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List of Notation

T Unit torus

R The set of real numbers

C The set of complex numbers

N The set of natural numbers

N0 The set of natural numbers extended by zero

Q The set of rational numbers

H The upper half plane

GLn(C) The set of all n× n invirtible matrices in C
FN Free group generated by N elements

g Lie algebra of the group G

D(a) Derivation of a operator a
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Abstract:

In this project we try to reach one of the famous problems, namely similarity problems. It

can be stated as follows: Is every uniformly bounded continuous representation of locally

compact groupG is unitarizable? This problem is open for a while until, in 1955, Ehrenpreeis

and Mautner gave counterexample for G = SL2(R). In the positive direction, the most

general result seems to be Dixmiers theorem which says that if G is amenable then the

above problem is affirmative. But the converse remains an open problem. It can be stated

as, if all uniformly bounded continuous representations of a group G are uniterizable is G

necessarily amenable?

Introduction:

The theory of representations of finite groups was initiated in the 1890s by people like Frobe-

nius, Schur and Burnside. In the 1920s representations of arbitrary compact groups, and

finite-dimensional (possibly nonunitary) representations of The classical matrix groups were

investigated by Weyl and others. In the 1940s mathematicians such as Gelfand started to

study (possibly in finite-dimensional) unitary representations of locally compact groups.

Other important figures in representation theory include Harish-Chandra, Kirillov and

Mackey. A (linear) representation of a group G is, to begin with, simply a homomor-

phism f : G→ GL(E) where E is a vector space over some field K and GL(E) is the group

of invertible K-linear maps on E. Thus the idea of representation theory is to represent an

algebraic object, such as a locally compact group or an algebra, as a more concrete group

or algebra consisting of matrices or operators. In this way we can study an algebraic object

as collection of symmetries of a vector space. Hence we can apply the methods of linear

algebra and functional analysis to the study of groups and algebras. Representation theory

also provides a generalization of Fourier analysis to groups.
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Chapter 1

Finite Abelian Group

We study finite abelian group because it has a nice structure. Fundamental theorem

says that any finite Abelian group is isomorphic to a direct sum of cyclic groups.

1.1 The Dual Group

Definition 1.1.1. Let A be a finite abelian group. Character of A is a group homomorphism

form A to the unit torus T ie if χ be character of A then χ(a.b)=χ(a).χ(b) ∀ a, b ∈ A. Let

Â be the set of all characters of A.

Among the characters is one that we denote by 1, with values 1(a) = 1 ∀a ∈ A. It is

not obivious whether other characters exist in general.

Lemma 1.1.2. Two maps P and I makes Â an abelian group. Where P : A × A → A is

defined by P(χ,η)=χ.η and the map I: A → A is defined by I(χ)=χ−1 for any χ , η ∈ Â.

Where

χ.η(a) = χ(a).η(a)

χ−1(a)=χ(a−1)

for any a ∈ A. We call Â the dual group or Pontryagin dual of A.

Lemma 1.1.3. Let A be a cyclic group of order N and τ is a generator of A then characters

of the group A are given by

η`(τ
k) = e

2πik`
N

for ` = 0, 1, 2, ..,N − 1. The group Â is again a cyclic group of order N . i.e for every finite

cyclic group A its dual Â is also a cyclic group of same order. This then implies that those

two groups must be isomorphic.
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Now using the Fundamental theorem of finite abelian group can easily char-

acterise any finite abelian group and also we can say that the dual group of a finite Abelian

group A is isomorphic to A.

Proof: 1. Idea of this proof is 1st we will show that η` are the characters of A for each

` = 0, 1, . . . ,N − 1. Then we show that if we take any character of A it is η` for some `.

To prove Â is cyclic we can show Â is generated by η1 order of which is N .

Problem 1.1.4. Show that for A, B finite abelian groups we have Â × B is isomorphic to

Â × B̂. Then conclude that for every finite abelian group A we have |A| = |Â|.

Solution 1. Let us define a function F : Â × B → Â × B̂ by F (χ) = (χA, χB) where

χA(a) = χ(a, 1) and χB(b) = χ(1, b) for a ∈ A and b ∈ B. This function F is bijective as

well as homomorphism and hence isomorphism.

Problem 1.1.5. Let A and B are two finite abelian groups and φ : A → B be a group

homomorphism. Show that the prescription φ∗(χ) = χ ◦ φ defines a group homomorphism

φ∗ : B̂ → Â.

