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Chapter 1

Tensor Product

1.1 Bilinear forms

Let X,Y and Z be normed spaces over the field F. A mapping φ : X × Y → Z is said to
be bilinear if

1. for each y ∈ Y , the mapping x→ φ(x, y) is linear,

2. for each x ∈ X, the mapping y → φ(x, y) is linear as well.

When Z = F, such a mapping is called bilinear form or bilinear functional.
A bilinear form is said to be bounded if there exist M > 0 such that

||φ(x, y)|| ≤M ||x||||y||

The norm of φ, ||φ|| is then defined as

||φ|| := sup{||φ(x, y)|| : ||x|| ≤ 1, ||y|| ≤ 1}

When X,Y and Z are Banach Spaces, each separately continuous bilinear mapping,
φ : X × Y → Z is bounded, i.e. let for each fix x, φx(y) 7→ φ(x, y) is continuous, i.e. for
each x there exists Mx, such that ||φx|| ≤Mx. Similarly we have φy, these are continuous
linear map from Banach spaces. So from Uniform Boundedness Theorem, we have a bound
M such that ||φx|| ≤M.

||φ(x, y)|| ≤ ||φx|| ||y|| ≤M ||x|| ||y||,

which gives that φ is bounded. The set of all bounded bilinear mappings from X × Y to
Z is denoted by BL(X,Y ;Z)1.

1BL(X) will denote all bounded linear map from X to X and L(X) will denote all linear map from X
to X.
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Proposition 1.1.1. BL(X,Y ;Z) is a normed space with the usual pointwise operations,
and is a Banach space if Z is a Banach space.

Proof. Suppose (φn) is a cauchy sequence in BL(X,Y ;Z), which provides us that ∀ ε > 0,
we can have a N ∈ N, such that ∀ n,m > N, ||φn − φm|| < ε/2||(x, y)||, Now for fixed
(x, y) ∈ X × Y , we have

|φn(x, y)− φm(x, y)| ≤ ||φn − φm|| ||(x, y)|| < ε/2

which immediately implies that (φn(x, y)) ⊆ Z is cauchy. As Z is complete (φn(x, y)) is a
convergent sequence for every (x, y) ∈ X × Y , let say converging to z. Define a function
φ : X × Y → Z pointwise as (x, y) 7→ lim

n→∞
φn(x, y).

Now we claim that (φn)→ φ, and φ ∈ BL(X,Y ;Z)
Claim (1) : φ is bilinear :

φ(x+ y, z) = lim
n→∞

φn(x+ y, z)

= lim
n→∞

φn(x, z) + lim
n→∞

φn(y, z)

= φ(x, z) + φ(y, z).

Similar calculation for other variable simply implies that φ is bilinear.
Claim (2) : (φn) → φ : We have that for every (x, y), φn(x, y) → φ(x, y), so
|φ(x, y) − φn(x, y)| < ε/2 and as (φn(x, y)) is cauchy sequence so we have, m ∈ N, such
that

|φ(x, y)− φn(x, y)| = |φ(x, y)− φm(x, y) + φm(x, y)− φn(x, y)|

≤ |φ(x, y)− φm(x, y)|+ |φm(x, y)− φn(x, y)| ≤ ε,

Which simply gives that,
||φ− φn|| ≤ ε.

Thus, (φn) converges to φ.
Claim (3) : φ ∈ BL(X,Y ;Z) : φ is bounded.

|φ(x, y)| ≤ |φn(x, y)|+ |φ(x, y)− φn(x, y)|

≤ k + ε (||φn|| < k)

This inequality holds for each (x, y) ∈ X × Y , thus, φ ∈ BL(X,Y ;Z). Hence, we proved
that BL(X,Y ;Z) is complete.
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The above remarks can be extended to the case of n-linear mappings from X1 ×X2 ×
· · · × Xn to Z. The corresponding space of bounded n-linear mappings is denoted by
BL(X1, X2, . . . , Xn;Z). For the case X1 = · · · = Xn = X, we write this more simply as
BLn(X;Z).

1.2 Tensor Product and Linearization

In this section we will define the tensor product as functionals that act on bilinear forms.
We will see how tensor product helps to linearize the bilinear forms. We will work with
vector spaces over the field F which can be either R or C. We denote the algebraic dual of
a vector space X by X ′ and define as X ′ := {f : X → F, and f is linear} while topological
dual by X∗ and define it as X∗ := {f : X → F, f is linear and bounded}.

Definition 1.2.1. Let X,Y be normed spaces over F with dual spaces X∗, Y ∗. Given
x ∈ X, y ∈ Y , x⊗ y is the element of BL(X∗, Y ∗;F) defined by

x⊗ y(f, g) = f(x)g(y) (f ∈ X∗, g ∈ Y ∗).

The algebraic tensor product of X and Y , X ⊗ Y , is then defined to be the linear span
of {x⊗ y : x ∈ X, y ∈ Y } in BL(X∗, Y ∗;F). Thus a typical element in X ⊗Y will look like

u =
n∑
i=1

αi (xi ⊗ yi) n ∈ N, α′is ∈ F

It’s important to note that this representation is not unique. In general there are many
ways to write a given tensor. The action of a tensor on elements of X∗×Y ∗ is independent
of representation of tensor. The tensor x⊗ y is called elementary tensor.
Now it is easy to check that tensor product is bilinear, i.e.

1. x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

2. (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y,

3. α (x⊗ y) = αx⊗ y = x⊗ αy

4. 0⊗ y = x⊗ 0 = 0

The primary purpose of tensor products is to linearize the bilinear mappings. In this
section we will show that given each bilinear mapping

φ : X × Y → Z

there exist a unique linear mapping σ : X⊗Y → Z such that φ = σoτ ; τ : X×Y → X⊗Y
be the bilinear mapping defined by

τ(x, y) = x⊗ y (x ∈ X, y ∈ Y ).
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This is key property of algebraic tensor product. We will further show that actually
(X ⊗ Y )∗ is in one-one correspondence with BL(X,Y ;F).

Lemma 1.2.2. Given u ∈ X ⊗Y, there exist linearly independent sets {xi}, {yi} such that
u =

∑n
i=1 xi ⊗ yi

Proof. Let u =
∑n

i=1 xi ⊗ yi is the minimal representation for u in the sense that n is
as small as possible. Suppose {yi} is linearly dependent, then without loss of generality
assume that yn =

∑n−1
i=1 ciyi, then

u =

n−1∑
i=1

xi ⊗ yi + xn ⊗ yn

=
n−1∑
i=1

xi ⊗ yi + xn ⊗

(
n−1∑
i=1

ciyi

)

=
n−1∑
i=1

(xi + xn)⊗ ciyi (tensor products is bilinear)

Now the independency of set {xi +xn}n−1
i=1 contradicts the minimality of n in represen-

tation for u. It follows that {yi} is linearly independent, and a similar argument applies
to {xi}.

Now, when can we say two tensors are equal, this question reduces to the following:
How to determine the

∑n
i=1 xi⊗ yi is a representation of the zero tensor? In principle this

can be determined by evaluating

n∑
i=1

xi ⊗ yi(f, g) for each f ∈ X∗ and g ∈ Y ∗.

Now we will see some equivalent conditions, which will pave our way to determine a zero
tensor.

Proposition 1.2.3. The following are equivalent for u =
∑n

i=1 xi ⊗ yi ∈ X ⊗ Y ;

1. u = 0,

2.
∑n

i=1 f(xi)g(yi) = 0 for every f ∈ X∗, g ∈ Y ∗,

3.
∑n

i=1 f(xi)yi = 0 for every f ∈ X∗,

4.
∑n

i=1 xig(yi) = 0 for every g ∈ Y ∗,
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Proof. (1) =⇒ (2).
As u ∈ BL(X∗, Y ∗;F), if u = 0 implies u(f, g) = 0, i.e.

n∑
i=1

xi ⊗ yi(f, g) = 0 (∀ f ∈ X∗, g ∈ Y ∗)

n∑
i=1

f(xi)g(yi) = 0 for every f ∈ X∗, g ∈ Y ∗.

(2) =⇒ (3).
If
∑n

i=1 f(xi)g(yi) = 0 for every f ∈ X∗, g ∈ Y ∗, We have

g

(
n∑
i=1

f(xi)yi

)
= 0 for every g ∈ Y ∗,

Which gives, as the consequence of Hahn Banach theorem,

n∑
i=1

f(xi)yi = 0 for every f ∈ X∗

Similarly (2) =⇒ (4).
(3) =⇒ (2).
If
∑n

i=1 f(xi)yi = 0 for every f ∈ X∗,

n∑
i=1

f(xi)g(yi) = g

(
n∑
i=1

f(xi)yi

)
= 0 for every f ∈ X∗, g ∈ Y ∗

Similarly (4) =⇒ (2).
Now we will prove that (4) =⇒ (1).
Suppose that u =

∑n
i=1 xi ⊗ yi and

∑n
i=1 xig(yi) = 0 for every g ∈ Y ∗, now

u(f, g) =

n∑
i=1

f(xi)g(yi) (∀ f ∈ X∗, g ∈ Y ∗)

= f

(
n∑
i=1

xig(yi)

)
= 0 (as f is linear and

n∑
i=1

xig(yi) = 0)

As this holds for every (f, g) ∈ X∗ × Y ∗, we have u = 0.

We have following characterization for zero tensor, which will be used frequently.
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Lemma 1.2.4. Let
∑n

i=1 xi ⊗ yi = 0, where {xi} is linearly independent set. Then
yi = 0 (i = 1, 2, 3, . . . )

Proof. Given
∑n

i=1 xi ⊗ yi = 0, implies that

n∑
i=1

xi ⊗ yi(f, g) = 0 (∀f ∈ X∗, g ∈ Y ∗)

n∑
i=1

f(xi)g(yi) = 0

f

(
n∑
i=1

g(yi)xi

)
= 0 (∀f ∈ X∗)

from Hahn-Banach Theorem,2 we have if ∀f ∈ X∗, f(x) = 0 implies that x = 03, so we
have

n∑
i=1

g(yi)xi = 0 (g ∈ Y ∗)

g(yi) = 0 (as x′is are linearly independent)(g ∈ Y ∗, i = 1, 2, . . . n)

yi = 0 (i = 1, 2, . . . n)

Proposition 1.2.5. Let {x1, x2, · · · , xn}, {y1, y2, · · · , ym} be linearly independent subsets
of X,Y respectively. Then {xi ⊗ yj : i = 1 · · ·n, j = 1 · · ·m} is a linearly independent
subset of X ⊗ Y .

Proof. suppose that
∑m

i=1

∑n
j=1 αijxi⊗yj = 0. As we know that tensor product is bilinear

so,

m∑
i=1

n∑
j=1

αijxi ⊗ yj = 0

m∑
i=1

xi ⊗

 n∑
j=1

αijyj

 = 0

n∑
j=1

αijyj = 0 (for a fixed i)(using lemma 1.2.3)

αij = 0 (i = 1, 2, . . . ,m, j = 1, 2, . . . , n)

2Let f be a bounded linear functional on a subspace Z of a normed space X. Then there exists a
bounded linear functional g on X which is an extension of f to X and has the same norm, ||g||X = ||f ||Z .

3For every x in anormed space X we have ||x|| = sup|f(x)| where supremum is taken over all bounded
functional with norm 1
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Corollary 1.2.6. If {ei, i ∈ I} and {fj , j ∈ J} are the bases of X and Y respectively, then
{ei ⊗ fj : (i, j) ∈ I × J} is a basis for X ⊗ Y .

Now we are done with ground work to state the centerpiece of this section. A theorem
which linearizes the bilinear maps with the help of tensor product.

Theorem 1.2.7. Given a bilinear mapping φ : X × Y → Z, there exist a unique linear
mapping σ : X ⊗ Y → Z such that

σ(x⊗ y) = φ(x, y) (x ∈ X, y ∈ Y ).

Proof. Define a linear mapping σ : X ⊗ Y → Z as,

σ

(
k∑
r=1

xr ⊗ yr

)
=

k∑
r=1

φ(xr, yr),

To show this mapping is well defined, it suffices to show that if
∑k

i=r xr ⊗ yr = 0, then∑k
r=1 φ(xr, yr) = 0. To see this, let {ai} and {bj} be the bases for linear span of {xr}, {yr}

respectively, and let

xr =
∑
i

αirai yr =
∑
j

βjrbj

We now have∑
i

∑
j

∑
r

αirβjrai ⊗ bj = 0 (Tensor product is bilinear)

As we have {ai} and {bj} are linearly independent sets, proposition (1.2.4) tells us that∑
r αirβjr = 0. Therefore∑

r

φ(xr, yr) =
∑
i

∑
j

∑
r

αirβjrφ(ai, yj) = 0.

Thus we got desired well defined linear mapping σ of X ⊗ Y into Z.

The above situation is illustrated as follows



12 CHAPTER 1. TENSOR PRODUCT

X × Y Z

X ⊗ Y

φ

τ
σ

The special bilinear mapping τ : X × Y → X ⊗ Y given as (x, y) 7→ x ⊗ y acts as a
”universal” bilinear mapping as any bilinear mapping φ on X×Y factors through this one
via a linear mapping σ on tensor product X ⊗ Y , i.e. φ = σoτ.

1.3 Norms on Tensor Product

Now we will define the norms on tensor product of two Banach spaces called as projective
and injective (weak) norm. The projective tensor product linearizes bounded linear map-
ping just as the algebraic tensor product linearizes the bilinear mappings. The projective
tensor product derives it’s name from the fact that it behaves well with construction of
quotient spaces.

1.3.1 Injective tensor norm

As the elements of the tensor product can be viewed as the bilinear form on the product
X ′ ⊗ Y ′ of the algebraic duals. Now if

∑n
i=1 xi ⊗ yi is the representation of tensor u, then

associated bilinear form Bu is given as

Bu(f, g) =
n∑
i=1

f(xi)g(yi).

Now the restriction of Bu to the product X∗×Y ∗ of the dual spaces is bounded and so we
have a canonical algebraic embedding of X ⊗ Y into BL(X∗, Y ∗; F). The injective norm
on X ⊗ Y is norm induced by this embedding.

Definition 1.3.1.1. Let X and Y be linear spaces, then X ⊗ Y inherits norm from
BL(X∗, Y ∗; F). This norm is called the injective (weak) tensor norm and denoted by
w,

w(u) = sup

{∣∣∣∣∣∑
i

f(xi)g(yi)

∣∣∣∣∣ : ||f || ≤ 1, ||g|| ≤ 1

}
,

where u =
∑

i xi ⊗ yi.

It is easy to check that w is actually a norm.
First we observe that the action of an element u of X⊗Y on (f, g) for given f ∈ X∗, g ∈ Y ∗,
is independent of representation of u. Now consider u ∈ X ⊗ Y, then w(u) ≥ 0 as it is the
supremum of positive scalars. Take u =

∑
i xi ⊗ yi with it’s minimal representation, then
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if u = 0 implies w(u) = 0, as we have u = a⊗ 0, (a ∈ X) as one of the representation for
zero tensor, so u(f, g) = f(a)g(0) = 0 for all (f, g) ∈ X∗ × Y ∗ which gives us w(u) = 0.
Consider w(u) = 0, implies∑

i

f(xi)g(yi) = 0 (∀ (f, g) ∈ X∗ × Y ∗, with ||f || ≤ 1, ||g|| ≤ 1)

f

(∑
i

xi g(yi)

)
= 0 (∀ (f, g) ∈ X∗ × Y ∗)

As the consequence of Hahn-Banach theorem, we have that if h(x) = 0, ∀ h ∈ X∗, x = 0.
So, ∑

i

xi g(yi) = 0 (∀ g ∈ Y ∗)

We have that {xi} linearly independent implying that,

g(yi) = 0 (∀ i and ∀ g ∈ Y ∗),

Again by Hahn-Banach theorem, we have, yi = 0 for all i, so u = 0.
Now to verify triangle inequality, assume that u =

∑
i xi⊗ yi and v =

∑
j ui⊗ vi. Then for

f ∈ X∗, g ∈ Y ∗ such that ||f || ≤ 1, ||g|| ≤ 1,∣∣∣∣∣∣
∑
i

f(xi) g(yi) +
∑
j

f(uj) g(vj)

∣∣∣∣∣∣ ≤ w(u) + w(v),

Thus, w(u+ v) ≤ w(u) + w(v). Hence we are done proving w is a norm.

Proposition 1.3.1.2. Let x⊗ y be elementary tensor, then w(x⊗ y) = ||x||||y||.

Proof. Let u = x⊗ y be an elementary tensor. Then

w(u) := sup{|f(x) g(y)| : ||f || ≤ 1, ||g|| ≤ 1}.

So, for (f, g) ∈ X∗ × Y ∗, such that ||f || ≤ 1, ||g|| ≤ 1 we will have |u(f, g)| ≤ ||x|| ||y||,
which directly gives us that, w(x⊗ y) ≤ ||x|| ||y||.
Now to prove other side inequality, we will again use one of the important consequence of
Hahn-Banach theorem. For a given f ∈ X∗, g ∈ Y ∗ with unit norm we have,

|f(x)g(y)| ≤ w(x⊗ y),

sup
f∈X∗

|f(x)| sup
g∈Y ∗

|g(y)| ≤ w(x⊗ y),

||x|| ||y|| ≤ w(x⊗ y).

and we are done.
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The completion of X ⊗ Y with respect to injective norm, i.e. closure of X ⊗ Y in
BL(X∗ × Y ∗;F) is called injective (weak) tensor product of X and Y . The weak tensor
product of X and Y will be denoted by X ⊗w Y .

1.3.2 Projective tensor norm

Definition 1.3.2.1. Let X and Y be Banach spaces, then projective tensor norm p on
X ⊗ Y is defined as

p(u) = inf

{∑
i

||xi||||yi|| : u =
∑
i

xi ⊗ yi

}
,

where the infimum is taken over all (finite) representation of u.

Proposition 1.3.2.2. Let X and Y be normed linear spaces over the field F, then

1. p is a norm X ⊗ Y ,

2. p(u) ≥ w(u) (u ∈ X ⊗ Y ),

3. p(x⊗ y) = ||x||||y|| (x ∈ X, y ∈ Y ).

Proof. (1) First we will show that p(λu) = |λ|p(u). This is obvious when λ = 0. So sup-
pose that λ 6= 0 and u =

∑n
i=1 xi ⊗ yi is a representation of u, then λu =

∑n
i=1 λxi ⊗ yi

and so we have p(λu) ≤
∑n

i=1 ||λxi||||yi|| = |λ|
∑n

i=1 ||xi||||yi||. Since this holds for ev-
ery representation of u, it follows that p(λu) ≤ |λ|p(u). In same way we have
p(u) = p(λ−1λu) ≤ |λ−1|p(λu), giving |λ|p(u) ≤ p(λu). Therefore p(λu) = |λ|p(u).

Now to prove that it satisfies triangle inequality, let u, v ∈ X ⊗ Y and let ε > 0 .
It follows from definition that we may choose u =

∑n
i=1 xi ⊗ yi and v =

∑m
j=1wj ⊗ zj

such that
∑n

i=1 ||xi||||yi|| ≤ p(u) + ε/2 and
∑m

j=1 ||wj ||||zj || ≤ p(v) + ε/2. Then∑n
i=1 xi ⊗ yi +

∑m
j=1wj ⊗ zj is the representation of u+ v and so

p(u+ v) ≤
n∑
i=1

||xi||||yi||+
m∑
j=1

||wj ||||zj || ≤ p(u) + p(v) + ε

Since this holds for every ε > 0, we have p(u+ v) ≤ p(u) + p(v)

Now suppose that p(u) = 0, Then for every ε > 0 there is a representation
∑n

i=1 xi⊗ yi
such that

∑n
i=1 ||xi||||yi|| < ε. Hence for every f ∈ X∗, g ∈ Y ∗, such that ||f || ≤ 1, ||g|| ≤ 1

we have ∣∣∣∣∣
n∑
i=1

f(xi)g(yi)

∣∣∣∣∣ ≤ ||f ||||g||
n∑
i=1

||xi||||yi||
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n∑
i=1

f(xi)g(yi)

∣∣∣∣∣ ≤ ε
Since the value of the sum |

∑n
i=1 f(xi)g(yi)| is independent of the representation of u, it

follows that
∑n

i=1 f(xi)g(yi) = 0. So from proposition (1.2.2) it follows that u = 0.

(2) Given u =
∑

i=1 xi ⊗ yi, and given f ∈ X∗, g ∈ Y ∗, we have

|u(f, g)| =

∣∣∣∣∣∑
i

f(xi)g(yi)

∣∣∣∣∣ ≤ ||f ||||g||∑
i

||xi||||yi||,

and hence w(u) ≤ p(u).

(3) Given x ∈ X, y ∈ Y, we have

||x||||y|| = w(x⊗ y) ≤ p(x⊗ y),

and p(x⊗ y) ≤ ||x||||y|| is clear from the definition of p. Thus we have p(x⊗ y) = ||x||||y||.

We shall denote the completion of (X ⊗ Y, p) by X ⊗p Y and call the projective tensor
product of X and Y . If X and Y are finite dimensional then (X ⊗p Y, p) is complete.

Proposition 1.3.2.3. X ⊗p Y can be represented as the linear subspace of BL(X∗, Y ∗;F)
consisting of all elements of the form u =

∑∞
i=1 xi ⊗ yi where

∑∞
i=1 ||xn||||yn|| < ∞.

