk

N∑
n=1

γ(znk)xn (2.9)

Σnew
i =

1
Nk

N∑
n=1

γ(znk)(xn − µ
new
i )(xn − µ

new
i )T (2.10)

wnew
i =

Nk

N
(2.11)

where,

Nk =

N∑
n=1

γ(znk) (2.12)

4. Evaluate the log likelihood

ln p(X|µ,Σ,w) =

N∑
n=1

ln
{ M∑

i=1

wi g(x|µi,Σi)
}

(2.13)

and check for convergence of either the parameters or the log likelihood. If the convergence criterion
is not satisfied return to step 2.
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Chapter 3

Sparsity Based No Reference Image
Quality Assessment

3.1 Introduction

The role of automated or objective measurement of image and video quality in today’s multimedia-centric
society cannot be overemphasised. Algorithms that accurately predict the subjective quality of multimedia
data can be used to improve the performance of a wide gamut of multimedia systems ranging from codecs to
cross-layer optimization techniques to display design, to name a few. In a majority of settings, the pristine or
undistorted content is unavailable for comparison. Blind or no-reference (NR) quality assessment algorithms
attempt to estimate the perceptual quality of multimedia content in such a setting. Specifically, we focus
on opinion-unaware and distortion-unaware algorithms. By opinion-unaware, we mean algorithms that do
not use mean opinion scores (MOS) of subjective evaluation for training. By distortion-unaware, we mean
algorithms that are not tailored to specific (known) distortion types.

BIQA algorithms have received a lot of attention in the recent past and several excellent algorithms
have been proposed. A non-exhaustive list of the current state-of-the-art methods includes Quality Aware
Clustering (QAC) [19], Sparse representation for blind image quality assessment (SRNSS) [20], Natural
Image Quality Evaluator (NIQE) [21], Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)
[22], probabilistic latent semantic analysis (pLSA) [23], BLind Image Integrity Notator using DCT Statistics-
II (BLIINDS-II) , [24], and Distortion Identification-based Image Verity and INtegrity Evaluator (DIIVINE)
[25]. The performance of several of these BIQA algorithms is comparable to the state-of-the-art full-reference
IQA (FRIQA) algorithms. The most common approach to BIQA relies on constructing “reference” features
of images using a training set consisting of either pristine images or a mixture of pristine and distorted images
– for e.g., NIQE [21] (distortion agnostic), QAC [19], BRISQUE [22], pSLA [23], DIIVINE [25], BLIINDS
[26] (all distortion aware). Features derived from a test image are compared with these “reference” features
to compute a quality score. Several BIQA approaches also attempt to learn the relationship between the
“reference” features and corresponding subjective scores during the training process – for e.g. in BRISQUE
[23], DIIVINE [25], BLIINDS [26], SRNSS [20]. In such methods, the learnt relationship is used to predict
the score of a test image given its features.

We briefly discuss two recent state-of-the-art opinion-unaware methods in order to place our algorithm
in context. QAC [19] is an opinion-unaware and distortion-aware BIQA algorithm that achieves its opinion-
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unawareness by replacing subjective scores with FSIM [27], a state-of-the-art FRIQA algorithm. FSIM is
applied on overlapping blocks of a small set of pristine images along with their distorted versions to assign
quality scores to the distorted blocks. The distorted blocks are clustered into different quality levels and
difference of Gaussian features extracted for each block. These features are then clustered in a quality aware
manner and their centroids saved in a lookup-table. The quality of a test image is inversely proportional to
the Euclidean distance of its features vectors with the centroids of the quality aware clusters. We would like
to note that the structure of quality aware clusters corroborate the local oriented receptive fields of area V1
of the visual cortex. QAC also provides a coarse quality map of the image – a first among BIQA methods (to
the best of our knowledge).

NIQE [21] is an opinion-unaware and distortion-unaware algorithm that attempts to quantify the unnat-
uralness in an image. It is based on the hypothesis that the pixel statistics of natural scenes are altered in
the presence of distortion. A generalized gaussian density (GGD) is used to model the statistics of mean-
subtracted-contrast-normalized pixels of a set of pristine images (chosen from a source that is completely
different from the test datasets). The GGD parameters are the features that are in turn modeled using a mul-
tivariate gaussian (MVG) model to form the “reference” fit. The quality of a test image is computed by
comparing its MVG fit to the “reference” MVG fit. NIQE can be classified as a truly blind BIQA algorithm.

While our proposed algorithms are similar in philosophy to these techniques, it uses a fundamentally
different approach to quantify unnaturalness that is based on the sparse representation of natural images.