Solution 2. for χ1 , χ2 ∈ B̂ φ∗(χ1.χ2) = (χ1.χ2) ◦ φ
now for any arbitrary a ∈ A

(χ1.χ2) ◦ φ(a) = χ1 (φ(a)) .χ2 (φ(a))

= (χ1 ◦ φ) (a). (χ2 ◦ φ) (a)

= φ∗(χ1).φ
∗(χ1)(a).

So φ∗ is a homomorphism.

Lemma 1.1.6. Let A be a finite abelian group and let a ∈ A. Suppose that χ(a) = 1 for

every χ ∈ Â. Then a = 1.

Theorem 1.1.7. Let A be a finite abelian group. There is a canonical isomorphism to the

bidual A → ˆ̂A given by a 7→ δa, where δa is the point evaluation at aa, i.e.,

δa : Â → T
χ 7→ χ(a).

Proof: 2. The idea of the proof is we show that the map a 7→ δa is homomorphism and

bijective. To prove that this function is bijective we use the Lemma 1.1.6.
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1.2 The Fourier Transform

Our main aim in this section is to show that the Hilbert spaces `2(A) and `2(Â) isomor-

phic. Through out this section we consider A as a finite abelian group.

Lemma 1.2.1. Let χ , η be two characters of A; then

〈χ, η〉 =

{
|A| if χ = η ,

0 otherwise

Proof. Set of all characters of A forms a vector space over C so the standered inner product

between two characters χ and η is

〈χ, η〉 =
∑
a∈A

χ(a).η(a).

Now if χ = η then

〈χ, η〉 =
∑

a∈A |χ(a)|2 =
∑

a∈A 1 = |A| since χ(a) ∈ T
for χ 6= η let α = χη−1 since Â forms a group, α ∈ Â.

α 6= 1 implies ∃ b ∈ A such that α(b) 6= 1 then

α(b)〈χ, η〉 = α(b)
∑
a∈A

χ(a)η−1(a)

= α(b)
∑
a∈A

α(a)

=
∑
a∈A

α(ab)

=
∑
a∈A

α(a)

= 〈χ, η〉.

So we get

(α(b)− 1)〈χ, η〉 = 0

and since α(b) 6= 1 we will get 〈χ, η〉 = 0.

Definition 1.2.2. `2(A) is the set of functions f : A → C satisfying

∑
a∈A

|f(a)|2 <∞.

In particular,the characters are the elements of `2(A).
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Definition 1.2.3. For f ∈ `2(A) we define its Fourier transform f̂ : Â → C by f̂(χ) =
1√
|A|
〈f, χ〉.

Obsevation 1. If χ ∈ Â then by Lemma 1.2.1 we can get that Fourier transform of χ is

χ̂(η) =

{ √
|A| if η = χ ,

0 otherwise

Obsevation 2. If f ∈ `2(A) then f̂ ∈ `2(Â).

Theorem 1.2.4. The map f 7→ f̂ is an isomorphism of the Hilbert spaces `2(A)→ `2(Â).

This can also be applied to the group Â, and the composition of the two Fourier transforms

gives a map f 7→ ˆ̂
f . For the latter map we have

ˆ̂
f(δa) = f(a−1).

Proof. For the first part idea of the proof is 1st we show that the map F : `2(a) → `2(Â)

where F (f) = f̂ is a linear map then we show that for any g ∈ `2(Â) there is a function

f ∈ `2(A) such that g = F (f) i.e F is onto. Finally we show that 〈f̂ , ĝ〉 = 〈f, g〉 for

f, g ∈ `2(A).

For the next part we have

ˆ̂
f(δa) =

1√
|A|
〈f̂ , δa〉

=
1√
|A|

∑
χ∈Â

f̂(χ)δa(χ)

=
1√
|A|

∑
χ∈Â

(
1√
|A|

∑
b∈A

f(b)χ(b)

)
δa(χ)

=
1

|A|
∑
χ∈Â

∑
b∈A

f(b)χ(b−1)χ(a)

=
1

|A|
∑
χ∈Â

∑
b∈A

f(b−1)χ(b)χ(a)

=
1

|A|
∑
b∈A

f(b−1)

∑
χ∈Â

χ(b)χ(a)


=

1

|A|
∑
b∈A

f(b−1)

∑
χ∈Â

δa(χ)δa(χ)


=

1

|A|
∑
b∈A

f(b−1)〈δa, δb〉

=
1

|A|
f(a−1)|A|

= f(a−1).
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1.3 Convolution

For functions on a finite abelian group there is a convolution product. Let f and g be

in `2(A); we define their convolution product by

f ∗ g(a) =
1√
|A|

∑
b∈A

f(b)g(b−1a).

We can think convolution product as a multiplication in `2(A) space and with respect

to this multiplication `2(A) forms a ring.