Moreover p(u) is the infimum of the sums
∑∞

i=1 ||xn||||yn|| over all such representation of
u.

Proof. Let a ∈ X ⊗ Y and ε > 0. Since X ⊗ Y is dense in X ⊗p Y . Then a = limλm for a
sequence (λm) in X⊗Y. Pick out a subsequence (am) of (λm) such that p(a−am) ≤ ε/2m+3

for m ∈ N.
we want to write a as a sum of elementary tensors. Choose xi, yi i = 1, 2, ..., n from X,Y
respectively, such that a1 =

∑n
i=1 xi ⊗ yi and

p(a1) ≤
n∑
i=1

||xi||||yi|| ≤ p(a1) + ε/24 ≤ p(a) + p(a− a1) + ε/24 ≤ p(a) + ε/23.

Since p(a2−a1) ≤ p(a−a2)+p(a−a1) ≤ ε/25+ε/24 < ε/23, we can choose xi ∈ X, yi ∈ Y,
i = n1 + 1, , ..., n2 such that (a2 − a1) =

∑n2
i=n1+1 xi ⊗ yi and

p(a2 − a1) ≤
n2∑

i=n1+1

||xi||||yi|| ≤ p(a2 − a1) + (ε/23 − p(a2 − a1)) = ε/23.
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Since p(a3 − a2) ≤ p(a − a3) + p(a − a2) ≤ ε/26 + ε/25 < ε/24. We can then choose
xi ∈ X, yi ∈ Y i = n2 + 1, ..., n3, such that a3 − a2 =

∑n3
i−n2+1 xi ⊗ yi and

p(a3 − a2) ≤
n3∑

i=n2+1

||xi||||yi|| ≤ p(a3 − a2) + (ε/24 − p(a3 − a2)) = ε/24.

Continuing expanding, choosing xi ∈ X, yi ∈ Y and estimating difference for n ≥ 4. Now,
let b1 = a1, bm+1 = am+1 − am for m ∈ N, so that a =

∑∞
m=1 bm =

∑∞
i=1 xi ⊗ yi.

and
∞∑
i=1

||xi||||yi|| ≤ p(a) + ε/2 <∞.

So
∑∞

i=1 xi ⊗ yi converges absolutely. Let π(a) denote the above mentioned infimum over
all representations of a; it follows from above equation that π(a) ≤ p(a). But

p(a) ≤ lim
N→∞

N∑
i=1

p(xi ⊗ yi) =
∞∑
i=1

||xi||||yi||,

so equality holds. Finally, if a =
∑∞

i=1 xi ⊗ yi where
∑∞

i=1 ||xi||||yi|| < ∞, then the sum

converges in BL(X∗, Y ∗;F) and letting aN =
∑N

i=1 xi⊗yi, it is obvious that p(a−aN )→ 0
for N →∞.

We have seen that the tensor product X⊗Y linearizes bilinear mappings on X×Y . We
now add norms to this picture. We identify the dual space of X⊗pY. Given F ∈ (X⊗pY )′,
let φF be the bilinear mapping on X × Y defined by

φF (x, y) = F (x⊗ y) (x ∈ X, y ∈ Y ).

Proposition 1.3.2.4. The mapping F → φF is an isometric linear isomorphism of
(X ⊗ Y )′ onto BL(X,Y ;F).

Proof. Given F ∈ (X ⊗p Y )′, we clearly have φF ∈ BL(X,Y ;F) and

||φF || = sup{|φF (x, y)| : ||x|| ≤ 1, ||y|| ≤ 1}

Since |φF (x, y)| = |F (x⊗ y)| ≤ ||F ||

we have ||φF || ≤ ||F ||.

Conversely let φ ∈ BL(X,Y ;F), by theorem 1.2.7 there exists unique linear functional F
on X ⊗ Y such that

F (x⊗ y) = φ(x, y) (x ∈ X, y ∈ Y ),



1.3. NORMS ON TENSOR PRODUCT 17

Then ∣∣∣∣∣F
(∑

i

xi ⊗ yi

)∣∣∣∣∣ =

∣∣∣∣∣∑
i

φ(xi, yi)

∣∣∣∣∣ ≤ ||φ||∑
i

||xi||||yi||,

And so |F (u)| ≤ ||φ||p(u) (u ∈ X ⊗ Y ). Therefore F has a unique extension to an element
F̃ of (X ⊗p Y )′, ||F̃ || = ||F || ≤ ||φ||, and φ = φF̃ .

Definition 1.3.3. Given normed spaces X, Y , a norm α on X ⊗ Y is said to be a cross
norm if

α(x⊗ y) = ||x||||y|| (x ∈ X, y ∈ Y ).

The projective and injective tensor norms on X⊗Y are cross norms. In fact projective
tensor norm is the largest cross norm on X ⊗ Y ; suppose α is a cross norm on X ⊗ Y and
u =

∑
i xi ⊗ yi, then

α(u) ≤
∑
i

α(xi ⊗ yi) =
∑
i

||xi||||yi||,

and so α(u) ≤ p(u).

Now we will conclude this section by following proposition which shows how the ten-
sor product of subspaces of bounded bilinear maps can be embedded in tensor product of
spaces, and what is the behavior of induced norm.

Proposition 1.3.4. Let A, B be linear subspaces of BL(X), BL(Y ) respectively. Then
A⊗B can be embedded in BL(X ⊗p Y ) and the induced norm on A⊗B is a cross norm.

Proof. Given S ∈ A, T ∈ B, we have bilinear map φ ∈ BL(X, Y ;X⊗Y ), such that
φ(x, y) = Sx⊗Ty, further from theorem 1.2.7, there exists unique linear operator S�T on
X × Y such that

S�T (x⊗ y) = Sx⊗ Ty (x ∈ X, y ∈ Y )

Suppose u =
∑

i xi ⊗ yi then,

p

(∑
i

S(xi)⊗ T (yi)

)
≤
∑
i

||S(xi)||||T (yi)|| ≤ ||S||||T ||
∑
i

||xi||||yi||,

This implies that,

||S�T || ≤ ||S||||T ||.

Thus S�T can be extended to an element of BL(X ⊗p Y ).
Moreover,
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||S�T || ≥ sup{p(S�T (x⊗ Y ) : p(x⊗ y) = 1)}

≥ sup{||Sx||||Ty|| : ||x|| = 1, ||y|| = 1}

= ||S||||T ||.

So we have ||S�T || = ||S||||T ||.

Now f(S, T ) = S�T is clearly a bilinear mapping on A×B, so from theorem 1.2.7 we have
a unique linear mapping σ on A⊗B σ : A⊗B → BL(X⊗p Y ) such that σ(S⊗T ) = S�T .
Now we will prove that σ is injective.

Let S�T = 0. We will prove that S ⊗ T = 0, consider u =
∑

i xi ⊗ yi with minimal
representation, then

S�T (u) = 0, (∀ u ∈ X ⊗p Y )

=⇒
∑
i

S(xi)⊗ T (yi) = 0, (∀ u =
∑
i

xi ⊗ yi ∈ X ⊗p Y )

=⇒
∑
i

(Sxi ⊗ Tyi)(f, g) = 0, (∀ (f, g) ∈ X∗ × Y ∗)

=⇒
∑
i

f(Sxi) g(Tyi) = 0, (∀ (f, g) ∈ X∗ × Y ∗)

=⇒ f

(∑
i

Sxi g(Tyi)

)
= 0, (∀ f ∈ X∗, g ∈ Y ∗)

=⇒
∑
i

Sxi g(Tyi) = 0, (∀ g ∈ Y ∗)

=⇒ S

(∑
i

xi g(Tyi)

)
= 0, (∀ g ∈ Y ∗, u ∈ X ⊗p Y )

=⇒ S = 0,

=⇒ S ⊗ T = 0.

Hence we are done.

Now the most awaited terminology comes into picture i.e. Banach algebra and ten-
sor product of Banach algebras, which will be used frequently. Banach algebra indicates
completion of algebra. So first we define what is an algebra.
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1.4 Tensor Product of Banach Algebras

Definition 1.4.1. Let (X,+, .) be a vector space over the field F, define a map
∗ : X ×X → X, called vector multiplication, such that,

1. x ∗ (y ∗ z) = (x ∗ y) ∗ z (∀ x, y, z ∈ X)

2. x ∗ (y + z) = (x ∗ y) + (x ∗ z) (∀ x, y, z ∈ X)

3. α.(x ∗ y) = (α.x) ∗ y = x ∗ (α.y) (∀ x, y ∈ X, α ∈ F).

Then (X,+, ., ∗) is called an algebra. If || || is norm on X, satisfying

||x ∗ y|| ≤ ||x||||y|| ∀ x, y ∈ X,

then (X,+, ., ∗, || ||) is called normed algebra.
If the space is complete with respect to this norm then X is called Banach algebra.

We say a Algebra is commutative if vector multiplication is commutative i.e. x∗y = y∗x
for all x, y ∈ X. If X has identity with respect to vector multiplication i.e. there exists
an element e such that e ∗ x = x ∗ e = x for all x ∈ X, then X is said to be algebra
with identity. Moreover if ||e|| = 1, x is called unital algebra. Now we will look at some
examples of algebras to get handy with these concepts.

Examples 1.4.2. 1. (Q,+, ∗, | |) is a normed algebra over field Q with vector product
defined as usual multiplication of rational numbers.

2. R, C are commutative Banach algebra with identity.

3. l1 is Banach algebra without identity, vector multiplication defined as

(a1, a2, . . . ) ∗ (b1, b2, . . . ) = (a1b1, a2b2, . . . ).

It’s easy to verify with this multiplication l1 space is Banach algebra.

4. (Mn(C),+, ∗, ◦, || ||) is non-commutative Banach algebra with vector multiplication
defined as usual matrix multiplication and norm induced by Rn2

Now we will go for our purpose that is tensor product of Banach algebras. We are
skipping results in algebras. We will prove and see the consequences as we need them in
our way.

Proposition 1.4.3. Let A, B, be normed algebras over F There exists a unique product
on A⊗B, with respect to which A⊗B is an algebra and

(a⊗ b)(c⊗ d) = (ac⊗ bd) (a, c ∈ A, b, d ∈ B).

Moreover projective tensor norm on A⊗B is an algebra norm.
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Proof. Given a ∈ A, b ∈ B, by theorem 1.2.7 there exists a unique linear operator
λ(a,b) : A⊗B → A⊗B. such that,

λ(a,b)(c⊗ d) = ac⊗ bd (c ∈ A, d ∈ B).

Now the mapping (a, b) 7→ λ(a,b), is bilinear by the fact that tensor product is bilinear, and
so again by theorem 1.2.7 there exists a unique linear mapping σ : A ⊗ B → L(A ⊗ B),
such that

σ(a⊗ b) = λ(a,b) (a ∈ a, b ∈ B).

Now the required product on A⊗B is given as follows.

(u, v) 7→ σ(u)v (u, v ∈ A⊗B).

i.e. if u =
∑

i ai ⊗ bi, and v =
∑

j cj ⊗ dj then uv =
∑

i

∑
j aicj ⊗ bidj .

By using bilinear properties of tensor product, it is easy to verify the algebra proper-
ties. Now we will prove that projective tensor norm is algebra norm, Let u, v ∈ A ⊗ B,
u =

∑n
i=1 ai ⊗ bi, and v =

∑m
j=1 cj ⊗ dj , then

uv =
n∑
i=1

m∑
j=1

aicj ⊗ bidj ,

As A and B are normed algebras, so we have,

n∑
i=1

m∑
j=1

||aicj || ||bidj || ≤
n∑
i=1

||ai|| ||bi||
m∑
j=1

||cj || ||dj ||

=⇒ p(uv) ≤ p(u)p(v).

We are done.



Chapter 2

Abstract Harmonic Analysis

As we are already familiar with various properties of Lebesgue measure on real line (for
more information refer [Roy-Fitz] and [Cohn]). One of the very strong and useful property
is that λ(A+x) = λ(A) for any A in B(R) and x in R, this property is so called translation
invariant. In this chapter first we will introduce the concept of topological groups, we will
focus only particularly on locally compact groups. In next section we will see that every
locally compact group possesses a unique (upto constant multiple) invariant measure, a
Haar measure. Which will lead us to define algebra structure on L1(G) and M(G) (Set of
all finite complex valued regular borel measure (see appendix B) on G) with the help of
convolution. Now we will begin by defining topological groups.

2.1 Locally Compact Group

Definition 2.1.1. A topological group G is a group equipped with a topology τ with respect
to which the group operations are continuous, i.e. (x, y) → xy is continuous from G × G
to G and x→ x−1 is continuous from G to G.

If G is a topological group we denote the unit element of G by e. Now we define some
terminology which will be used frequently. Let A, B ⊆ G

Ax := {yx : y ∈ A}, xA := {xy : y ∈ A} A−1 := {y−1 : y ∈ A},

and

AB := {xy : x ∈ A, y ∈ B}.

Now we will prove some basic results in theory of topological groups that have a large
impact on further development of theory.

Examples 2.1.2. 1. Any group with the discrete or the indiscrete topology.

21
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2. R with addition and R∗ := R 0orC∗ with multiplication are topological group with usual
topology.

Proposition 2.1.3. Let G be a topological group.

a. The topology of G is invariant under translation and inversion, that is, if U is an open
set then so are xU, Ux, and U−1 for any x ∈ G. Moreover, if U is open then so are
AU and UA for any A ⊆ G

b. Let U be a nbd1 of e, then there exists a nbd V of e such that V 2 ⊆ U . Moreover V can
be chosen symmetric i.e. V = V −1.

c. If H is a subgroup of G, so is H

d. Every open subgroup of G is closed.

e. Product of two compact subsets is compact.

f. For any nbd U of e we have U ⊆ U2.

Proof. a. This follows immediately from the fact that the left translation, Lg, right trans-
lation Rg and the inverse map i are homeomorphism. As Lg is the composition of two
continuous maps,

G→ g ×G→ G, x 7→ (g, x) 7→ gx

thus Lg is continuous. The inverse map of Lg is Lg−1 which is again continuous. Hence
Lg is homeomorphism. Similar argument shows that the right translation Rg is home-
omorphism. Since i is continuous and i−1 = i so it is a homeomorphism.
So we are done with showing that for any open set U and x ∈ G the sets xU, Ux and U−1

are open. Now as

AU =
⋃
a∈A

aU, and UA =
⋃
a∈A

Ua

which is the arbitrary union of open set. So, UA, and AU are open.

b. As the multiplication map is continuous at e so for any nbd U of e the inverse image
of U under multiplication map gives us nbd of e in product topology on G × G, i.e.
there exists W1 and W2 open set in G, such that W1 ×W2 is a nbd of e. Moreover
we have W1 × W2 ⊆ U i.e. W1W2 ⊆ U. Now take V = W1 ∩ W2, it is clear that
V 2 ⊂ U. Moreover as W1 is nbd of e so as W−1

1 , so the symmetric set V can be chosen
as V = W1 ∩W2 ∩W−1

1 ∩W−1
2 .

1A set N of G is said to be nbd (abbrevation for neighborhood) of x ∈ G if there exists an W ∈
τG (topology on G) containig x and contained in N . In this context we will assume nbd to be open untill
and unless stated otherwise.
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c. We will show that H is closed under operation of multiplication and inverse, this will
imply that H is also a subgroup. Let x, y ∈ H, so there are nets {xα} and {yβ} in
H converging to x, y. Then xαyβ → xy and x−1

α → x−1, as multiplication and inverse
mapping are continuous. So xy and x−1 are in H

d. Let H be an open subgroup of G. Then xH is open for each x ∈ G and since

H = G \
⋃
x∈Hc

xH,

which simply imply that H is closed in G.

e. Let K and L be compact set the KL is the image of the K ×L under continuous map,
multiplication. Hence as the continuous image of compact set is compact so KL is
compact.

f. If x ∈ U then xU−1 is a neighborhood of x. It follows that xU−1 ∩ U 6= φ as being a
limit point of U , intersection of U with any nbd of x is non-empty and hence we have
that there exist some t and z in U such that xz−1 = t, i.e. x = tz. Hence x ∈ U2 which
shows that U ⊆ U2.

Proposition 2.1.4. Every topological group is regular2, and if G is T0
3, then G is T1

4.
Moreover it is T3

5.

Proof. For any nbd U of e from 2.1.3, there exist nbd V of e, such that V ⊆ U , hence any
topological group is regular at e. Now as translation is homeomorphism so G is regular at
any point x. Now suppose G is T0, and g, h ∈ G. As G is T0 so there exist nbd U of e
such that

h /∈ Ug−1

hg−1 /∈ U

g /∈ U−1h,

hence G is T1.

Proposition 2.1.5. Let X be a Hausdorff space and suppose that there exists a chain of
relatively compact open sets U1 ⊆ U2 ⊆ · · · such that X =

⋃∞
i=1 Ui. Then X is a lindelof

space.

2A space X is said to be regular if for given any x ∈ X and a nbd U of x, we have a nbd V of x, such
that V ⊆ U

3X is said to be T0 if for given x, y ∈ X there exist open set U containing one of the point but not
other.

4X is said to be T1 if for every pair of distinct points, each has a nbd not containing the other.
5X is said to be T3 if it is both T1 and regular.
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Proof. Let θ be an open cover of X. Define U0 := φ; and let n ∈ N. Clearly Un\Un−1 is a
closed subset of Un and thus also compact since Un is compact. Therefore there exists a
finite subcover θn of θ such that θn covers Un\Un−1. It follows that

⋃∞
n=1 θn is a countable

subcover of θ that covers X.

Definition 2.1.6 (Locally compact group). A locally compact group is a topological group
G for which the underlying topology is locally compact and Hausdorff, i.e. for each g ∈ G
there exist open nbd Nx whose closure is compact.

Proposition 2.1.7. If H is a closed subgroup of a locally compact group G. Then H is
locally compact.

Proof. Let U be relatively compact nbd of e. Now U ∩H is nbd of e in H, now as H is
closed U ∩H ⊆ H is closed in H. Also U ∩H ⊆ U , so U ∩H is compact. Hence H is
locally compact.

Proposition 2.1.8. Let G be a locally compact group. Then G has a subgroup H which
is both open and closed such that H = ∪∞i=1Ui where U1 ⊆ U2 ⊆ · · · is a chain of relatively
compact6 open sets.

Proof. As G is locally compact, let V be relatively compact nbd of e, so from 2.1.3 we have
nbd U of e such that U = U−1 and,

U ⊆ U2 ⊆ V ⊆ V ,

so U is compact as V is compact. Now as U is open so are Un = U.U. . . . U (n-times),
∀n ∈ N. Take H =

⋃∞
i=1 U

n is an open subgroup of G. As for any x ∈ H there exist some
n such that x ∈ Un then x ∈ Un ⊆ Un+1. Thus H is open and also closed from proposition
(2.0.6). Again from proposition 2.1.3 V

n
are compact for each n ∈ N, and U

n ⊆ V
n

so
compact, and hence we have chain of relatively compact open sets.

Corollary 2.1.9. Let G be locally compact group. Then G has a subgroup which is open,
closed and σ−compact (i.e. it is countable union of compact sets.)

Proof. As for any nbd U of e, we have Un ⊂ (U)n ⊂ U2n for each n in N. If U is relatively
compact the (U)n is also compact. So take U and H as in proof of proposition 2.1.8, then

H =

∞⋃
n=1

(U)n.

Hence H is σ−compact.

6A relatively compact subset Y of a topological space X is a subset whose closure is compact.
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Remark 2.1.10. Every regular lindelof space is normal.

Corollary 2.1.11. Every locally compact group has an open, closed subgroup which is
topological normal.

Lemma 2.1.12. Let G be a topological group and H an open subgroup of G which is
topologically normal. Then G is normal.

Proof. Let A := {a ∈ G|aH form disjoint coset of H}, as H is open which implies aH is
open for each a ∈ A. Let C1 and C2 be two closed sets of G then Cc1 is open and so Cc1∪aH
which gives C1 ∩ aH is closed in aH. Similarly C2 ∩ aH is closed in aH. As H is normal,
so there exists open sets Ua and Va in aH such that C1 ∩ aH ⊆ Ua and C2 ∩ aH ⊆ Va.
Now take U = ∪a∈AUa and V = ∪a∈AVa. As Ua is open in aH and aH is itself open imply
that Ua is open G. Thus U and V are open in G, and C1 ⊆ U, C2 ⊆ V , moreover as for
each a ∈ A, Ua ∩ Va = φ gives that U ∩ V = φ. Hence we find two open disjoint set of G
for given two closed set thus G is normal.

Corollary 2.1.13. Every locally compact group is normal.

2.2 Haar Measure

In first section we looked at some basic properties of locally compact groups. Now in
this section we will see that on such groups there exist a natural measure invariant under
translation called Haar measure.

Definition 2.2.1. Let G be a topological group, and let f be a real or complex-valued
function on G. Then f is left uniformly continuous if for each positive number ε there is
an open neighborhood U of e such that |f(x) − f(y)| < ε holds whenever x and y belong
to G and satisfy y ∈ xU . Likewise, f is right uniformly continuous if for each positive
number ε there is an open neighborhood U of e such that |f(x)− f(y)| < ε holds whenever
x and y belong to G and satisfy y ∈ Ux.
Or equivalently, a function f on G is said to be left uniformly continuous if, whenever
(xα)α is a net in G converging to x ∈ G then

sup
y∈G
|Lxαf(y)− Lxf(y)| → 0.

where for x and y in G, Lxf(y) = f(xy). Similarly for right uniformly continuous we have
Rxf(y) = f(yx).