3.2 Sparse Representation of Natural Images

The role of natural scene statistics in the understanding of the visual system has been studied by several re-
searchers. It has been conclusively shown that the receptive fields of V1 neurons are tuned to the statistics
of natural scenes [28] (and references therein). It is now well-accepted that the primary visual cortex adopts
a sparse-coding strategy to represent visual stimulus. The coefficients of such sparse representations of nat-
ural scenes are typically uncorrelated, thereby maximizing the amount of information they convey. In their
seminal paper, Olshuasen and Field [29] proposed an algorithm to construct overcomplete linear codes or
dictionaries that sparsely represent natural scenes. They showed that that the primary visual cortex is mod-
eled well using such overcomplete dictionaries and is used in Full Reference IQA – for e.g. Sparsity based
Distance Metric (SDM) [30, 31] and BIQA – for e.g SRNSS [20] algorithms. While SRNSS is an opinion
aware method, we focus on an opinion unaware algorithm.

3.3 SBIQE-1

3.3.1 Dictionary Construction

As mentioned in the previous section, we attempt to mimic the behavior of the HVS to measure the amount
of unnaturalness or distortion in an image. The first step in our algorithm is the construction of an over
complete dictionary to sparsely represent natural scenes. While the over complete dictionary construction
technique in [29] gives good results, we chose to work with the more recent K-SVD [14] algorithm for
dictionary construction. The K-SVD algorithm has been shown to outperform other over complete signal
representations such as wavelets in terms of reconstruction error. Further, the efficacy of the K-SVD algorithm
has been demonstrated in a myriad of applications including pattern recognition, denoising and restoration,
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Figure 3.1: The dictionary of atoms constructed from pristine images. Each atom is of size 9×9, with 18
atoms per row and 9 rows in all.

super-resolution, to name a few.

We construct an over complete dictionary consisting of 162 atoms with each atom being an 81-dimensional
vector (corresponding to 9×9 image patches). The number of atoms was chosen to be twice the dimension-
ality of the atoms. The dictionary is constructed using all the patches chosen from 70 pristine images. The
patch size (9×9) is chosen to avoid the standard block size of 8×8 used in popular image and video codecs.
Each of the 70 images is divided into overlapping patches of size 9×9 with an overlap of 3 pixels in each
dimension. Also, these images are chosen from a dataset that has no overlap with the popular data set used
for testing (LIVE ). The dictionary construction happens once and can be performed offline. The dictionary
with all atoms concatenated is shown in Fig. 3.1. We clearly see the oriented nature of a majority of the
atoms along with a few atoms containing lower spatial frequencies.

3.3.2 “Reference” Feature Extraction

The next step in the algorithm is the extraction of “reference” features that are representative of pristine
natural images. To this end, we choose images from a set of pristine image at
http://live.ece.utexas.edu/research/quality/pristinedata.zip. Again, this source is chosen so as to avoid any
overlap with the datasets used for algorithm evaluation. The chosen images are sparsely represented using
the constructed overcomplete dictionary. The orthogonal matching pursuit (OMP) [13] algorithm is used for
generating the sparse representations. As with dictionary construction, 9×9 patches (with overlap of 3 pixels
in both dimensions) from the pristine images are sparsely represented.

The feature vector fr is constructed as follows. A histogram of the atoms is constructed and divided by
the total number of patches. In other words, we count how many times every atom in the dictionary occurs in
the sparse representation of the pristine patches and divide by the total number of patches used in this training
stage. The feature vector is normalized to get

nr =
fr − µr

σr
, (3.1)

where µr and σr are the mean and variance of fr respectively. As with the dictionary construction, the
“reference” feature vector extraction happens only once and can therefore be done offline as well. The
motivation for this choice of feature is that it provides a pattern of natural image representation in the HVS.
Further, it possesses good distortion discriminability as illustrated in Fig. 3.2. The figure shows the magnitude
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Figure 3.2: Motivation behind SBIQE. Feature vectors of pristine images and images distorted with AWGN.
The y-axis represents the magnitude of the feature point while the x-axis represents feature point index. Three
noise levels (σ = 1, σ = 0.035, σ = 0) are shown to illustrate the discriminability of the feature choice.

of a subset of feature points (i.e., normalized histogram points) from images subject to different levels of
additive white Gaussian noise. In this illustration, noise standard deviation σ is chosen to be 1, 0.035 and 0.
It is clear that our choice of features is able to differentiate noise levels – especially so when the magnitude
of the feature vector element is high. We found this to be true for other common distortions including blur,
and compression-induced artifacts.