Theorem 1.3.1. For f, g ∈ `2(A) we have f̂ ∗ g = f̂ ĝ.

This theorem can be easily proved by using defination of Fourier transform and defination

of convolution product.
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Chapter 2

LCA Groups

Definition 2.0.2. A metrizable abelian group is an abelian group A together with a class

of metrics [d] (or a topology that comes from a metric) such that the multiplication and

inversion maps are continuous.

Since here the group is metrizabe we can use sequentianal criteria for continuity.

i.e when tow sequences (xn) and (yn) in A are converges to X and y respictively then the

sequence (xnyn) converge to xy and (x−1n ) converge to x−1.

Examples 2.0.3.

• The groups (R,+) and (R∗, .) with the standered topology in R are metrizable abelian

groups.

• Any group with the discrete metric is a metrizable group. Since every functions are

continuous if the domain has discrete metric.

Definition 2.0.4. A metrizable σ-locally compact abelian group is called an LCA group.

A metrizable group A is called σ-compact if there is a increasing sequence (Kn) of

compact subsets of A such that A = ∪n∈NKn, such a sequence is called compact exhaustion

of A. A is called locally compact if every point a ∈ A has a compact neighborhood.

Examples 2.0.5.

• The groups (R,+) and (R∗, .) with the standered topology in R are LCA groups. Since

R = ∪n∈N[−n, n] and [−n, n] are closed and bounded set in R so compact.

• (GLn(C), .) is metizable but not a LCA group.
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2.1 Properties of a LCA Group

Lemma 2.1.1. An LCA group contains a countable dense subset.

Proof. Let (xn) be a sequence in A converges to x. Then xn is called dense sequence if for

every point a ∈ A there is a subsequence of (xn) that converges to x. Idea of this proof is

using the compact exhaustion of the LCA group we can find a sequence which is dense in

that group.

A compact exhaustion (Kn) of A is called absorbing if for every compact set K ⊂ A
there is an index n ∈ N such that K ⊂ Kn; i.e., the exhaustion absorbs all compact sets.

Lemma 2.1.2. Let A be an LCA group, then there exists an absorbing exhaustion.

Proof. Let (Ln) be a compact exhaustion of A. Since A locally compact, there is an open

neighbourhood U of the unit such that U is compact, say V = U . Now let Kn = V Ln = {vl :

v ∈ V, l ∈ Ln} is compact again, since it is the image of the compact set V × Ln under the

multiplication map, which is continuous. and ∩n∈NKn = ∩n∈NV Ln = V ∩n∈NLn = VA = A.
Since (Ln) is increasing (Kn) is also increasing sequence. Hence (Kn) is again a compact

exhaustion of A. Now if we can show that this (Kn) is absorbing we are done.

Now let us assume that (Kn) is not absorbing and K be a compact subset of A. So we can

construct a squence (xn) such that for each n xn ∈ K that is not in Kn. Since K is compact

it has a convergent subsequence say (xnr). Let (xnr) converges to x ∈ A. Therefore ∃ a

n0 ∈ N such that x ∈ Ln0 .The set Ux is an open neighborhood of x, so there exists n1 such

that xn ∈ Ux for n ≥ n1. Now take n2 = max{n0, n1} then for n ≥ n2 we have

xn ∈ Ux ⊂ ULn0

⊂ V Ln0

⊂ V Ln

= Kn.

Which is a contradiction. Therefore our assumption is wrong. Hence (Kn) is absorbing

exhaustion of A.

2.2 The structure of LCA- Groups

Proposition 2.2.1. Let G be a topological group, and let U be a compact and open neigh-

borhood of the identity e in G. Then U contains a compact and open subgroup K of G.
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Proof. We know that we can find an open neighbourhood V of e such that

V U = UV = U.

Now since e ∈ U , we have V ⊂ U i.e V 2 ⊂ V U ⊂ U. By induction V n ⊂ U for every n ∈ N.
Now let K = ∪n ∈ NV n, then K is both open and close subgroup of G contained in U.

Proposition 2.2.2. Every totally disconnected locally compact space X has a base for its

topology consisting of open and compact subsets of X.

Using this two propositions we can say that every unit neighbourhood U in a locally

compact group G contains an open and compact subgroup of G.

Theorem 2.2.3. Let G be an LCA group. Then there exists n ∈ N0 and an LCA group H

such that

(a) A is isomorphic to Rn ×H.
(b) H contains an open compact subgroup K.

This theorem is known as First Structure Theorem.

Theorem 2.2.4. Let G be a compactly generated LCA group. Then there exist n,m ∈ N0

and a compact group K such that G is isomorphic to Rn × Zm ×K.