Remark 2.2.2. It is enough to consider the nets converging to e, as if xα converges to x,
it implies that xαx

−1 converges to e.

Note 2.2.3. 1. We will consider our locally compact group to be σ-finite.



26 CHAPTER 2. ABSTRACT HARMONIC ANALYSIS

2. Cc(G) := {f : G→ C| f is continuous with compact support}

3. L1(G) := {f : G→ C| f is measurable and integrable}

Proposition 2.2.4. Let G be a locally compact group and let f belongs to Cc(G). Then f
is left and right uniformly continuous.

Proof. Let f belongs to Cc(G), K be support of f and let ε be a positive real number.
For each x in K, there exist a neighborhood Ux of e such that |f(z) − f(x)| < ε/2 for all
z in xUx, such a neighborhood exist by continuity of f . Now by 2.1.3, we can have, for
every x in K, Vx the symmetric neighborhood of e such that V 2

x is contained in Ux. Then
{xVx}x∈K is an open cover of K, so for some {x1, x2, ..., xn} the subcovering {xiVxi}ni=1 is
an open cover of K. Let V = ∩ni=1Vxi then V is symmetric neighborhood of e. Let x in G
and y in V be arbitrary.
If x is in K, it implies x ∈ xiVxi ⊂ xiUxi for some i, then xy ∈ xVxiV ⊂ xV 2

xi ⊂ xiUxi and
so,

|Ryf(x)− f(x)| ≤ |f(xy)− f(xi)|+ |f(xi)− f(x)| < ε

If xy ∈ K, then we have that xy ∈ xiVxi ⊂ xiUxi for some i. Since V is symmetric it
implies for x ∈ xiVxiy−1 ⊂ xiVxiV ⊂ xiV 2

xi ⊂ xiUxi . Hence,

|Ryf(x)− f(x)| ≤ |f(xy)− f(xi)|+ |f(xi)− f(x)| < ε.

If both x and xy are not in K then f(x) = f(xy) = 0, so we have the inequality.
Thus we have for any net (yα)α in G converging to e, supy∈G |Ryαf(x)− f(x)| → 0. Hence
f if right uniformly continuous. Similarly for left uniformly continuous.

Corollary 2.2.5. Let G be locally compact group with regular Borel measure µ and let f
be in Cc(G). Then the functions

x 7→
∫
G
Lxf dµ and y 7→

∫
G
Rxf dµ

are continuous.

Proof. Let (xα)α → x be a net in G. Let K be the support of f and let W be the
compact neighborhood of x. Now as Lx and f are continuous functions, so we have that
the composition Lxf is also continuous with compact support W−1K. Let α0 be an index
such that xα belongs to W for all α ≥ α0. Then it follows that

|
∫
G
Lxαf dµ−

∫
G
Lxf dµ| ≤

∫
G
|Lxαf − Lxf |dµ ≤ µ(W−1K) supy∈G|Lxα(y)− Lxf(y)|,

Since f belongs to Cc(G) so from 2.2.4 it is left uniformly continuous and so we have desired
result.
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Definition 2.2.6. Let G be locally compact group and let µ be a non-zero regular Borel
measure on G. Then µ is left Haar measure if it is invariant under left translations, i.e.

µ(xA) = µ(A) ∀ x ∈ G and A ∈ B(G).

Likewise mu is right Haar measure if for all x in G and A in B(G),

µ(Ax) = µ(A).

Remark 2.2.7. As we know for f : X → Y, where f is continuous and X, Y be Hausdorff
topological space then f is Borel measurable, also for topological group G, with arbitrary
a, x in X, x 7→ ax and x 7→ xa are homeomorphisms. So the expression µ(xa) and µ(ax)
are meaningful.

Example 2.2.8. 1. Lebesgue measure on R.

2. Counting measure on (G, τdis.)

Haar measure is special in the sense that it gives us freedom of translation. We will see
that every locally compact group possesses a left Haar measure, moreover it is unique upto
constant multiple. We will look at few properties of Haar measures, plus the relationship
between left and right Haar measures.

Theorem 2.2.9. Let G be locally compact group then G has a left Haar measure on it.

for proof of the above theorem refer Theorem 9.2.2 of [Cohn]
Now let fix our notations, now onwards G will denote the σ−finite locally compact group
and mG will denote the fix left Haar measure on G.

Remark 2.2.10. Let f be borel measurable function then∫
G
Lxf dmG =

∫
G
f dmG.

Proof. If f is characteristic function of Borel set A, then∫
Lxf dmG = mG(xA) = mG(A) =

∫
f dmG,

similarly for simple functions. Now let f be any measurable function then as f = f+ + f−

and by simple approximation theorem there exists sequence (φn) and (ψn) of positive and
increasing simple functions such that φn converges to f+ and ψn converges to f− as n→∞.
then by linearity and monotone convergence theorem we have desired result.

Proposition 2.2.11. Let U be a non-empty open set in G and f be in C+
c (G) and non-zero.

Then mG(U) > 0 and
∫
f dmG > 0.
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Proof. As mG is regular Borel measure there exist a compact set K such that mG(K) > 0.
Now let y in U, then e ∈ y−1U which implies that {xy−1U}x∈G is an open cover of K. That
is there exists x1, x2, ..., xn such that {xiU}ni=1 covers K. So as mG is left Haar measure
we have,

mG(K) ≤
n∑
i=1

mG(xiU) = nmG(U).

This implies mG(U) > 0.
Since f ∈ C+

c G, there exists non-empty open set U and positive real number ε such that
f > εχU . This implies that∫

f dmG >

∫
εχU dmG = ε mG(U) > 0.

So,
∫
f dmG > 0. Such an open set exists as if for all open set U and for all ε > 0, f ≤ εχU .

Then f(x) ≤ ε implying that f = 0. That is a contradiction.

Theorem 2.2.9 gives the existence of left Haar measure on locally compact group G.
Now we will prove the uniqueness of such measures upto constant multiple. That is,

Theorem 2.2.12. Let ν be left Haar measure on G, then ν = cmG for some c > 0.

Proof. Let g be in C+
c (G), then for all x in G, Rxg belongs to C+

c (G). So from 2.2.11 and
2.2.5 x 7→

∫
Rxg dν is a continuous function with positive values.

Now for any f in Cc(G), define h : G×G→ C, as

h(x, y) =
f(x)g(yx)∫
GRxg dν

.

h is continuous function. Now let K and L denote the support of f and g respectively.
Then supp(h) ⊂ K × LK−1 which gives that h belongs to Cc(G×G).∫

G

∫
G
h(x, y) d(mG)dν =

∫
G

∫
G

f(x)g(yx)∫
GRxg(t) dν

mG(dx)ν(dy)

=

∫
G

∫
G

f(x)g(yx)∫
G g(tx)ν(dt)

mG(dx)ν(dy)

=

∫
G
f(x)

∫
G g(yx)ν(dy)∫
G g(tx)ν(dt)

mG(dx)

=

∫
G
f(x) d(mG).

On the other hand, by using property of left invariance of Haar measure and by changing
the order of integration using Fubini’s theorem, we have
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∫
G

∫
G
h(x, y) mG(dx)ν(dy) =

∫
G

∫
G

f(x)g(yx)∫
G g(tx)ν(dt)

mG(dx)ν(dy)

=

∫
G

∫
G

f(y−1x)g(x)∫
G g(ty−1x)ν(dt)

mG(dx)ν(dy) (replace x with y−1x)

=

∫
G

∫
G

f((xy)−1x)g(x)∫
G g(t(xy)−1x)ν(dt)

ν(dy)mG(dx) (replace y with xy)

=

∫
G

∫
G

f(y−1x)g(x)∫
G g(ty−1)ν(dt)

ν(dy)mG(dx)

=

∫
G
g(x)mg(dx)

∫
G

f(y−1)ν(dy)∫
G g(ty−1)ν(dt)

So from these two observations, we have∫
G
f(x) dmG =

∫
G
g dmG

∫
G

f(y−1)ν(dt)∫
G g(ty−1ν)dt

,

which implies, ∫
G f dmG∫
G g dmG

=

∫
G f dν∫
G g dν

so by fixing c =
∫
G g dν∫
G g dmG

, for all f in C+
c (G) we have,∫

G
f dν =

∫
G
f dmG

Direct application of Ries’z Representation theorem gives that ν = cmG

Here we showed that on a locally compact group we have unique Haar measure whether
it is left or right. So from this we can say that Lebesgue measure is actually the only
(obviously upto constant multiple) Haar measure on R. Now as we proved that composition
of functions with left translation function does not affect the integration value of function
with respect to left Haar measure, i.e.

∫
G Lxf dmG =

∫
G f dmG. Now the question is what

about composition with right translation function?

Proposition 2.2.13. Let G be a locally compact group. Then there is a continuous homo-
morphism ∆ from G to R×, where R× = (R∗+,. ), such that∫

G
Ryf dmG = ∆(y−1)

∫
G
f dmG (f ∈ L1(G), y ∈ G)
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Proof. for x in G define measure mx
G as,

mx
G(E) = mG(Ex),

for all E in B(G). Now we will prove that this measure is regular measure.
Since Rx is homeomorphism and mG is regular we have that mx

G(K) is finite for every
compact set K. Now if U is any open set and U contains the compact set K then also Ux
contains Kx. Then

mx
G(U) = mG(Ux)

= sup{mG(Kx) : K is compact and contained in U}
= sup{mx

G(K) : K is compact and contained in U}

which implies mx
G is inner regular.

Similarly we can proceed for proving mx
G is outer regular. Now observe that for every Borel

set E,

mx
G(yE) = mG(yEx) = mG(Ex) = mx

G(E)

this gives that mx
G is left Haar measure on G.

Theorem 2.2.12 implies that there exist a constant real number ∆(x) depending on x such
that

mx
G = ∆(x)mG.

Let nG be any other left Haar measure on G then for some real number c > 0 nG = cmG

which implies,

nxG = cmx
G = c∆(x)mG = ∆(x)nG.

This observation leads us to conclusion that ∆(x) does not depend on measure, it is de-
termined by group G. Furthermore let U in B(G),

∆(xy)mG(U) = mG(Uxy) = ∆(y)mG(Ux) = ∆(y)∆(x)mG(U)

this implies, ∆(xy) = ∆(x)∆(y) i.e. ∆ is a homeomorphism.
Now as it is easy to see that χU (xy) = χUy−1(x), it gives that∫

G
χU (xy) mG(dx) = mG(Uy−1) = ∆(y−1)mG(U) = ∆(y−1)

∫
G
χU (x) mG(dx),

similarly as in remark 2.2.10 by using monotone convergence theorem and linearity of
integration we have above result for any f in L1(G) i.e.∫

Ryf dmG = ∆(y−1)

∫
f dmG
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Since y 7→
∫
Ryf dmG is continuous for f in Cc(G) and also the inverse map is continuous,

so we have that

∆ : G→ R×

defined as

y 7→
∫
Ry−1f dmG∫
f dmG

is continuous. Hence we are done.

Remark 2.2.14. 1. A locally compact group G is called unimodular if ∆ = 1 i.e. if left
Haar measure are right invariant. Clearly abelian group are unimodular.

2. If G is compact ∆(G) is bounded.

3. Let µ be a left Haar measure, then µ̂ = µ(A−1) is right Haar measure.

Proposition 2.2.15. mG is finite iff G is compact.

Proof. If G is compact then from regularity property of mG, we get that mG(G) is finite.
Let mG is finite and K be a compact set such that mG(K) > 0, we can get such a compact
set as mG is regular. As mG is finite which implies there is an upper bound for the lengths
of those finite sequences (xi)

n
i=1 for which the sets xiK are disjoint and no choice of xn+1

xiK are disjoint for i = 1, 2, ..., n+ 1. So for x in G, xk ∪ (∩ni=1xiK 6= φ) which gives that
x belongs to ∪(∩ni=1xiK)K−1. So G = ∪(∩ni=1xiK)K−1 hence G is compact as the finite
union of compact sets.

As we defined a new measure µ̂ in remark 2.2.14, now we want to see that for left Haar
measure mG how that m̂G is related with. We have following proposition which give the
relation between these two and hence any two left and right Haar measure as they (left or
right) differ by just a constant.

Proposition 2.2.16. If ∆ is defined as above in proposition 2.2.13, then

m̂G(A) =

∫
A

∆(x−1)mG(dx) (A ∈ B(G)).

Proof. Define, ν : B(G)→ [0,∞] as,

ν(A) =

∫
A

∆(x−1)mG(dx).
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Now we will claim that actually ν = m̂G, to claim that we have to first show that ν is
regular and right Haar measure. ν is regular (refer Appendix B). Now,

ν(Ay) =

∫
Ay

∆(x−1)mG(dx)

=

∫
χAy(x)∆(x−1)mG(dx)

=

∫
χAy(x)∆(y−1)∆((xy−1)−1)mG(dx)

= ∆(y−1)

∫
G
Ry−1χA(x)∆((xy−1)−1)mG(dx)

= ∆(y−1)

∫
G
Ry−1(χA(x)(∆(x))−1)mG(dx)

= ∆(y−1)[∆(y)

∫
χA(x)∆(x−1)mG(dx)]

= ν(A)

Hence ν is right Haar measure. So from Uniqueness of Haar measure we have some c > 0
such that,

ν = cm̂G.

As ∆(e) = 1 and it is continuous so from topological properties of G we have a symmetric
neighbourhood U of e such that for all ε > 0,

|∆(x)− 1| < ε,

for all x in U.
This gives that

c =
ν(U)

ˆmG(U)
=

ν(U)

mG(U−1)

=
1

mG(U)

∫
U

∆(x−1)mG(dx)

=
1

mG(U)

[∫
G

(∆(x−1 − 1))mG(dx) +

∫
G

1.mG(dx)

]
<
mG(U)

mG(U)
(1 + ε)

similarly we have c > 1 + ε for all ε > 0. Hence c = 1 which implies that ν = m̂G.
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Corollary 2.2.17. All left and right Haar measure are pairwise equivalent. In the sense
that if µ is left Haar measure and ν is right Haar measure then for A in B(G)

µ(A) = 0 ⇐⇒ ν(A) = 0.

Proposition 2.2.18. Let f be in L1(G) then the mappings G 7→ L1(G) defined as,

x 7→ Lxf and y 7→ Ryf

are continuous.

Proof. We will first show the continuity at e for g in Cc(G) then will extend it to L1(G)
for any x in G. Let (yα)α∈Λ be a net converging to e and let V be compact symmetric
neighbourhood of e and g be an element of Cc(G). Define K = (supp g) V ∪ V (supp g), K
is compact. Observe that Lxf and Rxf are supported by K. Let α0 ∈ Λ be such that yα
in V for all α ≥ α0. Since g belongs to Cc(G) so g is left uniformly continuous hence

||Lyαg − g||1 =

∫
|Lyαg − g|mG(dx)

≤ ||Lyαg − g||∞mG(K)→ 0.

Similarly ||Ryαg − g||1 → 0.
Now let f belongs to L1(G). As we know that ||Lyf ||1 = ||f ||1 and for right translation
function, ||Ryf ||1 = ∆(y−1)||f ||1 < C||f ||1 where C := max{∆(y−1) : y ∈ V }. We know

that Cc(G) = L1(G). So we have that for all ε > 0, there exists g in Cc(G) such that
||f − g||1 < ε. So for α ≥ α0,

||Ryαf − f ||1 ≤ ||Ryαf −Ryαg||1 + ||Ryαg − g||1 + ||g − f ||1
≤ C||f − g||1 + ||f − g||1 + ||Ryαg − g||1
≤ (C + 1)ε+ ||Ryαg − g||1
→ 0 as Ryαg → g for g ∈ Cc(G)

Similarly ||Lyαf − f ||1 → 0, which implies that x 7→ Lxf is continuous at e.
For x ∈ G if (xα)α∈Λ → x then x−1xα → e and xαx

−1 → e and we already know that

||Lx−1xαf − f ||1 → 0 and ||Rx−1xαf − f ||1 → 0.

Hence

||Lxαf − Lxf ||1 =

∫
|Lxαf − Lxf |mG(dy)

=

∫
|f(xαy)− f(xy)|mG(dy)

=

∫
|f(xαx−1y)− f(y)|mG(dy)

= ||Lxαx−1f − f ||1 → 0.
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also

||Rxαf −Rxf ||1 =

∫
|f(yxα)− f(yx)|mG(dy)

=

∫
|f(yx−1xα)− f(y)|mG(d(yx−1))

=

∫
|f(yx−1xα)− f(y)|mx−1

G (dy)

= ∆

∫
|f(yx−1xα)− f(y)|mG(dy)

= ∆(x−1)||Rx−1xαf − f ||1 → 0.

Hence Proved.

2.3 The Algebras: Group algebra and Measure Algebra

In this section we will try to define convolution as algebra multiplication in L1(G). For
that we have to check whether it is well defined or not. So firstly let start with some results
which will be helpful while proving our main results.

Lemma 2.3.1. Let f be in L1(G). Then A := {x ∈ G|f(x) 6= 0} is contained in a
σ−compact set.

Proof. Let An := {x ∈ X|f(x) ≥ 1/n}, as f belongs to L1(G) implies that f is integrable,
which implies that mG(An) is finite infact there exist some M > 0, such that,

M >

∫
G
|f(x)| mg(dx)

≥
∫
An

|f(x)| mG(dx)

≥ 1

n
mG(An)

So we get here that A =
⋃
n∈NAn is σ−finite. Now as for each n An is measurable so from

regularity of measure there exist open set Un containing An and with finite measure. Let
H be open σ−compact subgroup of G (see corollary 2.1.9).
Define J := {x ∈ G|xH is pairwise disjoint}, take Un =

⋃
x∈J(xH ∩Un) as each xH ∩Un is

open so from proposition 2.2.11, mG(xH ∩ Un) > 0. Since mG(Un) =
∑

x∈J mG(xH ∩ Un)
is finite, it implies that there exists countable set J ′ of J such that Un =

⋃
x∈J ′(xH ∩Un).

We have that Un ⊂
⋃
x∈J ′ xH which further implies that A ⊂

⋃
n∈N

⋃
x∈J ′ xH, since each

xH is σ−compact so as A.
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Lemma 2.3.2. For a locally compact group G, the mapping F : G × G → G × G defined
as F (x, y) = (x, xy) is a measure preserving homeomorphism. That is

(mG ×mG)(F (A)) = (mG ×mG)(A).

Proof. It is easy to see that F is one-one and onto. As the inverse of F is defined as
F−1(x, y) = (x, x−1y) so by continuity of group operations F and F−1 is continuous. To
prove measure preserving we will first look for the open sets then by using regularity of
measure extend it to any measurable set. Let U be an open set of G×G, x ∈ G.

s ∈ (F (U))x ⇐⇒ (x, s) ∈ F (U)

⇐⇒ s = xy for some y ∈ Ux
⇐⇒ s ∈ xUx

so (F (U))x = xUx. Now,

(mG ×mG)(U) =

∫
G

(Ux) mG(dx) =

∫
G
mG(xUx) mG(dx)

=

∫
G
mG(F (U))x mG(dx) = (mG ×mG)(F (U))

As mG is regular so as mG ×mG moreover as F is homeomorphism this gives that (mG ×
mG)F is regular. This implies

(mG ×mG)(A) = inf{(mG ×mG)(U) : U is open and A ⊂ U}
= inf{(mG ×mG)(F (U)) : U is open and A ⊂ U}
= (mG ×mG)F ((A)).

Hence proved.

Now we are heading towards defining the convolution operation between two elements
of L1(G). For that we need following proposition.

Proposition 2.3.3. Let G be locally compact group. Let f, g in L1(G) and define mapping
φ : G × G → C by φ(x, y) = f(x)g(x−1y) then the function x 7→ φ(x, y) is integrable for
mG almost every y in G.

Proof. Define φ′ : G×G→ C by

φ′(x, y) = f(x)g(y).

It is clear that φ′ is composition of maps (x, y) 7→ (f(x), g(y) and (x, y) 7→ xy, from
which it is evident that φ′ is measurable. As f and g are in L1(G) so from lemma 2.3.1
we have compact sets Kn and K ′n such that f and g vanishes outside A =

⋃
n∈NKn
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and B =
⋃
n∈NK

′
n respectively. Which also implies that φ′(x, y) = f(x)g(y) = 0 when

(x, y) 6∈
⋃∞
n,m=1(Kn ×K ′m). Now using Fubini’s theorem we have,∫

G

∫
G
|φ′(x, y)| mG(dx)mG(dy) =

∫
G

∫
G
|f(x)g(y)| mG(dx)mG(dy) = ||f ||1 ||g||1 <∞.

This gives that φ′ belongs to L1(G × G). Now define F : G × G → G × G as F (x, y) =
(x, xy). Then φ = φ′ ◦ F−1. From proposition 2.3.2 we have that F is measure preserving
homeomorphism so, ∫

G×G
=

∫
G×G

|φ′ ◦ F−1| d(mG ×mG)

=

∫
G×G

|φ′| d((mG ×mG)F )

=

∫
G×G

|φ′| d(mG ×mG) <∞.

So we get that φ ∈ L1(G×G). Let An,m = Kn×K ′m, An,m is compact and so by regularity
of measure, it is of finite measure. Again it is easy to see that φ(x, y) = 0 whenever
(x, y) 6∈

⋃∞
n,m=1 F (An,m). Since mG(F (An,m)) = mG(An,m) for all n,m in N. It follows

that φ vanishes outside a σ−compact set. So by Fubini’s theorem the map x 7→ φ(x, y)
belongs to L1(G) for almost every y in G.