3.3.3 Image Quality Measurement

Given a test image, it is divided into overlapping blocks (as in Section 3.3.2) and each block is represented
using the dictionary constructed in Section 3.3.1. The test feature vector ft is constructed from the sparse
representation of the overlapping blocks by counting the number of occurrences of each of the dictionary
atoms in them. This count is divided by the total number of patches in the images. As with the “reference”
feature vector, ft is normalized to get

nt =
ft − µt

σt
, (3.2)

where µt and σt are the mean and variance of ft respectively. Finally, the quality score is computed as

Qt = 1 −
||nt − nr ||2

||nt ||2 + ||nr ||2
. (3.3)

The error norm between the test and reference vectors is normalized by the sum of norm of the reference and
test vectors. From the triangle inequality, it follows that

0 ≤ Qt ≤ 1. (3.4)

Higher values of Qt (close to 1) correspond to better quality while lower values (close to 0) reflect poor quality
or high distortion. We would also like to note from the definition of our feature that each of the feature points
is non-negative.
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3.4 SBIQE-2

3.4.1 A Model of Saliency-Based Visual Attention For Rapid Scene Analysis

Primates have a remarkable ability to interpret complex scenes in real time, despite the limited speed of the
neuronal hardware available for such tasks. Intermediate and higher visual processes appear to select a subset
of the available sensory information before further processing, most likely to reduce the complexity of scene
analysis. This selection appears to be implemented in the form of a spatially circumscribed region of the
visual field, the so-called “focus of attention,” which scans the scene both in a rapid, bottom-up, saliency-
driven, and task-independent manner as well as in a slower, top-down, volition-controlled, and task-dependent
manner. Models of attention include “dynamic routing” models, in which information from only a small
region of the visual field can progress through the cortical visual hierarchy. The attended region is selected
through dynamic modifications of cortical connectivity or through the establishment of specific temporal
patterns of activity, under both top-down (taskdependent) and bottom-up (scene-dependent) control. It is
related to the so-called “feature integration theory”, explaining human visual search strategies. Visual input is
first decomposed into a set of topographic feature maps. Different spatial locations then compete for saliency
within each map, such that only locations which locally stand out from their surround can persist. All feature
maps feed, in a purely bottom-up manner, into a master “saliency map”, which topographically codes for local
conspicuity over the entire visual scene. In primates, such a map is believed to be located in the posterior
parietal cortex as well as in the various visual maps in the pulvinar nuclei of the thalamus. The model’s
saliency map is endowed with internal dynamics which generate attentional shifts. This model consequently
represents a complete account of bottom-up saliency and does not require any top-down guidance to shift
attention. This framework provides a massively parallel method for the fast selection of a small number of
interesting image locations to be analyzed by more complex and time consuming objectrecognition processes.
Extending this approach in “guided-search”, feedback from higher cortical areas (e.g., knowledge about
targets to be found) was used to weight the importance of different features, such that only those with high
weights could reach higher processing levels.

Model

Figure 3.3: General architecture of the model
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Input is provided in the form of static color images, usually digitized at 640X480 resolution. Nine spa-
tial scales are created using dyadic Gaussian pyramids, which progressively low-pass filter and subsample
the input image, yielding horizontal and vertical image-reduction factors ranging from 1 : 1 (scale zero) to
1 : 256 (scale eight) in eight octaves. Each feature is computed by a set of linear “centersurround” operations
akin to visual receptive fields. Typical visual neurons are most sensitive in a small region of the visual space
(the center), while stimuli presented in a broader, weaker antagonistic region concentric with the center (the
surround) inhibit the neuronal response. Such an architecture, sensitive to local spatial discontinuities, is par-
ticularly well-suited to detecting locations which stand out from their surround and is a general computational
principle in the retina, lateral geniculate nucleus, and primary visual cortex. Center-surround is implemented
in the model as the difference between fine and coarse scales: The center is a pixel at scale c ∈ {2, 3, 4} and
the surround is the corresponding pixel at scale

s = c + δ, with δ ∈ {3, 4} (3.5)

The across-scale difference between two maps, denoted “∗” below, is obtained by interpolation to the finer
scale and point-by-point subtraction. Using several scales not only for c but also for d = s − c yields truly
multi-scale feature extraction, by including different size ratios between the center and surround regions
(contrary to previously used fixed ratios).

Extraction of Early Visual Features:

With r, g, and b being the red, green, and blue channels of the input image, an intensity image I is obtained
as

I = (r + g + b)/3

. I is used to create a Gaussian pyramid I (σ), where σ ∈ [0.8] is the scale. The r, g, and b channels are
normalized by I in order to decouple hue from intensity. However, because hue variations are not perceivable
at very low luminance (and hence are not salient), normalization is only applied at the locations where I is
larger than 1/10 of its maximum over the entire image (other locations yield zero r, g, and b). Four broadly-
tuned color channels are created:

R = r − (g + b)/2 f or red

G = g − (r + b)/2 f or green

B = b − (r + g)/2 f or blue

Y = (r + g)/2 − |r − g|/2 − b f or yellow (negative values are set to zero)