This theorem is known as Second Structure Theorem.

13



Chapter 3

The Dual Group

In this chapter we will discuss about the dual of a LCA group. We wil see that dual

group of a LCA group is again forms a LCA group. This then paves the way for the famous

Pontryagin duality theorm.

3.1 Characterization of the groups Z, R/Z, R

Definition 3.1.1. A character of a metrizable abelian group A is a continuous group ho-

momorphism χ : A → T. The set of all characters of A is denoted by Â.

Proposition 3.1.2.

(a) The characters of the group Z are given by k 7→ e2πikx, where x ∈ R/Z.

(b) The characters of R/Z are given by x 7→ e2πikx, where k ∈ Z.

(c) The characters of R are given by x 7→ e2πixy, where y ∈ R.

Proof. (a) 1st we prove that the map χ : Z → T where χ(k) = e2ikx is a character of Z
Since exponential functions are always continuous it remains to show that χ is a group

homomorphism. Now for k1, k2 ∈ Z we have,

χ(k1 + k2) = e2πi(k1+k2)x

= e2πik1xe2πik2x

= χ(k1)χ(k2).

Therefore the map χ is a character of Z.

Next we have to show that if η be any character of Z then for any arbitrary k ∈ Z

η(k) = e2πikx

14



for some x ∈ R/Z.

Now

η(k) = η(1 + 1 + . . .+ 1)

= η(1)k.

Now η(1) ∈ T implies

η(1) = e2πiα for some α ∈ R

= e2πiα for some α ∈ R/Z.

Hence we get η(k) = e2πikx for some x ∈ R/Z.

(b) 1st part of this proof is same as previous one.

Now let η ∈ R̂/Z then for r ∈ R/Z we have

η(r) = η(r.1)

= η(1 + 1 + . . .+ 1)

= η(1)r.

η(1) = e2πiα for some α ∈ R/Z this implies

η(r) = e2πiαr

= e2πi(1α)r

= e2πi(1r)α

= e2πirα.

Hence we get η(r) = e2πirα for some α ∈ Z.

(c) Here also 1st part remain same. Let χ ∈ R̂ then for s, t ∈ R we have

χ(s+ t) = χ(s) + χ(t).

Since χ is continuous at 0 and χ (0) = 1, we can say that there exist a δ > 0 such that∫ δ

0

χ(s)ds 6= 0.

Then ∫ δ

0

χ(s+ t)ds = χ(t)

∫ δ

0

χ(s)ds

= χ(t).C for some constant C.

15



This implies ∫ t+δ

t

χ(s)ds = χ(t).C.

Then by Fundamental theorem of interal calculas we can say that χ is differentable.

so,

χ′(t) = lim
h→0

χ(t+ h)− χ(t)

h

= lim
h→0

χ(t+ h)− χ(t+ 0)

h

= lim
h→0

χ(t) (χ(h)− χ(0))

h

= χ(t) lim
h→0

χ(h)− χ(0)

h
= χ(t)χ′(0).

Now let χ′(0) = k then solving χ′(t) = kχ(t) with initial condition χ(0) = 1 we get,

χ(t) = ekt.

Since χ(t) ∈ T there exists a y ∈ R such that k = 2πiy. Hence we get

χ(t) = e2πity

for every t ∈ R as claimed.

Obsevation 3.

• The dual group of Z is isomorphic to R/Z.

• The dual group of R/Z is isomorphic to Z.

• The dual group of R is isomorphic to R.

3.2 The Dual as LCA Group

In this section we will prove that for a given LCA group A the dual Â is an LCA group

again. For that we need to define a metric on A with the help of metric on A.

Fix an absorbing compact exhaustion A = ∪n∈NKn. For χ, η ∈ Â and n ∈ N let

d̂n = sup
x∈Kn

|χ(x)− η(x)|

and

d̂ =
∞∑
n=1

1

2n
d̂n(χ, η).
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Lemma 3.2.1. The function d̂ is a metric on the set A.

Proof. Proof is not much difficult. Non-negativity, identity of indiscernibles and symmetric-

ity property are obivous. Only for triangle inequality let χ, η, α ∈ Â then

d̂n(χ, η) = sup
x∈Kn

|χ(x)− η(x)|

= sup
x∈Kn

|χ(x)− α(x) + α(x)− η(x)|

≤ sup
x∈Kn

|χ(x)− α(x)|+ sup
x∈Kn

|α(x)− η(x)|

= d̂n(χ, α) + d̂n(α, η).

