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Chapter 0

Notations and Definitions

λ represents the Lebesgue measure on R.

N represents set of natural numbers.

Z represents set of integers.

R represents set of real numbers.

X denotes real Banach space.

X∗ represents dual of Banach space X.

R[a, b] is set of all Riemann integrable functions over [a, b].

(R)
∫ b
a
fdt or

∫ b
a
fdt represent Riemann integral of f in [a, b].

(D)−
∫
E
fdµ represents Dunford integral of f over E.

(P )−
∫
E
fdµ represents Pettis integral of f over E.

R(α)[a, b] is set of all Riemann Stieltjes integrable functions with respect to α, where α

is a monotonic increasing function on [a, b].

Definition 0.0.1. (i) A partition P of a closed interval [a, b] is a finite set of points

{x0, x1, x2...xn}, where a = x0 < x1 < x2 < ... < xn = b and ∆xi = xi − xi−1

(i = 1, 2, 3, ..., n)

(ii) A tagged partition is a partition {x0, x1, x2, ...xn} together with a set of points

{si : 1 ≤ i ≤ n} satisfy si ∈ [xi−1, xi] for 1 ≤ i ≤ n.

For example, P = {si, [xi−1, xi] : 1 ≤ i ≤ n} where si ∈ [xi−1, xi] is a tagged

partition over [a, b]. Let P be the set of all tagged partitions over [a, b].
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2 Chapter 0 Notations and Definitions

(iii) A tagged partition is a partition {x0, x1, x2, ...xn} together with a set of points

{si : 1 ≤ i ≤ n} satisfy si ∈ [xi−1, xi] for 1 ≤ i ≤ n.

(iv) Norm of partition P is denoted by ||P ||, ||P || = max{xi − xi−1 : 1 ≤ i ≤ n}.

Definition 0.0.2 (Refinement of partition). The tagged partition P1 is a refinement of

tagged partition P2 if points of P2 form a subset of the points of P1.

Let α be a monotonic increasing and bounded function on [a,b]. For any partition P on

[a, b], ∆αi = α(xi)−α(xi−1), ∆αi is non-negative for all i, as α is a monotonic increasing

function.

Let f is a bounded real function on [a, b] and P = {a = x0 < x1 < x2... < xn = b} is

partition of [a, b], then define,

U(P, f, α) =
n∑
i=1

Mi∆αi; where Mi = max{f(xi) : xi ∈ [xi−1, xi]}

L(P, f, α) =
n∑
i=1

mi∆αi; where mi = min{f(xi) : xi ∈ [xi−1, xi]}

the upper Riemann integral is defined as
∫ b
a
fdα = inf U(P, f, α) and lower Riemann inte-

gral is
∫ b
a
fdα = supL(P, f, α), the infimum and superimum are taken over all partitions.

Definition 0.0.3. (i) f is said to be Riemann Stieltjes integral on [a, b] if upper Rie-

mann Stieltjes integral and lower Stieltjes Riemann integral are equal and denoted

by
∫ b
a
fdα. And we write f ∈ R(α)[a, b].

Sometimes we use the notation R(α) if the underlying interval is known.

(ii) If f : [a, b]→ X and P = {si, [xi−1, xi] : 1 ≤ i ≤ n} is a tagged partition of [a,b]

then f(P ) will denote the Riemann sum, f(P ) =
∑n

i=1 f(si)∆xi.

Definition 0.0.4. (i) For a point x ∈ [0, 1] define Of (x, δ) = sup{|f(y) − f(z)| :

y, z ∈ [x−δ, x+δ]}. We callOf (x) the oscillation of f at x, defined by limδ↓0Of (x, δ).

It is clear that f is continuous at x if and only if Of (x) = 0.

(ii) A partially ordered set (A,�) is called directed if, for any α, β ∈ A, there is

γ ∈ A such that α � γ and β � γ.

Being a finite subset of [0, 1], a partition of [0, 1] is an element of the directed set generated

by the finite subsets of [0, 1]. For a given f : [0, 1]→ (X, τ), one can define a net on the

set of all tagged partition on [0, 1] to X by defining f(P ) = f(si)∆xi : P 7→ X.

Definition 0.0.5. (Ω,Σ, µ) be a measurable space and X is a Banach space.

(i) f : Ω→ X is said to be measurable if there exists a sequence of simple functions

(sn) such that ‖sn(t)− f(t)‖ → 0 a.e. [µ].
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(ii) A µ-measurable function f : Ω→ X is said to be p-th Bochner integrable if there

exists a sequence of simple function (sn) such that, limn

∫
Ω
||f(t)−sn(t)||pdµ(t) = 0.

(iii) Define Lp(µ,X) = {f : Ω → X and f is p-th Bochner integrable}, for f ∈
Lp(µ,X), ||f ||p =

( ∫
Ω
||f ||pdµ

) 1
p defines a norm on Lp(µ,X) which makes it a

Banach space.

(iv) Define `p(Γ) = Lp(Γ, 2
Γ, µ), where µ is counting measure.

For f ∈ `p, ||f ||p = (
∫

Γ
|f(t)|pdµ(t))

1
p .

Remark 0.0.6. It is clear that for f ∈ `p(Γ), ‖f‖p = supF∈F SF , where F stands for the

set of all finite subsets of Γ and for F ∈ F , SF =
∑

γ∈F f(γ).

Definition 0.0.7. Let P = {ti : 0 ≤ i ≤ N} is a partition of [a, b], then

ω(f, P ) =
N∑
i=1

ω(f, [ti−1, ti])(ti − ti−1)

Where ω(f, [ti−1, ti]) = sup{||f(v) − f(u)|| : u, v ∈ [ti−1, ti]} is the oscillation of the

function f on the interval [ti−1, ti].



Chapter 1

Introduction

1.1 Origin of Riemann integration

Bernhard Riemann (1826-66) no doubt acquired his interest in problems connected with

trigonometric series through contact with Dirichlet when he spent a year in Berlin. Rie-

mann began with the question: when is a function integrable? By that he meant, when

do the Cauchy sums converge? He assumed this to be the case if and only if

lim
‖P‖→0

(D1δ1 +D2δ2 + . . .+Dnδn) = 0 (1.1)

Where P is a partition of [a, b] with δi’s are the lengths of the subintervals and Di is the

oscillation of f in the i-th interval.

Di = | sup f(x)− inf f(x)|

For a given partition P and δ > 0, define

S(P, δ) =
∑
Di>δ

δi

Riemann proved that the following is a necessary and sufficient condition for integrability.

∀ε, σ > 0∃d > 0 such that if P is any partition with ‖P‖ ≤ d, then S(P, σ) < ε. (1.2)

These conditions (1.1) and (1.2) are germs of the idea of measurability of the set with

nonzero oscillation. But the time was not yet ready for measure theory.
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5 Chapter 1 Introduction

Thus, with (1.1) and (1.2) Riemann has integrability without explicit continuity condi-

tions. Yet it can be proved that Riemann integrability implies f(x) is continuous almost

everywhere.

Riemann gives this example: Define m(x) to be the integer that minimizes |x −m(x)|.
Let

(x) =

x−m(x), if x 6= n/2, n odd

0, if x = n/2, n odd .

(x) is discontinuous at x = n/2 when n is odd. Now define,

f(x) = (x) +
(2x)

22
+ ...+

(nx)

n2
+ ...

This series converges and f(x) is discontinuous at every point of the form x = m/2n,

where (m,n) = 1. This is a dense set. At such points the left and right limiting values of

this function are

f(x±) = f(x)∓ (π2/16n2)

This function satisfies (1.2) and thus f is R-integrable.

The Riemann integral lacks important properties for limits of sequences and series of

functions. The basic theorem for the limit of integrals is,

Theorem 1.1.1. Let J be a closed interval [a, b], and let {fn(x)} be a sequence of

functions such that

lim
n→∞

(R)

∫ b

a

fn(x)dx exists

and such that fn(x) tends uniformily to f(x) in J as n→∞. Then,

lim
n→∞

(R)

∫ b

a

fn(x)dx = (R)

∫ b

a

f(x)dx

That this is unsatisfactory is easily seen from an example. Consider the sequence of

functions defined on [0, 1] by fn(x) = xn, n = 1, 2, 3, ... Clearly, as n → ∞, fn(x) → 0

pointwise on [0, 1), for all n. Because the convergence is not uniform, we cannot conclude

from the above theorem that

lim
n→∞

(R)

∫ b

a

fn(x)dx = 0,

which of course, it is.
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What is needed is something stronger. Specifically if |fn(x)| ≤ g(x) and {fn}, g (nonneg-

ative) are integrable and if limn fn = f(x) then f may not be Riemann integrable. This

is basic flaw that was finally resolved with Lebesgue integration.

1.2 A cue from Measure theory

A measure can be defined with the help of a distribution function,

Definition 1.2.1 (Measure). F is a field of finite disjoint union of left open and right

closed intervals over [0, 1] and α : [0, 1]→ R is a monotonic increasing function on [0, 1].

µ is pre-measure defined on F such that,

µ(
n⋃
i=1

(ai, bi]) =
n∑
i=1

α(bi)− α(ai)

In the next Chapter we have shown that the integration of a function with respect to a

measure is same as the Riemann-Stieltjes integral with respect to that monotone increas-

ing function. This fact clearly lead to the fact that the space of continuous functions on

a compact interval in R has Bounded Variation dual.

One of the major characterizations for a real valued function to be Riemann integrable is

that the function is continuous except a negligible set (in the sense of Lebesgue) Lebesgue

property. Similar conclusion can be drawn for the class of functions taking values in finite

dimensional spaces. Unfortunately the result is not necessarily true for arbitrary vector

valued functions. The main thrust of this part of our work is to explore the nonavail-

ability of this property in the Banach spaces. This work also extends to define various

notions of integrations in Banach spaces, the interplay between these integrals and the

properties obtained by the Banach spaces under the assumption of convergence of these

integrals. Basically integrability of a function taking values over a Banach space leads

to a vector valued measure, which is sometime relevant to discuss the hidden properties

of Banach spaces. In Chapter 3 we study on various notions of integrations for vector

valued functions, several examples are given which lacks the Lebesgue property. Towards

the end of this Chapter we have listed a family of Banach spaces which lacks the above

property, though `1 has this property.



Chapter 2

Riemann Stieltjes Integral

2.1 Few basic facts

In this Section α : [a, b]→ R represents a monotone increasing, continuous function. Let

us recall the class of functions R(α) from Chapter 0. Our first Theorem characterizes the

elements of R(α).