Definition 2.3.4. Let f and g in L1(G), define convolution operation of two elements as

x 7→
∫
G
f(y)g(y−1x) mG(dy)

denoted as (f ∗ g)(x).

From proposition 2.3.3 it is integrable and hence belongs to L1(G). Actually we have
the following,

Proposition 2.3.5. L1(G) is a Banach algebra with convolution as algebra multiplication.

Proof. Let f, f ′, g and g′ in Banach space L1(G) such that f = f ′ and g = g′ almost
everywhere, then

||f ∗ g− f ′ ∗ g′||1 ≤ ||f ∗ (g− g′)||1 + ||(f − f ′) ∗ g′||1 ≤ ||f ||1||g− g′||1 + ||f − f ′||1||g′||1 = 0.

This implies that f ∗g = f ′ ∗g′ almost everywhere, hence it is clear that convolution is well
defined. From Proposition 2.3.3, it is clear that convolution of two elements of L1(G) is
again an element of L1(G). That is L1(G) is closed under convolution operation. Moreover
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from linearity of integration it is evident that f ∗ g is bilinear map.
Furthermore, by Fubini’s theorem and left invariance property of mG, we have

||f ∗ g||1 =

∫
G
|(f ∗ g)(x)| mG(dx)

=

∫
G
|
∫
G
f(y)g(y−1x) mG(dx)|mG(dy)

≤
∫
G
|f(x)|

(∫
G
g(y)mG(dy)

)
mG(dx)

= ||f ||1||g||1
That is ||f ∗ g||1 ≤ ||f ||1||g||1. Now the only thing which is left to prove is the associativity
of convolution. Let f, g, h ∈ Cc(G) with K = supp f and L = supp g then for each x in G,
the function ψ : G×G→ C, defined as

ψ(s, t) = f(s)g(s−1t)h(t−1x),

is supported by the set K × KL, hence ψ ∈ Cc(G × G). Now from Fubini’s theorem for
continuous compactly supported functions, we have;

f ∗ (g ∗ h) =

∫
G
f(s)(g ∗ h)(s−1x) mG(ds)

=

∫
G

∫
G
f(s)g(t)h(t−1s−1x) mG(dt)mG(ds)

=

∫
G

∫
G
f(s)g(t)h((st)−1x) mG(dt)mG(ds)

=

∫
g

∫
G
f(s)g(s−1t)h(t−1x) mG(dt)mG(ds)

=

∫
g

∫
G
f(s)g(s−1t)h(t−1x) mG(ds)mG(dt)

=

∫
G

(f ∗ g)(t)h(t−1x) mG(dt)

= (f ∗ g) ∗ h

As we know that Cc(G) is dense in L1(G). Then for f, g and h in L1(G) there exists
sequence (fn), (gn) and (hn) respectively in Cc(G) such that fn → f, gn → g and hn → h.
so,

||(f ∗ g) ∗ h− (fn ∗ gn) ∗ hn||1 ≤ ||(f ∗ g) ∗ h− (f ∗ g) ∗ hn||1 + ||(f ∗ g) ∗ hn − (f ∗ gn) ∗ hn||1
+ ||(f ∗ gn) ∗ hn − (fn ∗ gn) ∗ hn||1
≤ ||f ∗ g||1||h− hn||1 + ||f ||1||g − gn||1||hn||1

+ ||f − fn||1||gn||1||hn||1
→ 0 as n→∞.
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Similarly, we have that ||f ∗(g∗h)−fn∗(gn∗hn)||1 → 0 as n→∞. So by using associativity
of convolution for Cc(G), we get that

||f ∗ (g ∗ h)− (f ∗ g) ∗ h||1 ≤ ||f ∗ (g ∗ h)− fn(gn ∗ hn)||1 + ||(fn ∗ gn) ∗ hn − (f ∗ g) ∗ h||1

→ 0.

Hence (f ∗g)∗h = f ∗(g∗h). We are done with showing that L1(G) is a Banach algebra.

Remark 2.3.6. Now we will look for some identities that we will use in our further
discussions. By using left invariance of mG and some propositions we get following;

1.

(f ∗ g)(x) =

∫
G
f(y)g(y−1x) mG(dy)

=

∫
G
f(xy)g(y−1) mG(dy)

=

∫
G
f(y−1)g(yx)∆(y−1)mG(dy)

=

∫
G
f(xy−1)g(y)∆(y−1)mG(dy).

Where the first equality is obtained by replacing y by xy and left invariance of Haar
measure mG. Second and third inequality is obtained by replacing y by x−1y−1 and
by using proposition 2.2.16. While to get third equality we are replacing y by yx−1.

2.

(f ∗ Lxg)(y) =

∫
G
f(h)g(xh−1y) mG(dh)

= ∆(x−1)−1

∫
G
Rx(f(h)g(xh−1y)) mG(dh)

= ∆(x)

∫
G
f(hx)g(h−1y) mG(dh)

= ∆(x)(Rxf ∗ g)(y)

To get the second equality we are using proposition 2.2.13 and next equality by
replacing h by hx.

3. Lx(f ∗ g) = (Lxf ∗ g)

4. Rx(f ∗ g) = f ∗ (Rxg)
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5. Now we will go to next level, we will convolve f from L1(G) and φ from L∞(G). We
observe that f ∗φ is an element of L∞(G). Indeed ||f ∗φ||∞ ≤ ||f ||1||φ||∞. Moreover,
by using proposition 2.2.18 we can actually prove that f ∗ φ is continuous on G. Let
(xα)α be a net in G converging to x ∈ G, then

|f ∗ φ(xα)− f ∗ φ(x)| ≤ |
∫
G
f(y)φ(y−1xα) mG(dy)−

∫
G
f(y)φ(y−1x)mG(dy)|

≤
∫
G
|(f(xαy)− f(xy))φ(y−1) mG(dy)|

≤ ||φ||∞||Lxαf − Lxf ||1
→ 0.

We discussed some elementary properties of convolution and also observed that L1(G)
is actually the group algebra forms a Banach algebra with convolution as algebra multi-
plication. Now we turn to another Banach algebra that is measure algebra M(G) which
consist of all finite complex valued regular Borel measure on G. Again to prove that
M(G) is an algebra we will define convolution of measures.

Lemma 2.3.7. Let G be a locally compact group. If µ and ν are finite positive regular
Borel measures on G and if µ× ν is the regular Borel product of µ and ν, then

(µ ∗ ν)(A) = (µ× ν){(x, y) ∈ G×G| xy ∈ A}

defines a regular Borel measure on G. Furthermore

(µ ∗ ν)(A) =

∫
A
ν(x−1A)µ(dx) =

∫
G
µ(Ay−1)ν(dy)

holds for each A in B(G).

Proof. For notational convenience let denote group operation multiplication as m. Then
by definition

(µ ∗ ν)(A) = (µ× ν)(m−1(A))

so by proposition B.2.8, second identity makes sense. It is easy to check that (µ ∗ ν) is
actually a measure on G. Now to show the regularity of (µ ∗ ν) consider A ∈ B(G), as A is
σ−finite so we will prove that

(µ ∗ ν)(A) = sup{(µ ∗ ν)(K)| K is compact and K ⊂ A}

Let ε > 0 then there exists some compact set K0 such that

(µ× ν)(K0) > (µ× ν)(m−1(A))− ε.
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Let K = m(K0) which implies that K is subset of G and m−1(K) ⊃ K0. Thus

(µ ∗ ν)(K) > (µ ∗ ν)(A)− ε.

As ε is arbitrary it gives that (µ ∗ ν) is inner regular.
Now to show outer regularity of (µ ∗ ν), let Ac ∈ B(G) this implies for given ε > 0 there
exists compact set K ′ contained in Ac such that

(µ ∗ ν)(K ′) > (µ ∗ ν)(Ac)− ε.

Furthermore

(µ ∗ ν)(K ′)c = (µ ∗ ν)(G)− (µ ∗ ν)(K ′)

< (µ ∗ ν)(G)− (µ ∗ ν)(Ac) + ε

= (µ ∗ ν)(A) + ε

As (K ′)c is open and contains A, it gives that (µ ∗ ν) is outer regular.

Note 2.3.8. For any general µ and ν from M(G), define convolution as,

µ ∗ ν(A) =

∫
µ(Ay−1)ν(dy) =

∫
ν(x−1A)µ(dx).

From above lemma and Jordan decomposition theorem it is easy to see that there integral
exists and are equal moreover (µ ∗ ν) is regular and so µ ∗ ν ∈M(G).

Remark 2.3.9. Let µ and ν belongs to M(G) and f be a bounded Borel measurable func-
tion. Then by using Dominated convergence theorem and linearity of integrals, we observe
that ∫

f(x, y) d(µ ∗ ν) =

∫ ∫
f(xy) µ(dx)ν(dy) =

∫ ∫
f(xy) ν(dy)µ(dx).

Remark 2.3.10. Let x ∈ G and define measure, known as Dirac measure as,

δx(A) =

{
1 if x ∈ A
0 if x 6∈ A

Now we will see how this measure is actually helpful for us while discussing about measure
algebra. Dirac measure induced by identity e of group is unity in M(G). Let us discuss
some properties of Dirac measure. Let x, y ∈ G, A ∈ B(G) we have

δx ∗ δy(A) =

∫
G
δy(t

−1A)δx(dt) = χx−1A(y) = χA(xy) = δxy(A).
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Hence δx ∗ δy = δxy. Let µ ∈M(G) we have

δe ∗ µ(A) =

∫
G
µ(x−1A)δe(dx)

= µ(e−1A)

= µ(A)

= µ(Ae−1)

=

∫
G
µ(Ay−1)δe(dy)

= µ ∗ δe(A)

As we have that a function f ∈ L1(G) can be considered as measure. So observe the
following relation δx ∗ f = Lx−1f and f ∗ δx = ∆(x−1)Rx−1f. Indeed we have

δx ∗ f(A) =

∫
G
δx(Ay−1)f(y) mG(dy)

=

∫
G
χA(xy)f(y) mG(dy)

=

∫
G
χA(y)f(x−1y) mG(dy)

= Lx−1f(A) (x ∈ G,A ∈ B(G)).

Similarly by using proposition 2.2.13, we have

f ∗ δx(A) =

∫
G
δx(Ay−1)f(y) mG(dy)

=

∫
G
χA(yx)f(y) mG(dy)

= ∆(x−1)

∫
G
χA(y)f(yx−1) mG(dy)

= ∆(x−1)

∫
A
Rx−1f(y) mG(dy)

= ∆(x−1)Rx−1f(A) (x ∈ G,A ∈ B(G)).

Note 2.3.11. Recall that for a complex measure µ on G we define the variation |µ| of µ
as

|µ|(E) := sup{
∑
i

|µ(Ei)| : Ei is a finite boerl measurable partition of E},
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variation of a measure is itself a measure on G and it is finite also. We define the total
variation as

||µ|| = |µ|(G).

The interesting part is (M(G), ||.||) is a Banach space (for justification refer [Cohn] propo-
sition 4.1.18).

Proposition 2.3.12. M(G) is unital Banach algebra with convolution of measures as
algebra multiplication.

Proof. Let µ1, µ2 and µ3 belongs to M(G) then,

(µ1 ∗ µ2) ∗ µ3(A) =

∫
µ3(z−1A)(µ1 ∗ µ2)(dz)

=

∫ ∫
µ3((xy−1)A)µ2(dy)µ1(dz)

=

∫
µ3(y−1x−1A)µ2(dy)µ1(dx)

=

∫
(µ2 ∗ µ3)(x−1A)µ3(dx)

= µ1 ∗ (µ2 ∗ µ3).

The bilinearity of convolution follows from linearithy of integral. Now for given µ and ν in
M(G), we will try to show that ||µ ∗ ν|| ≤ ||µ||||ν||. For that let {Ai} be borel measurable
partition of G. Then {Ay−1} is also a finite partition of G for each y in G. So∑

|(µ ∗ ν)(Ai)| =
∑
i

|
∫
µ(Aiy

−1)ν(dy)|

≤
∫ ∑

|µ(Ay−1)||ν|(dy)

≤
∫
||µ|| d|ν|

= ||µ||||ν||

Hence, ||µ ∗ ν|| ≤ ||µ||||ν||We have already observes that δe is unity in M(G). Thus we
get that M(G) is unital Banach algebra.

We discussed two Banach algebra one group algebra and other is measure algebra.
Now we try to seek into the relationship between these two algebras. Let us consider
the relationship between the convolution of functions and the convolution of measures.
Corollary 2.2.17 implies that an element of M(G) is absolutely continuous with respect to
the left Haar measures on G if and only if it is absolutely continuous with respect to the
right Haar measures on G. Thus we can define Ma(G) to be the collection of elements of
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M(G) that are absolutely continuous with respect to some (and hence every) Haar measure
on G. Recall that an ideal in an algebra A is a linear subspace I of A such that µ ∗ ν and
ν ∗ µ belong to I whenever µ belongs to I and ν belongs to A.

Proposition 2.3.13. Let G be locally compact group. Then

1. Ma(G) is an ideal of M(G).

2. if µ is left Haar measure on G, then the mao f 7→ νf (where νf (A) =
∫
A f dµ)

induces a norm preserving algebra homomorphism of L1(G,B(G), µ) into M(G),

3. the image of L1(G) under this homomorphism is Ma(G).

Proof. Ma(G) is a linear subspace of M(G). Let µ is left Haar measure on G. Let ν1 ∈M(G)
and ν2 ∈ Ma(G). Let A be a Borel subset of G that satisfies µ(A) = 0, this also implies
that µ(x−1A) = 0 for all x in G. Since ν2 << µ so ν2(x−1A) = 0 for all x in G. So by
definition (ν1 ∗ν2)(A) = 0. Now as µ̂(A−1) = µ(A), it gives that µ̂(Ay−1) = µ(yA−1). Since
µ(A) = 0 implies that µ̂(A−1) = 0. We get that µ̂(Ay−1) = 0 = µ(ya−1). As ν2 << m̂G,
we have

(ν2 ∗ ν1)(A) =

∫
ν2(Ay−1)ν1(dy) = 0.

Hence we get that Ma(G) is ideal in M(G).
As f 7→ νf is norm preserving linear map, moreover νf << mG. The image is this map is
Ma(G).

νf∗g(A) =

∫
A

(f ∗ g) d(µ)

=

∫
G
χA(t)

∫
G
f(s)g(s−1t)µ(ds)µ(dt)

=

∫
G

∫
G
χA(st)f(s)g(t)µ(ds)µ(dt)

=

∫
G
f(s)

(∫
G
χA(st)g(t)µ(dt)

)
µ(ds)

=

∫
G

∫
G

(χA(st)νg(dt))νf (ds)

=

∫
G
νg(s

−1A)νf (ds)

= (νf ∗ νg)(A) (f, g ∈ L1(G)).

Hence we get desired results.
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Note 2.3.14. It is evident from above discussion that Ma(G) is an ideal in M(G) and
L1(G) can be identify as Ma(G). This actually imply that L1(G) can be viewed as an ideal
in M(G).

Remark 2.3.15. For two Banach algebras A and B where A is closed ideal of B we define
the strict topology on B with respect to A to be the locally convex topology induced by the
seminorms

pa(b) := ||ab||+ ||ba|| (a ∈ A, b ∈ B).

Furthermore a net (xα))α in B converges to some x in b iff pa(xα − x)→ 0 for every a in
A.

Proposition 2.3.16. Let G be locally compact group. Then the map

G→M(G), x 7→ δx

is continuous with respect to w∗−topology and the strict topology on M(G) induced by
L1(G).

Proof. Let (xα)α be a net in G converging to some x ∈ G. Then for all f ∈ C0(G),

δxα(f) = f(xα)→ f(x) = δx(f),

since f is continuous on G. Therefore x 7→ δx is continuous with respect to w∗−topology
on M(G).
Let f ∈ L1(g) then by remark 2.3.10 and proposition 2.2.18, we get the following,

||(δxα − δx) ∗ f ||1 = ||Lxα−1f − Lx−1f ||1 → 0

and

||f ∗ (δxα − δx)||1 = ||∆(x−1
α )Rx−1

α
f −∆(x−1)Rx−1f ||1

≤ ||∆(x−1
α )Rx−1

α
f −∆(x−1

α )Rx−1f ||1 + ||∆(x−1
α )Rx−1f −∆(x−1)Rx−1f ||1

≤ |∆(x−1
α )| ||Rx−1

α
f −Rx−1f ||1 + |∆(x−1

α )−∆(x−1)| ||Rx−1f ||1 → 0.

Since x−1
α → x−1. Hence proved.



Chapter 3

Amenable and Contractible
Algebras

We have seen that the group algebra and measure algebra are actually Banach algebras.
Now in this chapter we will introduce the concept of amenable and contractible algebras
and in the further section we will characterize them. We will see that there is very close
connection between contractible and semi simple algebra which will lead us to have that
every contractible algebra is finite dimensional. Further as we have seen that every algebra
can be embeded in a unital algebra. But what is next best for an algebra which is not
unital. In this chapter we will introduce the concept of approximate identity and will
observe some characterisations of algebras having approximate identity.

3.1 Banach-bimodules and Hoschchild Cohomology group

Definition 3.1.1 (Banach Bi module). Let A be an algebra. A left A-module is a vector
space X together with a map

A×X → X, (a, x) 7→ ax

satisfying following property,

1. (a+ b)x = ax+ bx

2. a(x+ y) = ax+ ay

3. (αa)x = a(αx) = α(ax)

4. (ab)x = a(bx)

for all a, b ∈ A x, y ∈ X and α ∈ F.

45



46 CHAPTER 3. AMENABLE AND CONTRACTIBLE ALGEBRAS

Similarly for right A module. A space X is called a A bi-module if it is both a left A
module as well as right A module satisfying extra condition

a(xb) = (ax)b (a, b ∈ A, x ∈ X).

If X is Banach Space and A is a Banach algebra and if there exists M ≥ 0 satisfying

||ax||X ≤M ||a||A||x||X and ||xa||X ≤M ||x||X ||a||A

Then X is called a Banach A bi-module.

Now we will introduce the concept of amenability. Here we fix our notation. A will
denote Banach Algebra with unit, X a Banach A bi-module and X ′ the dual Banach A
bi-module.

Note 3.1.2. Here it can be checked that if X is a Banach A−bi module then X∗ is also a
Banach A−bi module under the following actions,

(a.f)(x) = f(xa) and (f.a)(x) = f(ax)

It should be observed that if X is left A module then X∗ is right A module and similarly if
X is right A module then X∗ is left A module.

Examples 3.1.3. 1. Define left and right action of A on X as trivial action that is

a.x = 0 and x.a = 0.

2. Let X = A then A is A−bi module with action defined as follows,

a.x = ax and x.a = xa

such action is so called canonical action.

3. Let A = L1(G) and X = L∞(G) and for all f ∈ L1(G) and φ ∈ L∞(G) define action
as follows,

f.φ = f ∗ φ and φ.f =

(∫
G
f d(mG)

)
φ

Definition 3.1.4. A bounded X-derivation is a bounded linear mapping D of A into X
such that

D(ab) = (Da)b+ a(Db) (a, b ∈ A).

The set of all bounded X derivation is denoted by Z1(A,X)
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Given x ∈ X, let δx be the mapping of A into X given by

δx(a) = ax− xa (a ∈ A).

Then it is easy to verify that δx ∈ Z1(A,X). We call δx an inner X derivation. We will
Denote by B1(A,X), the set of all inner X derivations. B1(A,X) is a linear subspace of
Z1(A,X). Now define H1(A,X) as Z1(A,X) modulo B1(A,X), that is

H1(A,X) = Z1(A,X)/B1(A,X).

Then H1(A,X) is called the first cohomology group of A with coefficient in X. Now we
have all the technicalities to define the amenable and contractible algebras.

Definition 3.1.5. A Banach algebra A is said to be contractible if H1(A,X) = {0} for
every Banach A-bi module X, i.e. if every bounded X derivation is inner.

Proposition 3.1.6. Every contractible Banach algebra is unital

Proof. Let X = A and define left and right action as follows

a.x = ax and x.a = 0,

for all a in A and x in X. Then observe that identity map I is a derivation. Since A is
contractible there exists some x in X such that for all a in A

a = I(a) = a.x− x.a = ax,

hence x acts as right unit for A.
Similarly if we define left and right actions as

a.x = 0 and x.a = xa

we get left unit y for A. Define 1 := x+ y − xy This is unit for A.

We see that the definition of contractible algebra is very restrictive so we have the
definition of amenable algebra as follows which gives very interesting theory.

Definition 3.1.7. Let A be an Banach algebra. Then A is called amenable if

H1(A,X∗) = {0}

for every Banach A−bi module X. That is if every bounded X∗ derivation is inner.

As here we defined first cohomology group similarly we can define n−cohomology group
Hn(A,X). There we have very interesting reduction formulas and how the amenability of
algebra is related with higher order cohomology group. Refer [Runde] (section 2.4) for this
and following theorem.

Theorem 3.1.8. For a Banach algebra following are equivalent,

1. A is amenable (respectively contractible)

2. Hn(A,X∗) = {0} (respectively Hn(A,X) = {0}) for all Banach A-bi module X and
for all n ∈ N.
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3.2 Characterisation of Contractible Banach Algebra

As we promised, now we will discuss some characterisation of contractible Banach algebra.
First recall some concepts from section 1.3.2, as definition of projective tensor norm and
completion of space with respect to this norm.