Four Gaussian pyramids R(s), G(s), B(s), and Y(s) are created from these color channels. Centersurround
differences (‘*’ defined previously) between a “center” fine scale c and a “surround” coarser scale s yield
the feature maps. The first set of feature maps is concerned with intensity contrast, which, in mammals, is
detected by neurons sensitive either to dark centers on bright surrounds or to bright centers on dark surrounds.
Here, both types of sensitivities are simultaneously computed (using a rectification) in a set of six maps, (c, s),
with c ∈ {2, 3, 4} and s = c + δ, with δ ∈ {3, 4}:

I (c, s) = |I (c) ∗ I (s) | (3.6)
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A second set of maps is similarly constructed for the color channels, which, in cortex, are represented
using a so-called color double-opponent system: In the center of their receptive fields, neurons are excited
by one color (e.g., red) and inhibited by another (e.g., green), while the converse is true in the surround.
Such spatial and chromatic opponency exists for the red/green, green/red, blue/yellow, and yellow/blue color
pairs in human primary visual cortex. Accordingly, maps RG(c, s) are created in the model to simultaneously
account for red/green and green/red double opponency and BY(c, s) for blue/yellow and yellow/blue double
opponency:

RG (c, s) = | (R (c) −G (c)) ∗ (G (s) − R (s)) | (3.7)

BY (c, s) = | (B (c) − Y (c)) ∗ (Y (s) − B (s)) | (3.8)

Local orientation information is obtained from I using oriented Gabor pyramids O (σ, θ), where θ ∈ [0.8] rep-
resents the scale and θ ∈

{
00, 450, 900, 1350

}
is the preferred orientation. (Gabor filters, which are the product

of a cosine grating and a 2D Gaussian envelope, approximate the receptive field sensitivity profile (impulse
response) of orientation-selective neurons in primary visual cortex.) Orientation feature maps, O (c, s, θ, )

encode, as a group, local orientation contrast between the center and surround scales:

O (c, s, θ) = |O (c, θ) ∗ O (s, θ) | (3.9)

In total, 42 feature maps are computed: six for intensity, 12 for color, and 24 for orientation.

saliency map

The purpose of the saliency map is to represent the conspicuity or “saliency” at every location in the visual
field by a scalar quantity and to guide the selection of attended locations, based on the spatial distribution
of saliency. A combination of the feature maps provides bottom-up input to the saliency map, modeled
as a dynamical neural network. One difficulty in combining different feature maps is that they represent a
priori not comparable modalities, with different dynamic ranges and extraction mechanisms. Also, because
all 42 feature maps are combined, salient objects appearing strongly in only a few maps may be masked by
noise or by less-salient objects resent in a larger number of maps. In the absence of top-down supervision,
we propose a map normalization operator, N(.), which globally promotes maps in which a small number of
strong peaks of activity (conspicuous locations) is present, while globally suppressing maps which contain
numerous comparable peak responses N(.):

Figure 3.4: General architecture of the model

17



1. Normalizing the values in the map to a fixed range [0, . . .M], in order to eliminate modalitydependent
amplitude differences.

2. Finding the location of the map‘s global maximum M and computing the average m of all its other
local maxima.

3. Globally multiplying the map by (M − m̄)2.

Only local maxima of activity are considered, such that N(.) compares responses associated with mean-
ingful “activitation spots” in the map and ignores homogeneous areas. Comparing the maximum activity in
the entire map to the average overall activation measures how different the most active location is from the
average. When this difference is large, the most active location stands out, and the map is strongly promoted.
When the difference is small, the map contains nothing unique and is suppressed. The biological motiva-
tion behind the design of N(.) is that it coarsely replicates cortical lateral inhibition mechanisms, in which
neighboring similar features inhibit each other via specific, anatomically defined connections.

Feature maps are combined into three “conspicuity maps,” Ī, for intensity & C̄ for color (6), and Ō for
orientation, at the scale (σ = 4) of the saliency map. They are obtained through across-scale addition “⊕”
which consists of reduction of each map to scale four and point-by-point addition:

Ī =

4⊕
c=1

c+4⊕
s=c+3

N (I (c, s)) (3.10)

C̄ =

4⊕
c=2

c+4⊕
s=c+3

[N (RG (c, s)) + N (BY (c, s))] (3.11)

For orientation, four intermediary maps are first created by combination of the six feature maps for a given q
and are then combined into a single orientation conspicuity map

Ō =
∑

θ∈ {00,450,900,1350}

N

 4⊕
c=2

c+4⊕
s=c+3

N (O (c, s, θ))

 (3.12)

The motivation for the creation of three separate channels,Ī, C̄ and Ō , and their individual normalization
is the hypothesis that similar features compete strongly for saliency, while different modalities contribute
independently to the saliency map. The three conspicuity maps are normalized and summed into the final
input 6 to the saliency map:

S =
1
3

(
N

(
Ī
)

+ N
(
C̄
)

+ N
(
Ō
))

(3.13)

At any given time, the maximum of the saliency map (SM) defines the most salient image location, to
which the focus of attention (FOA) should be directed. We could now simply select the most active location
as defining the point where the model should next attend. However, in a neuronally plausible implementation,
we model the SM as a 2D layer of leaky integrate-and-fire neurons at scale four. These model neurons consist
of a single capacitance which integrates the charge delivered by synaptic input, of a leakage conductance, and
of a voltage threshold. When the threshold is reached, a prototypical spike is generated, and the capacitive
charge is shunted to zero. The SM feeds into a biologically plausible 2D “winner-take-all” (WTA) neural
network at scale σ = 4, in which synaptic interactions among units ensure that only the most active location
remains, while all other locations are suppressed.
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The neurons in the SM receive excitatory inputs from 6 and are all independent. The potential of SM
neurons at more salient locations hence increases faster (these neurons are used as pure integrators and do not
fire). Each SM neuron excites its corresponding WTA neuron. All WTA neurons also evolve independently
of each other, until one (the “winner”) first reaches threshold and fires. This triggers three simultaneous
mechanisms:

1. The FOA is shifted to the location of the winner neuron.

2. The global inhibition of the WTA is triggered and completely inhibits (resets) all WTA neurons

3. Local inhibition is transiently activated in the SM, in an area with the size and new location of the
FOA; this not only yields dynamical shifts of the FOA, by allowing the next most salient location
to subsequently become the winner, but it also prevents the FOA from immediately returning to a
previously-attended location.

Such an “inhibition of return” has been demonstrated in human visual psychophysics. In order to slightly
bias the model to subsequently jump to salient locations spatially close to the currently attended location, a
small excitation is transiently activated in the SM, in a near surround of the FOA (“proximity preference”
rule of Koch and Ullman).

Since we do not model any top-down attentional component, the FOA is a simple disk whose radius is
fixed to one sixth of the smaller of the input image width or height. The time constants, conductances, and
firing thresholds of the simulated neurons were chosen so that the FOA jumps from one salient location to the
next in approximately 30 − 70ms (simulated time), and that an attended area is inhibited for approximately
500 − 900ms, as has been observed psychophysically. The difference in the relative magnitude of these
delays proved sufficient to ensure thorough scanning of the image and prevented cycling through only a
limited number of locations. All parameters are fixed in our implementation, and the system proved stable
over time for all images studied.

Figure 3.5: Original image

3.4.2 Saliency based SBIQE

In SBIQE, we took all the image patches for quality evaluation. But in this method instead of taking all the
patches we took only 3000, visually important patches and evaluated quality scores of images.
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Figure 3.6: Saliency result

3.5 Results and Discussion

We present the results of our algorithms and compare it with state-of-the-art BIQA methods. BRISQUE
[23], an opinion-aware distortion-aware method, QAC [19] an opinion-unaware distortion-aware method and
NIQE [21] an opinion and distortion unaware method are used as the benchmarks for our comparison. The
numbers for BRISQUE are quoted for the case of 80% samples used training and the rest used for testing.

The performance of the algorithm on the LIVE dataset are presented in Table. For brevity, we only present
Spearman rank ordered correlation coefficient (SROCC) values.

AWGN Blur JPEG JP2K All
BRISQUE 0.99 0.98 0.92 0.94 0.94

QAC 0.96 0.91 0.94 0.85 0.88
NIQE 0.97 0.93 0.94 0.91 0.91

SBIQE-1 0.96 0.89 0.73 0.83 0.76
SBIQE-2 0.9196 0.7830 0.7430 0.7998 0.7452

Table 3.1: Performance (SROCC) on the LIVE database.

From these results we see that the proposed method compares reasonably with the current state-of-the-art.
We also studied the effect of the atom size on performance and found no significant change when atom size
was varied from 9×9 to 15×15. At this point, we would like to note (again) that we excluded the block/atom
size of 8×8 on purpose so as to avoid overlapping with the typical block size used in standard image codes
and therefore attempting to capture quantization artifacts at block boundaries.

We would like to highlight features of the proposed method that make it an interesting and promising
direction for exploration. Firstly, the proposed method is both opinion-unaware and distortion-unaware and
is inspired by the sparse representation of natural scenes in the HVS.