Theorem 2.1.1. f ∈ R(α) on [a, b] if and only if for every ε > 0 there exists a partition

P such that U(P, f, α)− L(P, f, α) < ε.

Proof. Let f ∈ R(α) on [a, b].

As upper Riemann integral is infimum of upper sums and lower Riemann integral is

supremum of lower sums, therefore there exist partition P1 and P2 such that,

U(P1, f, α) <

∫ b

a

fdα +
1

2
ε =

∫ b

a

fdα +
1

2
ε

and

L(P2, f, α) >

∫ b

a

fdα− 1

2
ε =

∫ b

a

fdα− 1

2
ε

Let partition P = P1 ∪ P2, P is refinement of P1 and P2.

Now U(P, f, α) ≤ U(P1, f, α) <

∫ b

a

fdα +
1

2
ε < L(P2, f, α) + ε.

This implies U(P, f, α)− L(P, f, α) < ε.

7



8 Chapter 2 Riemann Stieltjes Integral

Conversely, assume that for ε > 0 there exists partition P such that U(P, f, α) −
L(P, f, α) < ε.

Now
∫ b
a
fdα−

∫ b
a
fdα ≤ U(P, f, α)−L(P, f, α) and as U(P, f, α)−L(P, f, α) < ε we have

the result.

As we have discussed the correspondence between the class of all Lebesgue Stieltjes mea-

sures on an interval [a, b] with the class of all distribution functions modulo scalars, our

next Theorem induces relationship between R(α) and the set of functions for which the

set of points with non zero oscillation is negligible.

Theorem 2.1.2. f ∈ R(α) on [a, b] if and only if f is continuous a.e [µ], where µ be the

measure induced by α.

Proof. Let f ∈ R(α).

Let |f(x)| ≤ M for x ∈ [0, 1]. Let D = {x ∈ [a, b] : f is discontinuous at x}. Clearly

D = ∪nDn, where Dn = {x ∈ [a, b] : Of (x) ≥ 1/n}.

Claim: µ(Dn) = 0 for all n.

Let us fix n ∈ N. Since f is Riemann Stieltjes Integrable, given ε > 0 there exists a

partition P over [a, b] such that U(P, f, α)−L(P, f, α) < ε/n. Hence
∑n

i=1(Mi−mi)∆xi <

ε/n. Let {Ik : 1 ≤ k ≤ N} be the sub intervals of P , after a suitable relabellings, which

contain at least one point of Dn. Then,

1/n
∑

∆αk ≤
N∑
k=1

(Mk −mk)∆αk ≤
n∑
i=1

(Mi −mi)∆αi < ε/n.

Clearly we have Dn ⊆ ∪kIk and hence µ(Dn) < ε. Since ε is arbitrary we have µ(Dn) = 0

and finally µ(D) = 0.

Now let f is is continuous a.e [µ].

Let D be the set defined above. We have that µ(D) = 0, hence by regularity of Lebesgue

measure get an open set U and then an open set F of disjoint union of finite intervals

such that F ⊇ D and µ(F ) < ε/2M .

Hence [a, b]\F is a finite pairwise disjoint union of closed intervals where f is continuous.

Hence for ε > 0 get a δ > 0 such that for |f(y) − f(z)| < ε whenever |y − z| < δ, y, z ∈
[a, b]\F . Let P1 be a union of partitions of the disjoint intervals of [a, b]\F each of which

is less than δ. Extend it by adding the end points, if necessary, to a partition in [a, b].
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Claim: U(P, f, α)− L(P, f, α) < 2ε.

We have, U(P, f, α)− L(P, f, α) =
n∑
i=1

(Mi −mi)∆αi

=
∑
Γ1

(Mi −mi)∆αi +
∑
Γ2

(Mi −mi)∆αi

< ε
∑
Γ1

∆αi + 2Mµ(F )

< ε+ ε = 2ε.

Γ1 : indices of P contained in [0, 1] \ F and Γ2 : indices of P not in Γ1.

This completes the proof.

It is now an easy consequence of Theorem 2.1.2 that a function is Riemann Integrable if

and only if f is continuous almost everywhere, in the sense of Lebesgue.

2.2 The main characterization

Proposition 2.2.1. Let α be a monotone increasing differentiable function such that α′

is bounded over [a, b], then µ� λ where µ is the measure over [a, b] induced by α.

Proof. It is enough to prove that given ε > 0 there exists δ > 0 such that whenever E ⊆
[a, b] measurable with λ(E) < δ we have µ(E) < ε. But it is enough to prove the result for

a class of generating subsets viz {(x, y] : a ≤ x < y ≤ b}. Since µ((x, y]) = α(y)− α(x),

the result now follows from Mean Value Theorem for α.

The main result of this Section is stated in Theorem 2.2.3. An elementary proof can be

found in any standard Calculus book but our proof is more elegant and fancy which is

due to Johann Radon and Otto Nikodym.

Theorem 2.2.2. (Radon-Nikodym) Given a measurable space (Ω,Σ), if a σ-finite signed

measure ν on (Ω,Σ) is absolutely continuous with respect to a σ-finite measure µ on

(Ω,Σ), then there is a measurable function f : X → R, f ∈ L1(µ), such that for any

measurable subset E ⊂ Ω, ν(A) =
∫
A
fdµ.

Theorem 2.2.3. Let α be a monotone increasing differentiable function such that α′ is

Riemann integrable over [a, b], then f ∈ R(α) if and only if f.α′ is Riemann integrable

over [a, b] and
∫ b
a
fdα =

∫ b
a
fα′dt.
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Proof. From Theorem 2.1.2 we have
∫ b
a
fdα =

∫
[a,b]

fdµ. Now
∫

[a,b]
fdµ =

∫
[a,b]

f dµ
dλ
dλ,

where dµ
dλ

is the Radon-Nikodym derivative of µ with respect to λ. We now show that

α′ = dµ
dλ

a.e. [λ]. Which is enough to show that for any measurable E, µ(E) =
∫
E
α′dλ.

Similar to Proposition 2.2.1 we show that the result is true for the sets of the form (x, y].

Since α′ is Riemann integrable we have
∫

[x,y]
α′dλ =

∫ y
x
α′(t)dt. Now the last integral is the

limit of a sum of the type
∑n

i=1 α
′(ti)∆i, the Riemann sum corresponding to the partition

P of [x, y]. Let Ji = [si−1, si] be the i-th subinterval of P then α(si)−α(si−1) = α′(ξi)∆i

for some ξi ∈ Ji. For these choice of ξi ∈ Ji the corresponding Riemann sum for partition

P is close to
∑n

i=1 α
′(ti)∆i if ‖P‖ is sufficiently small. Hence it is clear that µ((x, y]) =∫ y

x
α′dt and finally we have

∫
[a,b]

f dµ
dλ
dλ =

∫
[a,b]

fα′dλ. Being a product of two Riemann

integrable functions, fα′ is Riemann integrable and we have
∫

[a,b]
fα′dλ =

∫ b
a
fα′dt.



Chapter 3

Various Notions of Integrations in

Banach spaces

3.1 Bochner integral

Definition 3.1.1. A µ-measurable function f : Ω → X is called Bochner integrable if

there exists a sequence of simple functions (fn) such that limn

∫
Ω
||fn − f ||dµ = 0 In this

case,
∫
E
fdµ is defined for each E ∈

∑
by
∫
E
fdµ = limn

∫
E
fn.

Theorem 3.1.2. Let f : I → X be a measurable function, f is Bochner integrable if and

only if
∫
I
||f(t)||dλ(t) <∞

Proof. If f is measurable if and only if (sn) → f uniformly, where (sn) is a sequence of

simple functions which takes countably many values.

Claim:
∫
I
||sn(t)||dλ(t) <∞

We can write sn as

sn =
kn∑
i=1

(αi)
(n)χ

E
(n)
i

Now, ∫
I

||sn(t)||dλ(t) =
n∑
i=1

||α(n)
i ||||λ(Ei)

n|| <∞

Claim: f is Bochner integrable, then
∫
I
||f(t)||dλ(t) <∞.

As f is Measurable, then ||f(t)− sn(t)|| < 1
n

for all t ∈ I. Now,

||f(t)|| ≤ ||f(t)− sn(t)||+ ||sn(t)||

11



12 Chapter 3 Various Notions of Integrations in Banach spaces

Then, ∫
I

||f(t)||dλ(t) ≤
∫
I

||f(t)− sn(t)||dλ(t) +

∫
I

||sn(t)||dλ(t)∫
I

||f(t)||dλ(t) <
1

n
λ(I) +

∫
I

||sn(t)||dλ(t)∫
I

||f(t)||dλ(t) <∞

Claim: If
∫
I
||f(t)||dλ(t) <∞, then f is Bochner integrable.∫

I
||sn(t)||dλ(t) < ∞ is a absolutely convergent sequence. So, for each n there exists a

natural number kn such that,

∞∑
i=kn+1

||α(n)
i λ(E

(n)
i )|| < 1

n

Now take pn =
∑kn

i=1 α
(n)
i χ

E
(n)
i

, then

||f(t)− pn(t)|| ≤ ||f(t)− sn(t)||+ ||sn(t)− pn(t)||∫
I

||f(t)− pn(t)||dλ(t) ≤
∫
I

||f(t)− sn(t)||dλ(t) +

∫
I

||sn(t)− pn(t)||dλ(t)

This implies, ∫
I

||f(t)− pn(t)||dλ(t) <
1

n
λ(I) +

1

n
λ(I)∫

I

||f(t)− pn(t)||dλ(t) <
2

n
λ(I)

As n tends to infinity
∫
I
||f(t)− pn(t)||dλ(t) tends to zero, hence f is Bochner integrable.

Theorem 3.1.3 (Dominated Convergence Theorm). Let (Ω,Σ, µ) be a finite measure

space and (fn) be a sequence of Bochner integrable X-valued function on Ω. If limn fn in

µ-measure,(i.e., limn µ{ω ∈ Ω : ||fn − f || ≥ ε} = 0 for every ε > 0) and if there exists a

real valued Lebesgue integrable function g on Ω with ||fn|| ≤ g µ-almost everywhere, then

f is Bochner integrable and limn

∫
E
fndµ =

∫
E
fdµ for each E ∈ Σ. In fact, limn

∫
Ω
||f −

fn||dµ = 0.