Definition 3.2.1. Let A be a Banach algebra. The diagonal operator π on A is the bounded
linear operator defined by the linear extension of

π : A⊗pA→ A x⊗ y = xy

∞∑
i=1

xi ⊗ yi 7→
∞∑
i=1

xiyi

Remark 3.2.2. Let A be Banach algebra and X = A⊗pA then X is Banach A-bi module
under the following actions,

a.(x⊗ y) = ax⊗ y and (x⊗ y).a = x⊗ ya

where a, x and y ∈ A

Definition 3.2.3. An element u in A⊗p A is called projective diagonal for A if for all a
in A

aπ(u) = a and a.u− u.a = 0.

Remark 3.2.4. 1. If A has a projective diagonal then A is unital. Indeed π(u) = eA,
as

π(u)a = π(ua) = π(au) = aπ(u) = a

2. Projective diagonal u for A is an element of A ⊗p A such that there exists bounded
sequences (xi)i∈N and (yj)j∈N in A and u =

∑
i xi⊗ yi. Moreover

∑
i ||xi||||yi|| <∞,∑

i xiyi = eA and
∑

i axi ⊗ yi =
∑

i xi ⊗ yia for all a in A.

3. π is bounded and so continuous, we observe that diagonal operator is a bounded
module homomorphism with respect to canonical A−bi module structure on A⊗p A.

4. ker π is closed submodule of A⊗p A and hence Banach A−bi module.

We already observe a nice property of contractible Banach algebra that it has unity, now
the following proposition tells that every contractible Banach algebra possesses projective
diagonal.

Proposition 3.2.5. Let A be unital Banach algebra with unit 1, and π the diagonal oper-
ator on A. If H ∗ 1(A, ker π) = {0}, then A has a projective diagonal.



3.2. CHARACTERISATION OF CONTRACTIBLE BANACH ALGEBRA 49

Proof. As we have that H ∗ 1(A, ker π) = {0}, so we will first try to find out a derivation
on A to ker π that will be inner so from there we will get some x in ker π. With the help
of that x we will try to extract our result.
Let D : A → ker π, defined as D(a) = a ⊗ 1 − 1 ⊗ a. It is evident that D is linear for
boundedness observe that

||D(a)|| = ||a⊗ 1− 1⊗ a|| ≤ ||a||||1||+ ||1||||a|| = 2||a||||1||.

Let a, b ∈ A then we have

D(ab) = ab⊗ 1− 1⊗ ab = ab⊗ 1− a⊗ b+ a⊗ b− 1⊗ ab

= a.(b ⊗ 1 − 1 ⊗ b) + (a ⊗ 1 − 1 ⊗ a).b = a.D(b) + D(a).b Hence
D ∈ Z1(A, ker π), but as we have H1(A, ker π) = {0} this gives that there exists some x
in ker π such that for all a in A,

a⊗ 1− 1⊗ a = a.x− x.a

which gives that for all a ∈ A

a.(1⊗ 1− x)− (1⊗ 1− x).a = 0

Furthermore by using linearity of π we have

π(1⊗ 1− x) = π(1⊗ 1)− π(x) = 12 − 0 = 1.

So we can conclude that 1⊗ 1− x is the projective diagonal for A.

Remark 3.2.6. Let A be a Banach algebra and X a Banach A−bi module. If S is a
bounded linear map from A to X, we can define bounded left module homomorphism T ∈
L(A⊗p A,X) as the linear extension of

T (a⊗ b) = a.S(b) (a, b ∈ A).

Now the following are some observation,

1. T is well defined as,

T (a⊗ λb) = a.S(λb) = a.λS(b) = λa.S(b) = T (λa⊗ b).

2. T is bounded as

||T (a⊗ b)|| = ||a.S(b)|| ≤ k||a|| ||S(b)|| ≤ k||S|| ||a|| ||b||.
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3. For all a ∈ A and u ∈ A⊗p A we also have

a.T (u) = T (a.u)

Here comes the conclusive part of this section. We observed that every contractible
Banach algebra has unity and also possesses projective diagonal, is the reveres true. The
following theorem answers it in yes.

Theorem 3.2.7. Let A be a Banach algebra. Then the following are equivalent,

1. A is contractible

2. A is unital and possesses projective diagonal.

Proof. We have already proved that (1)⇒ (2). See proposition 3.1.6 and proposition 3.2.5.
For other side, Let X be Banach A−bimodule and let u =

∑∞
i=1 be a projective diagonal

for A. Let D ∈ Z1(A,X). Since

D(a) = D(1.a) = 1.D(a)−D(1).a

So now we will show that a 7→ 1.D(a) and a 7→ D(1).a both are inner derivation and as
B1(A,X) is linear space ti will imply that D is inner derivation.
Define T as the linear extension of T (a ⊗ b) = a.D(b), since D is bounded linear map so
from remark 3.2.6 it follows that T is also bounded linear map. Now as for any a and b in
A b.D(a) = D(ba)−D(b).a, so by linearity and continuity of π we get,

1.D(a) = π(u).D(a)

= lim
n

n∑
i=1

aibi.D(a)

= lim
n

n∑
i=1

ai(D(bia)−D(bi).a)

= lim
n

(T (
n∑
i=1

ai ⊗ bia)− T (
n∑
i=1

ai ⊗ bi).a)

= T (u.a)− T (u).a

= T (a.u)− T (u).a

= a.T (u)− T (u).a

This gives that a 7→ 1.D(a) is inner derivation.
Again since D is a derivation,

1.D(1).a = 1.D(1.a)− 1.D(a) = 1.D(a)− 1.D(a) = 0
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D(1).a = a.D(1)− a.D(1)− 1.D(1).a+D(1).a

= a.D(1.D(1)−D(1))− (1.D(1)−D(1)).a

Hence we get that both of our maps are inner. Hence proved that A is contractible.

3.3 Characterisation of Contractible Algebra

In previous section we characterise the contractible Banach algebra, now if we have algebra
which is not so much structured i.e. let say not Banach so what are the characterisations.
We will try to look closer into this that how a contractible algebra and semi-simple algebra
are related, actually we will prove with the help of Wedderburn structure theorem that
contractible algebra are semi-simple.
In this section we work with algebras without any topology on it. All the definition will be
same except for diagonal operator which is now defined from A⊗A to A instead of A⊗pA
to A,

π : A⊗A→ A

as the linear extension of a ⊗ b = ab. Theorem 3.2.7 holds true in the case so contractble
algebras also. We can prove it without limiting process.
Now we will define semi-simple algebras and then after looking at a basic property of
semi-simple algebra, we will look into the center piece of this section that tells that every
contractible algebra is finite dimensional and semi-simple.

Definition 3.3.1. Let A be a unital algebra with unit 1. A proper left ideal I of A is called
left modular if there exists a ∈ A such that A(1− a) ⊂ I. The intersection of all maximal
left modular ideals in A, denoted by rad A, is also a left ideal and is called the radical of
A. If rad A = {0} then A is called semi-simple.

From properness of I it follows that a does not belong to I. The following lemma says
that there is no non trivial idempotent element in semi simple algebra.

Lemma 3.3.2. Let A be a unital algebra and a ∈ rad A. If a2 = a then a = 0.

Proof. Let a ∈ A such that a2 = a. Let I = A(1− a) suppose a 6∈ I. then I 6= A and thus
I is left modular ideal. Let M be a maximal left modular ideal such that I ⊂M and a 6
]inM(Such a maximal ideal exists by Zorn’s lemma). This implies that a 6∈ rad A which
is contradiction. Hence a ∈ I and which further implies that there exists b ∈ A such that
a = b(1− a). So

a = a2 = b(1− a)a = b(a− a2) = b.0 = 0.

Now we will state theorem due to J. Wedderburn. For a proof see theorem 1.5.9 of
[Dales].
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Theorem 3.3.3. Let A be a non empty semi simple unital and finite dimensional algebra.
Then there exists n1, ..., nk ∈ N such that

A = Mn1 ⊕Mn2 ⊕⊕, ...,⊕Mnk

Now let conclude this section by following theorem.

Theorem 3.3.4. Let A be an algebra. Then the following are equivalent,

1. A is contractible.

2. A is unital and has a diagonal.

3. A is semi simple and finite dimensional.

Proof. The equivalence of (i) and (ii) has already proven in proposition 3.2.7.
(ii) =⇒ (iii): Let m =

∑n
i=1 ai ⊗ bi be a diagonal for A, and define

B := span{aibj : 1 ≤ i, j ≤ n}.

Claim-1: A = B and thus A is finite dimensional.
Let φ be linear projection of A onto span{b1, ..., bn} ⊂ A. Now define T : A ⊗ A → A as
the linear extension of

T (a⊗ b) = a.φ(b).

Now for a ∈ A

a = aπ(m) = a
∑

aibi = a
∑

aiφ(bi)

=
∑

aaiφ(bi) =
∑

T (aai ⊗ bi)

= T (a
∑

ai ⊗ bi) = T (a.m)

= T (m.a) =
∑

T (ai ⊗ bia)

=
∑

aiφ(bia) ∈ B.

This implies that actually A ⊂ B. Obviously B ⊂ A giving that A = B. Hence A is finite
dimensional algebra.
Claim-2: A is semi simple.
Let psi be linear projection of A onto rad A and define T be the linear extension of

T (a⊗ b) = a.ψ(b).

Now define S : a 7→ T (m.a) (a ∈ A) which is again a linear projection of A onto rad A.
Since rad A is left ideal we have the following,

S(a) = T (m.a) =

n∑
i=1

T (ai ⊗ bia) =

n∑
i=1

aiψ(bia) =

n∑
i=1

aibia = π(m)a = a.
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Observe that for all i ∈ N we have

aiψ(bi)(
n∑
j=1

ajψ(bj))

indeed by using that m =
∑n

i=1 ai ⊗ bi is projective diagonal and rad A is left ideal, we
have that

ajψ(bj)(
∑

aiψ(bi)) =
∑

ajψ(bj)aiψ(bi)

= T (
∑

ajψ(bj)ai ⊗ bi) = T (ajψ(bj).m)

= T (m.ajψ(bj)) =
∑

aiψ(biajψ(bj))

=
∑

aibiajψ(bj) = π(m)ajψ(bj)

= ajψ(bj)

Hence,

(T (m))2 = (
∑

aiψ(bi))
2

= a1ψ(b1)(
∑

aiψ(bi)) + ...+ anψ(bn)(
∑

aiψ(bi))

= a1ψ(b1) + ...+ anψ(bn)

= T (m)

Which implies that T (m) is idempotent but from lemma 3.3.2 we have T (m) = 0.
Consequently, we have

S(a) = T (m.a) = T (a.m) = a.T (m) = 0. (a ∈ A)

but as S(a) = a =⇒ a = 0. This gives rad A = {0}. So A is semi simple.
(iii) =⇒ (ii) : By theorem 3.3.3 there exists n1, ..., nk such that

A = Mn1 ⊕+...+Mnk

Now take εi,j ∈Mnr such that

εi,j(k, l) =

{
1 if (k, l) = (i, j)

0 if (k, l) 6= (i, j)

Then mr =
∑n

i,j=1 εi,1⊗ε1,j is diagonal for Mnr . So for A take u = ⊕ki=1mi is diagonal.
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Chapter 4

Bounded Approximate Identity

4.1 Bounded Approximate identities for Banach Algebra

As we observed that every contractible Banach algebra is unital. But such a nice property
can not be expect from arbitrary algebras, so what is next best is so called approximate
identity that we can expect. It is defined as,

Definition 4.1.1. Let A be normed algebra. A left approximate identity for A is a net (eα)α
in A such that for each a in A (aeα) converges to a. Similarly we define right approximate
identity, a net (eα) is called right approximate identity if for all a in A (eαa) converges to
a.
An approximate identity for an algebra A is a net (eα)α ∈ λ which is both right and left
approximate identity. An approximate identity is said to be bounded if there exists some
positive real number M such that ||eα|| ≤M for all α ∈ λ

Remark 4.1.2. Let X be a Banach A-bimodule and suppose that A has a bounded left
approximate identity (eα)α∈λ. If for all x in X we have that

lim
α
eα.x = x,

then (eα) is called bounded approximate identity for X. Similarly we define bounded ap-
proximate identity for X and again an approximate identity which is both right and left is
called approximate identity for X. We will denote the m−sphere as

bm(A := {x ∈ A : ||x|| ≤ m})

Example 4.1.3. 1. For sequence space l1, it is easy to check that the sequence (xn),
where xn = (1, 1, 1, 1, ..., 1(nth place), 0, 0, ...) is an approximate identity.

Suppose if we have bounded left approximate identity an bounded right approximate
identity so can we get approximate identity, the following remark answers it.

55
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Remark 4.1.4. Let A be a Banach algebra. Suppose (eα)α∈I is a bounded left approximate
identity for A and that (fβ)β∈J is a bonded right approximate identity for A with bounds
M and N respectively. Now define the relation on I × J as

(α, β) ≤ (α′, β′) ⇐⇒ α ≤ α′ and β ≤ β′

Then I × J is a directed set. Define

g(α.β) = eα + fβ − fβeα,

now observe the following , that for all a in A,

||g(α,β)a−a|| ≤ ||eα − a||+ ||fβ(a`αa)|| ≤ ||eαa− a||+N ||a− eαa|| → 0.

Similarly for left approximate identity. Moreover it is bounded as,

||g(α,β)||≤||eα||+||fβ ||+||fβeα||≤M+N+MN,

this implies that the net (g(α,β))(α,β)∈I×J is an approximate identity for A.

Definition 4.1.5. Let A be a Banach algebra and let m ≥ 1. Suppose that for each a ∈ A
and ε > 0 there exists u with ||u|| ≤ m such that ||a− ua|| < ε. Then A is said to have left
approximate units of bound m. In a similar fashion we define right approximate units of
bound m.

Clearly if A has a left (respectively right) approximate identity of bound m then it has
left (respectively right) approximate units of bound m. In fact, the converse is also true.

Proposition 4.1.6. Let A be a Banach algebra with left (respectively right) approximate
units of bound m ≥ 1. Then A has a bounded left (resp. right) approximate identity of
bound m.

Note 4.1.7. We defined the approximate identity where the convergence of net is norm
convergence. If there exists a net (eα)α∈λ in A such that for all a in A the convergence of
(aeα) to a is in weak sense, i.e. if for all a ∈ A

f(aeα)→ f(a) (∀ f ∈ A∗),

then we say that (eα) is weak left approximate identity. Similarly we define weak right
approximate identity. A net which is both left and right weak approximate identity is called
weak approximate identity.

The following result bridge the gap between the bounded approximate identity and
bounded weak approximate identity using Mazur’s theorem A.0.25.
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Proposition 4.1.8. Let A be a Banach algebra and suppose that (eα)α∈λ is a weak left
(resp. right) identity for A, then there exists a bounded left (resp. right) approximate
identity for A.

Proof. Let (eα) be a bounded weak left approximate identity for A. Let m = supα||eα||
and a ∈ A. As each eα ∈ bm(A) we get that a ∈ bm(A).a

w
, i.e. weak closure. It is easy

to check by definition that bm(A).a is convex set so by Mazur’s theorem A.0.25 we have

that a ∈ bm(A).a
||.||

i.e. norm closure. By definition of closure only we get that there
exists left approximate units of bounds m. So from proposition 4.1.6, A has a bounded left
approximate identity. Similarly for right approximate identity.

Contractible algebras are unital and amenable algebras possesses bounded approximate
identity. This is proved in following theorem.

Theorem 4.1.9. Let A be amenable Banach algebra. Then A has a bounded approximate
identity.

Proof. Let X = A as a Banach space then for a ∈ A and x ∈ X define left and right
module action as,

a.x = ax andx.a = 0

So, we have X∗ and X∗∗ are Banach A−bimodule. Now the canonical map

J : A→ X∗∗

is a derivation. Indeed

(J(ab))(f) = f(ab) = f(a.b)

= (f.a)(b) = (J(b))(f.a)

= (a.J(b))(f)

= (a.J(b) + J(a).b)(f) (as X∗∗ has Zero right action)

Since A is amenable, there exists φ ∈ X∗∗ such that

J(a) = a.φ− φ.a = a.φ

By Goldstein’s theorem A.0.29 there exists a bounded net (eα) in X such that J(eα)
w∗−−→ φ.

This implies that for all f ∈ X∗

||(J(eα)f − φ(f)|| −→ 0 (∀ f ∈ X∗)
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In particular for a ∈ A
||(J(eα))(fa)− φ(fa)|| −→ 0.

||(J(a.eα))f − (a.φ)f || −→ 0.

This implies that for all a ∈ A, J(a.eα)
w∗−−→ a.φ. So from above discussion actually it

becomes J(a.eα)
w∗−−→ J(a) which further give that a.eα

w−→ a. Hence eα is bounded weak
right approximate identity for A. So from proposition 4.1.8 we get bounded approximate
identity for A.
Similar observation with module action defined as

a.x = 0 and x.a = xa (a ∈ A, x ∈ X)

we get bounded left approximate identity for A and from remark 4.1.4 we get bounded
approximate identity for A.

4.2 Bounded Approximate identity for Group Algebra

As we can see easily that for finite locally compact group G has identity as

f(x) =

{
1 if x = e

0 otherwise

but we can not expect this for infinite group as it turns out to be that f ∼ 0, hence for
all g ∈ L1(G), f ∗ g = 0. Therefore we will depend on approximate identity. Infact we will
observe that for every locally compact group, L1(G) possesses approximate identity. The
following proposition give us the desired result.

Proposition 4.2.1. Let G be locally compact group with left Haar measure mG and let U
be a collection of neighborhood of e directed by the inverse inclusion relation, that is,

U ≤ V ⇐⇒ V ⊂ U.

Denote P(G) := {f ∈ L1(G) : f ≥ 0 and ||f ||1 = 1}. Let (eU )U∈U be a net in P(G) such
that for each U ∈ U the support of eU is compact and contained in U also for all x ∈ G
eU (x) = eU (x−1). Then (eU )U∈U is a bounded approximate identity for L1(G).

Proof. Let U ∈ U . Now as eU ∈ P(G) it implies that
∫
G eU d(mG) = 1, so by using this we

have following,

f ∗ eU (x)− f(x) =

∫
G
f(xy)eU (y−1)mG(dy)− f(x)

∫
U
eU (y) mG(dy)

=

∫
G
f(xy)eU (y) mG(dy)−

∫
G
f(x)eU (y) mG(dy) (as eU (y−1) = eU (y)

=

∫
G

(Ryf(x)− f(x))eU (y) mG(dy)
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Now by using Fubini’s theorem,

||f ∗ eU − f ||1 =

∫
G

∣∣∣∣∫
G

(Ryf(x)− f(x))eU mG(dy)

∣∣∣∣ mG(dx)

≤
∫
G

∫
G
|Ryf(x)− f(x)|eU (y) mG(dy) mG(dx)

=

∫
G
||Ryf − f ||1eU (y) mG(dy)

≤ sup
y∈U
||Ryf − f ||1

∫
G
eU (y) mG(dy)

= sup
y∈U
||Ryf − ff ||1

As from proposition 2.2.18, we get that for appropriate neighborhood of e

sup
y∈U
||Ryf − f ||1 < ε.

Hence we get that

||f ∗ eU − f ||1 < ε

Thus (eU ) is bounded right approximate identity. Similarly for left approximate identity,

eU ∗ f(x)− f(x) =

∫
(Lyf(x)− f(x))eU (y) mG(dy)

and by similar argument as above we obtain

||eU ∗ f − f ||1 ≤ sup
y∈U
||Lyf − f ||1 < ε

Hence (eU )U∈U is bounded approximate identity for L1(G).

Remark 4.2.2. By the properties of locally compact group (proposition 2.1.3)Then for
U ∈ U we can define eU to be as following

eU = mG(U)−1χU

As mG is left Haar measure so mG(U) > 0. Here U is collection of all compact and
symmetric neighborhood of e.

Proposition 4.2.3. Let I be a closed linear subspace of L1(G) such that for all x in G,
Lxf ∈ I. Then I is left ideal in L1(G)
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Proof. As we know that L∞(G) ≡ (L1(G))∗ so for φ ∈ L∞(G) and f ∈ L1(G).

< f, φ >=

∫
f(x)φ(x) mG(dx).

Let φ ∈ I⊥ which is contained in L∞(G), then define φ̌ ∈ L∞(G) as,

φ̌(x) = φ(x−1) (x ∈ G)

Observe the following

(f ∗ φ̌)(x) =

∫
f(y)φ(y−1x) d(mG) =

∫
f(xy)φ(y−1)d(mG)

=

∫
G
Lxf(y)φ(y) mG(dy)

= 0.

Last equality holds as Lxf ∈ I and φ ∈ I⊥. Now∫
G

(g ∗ f)(y)φ(y) mG(dy) =

∫
G

(∫
G
g(x)f(x−1y) mG(dx)

)
φ̌(y−1) mG(dy)

=

∫
G
g(x)

(∫
G
f(x−1)φ̌(y−1) mG(dy

)
mG(dx)

=

∫
G
g(x)(f ∗ φ̌)(x−1) mG(dx) = 0.

This implies that for all f ∈ I and g ∈ L1(G), g ∗ f ∈⊥ (I⊥) (refer definition A.0.5) Now
as I is closed linear subspace hence ⊥(I ⊥) = I. Thus I is closed ideal in L1(G).