3.6 Conclusions and Future Work

We tried to improve the results of SBIQE using salience features. We do recognize that in its current form,
our algorithm is subpar (overall) relative to the state-of-the-art. However, we strongly believe that the initial
results are promising and the proposed method has a number of attractive features.
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As future work, we plan to improve the performance of the algorithm by fine-tuning the features and score
computation metrics. Also, we intend to extend this hypothesis to no-reference video quality assessment.
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Chapter 4

Sparsity Based Video Quality
Assessment

4.1 Introduction

The objective assessment of the perceptual quality of natural videos is a challenging and open research prob-
lem. This statement is true for all the flavors of video quality assessment (VQA) - full reference (FR),
reduced-reference (RR), and no-reference (NR).The evidence for this claim is the fact that the state-of-the-art
methods for all three flavors have only recently been approaching a reasonable level of correlation (in the
range (0.75, 0.9)) with subjective scores on a moderately complex video database (LIVE) [32] [33]. In the
following, we non-exhaustively review recent and relevant FR-VQA algorithms in order to place our work in
context.
FR-VQA is a challenging task due to several reasons of which we opine the primary ones are the highly
non-stationary nature of video signals, and an incomplete understanding of the human visual system (HVS).
FR-VQA is a well-studied problem with several approaches having been explored. One classification of
FR-VQA algorithms could be based on their domain of operation as either compressed-domain methods or
uncompressed-domain methods. We briefly review the compressed-domain FR-VQA literature. The com-
pressed domain FR-VQA approaches operate with limited compressed bit stream information and are primar-
ily geared toward addressing artifacts arising out of communication errors such as bit-errors and packet losses.
The effect of these packet losses on the videos have been estimated using mean squared error estimation tech-
niques that are based on bitstream parsing [34], a spatio-temporal technique by Yang et al. [35], a weighted
combination of blockiness, blurriness and noise by Farias and Mitra [36], temporal quality estimation based
on frame drop by Yang et al. [37], generalized linear models for packet loss visibility [38], [39], to name a few.

Uncompressed-domain FR-VQA approaches on the other hand utilize all the information available in the
spatio-temporal domain. Both image and video quality measures based on human visual perception [40] [41]
have been explored from the very beginning. The properties of the HVS that have been employed include
modeling the visual sensitivity to predict the visibility of the error [40], modeling the human visual sensitivity
to spatial and chromatic signals [42], incorporating aspects of early visual processing, such as light adaptation,
luminance and chromatic channels, spatial and temporal filtering,spatial frequency channels, contrast mask-
ing, and probability summation [43], measurement of sensory scales based on Bayesian estimation [41]. A
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significant amount of I/VQA approaches in the past were based on the error sensitivity philosophy [44] [45]
motivated from psychological vision science research where the distorted signal is the sum of a reference
signal and an error signal, the amount of perception of the error signal by HVS is determined. The error
sensitivity based quality measurement is as follows: the original and test signals are subject to preprocessing
procedures, such as alignment, luminance transformation, and color transformation. A channel decomposi-
tion method (wavelet transforms, discrete cosine transform (DCT), and Gabor decompositions) is then applied
to these two preprocessed signals.

The errors between the two signals in each channel are calculated and weighted, usually by a Contrast
Sensitivity Function (CSF). The weighted error signals are adjusted by a visual masking effect model, which
reflects the reduced visibility of errors presented on a background reference signal. The Minkowski error
pooling of the weighted and masked error signal is then employed to obtain a single quality score.

Wang et al. [46] proposed a structural distortion estimation approach to FR-VQA which hypothesized that
amount of distortion in the structure is a measure of perceived distortion. It is an extension of the Structural
SIMilarity (SSIM) index [47] with two adjustments including local spatial and temporal weighting based on
the luminance and global motion respectively. Another popular approach to the quality assessment problem
is to cast it in an information communication framework [48], [49], [50], where the HVS is modeled as an
error-prone communication channel. Yet another popular approach is based on the observation that the HVS
does not perceive all the distortions equally [3] [32], [46], [51] , [52].

Wang and Li [48] incorporated the model proposed by Stocker and Simoncelli [53] for human visual
speed perception. Spatio-temporal weighting is done based on the motion information content and the per-
ceptual uncertainty.

Seshadrinathan and Bovik employed an approach to tune the orientation of a set of 3D Gabor filters
according to local motion based on optical flow [54], [55]. The adapted Gabor filter responses are then incor-
porated into the SSIM and the visual information fidelity (VIF) [49] measures for the purpose of VQA.

Ninassi et al. [56] hypothesize that the temporal distortion is the temporal evolution of the spatial dis-
tortion and is closely linked to the visual attention mechanisms. Hence they resort to short-term temporal
pooling and long-term temporal pooling. In the short-term evaluation of the temporal distortions, the spatio
temporal perceptual distortion maps are computed from the spatial distortion maps (wavelet based quality
assessment metric (WQA) [57])and the motion information. In the long term evaluation, the quality score
for the whole video sequence is computed based on the concepts of perceptual saturation and asymmetric
behavior of the humans.