Theorem 3.1.4. If f is Bochner integrable function, then

(a) ||
∫
E
fdλ|| ≤

∫
E
||f ||dλ

(b) limλ→0

∫
E
fdλ = 0
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(c) if (En) is a sequence of pairwise disjoint members of Σ and E =
⋃∞
i=1En, then∫

E

fdµ =
∞∑
n=1

∫
En

fdµ

(d) if F (E) =
∫
E
fdµ, then F is of bounded variation and |F |(E) =

∫
E
||f ||dµ for

all E ∈ Σ

Corollary 3.1.5. If f and g are Bochner integrable and
∫
E
fdµ =

∫
E
gdµ for each E ∈ Σ,

then f = g µ-almost everywhere.

Theorem 3.1.6. Let T be a bounded linear operator defined inside X and having value

in Banach space Y. If f and Tf are Bochner integrable with respect to µ, then

T
( ∫

E

fdµ
)

=

∫
E

Tfdµ

for all E ∈ Σ.

Corollary 3.1.7. Let f be a Bochner integrable with respect to µ. Then for each E ∈ Σ

with µ(E) > 0,
1

µ(E)

∫
E

fdµ ∈ co(f(E))

Proof. We will prove it by contradiction, let there is a set E ∈ Σ of positive µ-measure

such that 1
µ(E)

∫
E
fdµ /∈ co(f(E))

Now, by geometric version of Hahn-Banach theorm, choose a x∗ ∈ X∗ and a real number

β such that,

x∗
(

1

µ(E)

∫
E

fdµ

)
< β ≤ x∗f(α)

for all α ∈ E. And ,
1

µ(E)

∫
E

x∗fdµ < β ≤ x∗f(α)

For all α ∈ E. Now, ∫
E

x∗fdµ < βµ(E) ≤ x∗f(α)µ(E)∫
E

x∗fdµ < βµ(E) ≤ x∗f(α)

∫
E

dµ∫
E

x∗fdµ < βµ(E) ≤
∫
E

x∗f(α)dµ

This holds for all α ∈ E, and hence∫
E

x∗fdµ < βµ(E) ≤
∫
E

x∗fdµ
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Which is a contradiction.

Theorem 3.1.8. Let f be a Bochner integrable on [0, 1] with respect on [0, 1] with respect

to Lebesgue measure. Then

lim
h→0

∫ x+h

x

||f(t)− f(s)||dλ = 0 a.e.[λ]

Consequently, for almost x ∈ [0, 1],

lim
h→0

∫ x+h

x

f(t) = f(s).

3.2 Dunford and Pettis integral

Definition 3.2.1. Let X and Y be two normed linear spaces and T is a linear operator

then T : X → Y is said to be a closed linear operator if xn → x in X and Txn → y in Y

then Tx = y.

It is clear that every bounded linear operator is a closed linear operator but the converse

is not true.

Example 3.2.2. Example of a closed linear operator which is not bounded linear oper-

ator.

Let us define T : C1[0, 1]→ C[0, 1] by T (f) = f
′
.

Now, let (fn) ⊆ C1[0, 1], ||fn − f ||∞ → 0 for some f ∈ C1[0, 1] and ||f ′n − g||∞ → 0 for

some g ∈ C[0, 1].

Claim: f(t) =
∫ t

0
g(x)dx for all t ∈ [0, 1].

|fn(t)−
∫ t

0

g(x)dx| = |
∫ t

0

f
′

n(x)dx−
∫ t

0

g(x)dx|

≤
∫ t

0

|f ′n(x)− g(x)|dx

≤ ||f ′n − g||∞

As ||f ′n − g||∞ converging to zero, hence limn→∞ |fn(t) −
∫ t

0
g(x)dx| = 0 for all t ∈ [0, 1]

and | limn→∞ fn(t)−
∫ t

0
g(x)dx| = 0, this implies f(t) =

∫ t
0
g(x)dx.

Hence T is closed.
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Claim: T is not bounded. Now, let us consider a sequence xn ⊆ C1[0, 1] such that

xn(t) = tn.

||T (xn)|| = sup |ntn−1| = n and ||xn|| = 1

Now, for each positive number K, we can find a positive number n such that n > K. For

such n, ||T (xn)|| > K||xn||, so T is not bounded.

Lemma 3.2.3 (Dunford). Suppose f is weakly µ-measurable function on the abstract

measure space (Ω,Σ, µ) and x∗f ∈ L1(µ) for each x∗ ∈ X∗. Then for each E ∈ Σ there

exists x∗∗E ∈ X∗∗ satisfying,

x∗∗E (x∗) =

∫
E

x∗(f)dµ

for all x∗ ∈ X∗.

Proof. Let E ∈ Σ and define a function T : X∗ → L1(µ) by Tx∗ = x∗(fχE) Claim: T

is closed operator. If x∗n → x0 and x∗n(fχE)→ g in L1(µ) and as µ is finite there exists a

subsequence x∗nk
(fχE(t))→ g(t) almost everywhere in µ. Hence,

∫
E

|g(t)− x∗0(fχE)(t)| ≤
∫
E

|g(t)− x∗nk
fχE(t)|dµ(t)

+

∫
E

|x∗nk
fχE(t)− x∗0fχE|dµ(t)

=

∫
E

|g(t)− x∗nk
fχE(t)|dµ(t)

+

∫
E

|(x∗nk
− x∗0)(fχE(t))|dµ(t)

≤
∫
E

|g(t)− x∗nk
fχE(t)|dµ(t)

+

∫
E

||x∗nk
− x∗0||||fχE(t)||dµ(t)

Since x∗nk
(fχE)(t)→ g(t) a.e. in µ and x∗n → x∗0 then,

∫
E
|g(t)−x∗0(fχE)(t)| can be made less than ε, which is arbitrary positive number. Hence

g(t) = x∗0(fχE)(t), implies T is closed.

Now, by closed graph theorem T is bounded and hence continuous.

Let us define ψ : L1(µ)→ R by ψ(g) =
∫

Ω
gdµ.
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Claim: ψ is bounded and linear.

ψ(g1 + g2) =

∫
Ω

(g1 + g2)dµ

=

∫
Ω

g1dµ+

∫
Ω

g2dµ

=ψ(g1) + ψ(g2)

Hence, ψ is bounded. And,

|φ(g)| =(

∫
Ω

gdµ)

≤
∫

Ω

|g|dµ

≤ ||g||1

This implies ψ is bounded and linear.

Now, as T and ψ both bounded and linear implies ψ ◦T : X∗ → R is also bounded linear.

And,

ψ ◦ T (x∗) = ψ(T (x∗))

= ψ(x∗f(χE))

ψ ◦ T (x∗) =

∫
E

x∗f(χE)dµ

Hence, for each E ∈ Σ there exists ψ ◦ T ∈ X∗∗ satisfying ψ ◦ T (x∗) =
∫
E
x∗f(χE)dµ.

Definition 3.2.4. If f is weakly µ-measurable function on Ω and x∗f ∈ L1(µ) for each

x∗ ∈ X∗, then f is called Dunford integrable. The Dunford integral of f over E ∈ Σ is

called by the element x∗∗E of X∗∗ such that,

x∗∗E (x∗) =

∫
E

x∗fdµ

For all x∗ ∈ X∗, and we write x∗∗E = (D)−
∫
E
fdµ.

In case that x∗∗E ∈ X for each E ∈ Σ, then f is called Pettis integrable.

Remark 3.2.5. Pettis integral function is Dunford integral but converse is not true.

Example 3.2.6. A Dunford integrable function that is not Pettis integrable.
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Define f : [0, 1]→ c0 by,

f(t) = (χ(0,1](t), 2χ(0,1/2](t), 3χ(0,1/3](t), ..., nχ(0,1/n](t), ...)

If x∗ ∈ c∗0 = `1 and x∗ = {α1, α2, α3, ..., αn, ...} then x∗f =
∑∞

i=1 αnnχ(0,i/n], and x∗f is

Lebesgue integrable, and ∫
(0,1]

∞∑
i=1

αnnχ(0,i/n]dλ =
∞∑
i=1

αn

Now, we have to find x∗∗ ∈ X∗∗ such that,

x∗∗(x∗) =

∫
(0,1]

x∗fdλ =
∞∑
i=1

αn

As x∗∗ ∈ X∗∗ = `∞ then let x∗∗ = (x1, x2, x3, ..., xn, ...) and,

x∗∗(x∗) =
∞∑
i=1

xiαi =
∞∑
i=1

αn

Hence, x∗∗ = (1, 1, 1, ..., 1, ...) ∈ `∞ \ c0

(D)−
∫

(0,1]

fdλ = (1, 1, 1, ..., 1, ...)

So, f is Dunford integral but not a Pettis integral.

3.3 Riemann Integration on Banach space

Let f : [a, b]→ X.

Definition 3.3.1 (Rδ integrable). f is Rδ integrable on [a,b] if there exists a vector z in

X such that

for each ε > 0 there exists δ > 0 such that

||f(P )− z|| < ε where P is a tagged partition of [a,b] with ||P ||1 < δ,

The z is called Rδ integral of f on [a, b].

Definition 3.3.2 (R∆ integrable). The function f is R∆ integrable on [a,b] if there exists

z in X such that,

for each ε > 0 there exists partition Pε such that;
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||f(P )− z|| < ε where P is a tagged partition of [a,b] that refine Pε.

The z is called R∆ integral of f on [a, b].

Theorem 3.3.3. A function f : [a, b] → X is R∆ integrable if and only if f is Rδ

integrable.

Proof. Suppose f is R∆ integrable. Let z is R∆ integral of f on [a, b]. Let ε > 0 and

choose a partition Pε = {a = x0 < x1 < x2... < xn = b} such that ||f(P )− z|| < ε, where

P is tagged partition on [a, b] that refines Pε.

Let δ = ε
2MN

, where M is superimum of f on [a, b].

To prove that f is Rδ integrable on [a, b] we have to show that, ||f(P )− z|| whenever P

is a tagged partition with ||P || < δ

Let P1 is a tagged partition on [a, b] such that P1 = Pε ∪ P , i.e points of P1 are the

points of both Pε and P . And the tag of P1 for the intervals that coincides with an

interval Pε is same as tag for P , and tags for remaining intervals are arbitrary. Let

{[ck, dk] : 1 ≤ k ≤ N} be the intervals of P that contains where N < n−1. In the interval

[ck, dk] let {ck = uk0 < uk1 < uk2... < unk = dk} where the points {uki : 1 ≤ i ≤ nk−1} are

the points of Pε in [ck, dk]. Let sk be tag of P for [ck, dk] and let vki be the tag of P1 for

[uki−1, u
k
i ]. Then,

||f(P )− f(P1)|| =||
N∑
k=1

{f(si)(dk − ck)−
n1∑
i=1

f(vki )(uki − uki−1)}||

≤
N∑
k=1

nk∑
i=1

||f(sk)− f(vki )||(uki − uki−1)

≤2Mnδ < ε

Claim : If f is Rδ integrable than f is R∆ integrable. Suppose f is Rδ integrable and

let z is Rδ integral of f , then for any ε > 0 there exists a δ such that;

||f(P )− z|| < ε where P is a tagged partition of [a, b] with ||P || < δ.