Corollary 4.2.4. Let I be a closed linear subspace of L1(G) such that Lxf ∈ I for all
x ∈ G and f ∈ I. Then I is closed left ideal in M(G).

Proof. Let (eα)α∈λ be a bounded approximate identity for L1(G). Now from proposition
4.2.3 we know that I is closed left ideal in L1(G) and as L1(G) itself is an ideal in M(G).
So for all µ ∈M(G), f ∈ I and α ∈ λ we get that,

(µ ∗ eα) ∗ f = µ ∗ (eα ∗ f) −→ µ ∗ f.

hence (µ ∗ eα) ∗ f ∈ I. Since I is closed in L1(G) so also closed in M(G) giving us our
desired result. That is µ ∗ f ∈ I fro all f ∈ I and µ ∈ M(G). So we get that I is closed
left ideal in M(G).
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We defined what does it means by strict topology (remark 2.3.15) and also what is
Dirac measure (point measure). The interesting point is that the linear span of collection
of point measure relative to a locally compact group are dense in measure algebra. For a
proof see [Henrik].

Theorem 4.2.5. The linear span of {δx : x ∈ G} is strictly dense in M(G).

Now we will state the Cohen-Hewitt factorisation theorem.

Theorem 4.2.6. (Cohen-Hewitt) Let A be a Banach algebra with a bounded left (respec-
tively right) approximate identity (eα)α∈λ with bound m ≥ 1, and let X be a Banach
A-bimodule. Then A.X (respectively X.A) is a closed submodule of X.

Corollary 4.2.7. (Cohen’s factorization theorem) Let A be a Banach algebra and X a
Banach A-bimodule and suppose that (eα)α∈λ is a bounded left approximate identity for X.
Then A.X = X. In particular A.A = A

4.3 Pseudo-Unital Banach Algebra

We stated the cohen Hewitt factorisation theorem which gives us the factorisation for A.
To get this we define following structure.

Definition 4.3.1. Let A be a Banach Algebra and X be a Banach A-bimodule. If X =
A.X.A, then we say that X is pseudo-unital.

Remark 4.3.2. From the definition of pseudo unital, it is clear that if (eα)α∈λ is approx-
imate unit for A then it is approximate unit for X as well. The reason is, let x ∈ X,
then there exists a, b ∈ A and y ∈ Y such that x = a.y.b. Now, lim

α
eαx = lim

α
eαa.y.b =

(lim
α
eαa).y.b = a.y.b = x

In particular, if 1A is unity of A, then 1A.x = x = x.1A for all x ∈ X.

Proposition 4.3.3. Let A and B be Banach Algebra such that A is closed ideal of B and
X be pseudo-unital Banach A-bimodule. If A has a bounded approximate identity then X
is a Banach B-bimodule in a canonical way.

Proof. Let (eα)α be a bounded approximate identity for A. Now, as X is a Banach pseudo
A-bimodule, for any x ∈ X, there will exist a, b ∈ A and y, z ∈ Y be such that x = a.z.b.
As X is module let z.b = y, which is in X. So, x = a.y. Now for b ∈ B, define B×X → X
by

b.x = ba.y

It is well-defined since,

ba′.y′ = (lim
α
beα).a′.y′ = (lim

α
beα).(a.y) = ba.y.
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Since A is an ideal, this will imply that b.x ∈ A.X for all b ∈ B and since, X is a A-
bimodule, it follows that X is a left B-module. Similarly define X ×B → X by

x.b = y.a′b′ for x = y.a′

This implies that X is a Banach B-bimodule.

Proposition 4.3.4. Let A and B be Banach Algebras such that A has a bounded approx-
imate identity and A is closed ideal of B and let X be pseuso-unital Banach A-bimodule.
Let D ∈ Z1(A,X∗). Then there is a unique extension D̃ ∈ Z1(B,X∗) of D such that

1. D̃|A = D

2. D̃ is continuous with respect to strict topology on B and with respect to w∗ topology
on X∗.

Proof. Let (eα) be an approximate identity on A and let x ∈ X be arbitrary. Since X is
pseudo unital from remark 4.3.2 we get the following,

D(a)(x) = lim
α
D(a)(eα.x) = lim

α
(D(a).eα)(x) = lim

α
(D(aeα)− a.D(eα))(x)

and thus we get that,

D(a) = w∗ − lim
α

(D(aeα)− a.D(eα)) (a ∈ A) (4.1)

Let b ∈ B. Since X is pseudo unital, we can write x ∈ X as x = y.a where a ∈ A and
y ∈ X. So from continuity of bimodule action it follows that

(D(beα)− b.D(eα))(x) = (D(beα)− b.D(eα))(y.a) = (a.D(beα)− ab.D(eα))(y)

= (D(abeα)−D(a).beα −D(abeα) +D(ab).eα)(y) (3.2)

= D(ab(eα.y))−D(a)(beα.y)

→ D(ab)(y)−D(a)(b.y)

Since the limit of a net is unique in C, the calculations above do not depend on the
factorisation of x. Hence D̃ : B → X∗ defined by

D̃(b)(x) = lim
α

(D(beα)(x)− b.D(eα))(x) (x ∈ X)

is well defines and by (3.2) if x = y.a where a ∈ A, y ∈ X we have

(D̃(b))(x) = (D(ab))(y)− (D(a))(b.y) (b ∈ B)
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We now show that D̃ ∈ Z1(B,X∗). For this, let b, c ∈ B and let x = y.a be as above. Thus
we have

(b.D̃(c) + D̃(b).c)(x) = (b.D̃(c) + D̃(b).c)(y.a)

= D̃(c)(y.ab) + (D̃(b))(c.y.a)

= D(abc)(y)−D(ab)(c.y) +D(ab)(c.y)−D(a)(bc.y)

= D(abc)(y)−D(a)(bc.y)

= D̃(bc)(x)

The linearity od D̃ follows easily from the linearity of D and the module operation. Finally
let m ≥ 1 be a bound for (eα)α∈λ. Then for any b ∈ B, x ∈ X we have

|D̃(b(x))| = lim
α
|(D(beα)− b.D(eα))(x) ≤ lim

α
(|D(beα)(x)|+ |b.D(eα)(x)|)

≤ (k + 1)m||x|| ||D|| ||b|| <∞

and thus D̃ is bounded and we conclude that D̃ ∈ Z1(B,X∗). Also, by (3.1), D̃|A = D.
To show the desired continuity, let (bα)α be a net in B such that bα → b for some b ∈ B in
the strict topology on B with respect to A, that is,

||a(bα − b)||+ ||(bα − b)a|| → 0

for all a ∈ A. Since X is pseudo unital we get by writing any y ∈ X as y = a1.y1, where
a1 ∈ A and y1 ∈ X, that

||(bα − b).y|| = ||(bα − b)a1.y1|| ≤ k||(bα − b)a1|| ||y1|| → 0.

Hence by writing x = y.a we obtain by (3.3) that

|(D̃(bα)− D̃(b))(x)| = |(D(abα)−D(ab))(y)−D(a)((bα − b).y)|
≤ |D(a(bα − b))(y)|+ |D(a)((bα − b).y)|
≤ ||y|| ||D(a(bα − b))||+ ||(bα − b).y|| ||D(a)|| → 0.

by continuity of D. Thus D̃ is continuous with respect to the strict topology in B and the
w∗−topology on X∗.

Proposition 4.3.5. Let A be a Banach Algebra with bounded approximate identity and let
X be a Banach A-bimodule with a trivial left or right module action. Then H1(A,X∗) = 0.

Proof. Let A.X = 0, which implies that X∗.A = 0. Now, for D ∈ Z1(A,X∗), we have
from module action D(ab) = a.D(b). If (eα)α be a bounded approximate identity for A,
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then (Deα)α is a bounded net in X∗. So, by Banach Alaoglu theorem A.0.28, there exists
a w∗-accumulation point, f of (Deα)α.

w∗ − lim
α

(D(eα)) = f

Since any subnet of (eα)α is also a bounded approximate identity for A. So, for every
a ∈ A,

D(a)(x) = lim
α

[D(aeα)](x) = lim
α

[a.D(eα)](x)

= lim
α

[D(eα)](x.a) = f(x.a)

= (a.f)(x) = (a.f − f.a)(x)

Hence, D ∈ B1(A,X∗) and therefore H1(A,X∗) = 0.

For proof of the following refer [Henrik].

Proposition 4.3.6. Let A be a Banach Algebra with bounded approximate identity, (eα)α.
Suppose that H1(A,X∗) = 0 for each pseudo unital Banach A-bimodule, X. Then A is
amenable.

4.4 Characterization of Amenable Banach Algebra

Definition 4.4.1. Let A be a Banach Algebra and π : A⊗̂A→ A be the diagonal operator
on A. A bounded net (mα)α in A⊗̂A is called approximate diagonal for A if for every
a ∈ A,

1. lim
α
a.mα −mα.a = 0

2. lim
α
aπ(mα) = a

An element M ∈ (A⊗̂A)∗∗ is a virtual diagonal for A if for every a ∈ A, we have,

1. a.M −M.a = 0

2. a.π∗∗(M) = â, where, â = J(a) and J is canonical map from A to A∗∗.

Remark 4.4.2. Consider, lim
α
a.π(mα) = a. This implies (π(mα))α is a right approximate

identity. Moreover,

||π(mα).a− a|| = ||a.π(mα)− π(mα).a||+ ||π(mα).a||
= ||π(a.mα −mα).a||+ ||a.π(mα)− a||
−→ 0

Actually (π(mα))α is an approximate identity.
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From the definition only the following theorem is expected.

Theorem 4.4.3. Let A be a Banach algebra. Then A has an approximate diagonal if and
only if A has a virtual diagonal.

Proof. (1) ⇒ (2)
Suppose that (mα)α is an approximate diagonal for A. Then (m̂α)α is a bounded net in
(A⊗̂A)∗∗ and thus by Banach Alaoglu theorem A.0.28 there exists a w∗-accumulation point,
M ∈ (A⊗̂A)∗∗ of (m̂α). Again since any subnet of (mα) is also an approximate diagonal
for A, we may assume that w∗-limα m̂α = M. Then

a.M −M.a = w∗ − lim
α
a.m̂α − m̂α.a = w − lim

α
a.mα −mα.a = 0 (a ∈ A)

where the last equality follows from the definition of approximate diagonal. Furthermore

a.π∗∗(M) = w∗ − lim
α
a.π∗∗(m̂α) = w − lim

α
a.π(mα) = â

(2)⇒ (1)
Suppose that M is a virtual diagonal for A. By Goldstine’s Theorem A.0.29 there exists a
bounded net (mα)α in (A⊗̂A) such that M = w∗ − lim

α
m̂α. Then,

w − lim
α
a.mα −mα.a = w∗ − lim

α
a.m̂α − m̂α.a = a.M −M.a = 0 (a ∈ A)

and
w − lim

α
a.π(mα) = w∗ − lim

α
a.π∗∗(m̂α) = a.π∗∗(M) = a (a ∈ A)

Let F := {F ⊂ A : |F | < ∞}. Then for any F = {a1, a2, ..., an} ∈ F and ε > 0, the
bounded net,

((a1mα −mα.a1 , a1π(mα)− a1), ..., (anmα −mα.an , anπ(mα)− an)),

in the product space ((A⊗̂A)×A)n converges to 0 in the weak topology. Now let

H = Conv{mα : α ∈ I} (convexhull).

0 ∈ (ai.H̄
w − H̄w.ai) ∩ (ai.H̄

w − ai) (i ∈ Nn)

By Mazur’s Theorem A.0.25, H̄w = H̄ and hence there exists uF,ε ∈ H such that

||ai.uF,ε − uF,ε.ai|| < ε and ||ai.π(uF,ε)− ai|| < ε (i ∈ Nn)

As F × R+ is a directed set with partial order defined by

(F1, ε1) ≤ (F2, ε2) ⇐⇒ F1 ⊂ F2 and ε1 ≥ ε2

and hence the net (uF,ε) is an approximate diagonal for A.
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Moreover the following is true.

Theorem 4.4.4. Let A be a Banach Algebra. Then the following are equivalent:

1. A is amenable.

2. A has a bounded approximate diagonal and H1(A,X∗) = {0} for every pseudo unital
Banach A-bimodule.

3. A has a bounded approximate diagonal

4. A has a virtual diagonal.



Appendix A

Functional Analysis

In this section we will look at some basics of functional analysis and topology. For detailed
proofs refer [Rob], [Kreyszig] and [Kehe-Zhu]. We will consider vector spaces over field C
until and unless stated otherwise. Primary knowledge of vector spaces and linear algebra
will be taken granted.

We will first look at some properties of Banach algebras.
In general, a Banach algebra need not have a unit. There is a canonical way to embed

a non-unital Banach algebra into a unital one. Let A is a non-unital Banach algebra, then
consider the set A′ := C × A with pointwise addition and scalar multiplication and with
algebra multiplication defined by,

(α, a), (β, b) = (αβ, ab+ αb+ βa).

Then A′ is unital Banach algebra with unity 1A = (1, 0) and norm defined as,

||(α, a)|| = |α|+ ||a|| (α ∈ C, a ∈ A).

So, ||1A|| = 1. A is embedded in A′ as i : A ↪→ A′, i(a) = (0, a).

Consider a unital Banach algera A with unit 1A, we have one sufficient condition that
says if for a ∈ A, ||a|| < 1 then (1A − a) is invertible. Moreover, (1A − a)−1 =

∑∞
i=0 a

n.
As ||a|| < 1 so underline power series is convergent and it is easy to see that the inverse of
(1A − a) is this series only.

For a normed space X, we denote by X∗ the set of all continuous linear functionals on
X and set of all linear functional on X by X ′. We recall some central theorems of functional
analysis. Before going there look at some basic terminologies.

Definition A.0.5. Let X be a normed space and let A abd B be subsets of X and X∗

respectively. Define A⊥ and ⊥B as follows

A⊥ := {f ∈ X∗ : f(x) = 0 for each x in A}

67
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⊥B := {x ∈ X : f(x) = 0 for each f in B}

Then A⊥ is the annihilator of A in X∗, while ⊥B is the annihilator of B in X.

Definition A.0.6. (Sublinear functional) Let X be a vector space, then a sublinear
functional p on X is a linear real valued functional which is sub-additive and positive
homogeneous, i.e.; ∀ x, y ∈ X

p(x+ y) ≤ p(x) + p(y) and

p(αx) = αp(x) ∀ α ≥ 0 in R and x in X

Definition A.0.7. (partially ordered set, chain) A partially ordered set (poset) is a
set M with an order relation ≤, which is reflexive, anti-symmetric and transitive.
A chain is a poset in which any two elements are comparable.

An upper bound of a subset W of a partially ordered set M is an element u ∈M such
that, for every x ∈W

x ≤ u.

A maximal element of M is an m ∈M such that,

m ≤ x implies m = x.

Definition A.0.8. (Zorn’s Lemma) Let M 6= φ be a partially ordered set. If every chain
C ⊂M has an upper bound. Then M has at least one maximal element.

Now we will see the very important theorem in connection with bounded linear func-
tionals. Hahn-Banach theorem is about the extension of linear functional from a subspace
to whole space with same bound. First we discuss for vector space and then go for normed
spaces.

Theorem A.0.9. (Hahn-Banach theorem for vector spaces)(HBT) Let X be a real
or complex vector space and p a real-valued functional on X which is subadditive, and for
every scalar α satisfies

p(αx) = |α|x,

Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies,

|f(x)| ≤ p(x) ∀x ∈ Z.

Then f has a linear extension f̃ from Z to X satisfying,

|f̃(x)| ≤ p(x) ∀x ∈ X
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Idea of the proof is very simple first we extend the functional to a space of dimension
one greater than Z and containing Z. On repeating the process, Zorn’s Lemma ensures
the termination of this process and we get our extension map to whole X.

Theorem A.0.10. (Hahn-Banach for normed spaces) Let Y be linear subspace of
normed space X. Then for each f ∈ Y ∗ there exist f̃ ∈ X∗ such that f̃ |Y = f and
||f̃ ||X = ||f ||Y . where,

||f̃ ||X = sup
x∈X,||x||=1

|f(x)|, ||f ||Y = sup
x∈Y,||x||=1

|f(x)|.

To prove the above we consider p(x) = ||f ||Y ||x||, and the rest is achieved by HBT for
vector spaces.
In the following corollary HBT ensures that the dual(topological) of a normed space is
non-empty iff the space is itself non-empty. It also relates the norm of a vector with norm
of functionals and characterizes the zero vector.

Corollary A.0.11. (Bounded Linear Functional) Let X be a normed space and let
x0 6= 0 be any element of X. Then there exists a bounded linear functional f on X such
that,

||f || = 1 and f(x0) = ||x0||.

Corollary A.0.12. (Zero Vector) For every x in normed space X, we have

||x|| = sup
f∈X′,||f ||=1

|f(x)|.

Hence if x0 is such that f(x0) = 0 for all f ∈ X ′, then x0 = 0.

The following are the three basic and most powerful theorems of Functional analysis.

Theorem A.0.13. (Open Mapping Theorem) Every bounded linear operator from a Ba-
nach space onto a Banach space is an open mapping.

Theorem A.0.14. (Uniform Boundedness Principle) Let J be a nonempty family of
bounded linear operators from a Banach space X into a normed space Y . If sup{||Tx|| :
T ∈ J } is finite for each x in X, then sup{||T || : T ∈ J } is finite.

Theorem A.0.15. (Closed Graph Theorem) Let T be linear operator from a Banach space
X into a Banach space Y . Suppose that whenever a sequence (xn) in X converges to some
x in X and (Txn) converges to some y in Y , it follows that y = Tx. Then T is bounded.

Now we will go for some concepts and theorems from Banach Space theory. What
are weak and weak* topologies? How it helps to have some good structures on spaces?
Without going deep we will only prove and see some applications of important theorems.
For details refer to [Rob] and [Kehe-Zhu].
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Definition A.0.16. (Locally Convex Topological Vector Space)(LCTVS) A vector
space (X,+, ∗) with a topology τ , such that the vector addition + and scalar multiplication
∗ are continuous, is called a topological vector space.
If the topology has a basis consisting of convex sets, then (X, τ) is a locally convex topological
vector space.

Proposition A.0.17. Let X be a set, F be a family of functions and let {(Yf , τf ) : f ∈ F}
a family of topological spaces such that each f ∈ F maps X into the corresponding Yf . Then
there is a smallest topology for X with respect to which each member of F is continuous,
called the topology induced by topologizing family F
That is, there is a unique topology τF for X such that, each f in F is τF−continuous and if
τ is any topology for X such that each f in F is τ−continuous, then τF ⊂ τ. The topology
τF has {f−1(U) : f ∈ F and U ∈ τF} as a subbasis.

Definition A.0.18. (Weak Topology) Let X be a normed space. Then the topology for
X induced by the topologizing family X∗ is the weak topology of X or X∗-topology of X
and denoted by σ(X,X∗).

Definition A.0.19. (Separating family) Let X be a set and F := {f : X → Yf}. Then
we say that the family F is separating if for each pair x, y of distinct elements of X there
exists f in F such that f(x) 6= f(y).

That is, the weak topology of a normed space is the smallest topology that every element
of dual of normed space is continuous. Definition of weak topology simply gives that it is
subset of norm topology. It is easy to check that as X∗ is separating family for X and F
is completely regular space, weak topology is itself completely regular and locally convex.

Proposition A.0.20. Let X be a set and F = {f : X → (Yf , τf )} be a separating
topologizing family for X. Then the map x 7→ (f(x)f∈F ) is a homeomorphism from X
with F-topology onto a topological subspace of

∏
f∈F Yf with the product topology.

Definition A.0.21. (Bounded Set) A subset of a topological vector space is bounded if, for
each neighborhood U of zero, there is a positive SU such that A ⊂ tU whenever t > SU .

Definition A.0.22. (weakly bounded set) A subset A of normed space X is said to be
weakly bounded if E := {x∗x : x ∈ A} is bounded for all x∗ ∈ X∗.

We have seen the basic definition and some theorems which will now help us to build
our theory. As every open set in weak topology is open in norm topology, so what can be
said for closed set, bounded set and etc?

By the use of Uniform boundedness principle we can see that a set is weakly bounded
iff it is norm bounded.

Mazur theorem gives that a convex set is weakly closed iff it is norm closed. To prove
it we will prove a general result and Mazur theorem is just a special case of this general
result.
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Theorem A.0.23. Let K and C be disjoint nonempty convex subsets of an LCS X such
that K is compact and C is closed. Then there is a member x∗ of X∗ such that

max{x∗x : x ∈ K} < inf{x∗x : x ∈ C}.

Corollary A.0.24. Suppose that a vector space X has two locally convex topologies τ1 and
τ2 such that the dual spaces of X under the two topologies are the same. Let C be a convex
subset of X. Then the τ1−closure of C is the same as its τ2−closure. In particular, the
set C is τ1 closed if and only if it is τ2 closed.

Proof. Let C 6= φ. Let X∗ denote the dual of X under each of the topologies. For each x
in X\Cτ1 , from above theorem we get x∗x in X∗ such that

x∗x = max{x∗xy : y ∈ x} < inf{x∗xy : y ∈ Cτ1 , }

let Ax = {z : z ∈ X,x∗xz ≥ inf{x∗xy : y ∈ Cτ1}. Then each Ax is τ2 closed, and C
τ1 =

∩{Ax : x ∈ X\Cτ1}. This gives that C
τ1 is τ2 closed. Similar argument shows that C

τ2 is
τ1 closed. So C

τ1 = C
τ2

Now Mazur theorem is a special case of the above corollary as weak and norm dual are
the same. Explicit statement of Mazur theorem is as follows,

Theorem A.0.25. (Mazur Theorem) The closure and weak closure of a convex subset of
normed space are the same. In particular, a convex subset of a normed space is closed iff
it is weakly closed.