The Motion-tuned Video Integrity Evaluator (MOVIE) index [3] is a HVS-inspired algorithm where the
response of the visual system to video stimulus is modeled as a function of linear spatio-temporal bandpass
filter outputs. The central idea is that distortions cause the optical flow plane of the distorted video to move
away from the reference videos optical flow plane. The filters close to the reference videos optical flow plane
are given excitatory weights and those away from it are given inhibitory weights.
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A video quality assessment model based on Most Apparent Distortion (MAD) [58] called Spatio-temporal
MAD (ST-MAD) [59], is designed on the assumption that motion artifacts will manifest as spatial artifacts
and the appearance-based model of MAD can measure these changes to agree with human perception. MAD
has two stages; a detection-based stage, which computes the perceived degradation due to visual detection of
distortions and an appearance based stage, which computes the perceived degradation due to visual appear-
ance changes.

Park et al. [32] hypothesize that non-uniform local distortion is perceptually more annoying than dis-
tortion that is more or less uniform both spatially and temporally. This hypothesis is demonstrated with a
strategy for pooling local quality scores into a global score. Local quality scores are sorted in ascending order
and higher weights are assigned to patches that occupy the steepest ascent region in the sorted quality curve.

Wolf and Pinson [60] present a VQA algorithm called VQM VFD to quantify the effects of temporal
distortion due to frame delay on perceptual video quality. This is an extension to their previous work called
video quality metric (VQM) [51]. In VQM VFD, the authors extract hand crafted spatio-temporal features
primarily using edge detection filters. A neural network is trained using these features extracted from a train-
ing set composed of a varied collection of video data. The VQM VFD was evaluated on the LIVE Mobile
database in [61] and shown to have the best performance across all VQA algorithms.

Manasa and Sumohana presented a simple yet effective FR-VQA algorithm called FLOSIM [4] based on
local optical flow statistics and a robust FR-IQA algorithm, and also proposed a perceptually inspired pooling
strategy and demonstrate the efficacy of our approach on popular SD and HD video databases.

In this work we present simple FR-VQA algorithm based on the change in sparse represent of the videos
in the presence of distortion. By quantifying this change we are measuring the quality of the video.

4.2 Sparse Representation of videos

A small image patch I(x, y) . is modeled as a linear superposition of basis functions, φi(x, y), multiplied by
coefficients, ai :

I(x, y) =
∑

i

aiφi(x, y) (4.1)

When a set of basis functions is sought such that the coeffcients are as sparse and statistically independent
as possible, averaged over many natural images, the basis functions that emerge are localized, oriented, and
handpass (selective to structure at different spatial scales). These properties are similar to the receptive
fields of neurons in mammalian primary visual cortex (area V I), thus suggesting that the cortex has evolved
according to a similar coding principle.

van Hateren and Ruder [62] extended this idea to the time domain and showed that the basis functions
that emerge have similar spatial properties and translate as a function of time, similar to the non-separable
(direction selective) receptive fields of cortical simple cells. However, their image model relies upon blocking
the image stream into a small number of frames and treating time simply as another dimension:

I(x, y, t) =
∑

i

aiφi(x, y, t) (4.2)
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An image sequence is then represented by simply computing inner products between a set of bi-orthogonal
functions and a block of image frames.

Olshausen [63] modeled time-varying images without blocking by assuming time-in variance in the basis
functions, so that each function can be applied at all points in time. Importantly, the basis set is over complete,
so that there are multiple ways to describe a given image sequence. When a sparse representation is selected
via matching pursuit, then one obtains a recording of the image in terms of sparse, punctate events in time,
similar to neural spike trains. The suggestion is that the spike trains of V1 neurons themselves serve as a
sparse code in time, and that VI receptive fields have been adapted to represent images in this way.

4.3 Metric

Generally in these sparsity based quality evaluation approaches three steps are there. They are

1. Dictionary construction

2. Sparse decomposition

3. Quality evaluation

4.3.1 Dictionary Construction

Similar to the NR-IQA work here also we used K-SVD for dictionary construction. We divided video into
spatio temporal patches and made them into vectors. These vectors are used for dictionary generation. Our
hypothesis is indexing in vectors is helping to capture both sptial and temporal variations in video. We
constructed dictionaries at different scales from reference videos patches using K-SVD algorithm. Along
spatial dimensions we considered patch sizes of 3 ∗ 3, 5 ∗ 5, 7 ∗ 7, 9 ∗ 9, 16 ∗ 16. Along the temporal direction
we considered groups of 3, 5, 7, 9, 11, 16, 25, 31 we get spatio temporal patches with different sizes like 3*3*3,
3*3*5, ...