Now for each ε > 0 we have a P such that ||f(P )− z|| < ε, take Pε = P , for any tagged

partition which refines Pε have norm less than delta.

Hence, For each ε there exists Pε such that ||f(P1)−z|| < ε where P1 is a tagged partition

of [a, b] that refines Pε. That is f is R∆ integrable.
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Definition 3.3.4. The function f : [a, b] :→ X is Riemann integrable on [a,b] if f is

either Rδ or R∆ integrable on [a, b].

Theorem 3.3.5. Let f : [a, b]→ X, then following are equivalent.

(a) The function f is Riemann integrable on [a, b].

(b) For each ε > 0 there exists δ > 0 such that ||f(P1) − f(P2)|| < ε for all tagged

partition P1 and P2 of [a, b] with norms less than delta.

(c) For each ε > 0 there exists partition Pε on [a, b] such that ||f(P1)− f(P2)|| < ε

for all tagged partition P1 and P2 of [a, b] that refines Pε.

(d) For each ε > 0 there exists partition Pε on [a, b] such that ||f(P1)− f(P2)|| < ε

for all tagged partition P1 and P2 of [a, b] that have same points as Pε.

Proof. Statement (1) and (2) are equivalent.

Now, suppose f is Riemann integrable on [a, b], then f is Rδ integrable on [a, b], by

definition of Rδ there exists a vector z such that for all ε > 0 there exists a δ > 0 such

that ||f(P1)− z|| < ε
2

where P1 is any tagged partition with norm less than δ.

Now,

||f(P1)− f(P2)|| = ||f(P1)− z + z − f(P2)|| ≤ ||f(P1)− z||+ ||z − f(P2)|| < ε

2
+
ε

2

implies,

||f(P1)− f(P2)|| < ε

Where P1 and P2 are any two tagged partition on [a, b].

Now, suppose For each ε > 0 there exists δ > 0 such that ||f(P1) − f(P2)|| < ε for all

tagged partition P1 and P2 of [a, b] with ‖P1‖, ‖P2‖ ≤ δ.

Claim: - Set of partitions on [a, b] forms a derived set.

As set of partition form a partial ordered set with P1 � P2 if P1 ⊆ P2. And for any

P1 and P2 we can find partition P which is intersection of P1, P2 such that P � P1 and

P � P2, hence Set of partitions on [a, b] forms a derived set. And f((P )) forms a net

which is cauchy net in X where P is any tagged partition on [a, b] as for each ε > 0 there

exists δ > 0 such that ||f(P1) − f(P2)|| < ε for all tagged partition P1 and P2 of [a, b]

with norms less than delta. Now , X is Banach space hence this cauchy net converge to

some point z in X.

Now for each ε > 0 there exists δ > 0 such that ||f(P1)− z|| < ε for all tagged partition

P1 whose norm is less than delta. Hence f is Riemann integrable.
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Claim : Statement (1) and (3) are equivalent.

f is R∆ integrable as f is Riemann integrable, by definition of R∆ there exists a vector

z called R∆ integral of f such that for all ε > 0 there exists a partition Pε for which

||f(P1)− z|| < ε
2

where P2 is a tagged partition that refines Pε.

Now for any given ε > 0, we have Pε and for any two tagged partition P1 and P2 those

refine Pε such that

||f(P1)− f(P2)|| = ||f(P1)− z + z − f(P2)|| ≤ ||f(P1)− z||+ ||z − f(P2)|| < ε

2
+
ε

2

implies

||f(P1)− f(P2)|| < ε

.

Now suppose For each ε > 0 there exists partition Pε on [a, b] such that ||f(P1)−f(P2)|| <
ε for all tagged partition P1 and P2 of [a, b] that refines Pε. And as defined above f((P ))

forms a net which is cauchy net in X where P is any tagged partition on [a, b] as for each

ε > 0 there exists a partition Pε such that ||f(P1)−f(P2)|| < ε for all tagged partition P1

and P2 of [a, b] which refines Pε. Now , X is Banach space hence this cauchy net converge

to some point z in X.

Now for each ε > 0 there exists a partition Pε such that ||f(P1) − z|| < ε for all tagged

partition P1 which refines Pε. Hence f is Riemann integrable.

Claim: Statement (3) and (4) are equivalent.

Suppose For each ε > 0 there exists partition Pε on [a, b] such that ||f(P1)− f(P2)|| < ε

for all tagged partition P1 and P2 of [a, b] that refines Pε, hence ||f(P1) − f(P2)|| < ε

where P1 and P2 are tagged partition of [a, b] which has same points as Pε because P1

and P2 are refines Pε.

Now, suppose for each ε > 0 there exists partition Pε on [a, b] such that ||f(P1)−f(P2)|| <
ε for all tagged partition P1 and P2 of [a, b] that have same points as Pε. Let ε > 0 and

choose partition Pε = {ti : 0 ≤≤ N} of [a, b] such that ||f(P1)−f(P2)|| < ε
2

for all tagged

partition P1 and P2 of [a, b] that have same points as Pε. Let P0 be the tagged partition

{(ti, [ti−1,ti ]) : 1 ≤ i ≤ N}. For each i, let Wi be the set {(ti − ti−1)f(t) : t ∈ [ti−1, ti]}
and let W =

∑N
i=1Wi. Note that ||x|| < ε

2
for all x in Co(W −W ) where CoA denotes

the convex hull of A.
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Let P = {(vk, [uk−1, uk]) : 1 ≤ k ≤ m} be a tagged partitions of [a, b] that refines Pε. For

each i, let ki be the index k for which uk = ti. Then

f(P0)− f(P1) =
N∑
i=1

{f(ti)(ti − ti−1)−
ki∑

k=ki−1+1

f(vk)(uk − uk−1)}

=
N∑
i=1

ki∑
k=ki−1+1

uk − uk−1

ti − ti−1

{(ti − ti−1)f(t)− (ti − ti−1)f(vk)}

∈
N∑
i=1

Co(Wi −Wi) = Co(W −W )

And it follows that ||f(P0)− f(P )|| < ε
2
. Now let P1 and P2 be tagged partition of [a, b]

that refines Pε and commute

||f(P1)− f(P2)|| ≤ ||f(P1)− f(P2)||+ ||f(P0)− f(P2)|| < ε

This completes the proof.

Theorem 3.3.6. If f : [a, b]→ X, where X is a finite dimensional Banach space then f

is Riemann integral if and only if f is continuous almost everywhere.

Proof. Let f be Riemann integrable that is there exists z ∈ X such that for every ε > 0

there exists a δ > 0 such that ||f(P )− z|| < ε for every partition P with ||P || < δ. Since,

X is finite dimensional it can be identified with Rn for some n ∈ N with ||.||1 norm (since

any two norms in a finite dimensional normed linear space are equivalent ). Then we can

write f as f = (f1, f2, ..., fn), where each fi for 1 ≤ i ≤ n is component function of f .

Let P = {(ti, [xi−1, xi]) : 1 ≤ i ≤ m} be a tagged partition on [a, b] such that ||P || < δ.

Then,

||f(P )− z|| < ε

⇒ ||
m∑
i=1

f(ti)∆xi − z|| < ε

⇒ ||
m∑
i=1

(f1(ti), f2(ti), ..., fn(ti))∆xi − (z1, z2, ..., zn)|| < ε

⇒ ||(
m∑
i=1

f1(ti)∆xi − z1, ...,
m∑
i=1

fm(ti)∆xi − zn)|| < ε

⇒ |
m∑
i=1

fj(ti)∆xi − zi| < ε for each j=1,2,...,n
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And this holds for every partition P with ||P || < δ, which implies that fj is Riemann

integrable for each 1 ≤ j ≤ n. Therefore each fj for 1 ≤ j ≤ n is continuous almost

everywhere, i.e., each fj is continuous on Acj where Aj ⊆ [a, b] is a measure zero set for

each j = 1, 2, ..., n. Since the finite of measure zero sets is also a measure zero set, it is

clear that f is continuous on the complement of measure zero set , i.e., f is continuous

almost everywhere.

Conversely, suppose f is continuous almost everywhere, i.e., f is continuous on the com-

plement of a measure zero set say A. Therefore each fj for j = 1, 2, ..., n is continuous

on Ac. i.e., each fj for j = 1, 2, .., n is continuous almost everywhere and hence Riemann

integrable.

Claim: f is Riemann integrable.

Let ε > 0 be given. Then there exists unique zj ∈ R δj > 0 such that |
∑m

i=1 fj(P )−zj| <
ε/n for every tagged partition P = {(ti, [xi−1, xi]) : 1 ≤ i ≤ m} with ||P || < δj for each

j = 1, 2, ..., n. Take δ = min{δ1, δ2, ..., δn}. Clearly δ > 0. Now let P be a tagged partition

with ||P || < δ. Now,

||f(P )− (z1, z2, ..., zn)|| =||(f1(P )− z1, f2(P )− z2, ..., fn(P )− zn)||
=|f1(P )− z1|+ |f2(P )− z2|+ ...+ |fn(P )− zn|
<ε/n+ ε/n+ ...+ ε/n = ε

Therefore, f is Riemann integrable.

Definition 3.3.7. (i) Let f : [a, b] → X is vector valued function, then the f is

scalary measurable if x∗f is measurable for each x∗ in X∗.

(ii) Let f : [a, b] → X is vector valued function, then the function f is of weak

bounded variation on [a, b] if x∗f is of bounded variation on [a, b] for each x∗ in X∗.

(iii) Let f : [a, b] → X is vector valued function, then the function f is of out-

side bounded variation on [a, b] if sup{||
∑n

i=1(f(di) − f(ci))||} is finite where the

supremum is taken over all finite collection {[ci, di]} of non overlapping intervals in

[a, b].

(iv) Let f : [a, b] → X is vector valued function, then the function f is a Scalar

derivative of F [a, b]→ X on [a, b] if for each x∗ in X∗ the function x∗F is differen-

tiable almost everywhere on [a, b] and (x∗F ) = x∗f almost everywhere on [a, b].

Theorem 3.3.8. Let f : [a, b]→ X be Riemann integrable on [a, b]. Then

(a) The function f is Riemann integrable on every subinterval of [a, b].