We looked at the smallest topology on X generated by X∗. Similarly we have weak
topology on X∗ generated by X∗∗ and so on. Now here something special for X∗, We can
see X embedded in X∗∗, the topology generated by X on X∗ such that some special kind of
function are continuous, is called weak* topology. Define J : X → X∗∗ by x 7→ J(x), where
J(x)(f) = f(x) for all f ∈ X∗. J(x) ∈ X∗∗ whenever x ∈ X, J is isometric isomorphism
from X into X∗∗. The subspace J(X) is closed in X∗∗ iff X is a banach space. J is called
natural embedding or canonical mapping from X into X∗∗.

Definition A.0.26. (weak* topology) Let X be a normed space. Then the topology for X∗

induced by topologizing family J(X) is the weak* topology of X∗ and denoted by σ(X∗, X).

Remark A.0.27. It is noteworthy here that J(X) is the separating family for X∗. Due to
similar argument as for weak topology, weak* topology of X∗ is also a completely regular
locally convex topology and the dual of X∗ with respect ot weak* topology is J(X). It can
be proven that weak* topology is induced by norm if and only if the space X is finite
dimensional.

As from Riesz’ lemma for normed space, we have that the closed unit ball is compact
if and only if the space is finite dimensional. Weak* topology provides us the compactness
of closed unit ball of X∗. This strong result was given by Banach-Alaoglu theorem.



72 APPENDIX A. FUNCTIONAL ANALYSIS

Theorem A.0.28. (Banach-Alaoglu Theorem) Let X be normed space.Then closed unit
ball of X∗ is weak* compact.

Proof. Natural embedding of X into X∗∗ gives that J(BX) is a separating family of BX∗

that induces the restriction on weak* topology of X∗ to BX∗ . Let I := {α ∈ F : |α| ≤ 1}.
Let IBX =

∏
x∈BX Ix where Ix = I for each x in X. As each Ix is compact by Hiene-Borel

theorem, it gives that IBX is compact by Tychnoff’s Theorem. Define map F from BX∗

to IBX as x∗ 7→ (x∗x)x∈BX . From proposition A.0.20 map F is a homeomorphism from
BX∗ onto the topological subspace of IBX . Now we will show that image of BX∗ is closed
in IBX and thus we are done because closed set of compact set is itself closed and inverse
image of compact set under a homeomorphism is compact.
Let (x∗β)β∈Λ be a net in BX∗ such that (F (x∗β)) converges to some (αx)x∈BX in IBX . Now
our claim is that there exist some x∗ in BX∗ such that F (x∗) = (αx)x∈BX .
For each x 6= 0 in X, let x∗x = ||x||α(||x||−1x) and let x∗(0) = 0. Since

x∗x = ||x|| lim
β
xβ∗(||x||−1x)

x∗x = lim
β
x∗β(x) ∀x ∈ X

Thus x∗ is a linear functional, also as |x∗x| = lim
β
|x∗βx| ≤ ||x|| which implies x∗ belongs to

BX∗ . Now for each x in BX ,

(F (x∗)) = (x∗x)x∈BX

= (lim
β
x∗βx)x∈BX

= lim
β

(F (x∗β))x∈BX

= (αx)x∈BX .

This implies that (F (x∗β)) converges to F (x∗) = (αx)x∈BX . Hence we are done.

Now we will discuss another theorem of Banach space theory that tells about the closed
unit ball of X. The image of X under natural map is closed and weakly closed but it is
weakly* dense in X∗∗. Goldstine’s theorem says that the closed unit ball of X is weakly*
dense in BX∗∗ .

Theorem A.0.29. (Goldstine’s Theorem) Let X be a normed space and let J be the natural
map from X into X∗∗. Then J(Bx) is weakly* dense in BX∗∗.

Proof. As it is clear that J(BX)
w∗ ⊂ BX∗∗ . So it is enough to show other way containment.

Let x∗∗0 ∈ X∗∗\J(BX)
w∗

. It is enough to show that ||x∗∗0 || > 1. Since J(BX)
w∗

is convex
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and weak* closed. So from A.0.23 there exists x∗0 ∈ X∗ as (X∗∗, σ(X∗∗, X∗)) = X∗ such
that,

|x∗∗0 | ≥ x∗∗0 x∗0

> sup{x∗∗x∗0 : x∗∗ ∈ J(BX)
w∗}

≥ sup{x∗0x : x ∈ BX}

= ||x∗∗0 ||

which implies ||x∗∗0 || > 1. Hence we are done.

Here we can say something more with the help of ?? as below corollary says,

Corollary A.0.30. Let X be a normed space and let J be natural map from X into X∗∗.

Then J(X)
w∗

= X∗∗.

Now here comes the conclusive discussion. We will define what is C∗-algebra and
just state the very sound theorem named as Gelfand representation theorem. What is
C∗ algebra, In first chapter we discussed about what is algebra so here comes one more
operation on the defined algebra. We are doing all this to decorate our structure to make
our life easy. The more stringent conditions, the better structure we have.

Definition A.0.31. (C∗−algebra) Let (A,+,×, ◦, ||.||) be a Banach algebra together with
a unitary map on A, x 7→ x∗ satisfying the following conditions,

1. (x∗)∗ = x for all x ∈ A

2. (ax+ by)∗ = āx∗ + b̄y∗ for all x, y ∈ A and a, b ∈ F

3. (xy)∗ = y∗x∗ for all x, y ∈ A

4. ||x∗x|| = ||x||2 for all x ∈ A

Remark A.0.32. An algebra satisfying 1,2 and 3 is called ∗−algebra. The ∗ map is called
involution map on A. It is to be noted here that 1∗ = 1.

Now we will define some more terminologies, then we will go for the centerpiece of this
discussion.

Definition A.0.33. Suppose A and B are C∗− algebras. A mapping φ from A to B is
called C∗− homomorphism if, it preserves the all the operations, i.e. for all x, y in A and
a, b in F

1. φ(ax+ by) = aφ(x) + bφ(y),

2. φ(xy) = φ(x)φ(y)
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3. φ(x∗) = (φ(x)∗)

4. φ(1A) = 1B

further, if φ is one-one, we say φ is a C∗ homomorphism. In other words A is isomorphic
to its image under the map φ.

Definition A.0.34. A linear functional f on a Banach algebra A is said to be multiplica-
tive if, φ is non-trivial and φ(xy) = φ(x)φ(y) for all x and y in A.

Noteworthy points regarding multiplicative functionals are φ(1) = 1 and ||φ|| = 1.

Remark A.0.35. For a Banach algebra A letMA denote the collection of all multiplicative
functionals on A. MA is called maximal ideal space of A.MA is subset of BX∗ .

Proposition A.0.36. Let A be a Banach algebra. ThenMA is a compact Hausdorff space
with the weak* topology inherited from the dual space of A

Remark A.0.37. When a Banach algebra is commutative the set MA is in one-one cor-
respondence with the set of all maximal ideals in A.

Now we are going to conclude this discussion by defining what are the Gelfand maps
and what Gelfand representation says.

Definition A.0.38. Let A be a Banach algebra. The Gelfand transformation is the map-
ping Γ from A to C(MA) defined as,

Γ(x)(φ) = φ(x) x ∈ A, φ ∈MA.

We can easily verify that Γ is linear, multiplicative and bounded, moreover Γ(1) = 1.

Theorem A.0.39. (Gelfand Representation Theorem) Every commutative C∗ algebra is
C∗ isomorphic to C(K) for some compact Hausdorff space K. Specifically for commutative
C∗ algebra A, the Gelfand representation is an isometric C∗ isomorphism from A onto
MA. If A is unital MA is compact.



Appendix B

Measure Theory

After discussing functional analysis what else is left to discuss as preliminary is measure
theory. In this section we will look into very important concepts like introduction to LP -
spaces, Radon-Nikodym theorem and at last but not the least Fubini’s Theorem. Here we
are not proving many theorem so for a proof and detailed discussion about the following,
do refer [Cohn] and [Roy-Fitz]

B.1 LP spaces

Let (X,Γ, µ) be a measure space, and P ∈ [1,∞). Suppose LP (X,Γ, µ) denote the set of
Γ- measurable functions, f : x → C 3 |f |p is integrable with respect to µ. Define, ||.||p
as,

||f ||p =

(∫
|f |pdµ

)p
It is easy to check that it is the seminorm on Lp(X,Γ, µ). Now to get rid of this follow the
classical way. Define the equivalence relation on Lp(X,Γ, µ) as,

f ∼ g ⇐⇒ f = g a.e.

This defines an equivalence relation on Lp(X,Γ, µ). Now define,

Lp(X,Γ, µ) := {[f ] | f ∈ Lp(X,Γ, µ)},

where, [f ] = {g ∈ Lp(X,Γ, µ) | f = g a.e}. Addition and scalar multiplication is defined
as

[af + bg] = a[f ] + b[g] (a, b ∈ C , f, g ∈ Lp)

We get that (Lp, ||.||p) is a normed space. For a measurable function, f define

ess supf := inf{t > 0| |f | ≤ t a.e.}

75
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L∞ contains all essentially bounded functions. That is,

L∞(X,Γ, µ) := {[f ] | f ∈ L∞(X,Γ, µ), f is essentially bounded}

(L∞), ||.||∞, where ||f || = ess supf is a normed space.

Young’s Inequality :- For 1 < p < ∞ and q such that
1

p
+

1

q
= 1 and any a > 0, b > 0,

the young’s inequality is,

ab ≤ ap

p
+
bq

q

Theorem B.1.1. For (X,Γ, µ), E ∈ Γ, 1 < p < ∞ and q such that
1

p
+

1

q
= 1 if f ∈

Lp(E), g ∈ Lq(E), then f, g ∈ L′(E).

Holder’s Inequality :- For (X,Γ, µ), E ∈ Γ, 1 < p < ∞ and q such that
1

p
+

1

q
=

1 if f ∈ Lp(E), g ∈ Lq(E),
∫
E |f.g| ≤ ||f ||p||g||q .

Minkowski’s Inquality :- Suppose that E ∈ Γ, 1 ≤ p ≤ ∞, and f, g ∈ Lp(E), then
f + g ∈ Lp(E), and ||f + g|| ≤ ||f ||p + ||g||p .

Cauchy-Schwartz Inequality :- Suppose that E ∈ Γ, and f and g are measurable
functions for which f2 and g2 are integrable over C. Then their product f.g will also be
integrable over E and ∫

E
|fg| ≤

√∫
E
f2.

√∫
E
g2

Corollary B.1.2. Suppose that E ∈ Γ , µ(E) <∞ and 1 ≤ p1 < p2 ≤ ∞. Then,

Lp2 ⊆ Lp1(E) .

Theorem B.1.3. Riesz-Fisher Theorem Let X be a measure space and 1 ≤ p ≤ ∞, then
the space Lp(X) is a complete normed linear space.

Proof. For p =∞,
Let (fn) ⊆ L∞ be a cauchy sequence and suppose that M ⊂ X, µ(M) = 0 such that,

|fn(x)| ≤ ||f ||∞ x /∈M n = 1, 2, ...

and also
|fn(x)− fm(x)| ≤ ||fn − fm||∞ ∀x /∈M, m,n = 1, 2, ...
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This implies that (fn) is uniformally cauchy, which further implies that (fn) is uniformally
convergent on X \M.

Now let,

f(x) =

{
limfn(x) if x ∈M

0 if x 6∈M

This implies that f is measurable and also, as ||fn−f ||∞ −→ 0, hence this implies that
L∞ is complete.

For 1 ≤ p <∞ : Let (fn) ⊂ Lp be cauchy. That is ∀ ε > 0, ∃ M ∈ N,∀ m,n ≥M∫
|fm − fn|pdµ = ||fn − fm||pp < εp

There exists a subsequence (gk) of (fn) such that

||gk+1 − gk||p < 2−k, k ∈ N

Define,

g = |g1(x)|+
∞∑
k=1

|gk+1(x)− gk(x)|

Then g is a non-negative measurable function.
From Fatou’s Lemma,∫

|g|pdµ ≤ lim
n
inf

∫
{|g|+

n∑
k=1

|gk+1 − gk|}pdµ

{∫
|g|pdµ

}1/p

≤ lim
n
inf {||g||p +

n∑
k=1

||gk+1 − gk||p}

≤ ||g1||p + 1

If E = {x ∈ X| g(x) <∞} , E ∈ X , µ(X \ E) = 0 ⇒ Series in (1.1) is convergent a.e.
and g ∈ Lp
Define,

f(x) =


g1(x) +

∑∞
k=1 |gk+1(x)− gk(x)|, x ∈ E

0, x /∈ E

as |gk| ≤ |g1|+
∑k−1

j=1 |gj+1(x)− gj(x)| ≤ |g|
Since, (gk) converges a.e to f , from Dominated convergence Theorem (in pth norm), f ∈ Lp.
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Also, since, |f − gk|p ≤
(

1

2k

)p
→ 0 as k → ∞, thus from DCT, lim ||f − gk||p = 0,

that is (gk) → f in Lp.
Now, for m ≥Mε and for sufficiently large k (k ≥Mε)∫

|fm − gk|p dµ < εp

From Fatou’s Lemma,
∫
|fm − f |p dµ ≤ lim inf{

∫
|fm − gk|pdµ ≤ εp}. Hence, (fn)

converges to f in Lp.

We observed that Lp spaces are not the collection of functions but actually they contain
equivalence classes, but for our convenience we will work with f as an element of Lp(X,Σ, µ)
rather than using [f ].
Now we will define the concept of regular measure which will lead us to very interesting
and vast theory of measures.

Definition B.1.4. Let X be a Hausdorff space. A Borel measure µ (measure defined on
Borel σ-Algebra) on X is regular if the following conditions are satisfied:

1. µ(K) < +∞, for all compact sets K ⊂ X,

2. µ(U) = sup{µ(K)|Kis compact andK ⊂ U} for all open U ⊂ X,

3. µ(A) = inf{µ(V )|V is open andA ⊂ V } for all A ∈ B(X).

(1) and (3) are referred as inner and outer irregularity of µ respectively.

If we have nice measure space in the sense that if measure is finite or σ−finite then we
have the following. Also see proposition B.1.27

Proposition B.1.5. Let X be a Hausdorff space and let µ be a finite regular Borel measure
on X. Then, µ(A) = sup {µ(K)|K is compact and K ⊂ A} for every A ∈ B(X).

Proof. Let ε > 0 be given and let A ∈ B(X). By the regularity of µ, we have an open set
U ⊂ X and a compact set K such that A ⊂ U, K ⊂ U and

µ(U)− ε < µ(K) ≤ µ(U) < µ(A) + ε.

We also have, µ(U \ A) < ε. So, again by regularity, we have an open set V such that
U \ A ⊂ V and µ(V ) < ε. Since K \ V is closed and is contained in K and so is compact.
Also, K \ V ⊂ A (as K ⊂ A). Consider,

µ(K \ V ) = µ(K)− µ(K ∩ V ) > µ(U)− ε− ε ≥ µ(A)− 2ε
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which implies that

µ(A) = sup {µ(K)| K is compact and K ⊂ A}.

Hence proved

Remark B.1.6. Let (X,Γ, µ) be a measurable space. A function, f : X → C defined as,

f =

n∑
i=1

aiχAi , (Ai ⊂ X, ai ∈ C, n ∈ N)

where the sets Ai are pairwise disjoint, is called a simple function on X. Thus, f is
measurable iff Ai is measurable for each i = 1, 2, ..., n.

Why we are discussing simple function? Firstly it is clear from their structure itself
that they are easy to handle moreover the interesting part is...

Proposition B.1.7. Let (X,Γ, µ) be a measurable space and 1 ≤ p ≤ ∞. Then the set of
all simple functions is dense in Lp(X,A, µ) and thus makes its dense subspace.

Proof. We will prove it for real valued functions. Corresponding results for complex valued
functions can be proved by separating f = f1 + if2, where f1 and f2 are real valued
functions.
For 1 ≤ p ≤ ∞, f ∈ Lp(X,A, µ). We can choose non-decreasing sequences (gk) and (hk) of
non-negative A-measurable functions such that f = lim

k
hk.

Define, fk = gk − hk. Observe that for all k, fk is A-measurable that satisfies |fk| ≤
|f | (as |f | = f+ + f−). Thus we can say that fk ∈ Lp(X,A, µ).
Since, |fk(x)−f(x)| ≤ |f(x)|, and, for every x in X, lim(fk(x)−f(x)) = 0, therefore, from
DCT, (applied to pth power of function, fk − f),

lim
k
||fk − f || = 0, or, {fk} → f .

For p = ∞, let f be from L∞(X,A, ]mu) and ε > 0 be given. Choose real numbers,
a0, a1, ..., an such that a0 < a1 < ... < an and such that the intervals, (ai−1, ai] cover the
interval, [−||f ||∞, ||f ||∞] and have the length at-most ε.
Let Ai = f−1((ai−1, ai]) i = 1, 2, ..., n and fε =

∑n
i=1 aiχAi . Then fε is a simple A-

measurable function that satisfies ||f − fε|| ≤ ε. Since f and ε are arbitrary hence the
proof.

Proposition B.1.8. 1. Suppose that [a, b] is a closed and bounded interval and 1 ≤ p ≤
+∞. Then the subspace of continuous functions on [a, b] is dense in Lp[a, b].
While for general setup on locally compact Hausdorff space,

2. If X is locally compact Hausdorff space, then
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(a) Cc(X) is dense in C0(X), and

(b) If µ is a regular measure, then Cc(X) is dense in Lp(X,B(X), µ), p ∈ [1,∞).

Definition B.1.9. A complex measure on sigma algebra Γ is a complex valued measure,
µ : Γ → C, such that µ(φ) = 0 and µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai), Ai ∩ Aj = φ , for i 6= j.

Thus, complex measure has only complex value and so has no infinite values. M(X,Γ)
denote the set of all complex measures on (X,Γ), which is a vector space.

Now we have a vector space, can we have a norm on it and is it Banach space. These
are the question that we will answer in our further discussion. So let us first try to define
a norm.

Definition B.1.10. The variation (µ) of a complex measure µ on (X,Γ) is defined by

|µ|(E) := sup

{∑
i

|µ(Ei)| : {Ei} is finite Γ− partition of E

}

Obviously it is not a norm, but it will help us to define a norm. First observe the
following property of variation of a complex measure.

Proposition B.1.11. Let (X,Γ) be a measurable space and let µ be a complex measure.
Then the variation, |µ| of µ is a finite measure on (X,Γ).

Proof. First and the easy one, as µ is a measure so we have |µ|(φ) = 0.
We will check the finite additivity of |µ| by |µ|(B1 ∪B2) = |µ|(B1) + |µ|(B2). Let {Aj}nj=1

be a finite partition of B1 ∪B2 into A, then

n∑
j=1

|µ(Aj)| ≤
n∑
j=1

|µ(Aj ∩B1)| +
n∑
j=1

|µ(Aj +B2)|

, which is less than or equal to |µ|(B1) + |µ|(B2). Thus, we have,

|µ|(B1 ∪B2) ≤ |µ|(B1) + |B2|.

Similarly, based on partitioning of B1 and B2, we have,

|µ|(B1) + |µ|(B2) ≤ |µ|(B1 ∪B2)

and thus,
|µ|(B1 ∪B2) = |µ|(B1) + |µ|(B2).

Hence, µ is finitely additive.
From Jordan Decomposition of µ, µ = µ1 − µ2 + iµ3 − iµ4. This implies,

|µ|(A) ≤ µ1(A) + µ2(A) + µ3(A) + µ4(A), ∀ A ∈ A
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Since all µi, i = 1, ..., 4 are finite, |µ| will also be finite.
Furthermore, if {An} is a decreasing sequence of A-measurable sets such that ∩An = φ
then lim

n
µk(An) = 0, for k = 1, ..., 4. So from abovw inequality lim

n
|µ|(An) = 0. Hence, |µ|

is countably additive.

Now define a norm on

Definition B.1.12. The total variation, ||µ||, of the complex measure µ is defined as

||µ|| = |µ|(X)

Proposition B.1.13. Let (X,Γ) be a measurable space. Then M(X,Γ) is a Banach space
under the total variation norm.

Remark B.1.14. Let (X,Γ) be a measurable space and ν be a finite signed measure of

(X,Γ). We note that |ν|(A) ≥ |ν(A)| , ∀ A ∈ Γ and thus, ν1 =
1

2
(|ν|+ν), ν2 =

1

2
(|ν|−ν)

are finite measures and ν = ν1 − ν2. And thus, every finite measure can be written as the
difference of two finite measures. Moreover, every complex measure µ on (X,Γ) can be
written as, µ = µ1 + iµ2, where, µ1 and µ2 are finite signed measures.

µ = µ1 − µ2 + iµ3 − iµ4

This representation of complex measure referred as Jordan Decomposition of µ.

Remark B.1.15. Let µ be a complex measure and

µ = µ1 − µ2 + iµ3 − iµ4

be the Jordan Decomposition of µ. Let B(X,Γ) := {f : X → C|f is Γ−measurable and bounded}.
Let f ∈ B(X,Γ). Then,∫

fdµ =

∫
fdµ1 −

∫
fdµ2 + i

∫
fdµ3 − i

∫
fdµ4

Thus, |
∫
fdµ| <∞ for any f ∈ B(X,Γ) .