Figure 4.1: 5*5*3 Dictionary atoms (column wise). Left: Atom 1, Middle: Atom 75, Right: 150.
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Figure 4.2: 9*9*3 Dictionary atoms (column wise) Left: Atom 1, Middle: Atom 243, Right: 486.

Figure 4.3: 16*16*3 Dictionary atoms(column wise) Left: Atom 1, Middle: Atom 768, Right: 1536

In the above figures (Fig. 4.1 ,Fig. 4.2,Fig. 4.3) first, middle and last atoms (column wise) of dictionaries
5 ∗ 5 ∗ 3, 9 ∗ 9 ∗ 3, 16 ∗ 16 ∗ 3 are shown respectively. Clearly we can observe the variations in the atoms
both spatially and temporally.We tried to reconstruct the videos from the sparse representations of videos.
Reconstructions were pretty good. Visually original and reconstructed video look same. PSNR between the
original and reconstructed videos are high.

4.3.2 Sparse Decomposition

We used OMP to generate sparse representation of spatio-temporal patches of video. We generated a sparse
matrix using these. Each column in this matrix is sparse representation of a patch. From here we have two
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approaches two generate the quality score.

4.3.3 appproach-1

From the sparse matrix we generated feature vector by talking L1 norm row wise. Each dimension in the
feature vector represents absolute strength of the atom coefficient in representing the video sparsely. we
follow the same procedure for both test and reference videos. For each scale (dictionary) we get a reference
and test feature vectors ( ft and fr). BY using these we are calculating quality score per scale Qs.

Qs =‖ ft − fr ‖2 (4.3)

we took weighted combination of these scores to generate final score.
final Quality

Q =

38∑
i=1

WiQi (4.4)

We used linear regression to find the weights. We didn’t use 16 ∗ 16 ∗ 25 and 16 ∗ 16 ∗ 31 dictionaries
in calculating final score because of two reasons. 1) Time complexity and 2) reconstruction is not good with
these dictionaries.

4.3.4 appproach-2

From the sparse matrix we generated feature vector by talking L1 norm column wise. Each dimension in the
feature vector represents absolute strength of the sparse representation of spatio-temporal patch. we follow
the same procedure for both test and reference videos. For each scale (dictionary) we get a reference and test
feature vectors ( ft and fr). By using these we are calculating quality score per scale Qs.

Qs =‖ ft − fr ‖2 (4.5)

we took weighted combination of these scores to generate final score.
final Quality

Q =

38∑
i=1

WiQi (4.6)

We used linear regression to find the weights. We didn’t use 16 ∗ 16 ∗ 25 and 16 ∗ 16 ∗ 31 dictionaries
in calculating final score because of two reasons. 1) Time complexity and 2) reconstruction is not good with
these dictionaries.

4.4 Results and Discussion

We used LIVE data set in our work. The LIVE Video Quality Database uses ten uncompressed high-quality
videos with a wide variety of content as reference videos. A set of 150 distorted videos were created from
these reference videos (15 distorted videos per reference) using four different distortion types. (MPEG-2
compression, H.264 compression, IP-Distortions and Wireless Distortions). Each video in the LIVE Video
Quality Database was assessed by 38 human subjects. The mean and variance of the Difference Mean Opinion
Scores (DMOS) obtained from the subjective evaluations.
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Figure 4.4: Scatter plot of score vs dmos for approach -1

Figure 4.5: Scatter plot of score vs dmos for approach -2

From the above figures we can see that scatter plots for the two approaches are almost linear.
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Metrics LCC SROCC

Only PSNR 0.4035 0.3684

Only SSIM 0.5498 0.5381

Only VIF 0.5721 0.574

Only FSIM 0.7376 0.7278

Only MS-SSIM 0.7642 0.7482

MOVIE 0.8116 0.789

MOVIE with VQ pooling 0.8611 0.8427

FLOSIM (with MS-SSIM) 0.859 0.8537

Approach-1 0.9051 0.8934

Approach-2 0.9082 0.9007

Table 4.1: Performance (LCC,SROCC) on the LIVE SD database.

we presented both Spearman rank ordered correlation coefficient (SROCC) and linear correlation coeffi-
cient (LCC). From the results table we can say that the proposed approaches performs better than the existing
state of art techniques.

4.5 Conclusions and Future Work

we did not use any Spatial metrics (pre existing) in this work. Directly evaluated spatio-temporal scores. If we
observe from the literature people evaluated spatial and temporal scores separately and combined them to get
saptio-temporal scores. We generated spatio-temporal dictionaries using K-SVD. Finally, we demonstrated
the competitive performance of the algorithm on the LIVE SD.

As future work, we plan to improve the performance of the algorithm by fine-tuning the features and score
computation metrics. Also, we intend to extend this hypothesis to no-reference video quality assessment.
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