(b) If M is bound for f , then ||
∫ b
a
f || ≤M(b− a).
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(c) If T : X → Y is a continuous liner operator, then Tf is a Riemann integral on

[a, b] and
∫ b
a
(Tf) = T (

∫ b
a
f).

(d) For each x∗ in X∗, the function x∗f is Riemann integrable on [a, b] and
∫ b
a
(x∗f) =

x∗
∫ b
a
f . Hence, the function f is scalary measurable , and for each x∗ in X∗, the

function x∗f is continuous almost every where on [a, b].

Proof. Claim 1: The function f is Riemann integrable on every subinterval of [a, b].

As f is Riemann integrable on [a, b] then for each ε > 0 there exists δ > 0 such that

||f(P1) − f(P2)|| < ε for all tagged partition P1 and P2 of [a, b] with norms less than

delta,

Let [c, d] is any subinterval of [a, b] then for each ε > 0, there exists δ > 0 which is same

for [a, b]. Now, let Pa and Pb are any tagged partitions on [c, d] with norm less than δ.

We extend these tagged partitions on [a, b] by adding n points at equal distance c−a
n

from

a to c where n is such that δ > c−a
n

and m points at equal distance b−d
m

between d to b

where m is δ > b−d
m

and we add same tags for extended partitions and call the partitions

Pa1 , and Pb2 .

Now for extended partition Pa1 , and Pb2

ε > ||f(Pa1)− f(Pb2)|| = ||f(Pa)− f(Pb)||

where Pa and Pb are any tagged partitions whose norm is less than delta.

Claim:-2 If M is bound for f , then ||
∫ b
a
f || ≤M(b− a).

For any tagged partition P ,

||f(P )|| = ||
n∑
i=1

f(ξi)∆xi|| ≤M
n∑
i=1

∆xi ≤M(b− a)

As f is Riemann integrable on [a, b], then there exists z such that for each ε > 0 there

δ > 0 such that

||f(P )− z|| < ε where P is a tagged partition of [a,b] with ||P || < δ

Now,

||z − (z −
n∑
i=1

f(ξi)∆xi)|| ≤M(b− a)
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this implies

||z|| − ||z −
n∑
i=1

f(ξi)∆xi|| ≤ ||z − (z −
n∑
i=1

f(ξi)∆xi)|| ≤M(b− a)

implies ||z|| − ε ≤M(b− a) that is ||z|| ≤M(b− a) + ε for arbitrary ε. Hence, ||
∫ b
a
f || ≤

M(b− a).

Claim: 3 T : X → Y is a continuous liner operator, then Tf is a Riemann integral on

[a, b] and
∫ b
a
(Tf) = T (

∫ b
a
f).

As f is Riemann integrable for each ε > 0 there exists δ > 0 such that ||f(P1)−f(P2)|| <
ε
M

, where M is bound of T as T is continuous, hence T is bounded and P1, P2 are tagged

partition on [a, b] whose norm is less than delta.Now,

||Tf(P1)− Tf(P2)|| = ||
n∑
i=1

Tf(ξi)∆xi −
m∑
i=1

Tf(ηi)∆xi||

= ||
n∑
i=1

T (f(ξi))∆xi −
m∑
i=1

T (f(ηi))∆xi||

= ||T (
n∑
i=1

f(ξi)∆xi −
m∑
i=1

f(ηi)∆xi)||

As T is bounded ,

||T (
n∑
i=1

f(ξi)∆xi −
m∑
i=1

f(ηi)∆xi)|| ≤M ||(
n∑
i=1

f(ξi)∆xi −
m∑
i=1

f(ηi)∆xi)||

||Tf(P1)− Tf(P2)|| ≤M ||(
n∑
i=1

f(ξi)∆xi −
m∑
i=1

f(ηi)∆xi)||

||Tf(P1)− Tf(P2)|| < M(
ε

M
)

Where P1 and P2 are any tagged partition whose norm is less than delta.

Claim:
∫ b
a
Tf = T (

∫ b
a
f). Now as f is Riemann integrable, then there exists z such that∫ b

a
f = z.

For every ε > 0 there exists δ > 0 such that ||f(P1)−z|| < ε, where P1 is tagged partition

on [a, b] with norm less than delta. Now,

||Tf(P1)− T (
∫ b
a
f)|| = ||T (f(P1)− z)|| < M( ε

M
) where P1 is any tagged partition whose

norm is less than delta. Hence,
∫ b
a
Tf = T (

∫ b
a
f).
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Claim:4 For each x∗ in X∗, the function x∗f is Riemann integrable on [a, b] and∫ b
a
(x∗f) = x∗

∫ b
a
f . Hence, the function f is scalary measurable , and for each x∗ in

X∗, the function x∗f is continuous almost every where on [a, b].

This is special case of pervious Claim if we take Y = R. Hence x∗f is Riemann integrable

on [a, b] and
∫ b
a
(x∗f) = x∗

∫ b
a
f . Now x∗f : [a, b→ R] is Riemann integrable on [a, b], hence

it is lebesgue integrable on [a, b] then it must be measurable. And as Riemann integrable

function from a closed interval to R is continuous almost every where implies that x∗f is

continuous almost every where on [a, b].

Theorem 3.3.9. Let f : [a, b]→ X be a Riemann integrable continuous function on [a, b]

and let F (t) =
∫ t
a
f . Then F is absolutely continuous on [a, b] and f is scalar derivative of

F on [a, b]. Furthermore, at each point t of continuity of f the function F is differentiable

and F ′ = f(t).

Proof. Let I = {[ci, di] : 1 ≤ N} be disjoint subintervals of [a, b], let ε > 0 is given,

N∑
i=1

F (di)− F (ci) < ε

N∑
i=1

∫ di

a

f −
∫ ci

a

f < ε

N∑
i=1

∫ di

ci

f < ε

As f is Riemann integrable, and let M is maximum value of f on [a, b],

N∑
i=1

∫ di

ci

f ≤
N∑
i=1

M(di − ci) < ε

And
∑N

i=1(di − ci) < δ = ε
M

. Hence, for each ε > 0 there exists a δ > 0 such that∑N
i=1 F (di) − F (ci) < ε whenever

∑N
i=1(di − ci) < δ, where [ci, di] are disjoint for all

1 ≤ i ≤ N . Hence F is absolutely continuous on [a, b].

Theorem 3.3.10. If f : [a, b] → X is outside bounded variation on [a, b] then f is

Riemann integrable on [a, b]. Consequently, a function of weak bounded variation is

Riemann integrable.

Proof. Let ε > 0 is given, Let M is outside bounded variation of f on [a, b]. Choose a

positive integer N such that b−a
N

< ε
M

.
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Let Pε = {ti : ti = a+ i(b−a)
N

, 1 ≤ i ≤ N} be the partition of [a, b]. Let P1 = {(ui, [ti−1,ti ]) :

1 ≤ i ≤ N} and P2 = {(vi, [ti−1,ti ]) : 1 ≤ i ≤ N} are tagged partition of [a, b] which have

same points as Pε, and we have

||f(P1)− f(P2)|| =||
n∑
i=1

f(ui)(ti − ti−1)−
n∑
i=1

f(vi)(ti − ti−1)||

=||
n∑
i=1

(f(ui)− f(vi))(ti − ti−1)||

=
b− a
N
||

n∑
i=1

(f(ui)− f(vi))||

≤b− a
N

M

||f(P1)− f(P2)|| <ε

That is for given ε > 0 there exists partition Pε on [a, b] such that ||f(P1)−f(P2)|| < ε for

all tagged partition P1 and P2 of [a, b] that have same points as Pε. Hence f is Riemann

integrable.

Claim: A function of weak bounded variation is also outside bounded variation, hence

Riemann integrable. As f is weak bounded variation then for any x∗ ∈ X∗, and

for any collection of disjoint subintervals there exists a positive number M such that

||
∑N

i=1(f(ci)− f(di))|| < M .

Now, sup||x∗||≤1 ||
∑N

i=1 x
∗f(ci)−x∗f(di)|| = sup||x∗||≤1 ||x∗(

∑N
i=1(f(ci)−f(di)))|| = ||

∑N
i=1(f(ci)−

f(di)))||.This implies,

M > sup||x∗||≤1 ||
∑N

i=1 x
∗f(ci)− x∗f(di)|| = ||

∑N
i=1(f(ci)− f(di)))||

Hence, ||
∑N

i=1(f(ci) − f(di)))|| < M , that is f is outside bounded variation, so f is

Riemann integrable.

Example 3.3.11. A measurable, Riemann integrable function that is not continuous

almost everywhere.

Let {rn} be listing of rational number in [0, 1]. And define f : [0, 1]→ c0 by,

f(t) =

0 = (0, 0, 0...) if t is irrational

en if t ∈ {rn}

Claim: f is outside bounded variation and Riemann integrable.
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Let N be a positive integer, and {[ci, di] : 1 ≤ i ≤ N} are the non-overlapping subintervals

of [0, 1], then ||
∑N

i=1(f(di) − f(ci))|| = 0 if all the ci and di are irrational otherwise

||
∑N

i=1(f(di)− f(ci))|| = 1. This implies,

sup ||
N∑
i=1

(f(di)− f(ci))|| ≤ 1

Hence f is outside bounded variation and every outside bounded variation is Riemann

integrable, so f is Riemann integrable.

Claim: f is not continuous at any point in [0, 1].

Let α is any irrational number in [0, 1], if we take ε = 1
2

then there does not exists δ > 0

such that ||f(t)− f(α)|| < ε whenever |t− α| < δ because whatever δ we choose there is

a rational number satisfying |t − α| < δ and then ||f(t) − f(α)|| = 1. Hence for ε = 1
2

then there does not exists δ > 0 and f is not continuous on any irrational number.

Similarly, Let β is any rational number in [0, 1], if we take ε = 1
2

then there does not

exists δ > 0 such that ||f(t) − f(β)|| < ε whenever |t − β| < δ because whatever δ we

choose there is a rational number satisfying |t − β| < δ and then ||f(t) − f(β)|| = 1.

Hence for ε = 1
2

then there does not exists δ > 0 and f is not continuous on any rational

number.

Hence f is not continuous almost everywhere as it is discontinuous at each point of [0, 1]

and λ([0, 1]) 6= 0.

Example 3.3.12. A measurable Riemann integrable function that is not of outside

bounded variation.