Remark B.1.16. A complex Borel measure µ is called regular if |µ| is regular or equiv-
alently if each of the finite measures in the Jordan Decomposition of µ is regular. Set of
complex Borel measures is denoted as

Mr(X) := {µ : X → C|µ is regular (Borel)}

Now the following proposition give us a relation between continuous functions and
regular Borel measure. Which will be very useful in so many places like Radon-Nikodym
theorem.
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Proposition B.1.17. Let X be a locally compact Hausdorff space, µ be a regular borel
measure on X and f : X → (0,∞) be a continuous function. Then, ν : B(X) → [0,+∞]
defined by

ν(A) =

∫
A
fdµ

is a regular Borel measure on X.

Proof. Firstly, for pairwise disjoint Borel sets, A1, A2, ..., we have by Beppo Levi’s theorem,

ν(∪∞n=1An) =

∫
∪An

fdµ =

∫ ∞∑
n=1

χAnfdµ

=

∞∑
n=1

∫
χAnfdµ =

∞∑
n=1

ν(An)

Also, since ν(φ) =
∫
χφfdµ = 0. Thus, ν is a Borel measure.

Now we will show that ν is regular. Let K ⊂ X be compact set and M = maxx∈K f(x).
Then, since µ is a regular measure,

ν(K) =

∫
K
fdµ ≤Mµ(K) < +∞

We claim that ν is inner regular. Define,

Un := {x ∈ X | 1/n < f(x) < n, n ∈ N}

Each Un is open by continuity of f . Let U be open. Then, since, U ∩ U1 ⊂ U ∩ U2 ⊂
...U and ∪∞n=1 (U ∩ Un) = U . We have ν(U) = lim

n→∞
ν(U ∩ Un). So it would be sufficient

to show that,

ν(U ∩ Un) = sup{ν(K)|K is compact and K ⊂ (U ∩ Un)} for each n ∈ N

Let n ∈ N ε > 0 be given. Suppose that µ(U ∩ Un) < +∞. Then by the regularity of µ,
there exists a compact set K ⊂ U ∩ Un , µ[(U ∩ Un) \K] < ε/n. So,

ν[(U ∩ Un) \K] =

∫
(U∩Un)\K

fdµ ≤ nµ(U ∩ Un) \K < ε

Now suppose µ(U ∩Un) =∞ and let M > 0. So again by regularity, there exists a compact
K ⊂ U ∩ Un such that µ(K) > nM . So,

ν(K) =

∫
K
fdµ ≥ 1/nµ(K) > M
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Thus, ν is inner regular.
Now we need to show that ν is outer regular.
Let A be an arbitrary Borel set. If ν(A) = +∞, then X is open such that ν(x) = +∞ and
if ν(A) < +∞, then ∀n ∈ N,

µ(A ∩ Un) = n

∫
A∩Un

fdµ = nν(A ∩ Un) < +∞

For ε > 0, from the outer regularity of µ, we have an open subset Vn, such that A∩Un ⊂ Vn
and µ(Vn) < µ(A ∩ Un) + ε/2n. Consider an open set Vn ∩ Un. Suppose that Vn ⊂ Un.

ν(Vn \A) = ν(Vn \ (Un ∩A))

=

∫
Vn\A∩Vn

fdµ

≤ nµ(Vn \A ∩ Un)

= n(µ(Vn)− µ(Un ∩A)

< ε/2n

Take V = ∪∞n=1Vn open and A ⊂ V .

ν(V \A) = ν(∪∞n=1Vn \A)

= ν(∪∞n=1(Vn \A)

=

∞∑
n=1

ν(Vn \A)

=
∞∑
n=1

ε/2n = ε

Hence, ν is outer regular.

Definition B.1.18. Let X and Y be sets and E ⊂ X × Y . Then the sections of E are
defined as,

Ex := {y ∈ Y |(x, y) ∈ E}, Ey := {x ∈ Y |(x, y)

Similarly, we define the sections of a function f on X × Y by

fx(y) = f(x, y), fy(x) = f(x, y)

Definition B.1.19. Let (X,A) be a measurable space and let µ and ν be positive measures
on (X,A). Then ν is said to be absolutely continuous with respect to µ if for any A ∈
A, µ(A) = 0 implies that ν(A) = 0 and is denoted by ν << µ.
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Lemma B.1.20. Let (X,A) be a measurable space, µ be a positive measure and ν be a
finite positive measure on (X,A). Then ν is absolutely continuous with respect to µ if and
only if for every ε > 0, there exists δ > 0 such that for each A-measurable set, A, which
satisfies µ(A) < δ also satisfies ν(A) < ε.

Proof. If µ(A) = 0, then µ(A) < δ for each δ, which implies that ν(A) < ε for all ε > 0.
This implies ν(A) = 0. Hence, ν << µ.
Conversely, Let ν << µ. Suppose on contrary that there exists ε > 0 for which there is
no suitable δ. Then for each k ∈ N, we can choose an A-measurable set Ak that satisfies
µ(Ak) < 1/2k and ν(Ak) ≥ ε.
Consider the inequalities,

µ(∪∞k=nAk) ≤
∞∑
k=n

µ(Ak) < 1/2n−1

and
ν(∪∞k=nAk) ≥ ν(An) ≥ ε ∀n

So, the set A defined by A = ∩∞n=1(∪∞k=nAk) satisfies µ(A) = 0 and ν(A) ≥ ε. Thus,
µ(A) = 0 but ν(A) 6= 0, which is a contradiction.

Theorem B.1.21. (Radon-Nikodym Theorem)(for complex measure) Let µ be a σ−finite
measure on X and let ν be finite or signed measure on X. Let ν be absolutely continuous
with respect to µ. Then there exists unique f in L1(X,

∑
, µ) such that

ν(A)

∫
A
f d(µ).

The function f is unique upto µ almost everywhere equality.

Remark B.1.22. The function f is called as the Radon-Nikodym derivative of ν with
respect to µ denoted by dν/dµ.

Theorem B.1.23 (Radon-Nikodym Theorem). Let µ and ν be finite measures on (X,A)
and ν be absolutely continuous with respect to µ. Then there exists an A-measurable func-
tion, g : X → [0,+∞] such that ν(A) =

∫
A gdµ holds for each A in A. Moreover g is

unique upto µ-almost everywhere equality.

Proof. Firstly, let µ and ν both be σ-finite measures. Consider,

F := {f : X → [0.+∞] : f is A−measurable function and

∫
A
fdµ ≤ ν(A) ∀ A ∈ A}

We claim that there exists g ∈ F such that
∫
A gdµ = sup{

∫
A fdµ : f ∈ F} and ν(A) =∫

A gdµ for all A ∈ A. Let f1 and f2 ∈ F and A ∈ A. Suppose,

A1 = {x ∈ A : f1(x) > f2(x)} and A2 = {x ∈ A : f2(x) > f1(x)}
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Then, ∫
A

(f1 ∨ f2)dµ =

∫
A1

f1dµ+

∫
A2

f2dµ

≤ ν(A1) + ν(A2)

= ν(A)

Hence, f1 ∨ f2 ∈ F . Also F 6= φ as 0 ∈ F .
Now choose {fn} ⊂ F for which

lim
n

∫
A
fndµ = sup {

∫
A
fdµ : f ∈ F}

Replace fn with f1 ∨ f2 ∨ ...∨ fn. {fn} is an increasing sequence. Let g = lim
n
fn. Then by

Monotone Convergence Theorem,∫
A
gdµ = lim

n

∫
A
fndµ ≤ ν(A) .

The above inequalities hold for each A ∈ A. Therefore, g ∈ F .∫
A
gdµ = sup {

∫
A
fdµ : f ∈ F}

We will show that
∫
A gdµ = ν(A) for each A ∈ A.

Since g ∈ F , ν0(A) = ν(A)−
∫
A gdµ defines a positive measure on A.

We now claim that ν0 = 0. Let ν0 6= 0. As µ is finite, there is ν0(X) > εµ(X). Let (P,N)
be the Hahn-Decomposition for the signed measure ν0 − εµ. Note that, for all a ∈ A, we
have ν0(A ∩ P ) ≥ εµ(A ∩ P ). So we have,

ν(A) =

∫
A
gdµ+ ν0(A) ≥

∫
A
gdµ+ ν0(A ∩ P )

≥
∫
A
gdµ+ εµ(A ∩ P )

=

∫
A

(g + εχp)dµ

Observe that µ(P ) > 0, as if µ(P ) = 0, then ν(P ) = 0, which implies that ν0(P ) = 0. This
will imply that ν0(X)−εµ(X) = ν0(N)−εµ(N) ≤ 0 which contradicts that ν0(X) > εµ(X).
We have g ∈ F . This implies

∫
A gdµ ≤ ν(X) < +∞.

As we have
∫
A(g + εχp)dµ < ν(A) for all A ∈ A and µ(P ) > 0. This implies g + εχp ∈ F

and
∫
A(g + εχp)dµ >

∫
A gdµ, which contradicts that

∫
A gdµ is supremum. Thus, ν0 = 0.

Hence,
∫
A gdµ = ν(A) for each A ∈ A.
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Secondly, let µ and ν both be σ-finite measures. Then there exists {Bn} ⊂ A such that
X = ∪∞n=1Bn and µ(Bn) < +∞ and ν(Bn) < +∞ for every n ∈ N.
For each n, we have, gn : Bn → (0,+∞) such that ν(A) =

∫
A gndµ for each A-measurable

subset A of Bn. The function g : X → [0,+∞] that agrees on each Bn with gn, is then the
required function.
Now we will prove the uniqueness of g.
Let g, h : X → [0,+∞) be A-measurable functions that satisfy

ν(A) =

∫
A
gdµ =

∫
A
hdµ ∀A ∈ A .

If ν is finite, then g − h is integrable and
∫
A(g − h)dµ = 0 ∀A ∈ A . A may be the set

where g < h or g > h, then it follows that∫
A

(g − h)+dµ = 0 and

∫
A

(g − h)−dµ = 0

This implies that (g − h)+ and (g − h)+ vanish µ almost everywhere and hence, g = h µ
almost everywhere.
If ν is σ−finite and |Bn| ⊂ A such that ν(Bn) ≤ +∞ and X = ∪∞n=1Bn, then g and h
agree µ almost everywhere on each Bn and thus on X.

Proof. (Proof of theorem B.1.21) If ν is a complex measure such that ν << µ and ν =
ν1−ν2 + iν3− iν4, where νi are finite positive measures that are absolutely continuous with
respect to µ, then from the above theorem we have gj , such that νj(A) =

∫
A gjdµ ∀A ∈

A , g = g1 − g2 + ig3 − g4. (Simiarly, we can show it in case of finite signed measures.)

Remark B.1.24. We have µ << |µ|. So from Radon-Nikodym theorem,

µ(A) =

∫
A

dµ

d|µ|
d|µ| ∀A ∈ A.

Remark B.1.25. By moving from characteristic functions to simple functions and using
Dominated Convergence Theorem, we have,∫

fdµ =

∫
A
f
dµ

d|µ|
d|µ| ∀f ∈ B(X,µ).

Proposition B.1.26. Suppose that (X,A, µ) is a measure space and that f belongs to
L1(X,A, µ,R \ C) and that ν is a finite or signed or complex measure defined by ν(A) =∫
A fdµ. Then,

|ν|(A) =

∫
A
|f |dµ (∀A ∈ A).
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Proposition B.1.27. Let X be a Hausdorff space and A be a σ-algebra on X that includes
B(X). Also, let µ be a regular measure on A. If A ∈ A and A is σ-finite under µ, then,

µ(A) = sup{µ(K)|K ⊆ A,K is compact}

Remark B.1.28. Let X be a locally compact Hausdorff space. For a regular Borel measure
µ on X, we denote by Ma(X,µ), the Banach space of all complex measures ν such that
ν << µ.
For f ∈ L1(X,µ), νf , defined by νf (A) =

∫
A fdµ, is a complex measure. Also see remark

B.1.34

Proposition B.1.29. Let X be a locally compact Hausdorff space and µ be a regular Borel
measure on (X,B(X)). Also let f ∈ L1(X,µ). Then νf defined by νf (A) =

∫
A fdµ be the

finite signed or complex measure on (X,B(X)). Moreover νf is regular.

Remark B.1.30. Clearly, νf << µ and hence the map, f 7→ νf is a linear isometric map
from f ∈ L′(X,µ) , νf to Ma(X,µ). By Radon-Nikodym theorem, the map is onto and
hence an isometric isomorphism.

Proposition B.1.31. Let X be a locally compact Hausdorff space and µ be a regular Borel
measure on X. For a complex regular measure, ν on X, the following are equivalent:

• ν << µ,

• There is a function f ∈ L′(X,µ) such that ν(A) =
∫
A fdµ

Thus, we can identify L′(X,µ) with Ma(X,µ) as Banach space.

Definition B.1.32. Let f be continuous real or complex valued function on a topological
space X. The support of f , Supp(f) is the closure of A := {x ∈ X|f(x) 6= 0}. That is
Supp(f) = Ā. If X is a locally compact Hausdorff space, then the set of all continuous
functions f : X → R \ C for which Supp(f) is compact are denoted by K(X).

K(X) := {f : X → R \ C|f is continuous and Supp(f) is compact}

Definition B.1.33. Let U be an open subset of locally compact hausdorff space, X and if
0 ≤ f ≤ χU and also supp(f) ⊆ U , then we denote it as f ≺ U .

Theorem B.1.34 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
space and let I be a positive linear functional on Cc(X) [K(X)] that is I(f) ≥ 0 if f ≥ 0.
Then there is a unique regular Borel measure on X such that

I(f) =

∫
X
fdµ
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Theorem B.1.35. Riesz Representation Theorem for Complex Measures Let X be a locally
compact Hausdorff space. For each complex regular Borel measure µ on X, define a linear
functional φ : C0(X)→ C by

φµ(f) =

∫
X
fdµ

Then the map, µ 7→ φµ is an isometric isomorphism from Mr(X) onto (C0(X))∗.

Remark B.1.36. This theorem says that if we have a locally compact hausdorff space with
some positive linear function of Cc(X). Then there exists a unique regular Borel Measure
on space, that is, if we have a positive linear functional on X, then there exists a regular
Borel measure, µ on X such that I(f) =

∫
X fdµ. Moreover, for every I there exists a

unique µ in correspondence.

Now we will just give the outline of the proof where we will be using following lemma.

Lemma B.1.37. Let X be a locally compact Hausdorff space and µ be a regular Borel
measure on X. If U is an open subset of X, then

µ(U) = sup{
∫
fdµ|f ∈ Cc(X) and 0 ≤ f ≤ χU}

Proof. (Outline of the proof)

1. Use the lemma B.1.37 to prove that, in Riesz Representation Theorem, if there exists
such µ, then it is unique.

2. Define a function µ∗ on the open subsets of X by

µ∗(U) = sup{
∫
fdµ|f ∈ Cc(X) and f ≺ U}

and then extend it to any subset of X by

µ∗(A) = inf{µ∗(U) : U is open and A ⊆ U}

3. Now show that µ∗ is an outer measure on X and every Borel subset of X is µ∗-
measurable.

4. Let A ⊆ X and f ∈ Cc(X). Now show that

• If χA ≤ f , then µ∗(A) ≤ T (f).

• 0 ≤ f ≤ χA and A is compact, then I(f) ≤ µ∗(A).

5. Let µ be the restriction of µ∗ on B(X) and let µ1 be the restriction of µ∗ to the
σ-algebra Mµ∗ of µ∗-measurable sets. Then µ and µ1 are regular measures and∫
fdµ =

∫
fdµ1 = I(f) for all f ∈ Cc(X).

Hence the proof.
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B.2 Product Measures

Let (X,A) and (Y,B) be two measurable spaces and X × Y be their cartesian product. A
subset of X × Y is a rectangle with measurable sides if it has the form A × B for some
A ∈ A and B ∈ B. σ-algebra on X × Y generated by all rectangles with measurable sides
is called the product of the σ-algebras A and B and is denoted by A× B.

Lemma B.2.1. Let (X,A) and (Y,B) be two measurable spaces.

1. If E ⊂ X × Y and E ∈ A × B, then each section Ex and Ey are B- measurable and
A- measurable respectively.

2. If f is an extended real or complex valued A×B-measurable function on X×Y , then
each section fx is B- measurable and each section fy is A- measurable.

Theorem B.2.2. Let (X,A, µ) and (Y,B, ν) be two σ-finite measurable spaces. Then there
is a unique measure µ × ν on the σ-Algebra A × B such that µ × ν(A × B) = µ(A)ν(B),
holds for each A ∈ A and B ∈ B.
Furthermore, the measure under µ× ν of an arbitrary set E in A× B is given by

µ× ν(E) =

∫
X
ν(Ex)µ(dx) =

∫
Y
µ(Ey)ν(dy)

The measure µ× ν is called as product measure of µ and ν(E).

Remark B.2.3. In general X and Y are not σ-finite. We cannot expect such a good
behaviour of product measure. B(X)×B(Y ) do not necessarily contain all Borel subsets of
X × Y and so measure defined on B(X)× B(Y ) is not a Borel measure.

Proposition B.2.4. Let (X,A, µ) and (Y,B, ν) be the σ-finite measure spaces. If E be-
longs to the σ-algebra of A × B, then the function x 7→ ν(Ex) is A-measurable and the
function y 7→ µ(Ey) is B-measurable.

Theorem B.2.5 (Tonelli’s Theorem). Let (X,A, µ) and (Y,B, ν) be the σ-finite measure
spaces and f : X × Y → [0,+∞] be A× B-measurable, then

1. the function x 7→
∫
Y fxdν is A-measurable, and,

2. f satisfies ∫
X×Y

fd(µ× ν) =

∫
X

(

∫
Y
fxdν)µ(dx) =

∫
Y

(

∫
X
fydµ)ν(dy)

Theorem B.2.6. Let X and Y be a locally compact Hausdorff space and µ and ν be a
regular Borel measures on X and Y respectively. Then for f ∈ Cc(X × Y ), the functions,

x 7→
∫
Y
fx(y)ν(dy) and y 7→

∫
X
fy(x)µ(dx)
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belongs to Cc(X) and Cc(Y ) respectively and∫
X

∫
Y
f(x, y)ν(dy)µ(dx) =

∫
Y

∫
X
f(x, y)µ(dx)ν(dy)

Remark B.2.7. Now we can define positive linear functional I on Cc(X × Y ) by I(f) =∫
X

∫
Y f(x, y)ν(dy)µ(dx) and then by Riesz Representation Theorem, there exists a unique

regular Borel measure on X × Y , which we will denote by µ× ν such that∫
X

∫
Y
f(x, y)ν(dy)µ(dx) =

∫
X×Y

f(x, y)ν(dy)µ(dx)

This gives Product Regular Borel Measure.

Theorem B.2.8. Let X and Y be a locally compact Hausdorff space and µ and ν be a
regular Borel measures on X and Y respectively and E be an open subset of X × Y or a
Borel subset of X × Y such that there exists σ-finite Borel subsets of A ⊂ X and B ⊂ Y
for which E ⊂ A×B. Then the functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable and

(µ× ν)(E) =

∫
X
ν(Ex)µ(dx) =

∫
Y
µ(Ey)ν(dy).

Theorem B.2.9 (Fubini’s Theorem (1)). Let X and Y be a locally compact Hausdorff
space and µ and ν be a regular Borel measures on X and Y respectively. Let f be a non-
negative real Borel measurable function on X×Y and suppose that there exist σ-finite Borel
sets A ∈ B(X) and B ∈ B(Y ) such that f(x, y) = 0 if (x, y) /∈ A×B. Then the functions,

x 7→
∫
Y
f(x, y)ν(dy) and y 7→

∫
X
f(x, y)µ(dx)

are measurable and∫
X×Y

fd(µ× ν) =

∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx)

Proof. Let f = χE , E ∈ B(X,Y ). By the assumption, there exists A×B, A ∈ B(X), B ∈
B(Y ), E ⊂ A×B.
Note that, ν(Ex) =

∫
Y χE(x, y)ν(dy) and µ(Ey) =

∫
X χE(x, y)µ(dx). Hence by the previ-

ous proposition,

x 7→
∫
Y
χE(x, y)ν(dy) and y 7→

∫
X
χE(x, y)µ(dx)

are measurable and∫
X×Y

χE(x, y)d(µ×ν) = (µ×ν)(E) =

∫
Y

∫
X
χE(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
χE(x, y)ν(dy)µ(dx)

By linearity of integration and Monotone Convergence Theorem, it is true for any general
function.
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Theorem B.2.10 (Fubini’s Theorem (2)). Let X and Y be a locally compact Hausdorff
space and µ and ν be a regular Borel measures on X and Y respectively. Let f ∈ L′(X,Y )
and suppose that there exist σ-finite Borel sets A ∈ B(X) and B ∈ B(Y ) such that f(x, y) =
0 if (x, y) /∈ A×B. Then,

1. fx is ν-integrable for µ almost everywhere x and fy is µ-integrable for ν almost everywhere y.

2. The functions

x 7→
∫
Y
f(x, y)ν(dy) and y 7→

∫
X
f(x, y)µ(dx)

are µ and ν-integrable respectively.

3. ∫
X×Y

fd(µ× ν) =

∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx)
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