Let {rn} be listing of rational number in [0, 1] and define f : [0, 1]→ `2 by,

f(t) =

0 = (0, 0, 0...) if t is irrational

en if t ∈ {rn}

Claim: f is Riemann integrable on [0, 1].
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Let ε > 0 and let δ = ε2, let P = {(vi, [ti−1, ti]) : 1 ≤ i ≤ N} is any tagged partition with

||P || < δ,

||f(P )− 0|| =||
N∑
i=1

f(vi)(ti − ti−1)||

≤
{ N∑

i=1

(ti − ti−1)2

} 1
2

≤||P ||
1
2

{ N∑
i=1

(ti − ti−1)

} 1
2

<ε

Hence, the function f is Riemann integrable on [0, 1] with integral 0. Claim: f is not

outside bounded variation on [0, 1].

Let N be a positive integer and for each positive integer i, let ci be an irrational number

in interval ( 1
(i+1)

, 1
i
), then

||
N∑
i=1

(
f(

1

i
)− f(ci)

)
|| =

( N∑
i=1

1

) 1
2

=
√
N

This shows that f is not of bounded variation on [0, 1].

Example 3.3.13. A Riemann integrable function that is not measurable and not weakly

continuous almost every where.

Define f : [0, 1]→ `∞[0, 1] by f(t) = χ[0,t].

Claim: f is outside bounded variation on [0, 1], and hence Riemann integrable.

Let N be a positive integer and [ci, di] : 1 ≤ i ≤ N are disjoint subintervals of [0, 1], And

||
∑N

i=1(f(ci)− f(di))|| = ||
∑N

i=1(χ[0,ci]−χ[0,di])|| = ||
∑N

i=1(χ[ci,di])|| = ||χ[c1,d1] +χ[c2,d2] +

... + χ[cN ,dN ]|| ≤ ||χ[0,1]||, where [c1, d1], [c2, d2]...[cN , dN ] are all disjoint subintervals of

[0, 1]. This implies,

||
N∑
i=1

(f(ci)− f(di))|| ≤ ||χ[0,1]|| = 1

Hence, f is outside bounded variation on [0, 1], and Riemann integrable.

Claim: f is not measurable.

Let S ⊆ [0, 1] not measurable and let G =
⋃
s∈S B(χ[o,s], 1/2). G is a subset of `∞[0, 1].

Claim: f−1(G) = S.
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Let t ∈ f−1(G), this implies f(t) ∈ G and by definition f(t) = χ[0,t] ∈ G implies t ∈ S,

and hence f−1(G) ⊆ S.

Conversely, let s ∈ S then χ[0,s] ∈ G and by definition f(s) = χ[0,s] ∈ G this implies

s ∈ f−1(G), so S ⊆ f−1(G).

Hence f−1(G) = S.

Now, G =
⋃
s∈S B(χ[0,s], 1/2) is open in `∞[0, 1] and f−1(G) = S, but S is not measurable.

Hence f is not measurable.

Claim: f is not weakly continuous almost every where on [0, 1].

For proving this we have to find x∗ ∈ X∗ such that x∗f is not continuous on a set whose

measure is non zero.

Define χ{t} : `∞[0, 1]→ R by χ{t}(f) = f(t), where f is a element of `∞[0, 1].

Claim: χ{t} ∈ (`∞[0, 1])∗

Let h, g ∈ `∞[0, 1], then χ{t}(h+ g) = (h+ g)(t) = h(t) + g(t) = χ{t}(h) + χ{t}(g), hence

χ{t} is linear.

Consequently, |χ{t}(g)| = |g(t)| ≤ supt∈[0,1] |g(t)| = ||g||. This implies χ{t} is bounded.

Hence, χ{t} ∈ (`∞[0, 1])∗

Theorem 3.3.14. Let ([a, b], σ(F), µ) be a measure space, where F is a field generated

by finite disjoint union of left open right closed subintervals of [a, b]. Then clearly, the

smallest σ- field generated by F is equal to σ(F) Then given F ∈ σ(F) and ε > 0 there

exists E ∈ F such that µ(E∆F ) < ε, where (E∆F ) = E \ F ∪ F \ E.

Theorem 3.3.15. If f : [a, b] → X is Riemann integrable then f is Pettis Integral. In

addition if f is measurable then f is Bochner integrable.

Proof. Let f : [a, b]→ X be Riemann integrable.

Claim: f is bounded and let M be the bound of f .

For any x∗ ∈ X∗, x∗(
∫ b
a
f) =

∫ b
a
x∗f and hence ,∫

[a,b]

|x∗f |dλ =

∫ b

a

|x∗f(t)|dt

By Dunford lemma D −
∫

[a,b]
f ∈ X∗∗.

Now,
∫
I
f ∈ X if I is a subinterval of [a, b]. F is a field generated by finite disjoint union
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of left open right closed subintervals of [a, b]. Then clearly, the smallest σ- field generated

by F is equal to B[a,b], the Boreal σ-field over [a, b]. Then ([a, b],B[a,b], λ) is measure space

where λ is the Lebesgue measure on [a, b].

Let F ∈ B[a,b] and ε < 0 be any positive number then by the pervious theorem there

exists E ∈ F such that µ(E∆F ) < ε. Then clearly E = I1 ∪ I2 ∪ ... ∪ In, where each

Ij, 1 ≤ j ≤ n is a left open right closed interval.

Claim:
∫
F
f ∈ X. Now,

||
∫
F

f −
∫
E

f || = sup
||x∗||≤1

|x∗(
∫
F

f −
∫
E

f)|

= sup
||x∗||≤1

|
∫
F

x∗f −
∫
E

x∗f |

= sup
||x∗||≤1

|
∫
F∩E

x∗f +

∫
F\E

x∗f −
∫
F∩E

x∗f −
∫
E\F

x∗f |

≤ sup
||x∗||≤1

|
∫
F\E

x∗f |+ |
∫
E\F

x∗f |

≤ sup
||x∗||≤1

∫
F\E
|x∗f |+ sup

||x∗||≤1

∫
E\F
|x∗f |

≤M(λ(F \ E) + λ(E \ F ))

≤M(λ(E∆F ))

Therefore ||
∫
F
f −

∫
E
f || can be made less than any arbitrary positive number ε, which

shows that
∫
F
f ∈ X , since X is Banach space. Therefore f is Pettis integrable.

Now if f is measurable then x∗f is measurable for all x∗ ∈ X∗. And
∫

[a,b]
∈ X then,

||
∫

[a,b]

fd|| = sup
||x∗||≤1

|x∗(
∫

[a,b]

f
)
|

= sup
||x∗||≤1

|
∫

[a,b]

x∗f |

= sup
||x∗||≤1

|
∫ b

a

x∗f |

=

∫ b

a

sup
||x∗||≤1

|(x∗f)(t)|dt

=

∫ b

a

||f ||dt

=

∫
[a,b]

||f || <∞

Since
∫

[a,b]
f ∈ X. Therefore it is Bochner integrable.
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Remark 3.3.16. We have obtained that Riemann integrability implies Pettis integrabil-

ity implies Dunford integrability. We also obtained Bochner integrability implies Pettis

integrability but the converse is not true.

3.4 Derboux integral

Definition 3.4.1. Let f : [a, b]→ X, then the following two conditions are equivalent,

(a) For each ε > 0 there exists δ > 0 such that ω(f, P ) < ε whenever P is a partition

of [a, b] that satisfy ||P || < δ.

(b) For each ε > 0 there exits a partition Pε of [a, b] such that ω(f, P ) < ε whenever

P is a partition of [a, b] that refine Pε.

Proof. Claim: First condition implies second condition.

Let f satisfy first condition that is for given ε > 0 there exists δ > 0 such that ω(f, P ) < ε

whenever P is a partition of [a, b] that satisfy ||P || < δ, now choose a N such that N > b−a
δ

and we will construct a partition Pε = {a + i b−a
N

: 1 ≤ i ≤ N}. And for ε > 0 we got

partition Pε such that ω(f, P ) < ε, where P is any partition of [a, b] that refines Pε.

Claim: Second condition implies first condition.

Let f satisfy second condition that is for given ε > 0 there exists a partition Pε such that

ω(f, P ) < ε where P is a partition on [a, b] that refines Pε and ||Pε|| = δ, now for given

ε > 0, we have δ > 0 such that ω(f, P ) < ε, where P is any partition of [a, b] such that

||P || < δ.

Theorem 3.4.2. The function f : [a, b]→ X is Darboux integrable on [a, b] if it satisfy

one of the above equivalent conditions.

Theorem 3.4.3. A function F : [a, b]→ X is Darboux integrable on [a, b] if and only if

it is bounded and continuous almost everywhere on [a, b].

Proof. Suppose that f is Darboux integrable on [a, b].

Claim: f is bounded.

As f is Darboux integrable, for any ε > 0, there exists a δ > 0 such that ω(f, P ) < ε

whenever ||P || < δ. Now if function is not bounded then there exists a interval of partition
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such that ω(f, [ti−1, ti])→∞, then ω(f, [ti−1, ti])δ →∞, this implies ω(f, P )→∞ which

is contradiction. Hence f must be bounded.

Claim: f is continuous almost everywhere.

Let En = {t ∈ [a, b] : ω(f, t) ≥ 1
n
} for each positive integer n and let E =

⋃
nEn. Since

each En is closed, the set E is measurable and we must show that µ(E) = 0 and if

µ(E) 6= 0 then there exists η > 0 and a positive integer N such that µ(EN) = η. Let P

be any partition of [a, b] and let P1 be the collection of intervals of P that contains points

of EN in there interior. then,

ω(f, P ) ≥
∑
I∈P1

ω(f, I)µ(I) ≥ 1

N
µ(EN) =

η

N
,

a contradiction to Darboux integrability of f . Thus, the function f is continuous almost

everywhere on [a, b].

Now suppose that f is bounded and continuous almost everywhere on [a, b], and let M

is bound of f . We will show that f is D∆ integrable on [a, b].

Let ε > 0 and choose a positive integer N such that b−a
N

< ε
2
. Let EN = {t ∈ [a, b] :

ω(f, t) ≤ 1
N
}. We will construct a partition Pε of [a, b] such that the sum of the length of

intervals of Pε that intersect EN is less than ε
4M

and the oscillation of f on each interval

of Pε that does not intersect EN is less than 1
N

. Denoted the intervals of Pε that intersect

by P
′
ε and remaining intervals by P

′′
ε . Since µ(EN) = 0, there exists a sequence {(ci, di)}

of disjoint open intervals such that EN ⊂
⋃
i(ci, di) and

∑
i(di − ci) <

ε
4M

. Since the set

EN is closed and bounded, it is compact and therefore a finite a finite number of intervals

{(ci, di)} cover EN . The closure of each interval in the finite subcover intersected with

[a, b] is an element of P
′
ε. Let [α, β] be an intervals in [a, b] that is contiguous to the

interval of P
′
ε. Since [α, β] ∩ EN = φ, for each t ∈ [α, β] there exists δt > 0 such that

ω(f, t[t − δt, t + δt]) <
1
N

. The collection {(t − δt, t + δt) : t ∈ [α, β]} is an open cover of

[α, β] and thus there exists a finite subcover. The end points of the interval comprising

the finite subcover that belong to (α, β) together with α and β from a partition of [α, β].

Put the intervals of this partition into P
′′
ε and do this for all of the intervals in [a, b] that

are contiguous to P
′
ε. It is easy checked that the interval of P

′
ε and P

′′
ε combine to form

partition of Pε of [a, b] with the desired properties.

Let P be a partition of [a, b] that refine Pε. Let P
′
ε and P

′′
ε be the interval of P that are

entirely contained within intervals P
′
ε and P

′′
ε , respectively and
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ω(f, P ) =
∑
I∈P ′ε

ω(f, I)µ(I) +
∑
I∈P ′′ε

ω(f, I)µ(I)

≤ 2M.
ε

4M
+

1

N
(b− a)

<
ε

2
+
ε

2
= ε

Thus f is Darboux integrable on [a, b].

Corollary 3.4.4. If f : [a, b]→ X is Darboux integral on [a, b], then f is measurable and

||f || is Riemann integrable on [a, b]. Consequently, the function f is Bochner integrable

on [a, b].

Proof. By the above theorem the function f is continuous almost everywhere on [a, b]

and hence measurable. The function ||f || is bounded and continuous almost everywhere

on [a, b] and hence Riemann integrable on [a, b].

Consequently a measurable function that is Riemann integrable is Bochnar integrable.

Definition 3.4.5. A Banach space is said to have Lebesgue property if for any f : [a, b]→
X which is Riemann integrable is continuous a.e.[λ].

Theorem 3.4.6. Let Y be a subspace of X,

(a) If X has the property of Lebesgue, then Y has the property of Lebesgue.

(b) If Y does not have the property of Lebesgue, then X does not have the property

of Lebesgue.

Theorem 3.4.7. The following spaces does not have Lesbesgue property.

(a) The space c0, c, C[a, b], `∞[0, 1] and L∞[0, 1].

(b) The space `p for 1 < p ≤ ∞.

(c) The space L1[a, b].

Proof. Claim: The space `p for 1 < p <∞ does not have Lebesgue property.

Let {rn} be listing of rational number in [0, 1] and define f : [0, 1]→ `p by,

f(t) =

0 = (0, 0, 0...) if t is irrational

en if t ∈ {rn}

Claim: f is Riemann integrable on [0, 1].
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Let ε > 0 and let δ = εp, let P = {(vi, [ti−1, ti]) : 1 ≤ i ≤ N} is any tagged partition with

||P || < δ,

||f(P )− 0||p =||
N∑
i=1

f(vi)(ti − ti−1)||p

≤
{ N∑

i=1

(ti − ti−1)p
} 1

p

≤||P ||
1
2

{ N∑
i=1

(ti − ti−1)

} 1
2

<ε

Hence, the function f is Riemann integrable on [0, 1] with integral 0.

Claim: f is not continuous at any point in [0, 1].

Let α is any irrational number in [0, 1], if we take ε = 1
2

then there does not exists δ > 0

such that ||f(t) − f(α)||p < ε whenever |t − α| < δ because whatever δ we choose there

is a rational number satisfying |t− α| < δ and then ||f(t)− f(α)||p = 1. Hence for ε = 1
2

then there does not exists δ > 0 and f is not continuous on any irrational number.

Similarly, Let β is any rational number in [0, 1], if we take ε = 1
2

then there does not

exists δ > 0 such that ||f(t) − f(β)||p < ε whenever |t − β| < δ because whatever δ we

choose there is a rational number satisfying |t − β| < δ and then ||f(t) − f(β)||p = 1.

Hence for ε = 1
2

then there does not exists δ > 0 and f is not continuous on any rational

number.

Hence f is not continuous almost everywhere as it is discontinuous at each point of [0, 1]

and λ([0, 1]) 6= 0.

This proves that f is a Riemann integrable function and not continuous almost every-

where, hence the space `p for 1 < p <∞ does not have Lebesgue property.

Claim: `2 is imbeds in L1[0, 1]. To prove this firstly we will use a function known as

Rademacher’s function defined by rn(t) = sign(sin(2nπt)) for t ∈ [0, 1] and n ∈ N.

Define a map T : `2 → L1[0, 1] by T ((an)) =
∑∞

n=1 anrn, where rn is Rademacher’s

function. By Khintchine inequality it follows that T is an isomorphism from `2 → L1[0, 1].

Theorem 3.4.8. Khintchine’s Inquality[5] Let rn be the Rademacher’s function on [0, 1].

For each p ∈ [0,∞], there exists positive constant Ap and Bp such that for every
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a1, a2, ..., am.

Ap
( m∑
n=1

|an|2
) 1

2 ≤
( ∫ 1

0

|
m∑
n=1

anrn(t)|p
) 1

p ≤ Bp

( m∑
n=1

|a2
n|
) 1

2

By Ap and Bp we denote the best possible constants in this inequality. They are called

Khintchine’s constants and their values are known. We observe that A2 = B2 = 1. By

Holder inequality, it follows that if p > r, then
( ∫ 1

0
|f |p)dt

) 1
p ≤

( ∫ 1

0
|f |r)dt

) 1
r . Conse-

quently, Ar ≤ Ap and Br ≤ Bp.

Definition 3.4.9. A banach space X is said to be uniformly convex if for any two

sequences (xn), (yn) ∈ such that ||xn+yn
2
|| → 1 then ||xn − yn|| → 0.

The space L1[0, 1] is a example of uniform convex Banach space and the space L∞[0, 1]

is not a uniform convex Banach space.

Remark 3.4.10. If {xn} is a normalized basis of the uniformly convex space X, then

there exists M > 0 and r > 1 such that,

||
∞∑
n=1

αnxn|| ≤M(
∞∑
n=1

|an|r)
1
r

For all finite non-zero sequence {αn} of real numbers.

Theorem 3.4.11. An infinite dimensional uniformly convex Banach space does not have

the Lebesgue property.

Proof. Let X be an infinite dimensional uniformly convex Banach space. Since X is

infinite dimensional Banach space, it contains a basic sequence {xn} and we may assume

that ||xn|| = 1 for every n. Let Y be a closed linear space generated by {xn}. Then Y is

uniformly convex and {xn} is normalized basis of Y . To complete the proof it is sufficient

to prove that Y does not have Lebesgue property.

Let {rn} be listing of rational number in [0, 1] and define f : [0, 1]→ Y by,

f(t) =

en if t ∈ {rn}

θ otherwise

Now, we will show that f is Riemann integrable on [0, 1] with integral θ.
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Choose M and r as in the above remark and let ε > 0 be given. Let δ = ( ε
M

)
r

r−1 , and let

P = {(sk, [tk−1, tk]) : 1 ≤ k ≤ N} be a tagged partition of [0, 1] that satisfy ||P || < δ.then

||f(P )|| =||
N∑
k=1

f(sk)(tk − tk−1)||

≤M
( N∑

k=1

(tk − tk−1)r
) 1

r

≤Mδ
r−1
r

( N∑
k=1

(tk − tk−1)

) 1
r

≤M.
ε

M
= ε

Therefore, the function f is Riemann integrable on [0, 1] and it is clear that f is not

continuous almost everywhere on [0, 1], hence the space Y does not have Lebesgue prop-

erty.

Corollary 3.4.12. The following spaces do not have the property of Lebesgue.

(a) Infinite dimensional spaces.

(b) The space Lp[a, b] for 1 < p <∞.

Proof. These spaces are infinite dimensional and uniformly convex.

Theorem 3.4.13. The space `1 has the property of lebesgue.

Proof. It is sufficient to prove that a bounded function f : [0, 1]→ `1 that is not continu-

ous almost everywhere is not Riemann integrable on [0, 1]. Let f : [0, 1]→ `1 is bounded

but not continuous almost everywhere. As f is not continuous almost everywhere than

there exists positive numbers α and β such that µ(H) = α, where H = {x : oscf (x) ≥ β}.
We will prove that for each δ > o there exists tagged partitions P1 and P2 such that

||f(P1)− f(P2)|| ≥ αβ/4, and proof will complete.

Let δ > 0 given, choose a natural number N such that 1/N < δ and let PN = {k/N : 0 ≤
k ≤ N}. Let {[ci, di] : 1 ≤ i ≤ p} be all intervals of PN for which µ(H ∩ [ci, di]) > 0 and

also µ(p/N) > α. For each positive integer j, let Gj be the set of discontinuities of ejf .

If µ(Gj) 6= 0 then ej and consequently f is not Riemann integrable on [0, 1]. Otherwise

the set G =
⋃
j Gj is a measure zero set and f will continuous on [0, 1] \G.

Let ε = αβ/16 and we will construct sets {ui : ui ∈ (H \ G) ∪ (ci, di) for 1 ≤ i ≤ p},
{vi : vi ∈ [ci, di] for 1 ≤ i ≤ p} and {ni : 0 ≤ i ≤ p} where each ni is an integer and

{0 = a0 < a1 < a2... < ap} that have the following property.
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Let zi = f(ui)− f(vi) = {aij}

Then

||zi|| ≥β/2 for all i ≥ 1
∞∑
j=ni

|aij| <ε2−i for all i ≥ 1

ni−1∑
j=1

|aij| <ε2−i for all i ≤ 2.

Now we proceed as follows,

Let n0 = 0 and choose u1 ∈ (H \ G) ∪ (c1, d1). Since oscf (u1) ≥ β then there exists a

point v1 ∈ (c1, d1) such that ||f(u1)− f(v1)|| ≥ β/2.

Let z1 = f(u1)− f(v1) = {a1
j} and choose an integer n1 > n0 such that

∑∞
j=n1
|a1
j | < ε/2.

Now choose u2 ∈ (H \ G) ∩ (c2, d2), since oscf (u2) ≥ β and since ejf is continuous

at u2 for each 1 ≤ j ≤ n1, there exists v2 such that ||f |f(u1) − f(v1)|| ≥ β/2 and∑n1

j=1 |ejf(u2) − ej(v2)| < ε/4. Let z2 = f(u2) − f(v2) = {a2
j}; then

∑n1

j=1 |a2
j | < ε/4.

Choose an integer n2 > n1 such that
∑∞

j=n2
|a2
j | < ε/4. We continue this process for p

steps and arrive at desired sets.

Let yi =
∑ni−1

j=ni−1+1 a
i
jej for each 1 ≤ i ≤ p. Then

||zi − yi|| =
ni−1∑
j=1

|aij|+
∞∑
j=ni

|aij| < 2.ε2−i

and

||yi|| = ||zi|| − ||zi − yi|| ≥
1

2
β − 2ε2−i

For all 1 ≤ i ≤ p. Therefore,

||
p∑
i=1

zi|| ≥||
p∑
i=1

yi|| − ||
p∑
i=1

(yi − zi)||

≥
p∑
i=1

||yi|| −
p∑
i=1

||(yi − zi)||

≥
p∑
i=1

1

2
β − 2ε2−i − 2.ε2−i

≥1

2
pβ − 4β
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Now let P1 and P2 be two tagged partitions of [0, 1] that have the same points as PN . The

tags of P1 and P2 are the same in the remaining intervals. Then ||P1|| < δ and ||P2|| < δ

and we have,

||f(P1)− f(P2)|| = ||
p∑
i=1

1

N
zi|| ≥

1

2

p

N
β − 4

N
≥ 1

2
αβ − 1

4
αβ =

αβ

4
.

This completes the proof.

Definition 3.4.14. f : [a, b] → X. The function f is scalarly Riemann integrable on

[a, b] if x∗f is Riemann integrable on [a, b] for all x∗ ∈ X∗. And if for each interval

I ⊂ [a, b] there exists a vector xI in X such that x∗(xI) =
∫
I
x∗fdx for all x∗ ∈ X∗, then

f is Riemann-Pettis integrable on [a, b].

Remark 3.4.15. Every Riemann integrable function is Riemann-Pettis integrable and

every scalary Riemann integrable function is Dounford integrable. And Riemann-Pettis

integral is also Pettis integral.

Theorem 3.4.16. A measurable, scalarly Riemann integrable function is Riemann-Pettis

integrable. Consequently, in a separable space every scalarly Riemann integrable function

is Riemann-Pettis integrable.

Proof. Let f : [a, b]→ X is measurable and scalarly Riemann integrable on [a, b] then f is

Bochner integrable and hence Pettis integrable on [a, b] this implies f is Pettis integrable.

Corollary 3.4.17. A bounded function that is weakly continuous almost everywhere is

Riemann-Pettis integrable.

Proof. Let f : [a, b]→ X be bounded and weakly continuous almost everywhere on [a, b].

Then f is measurable and scalarly Riemann integrable. Then f is measurable and scalarly

Riemann integrable on [a, b]. Then the function is Riemann-Pettis integrable on [a, b].

Theorem 3.4.18. In a weekly sequentially complete space every scalarly Riemann inte-

grable function is Riemann-Pettis integrable.

Proof. Let X be a weakly sequentially complete that is every weakly Cauchy sequence

is weakly convergent in X and let f : [a, b] → X be a scalarly Riemann integrable on

[a, b]. Let [c, d] ⊂ [a, b]. We have to show that there exists a vector z ∈ X such that

x∗(z) =
∫ d
c
x∗f for all x∗ ∈ X∗.
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For each positive integer n, let Pn be a tagged partition of [c, d] with points {c+( k
n
)(d−c) :

0 ≤ k ≤ n}. Since each x∗f is Riemann integrable on [c, d], the sequence {f(Pn)} is weak

cauchy sequence and as X is weakly sequentially complete this sequence converge to a

vector z ∈ X. For each x∗ ∈ X∗ we have,

x∗(z) = lim
n→∞

f(Pn) =

∫ d

c

x∗f

This completes the proof.

Theorem 3.4.19. A scalarly Riemann integrable function that has a relatively compact

range is Riemann integrable and in fact Darboux integrable.

Proof. Let f : [a, b] → X be scalarly Riemann integrable on [a, b] and suppose that the

range of f is relatively compact and hence f is measurable consequently Riemann-Pettis

integrable on [a, b]. Let z be the vector in X such that x∗(z) =
∫ b
a
x∗f for all x∗ in X.

We firstly show that f is Riemann integrable on [a, b].

Let V = {f(t) : t ∈ [a, b]}, let V1 be a closed convex hull of the closure of V , and let

W = (b−a)V1. Then W is compact set and W contains all Riemann sums of f . Suppose

that f is not Riemann integrable on [a, b]. Then there exists η > 0 such that for each

δ > 0 there exists a tagged partition Pδ of [a, b] such that ||Pδ||δ and ||f(Pδ) − z|| ≥ η.

For each positive integer n, choose a tagged partition Pn of [a, b] such that ||Pn|| < 1
n

and

||f(Pn)− z|| ≥ η. Since z is Riemann-Pettis integral of f on [a, b], the sequence {f(Pn)}
converse weakly to z, and since W is compact the sequence {f(Pn)} must converge in

norm to z. This contradiction establishes the Riemann integrability of f on [a, b].

Since f is bounded, to prove that f is Darboux integrable on [a, b], it is sufficient to prove

that f is continuous almost everywhere on [a, b]. Since V1 is separable, there exists a

sequence {x∗n} in X such that ||v|| = supn |x∗n| for all v ∈ V1. For each n, let Dn be the

set of discontinuities of x∗f on [a, b] and let D =
⋃
nDn. Then µ(D) = 0 and we will

show that f is continuous on [a, b] \D.

Let t ∈ [a, b] \ D and let {tk} be a sequence in [a, b] that converge to t. For each n,

the sequence {x∗f(tk)} converge to x∗f(t). Since x∗n separates the point V1 and as V1 is

compact, the sequence {f(tk)} converges in norm to f(t). This shows that f is continuous

at t, hence f is continuous this implies f is Darboux integrable.

Definition 3.4.20. [4] A Banach space is said to be Schur space if any sequence (xn) in

the Banach space X converging weakly to x implies that limn→∞ ||xn − x|| = 0.

In other words, the Banach space in which weak and strong topologies share the same

convergent sequences is called Schur space.
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The space `1 is Schur space but `2 does not have Schur property, hence it is not a Schur

space.

Theorem 3.4.21. If X is Schur space, then every function f : [a, b]→ X that is scalarly

Riemann integrable on [a, b] is Riemann integrable on [a, b].

Proof. Since Schur space is weakly sequentially complete then the function f is Riemann-

Pettis integrable by 3.4.18 theorem. Since every weakly convergent sequence in X con-

verge in norm, the Riemann integrability of f on [a, b] follows as in first part of the proof

of theorem 3.4.19.

Theorem 3.4.22. A Banach space X is a Sahur space and has the property of Lebesgue

if and only if every scalarly Riemann integrable function f : [a, b] → X is Darboux

integrable.

Proof. Suppose that X is a Schur space and has the property of Lebesgue, let f : [a, b]→
X be a scalarly Riemann integrable on [a, b]. By pervious theorem, the function f is

Riemann integrable on [a, b] and as X has Lebesgue property implies that f is continuous

almost everywhere and bounded on [a, b], hence f is Darboux integrable on [a, b].

Now, suppose that X is not a schur space. There exists a sequence {xn} ∈ X such that

||xn|| ≥ 1 for all n and converge weakly to θ.

Let {rn} be listing of rational number in [0, 1]. And define f : [0, 1]→ X by,

f(t) =

xn if t ∈ {rn},

θ = (0, 0, 0...) otherwise .

Since f is not continuous almost everywhere on [0, 1], f is not Darboux integrable on

[0, 1]. However, the function is bounded and weakly continuous almost everywhere on

[0, 1] and therefore, scalarly Riemann integrable on [0, 1]. This completes the proof since

the case in which X does not have the property of Lebesgue is trivial.

Example 3.4.23. A weak continuous function that is not Riemann integrable:-

Let H be a perfect, nowhere dense subset of [0, 1] with µ(H) ≥ 3
4
, and let (0, 1) \ H =⋃

k(ak, bk). For each pair of positive integer k and n ≥ 2, let

En
k = {ak, ak +

(bk − ak)
(2n)

, ak +
(bk − ak)

(n)
, bk −

(bk − ak)
(n)

, bk −
(bk − ak)

(2n)
, bk},

and let φnk be the function that equal 1 at ak+
(bk−ak)

(2n)
and bk− (bk−ak)

(2n)
, equal 0 at other point

of En
k , and is linear on the interval contiguous to En

k . For each n, let fn(t) =
∑n

k=1 φ
n
k(t).



41 Chapter 3 Various Notions of Integrations in Banach spaces

Then the sequence {fn} converges pointwise to the zero function on [0, 1] and∫ 1

0

fn =
n∑
k=1

∫ 1

0

φnk(t) =
1

n

n∑
k=1

(bk − ak).

Now, Define f : [a, b] → c0 by f(t) = {fn(t)}. We will first prove that f is weakly

continuous. Let x∗ = {αk} ∈ `1, then x∗f =
∑

n αnfn. Since each αnfn is continuous on

[0, 1] and |αnfn| < |αn| on [0, 1], the function x∗f is continuous on [0, 1] begin the uniform

limit of continuous function. This shows that f is weakly continuous.

To prove that f is not Riemann integrable on [0, 1], it is sufficient to prove that for each

δ > 0 there exists a tagged partition P on [0, 1] and an integer j0 such that ||P || < δ

and ||fj0(P ) −
∫ 1

0
fj0|| ≥ 1

2
. Let δ > 0 be given. Since H is nowhere dense, there

exists a partition {tm : 0 ≤ m ≤ M} of [0, 1] such that tm /∈ H for 1 ≤ m ≤ M − 1 and

tm−tm−1 < δ for 1 ≤ m ≤M . Let {Ik : 1 ≤ k ≤ N} be the intervals of this partition that

contain points of H in there interiors and let {Ki : 1leqi ≤ L} be the remaining intervals,

for each k, there exists nk such that (ank
, bnk

)) ⊂ Ik. Let j0 = max{nk : 1 ≤ k ≤ N}, and

for each k choose tk ∈ (ank
, bnk

) such that φj0nk
(tk) = 1. Let si ∈ Ki be arbitrary and let

P = {(tk, Ik) : 1 ≤ k ≤ N} ∪ {(si, Ki) : 1 ≤ i ≤ L}. Then P is a tagged partition of [0, 1]

with ||P || < δ and we have

fj0 −
∫ 1

0

fj0 =
N∑
k=1

fj0(tk)µ(Ik) +
L∑
i=1

fj0(si)−
∫ 1

0

fj0

=
N∑
k=1

µ(Ik)−
1

j0

j0∑
k=1

(bk − ak)

≥µ(H)− (1− µ(H))

≥1

2

This shows that f is not Riemann integral.
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