Now to prove d̂(χ, η) ≤ d̂(χ, α) + d̂(α, η).

We need to show that the series
∑∞

n=1
1
2n
d̂n(χ, η) is convergent. This is true by De-

richelet’s test because here
∑∞

n=1 d̂n(χ, η) is bounded by 2 and lim
n→∞

1
2n

= 0.

Theorem 3.2.2. With the metric above, the group Â is a topological abelian group. A

sequence (χn) converges in this metric if and only if it converges locally uniformly, so the

metric class or topology does not depend on the exhaustion chosen. With this topology Â is

an LCA group.

Proof. To prove that Â is a topological abelian group we can easily show that the group

operation on Â are continuous. For this we use sequential critera for continuity. Now, a

sequence (χj) in Â converges if and only if it converges uniformly on each Kn. Since the

exhaustion (Kn) was absorbing, this means that the sequence converges if and only if it

converges uniformly on every compact subset of A, which is equivalent to locally uniform

convergence, since A is locally compact.

It remains to show that Â is locally compact and σ-compact. That is not very

easy because for that need to constuct a compact exhaustion for Â. Using the followig

lemma 3.2.3 we can able to show that

Ln = {χ ∈ Â : χ(B 1
n
) ⊂ {Re(z) ≥ 0}}

form a compact exhaustion for Â. Then automatically Â becomes locally compact.

Lemma 3.2.3. Let n ∈ N For every ε > 0 there is δ > 0 such that for every χ ∈  Ln,

χ(Bδ) ⊂ {z ∈ T : |z − 1| < ε}.

Proposition 3.2.4. The group isomorphism R→ R̂ is homeomorphism homeomorphisms;

i.e., they are continuous and so are their inverse maps. So in particular, we can say that R̂
is isomorphic to R as an LCA group.
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Proof. Let us define a map φ : R→ R̂ by

φ(x) = φx

where φx(y) = e2πixy for some y ∈ R.

Then it can be easily proved that φ is a group isomorphism.

To show the continuity of φ and φ−1 here also we use the sequential defination.

Let (xn) be a sequence in R which converge to x. Then for any arbitrary y ∈ R we

have

|φxn(y)− φx(y)| = |e2πixny − e2πixny|

=

∫ xn

x

2πiy.e2πitydt

≤ |2πiy|
∫ xn

x

|e2πity|dt

= 2π|y||xn − x|.

This implies that on every bounded interval the sequence of functions (φxn) will converge

uniformly to the function φx; hence we have that (φxn) converges to φx locally uniformly on

R. We conclude that the map φ is continuous.

Next we prove that the inverse φ−1 is continuous. For that let (φxn) be sequence in R̂
converges to φx. i.e (φxn)(y) converges uniformly to φx(y). This implies

(xn − x)y = kn + εn

where kn ∈ Z and εn tends to 0 in R.

Then xn must be a bounded sequence. by Bolzano weierstrass theorem (xn) has a

convergent subsequence say, (xnk). Let x′ be its limit. Now using the 1st part of the proof

we can say that (φxnk ) converges to (φx′) and since limit is unique x′ = x. Since this holds

for every convergent subsequence, it follows that (xn) converges to x.

3.3 Pontryagin Duality

Proposition 3.3.1. If A is compact, then Â is discrete. If A is discrete, then Â is compact

Theorem 3.3.2. Let A denote an LCA group. Then the map A → ˆ̂A where a 7→ δa and

δa(χ) = χ(a) is an isomorphism of LCA groups.
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Chapter 4

Matrix Group

A matrix group means a group of invertible matrices. You know from linear algebra

that invertible matrices represent geometric motions (i.e., linear transformations ) of vector

spaces, so maybe its not so surprising that matrix groups are useful within geometry.

4.1 Martix group GLn(C) and U(n)

In this section we will discuss about the topological nature of GLn(C) and U(n). We

will see that GLn(C) is a LC group and U(n) is a compact subgroup of GLn(C). Now first

question that comes to our mind is what is the norm on space of matices?

Let n be a natural number. On the vector space of complex n × n matrices Mn(C)

we can define norm in many ways. For A = (ai,j) let ||A||1 =
∑n

i,j=1 |ai,j| and ||A||2 =√∑n
i,j=1 |ai,j|2 , smilarly for any p ∈ N we can define ||A||p. Let di be the corresponding

metric for norm ||.||i.

Lemma 4.1.1. A sequence of matrices A(k) = (a
(k)
i,j ) converges in d1 if and only if for each

pair of indices (i, j), the sequence of entries a
(k)
i,j converges in C. The same holds for d2, so

the metrics d1 and d2 are equivalent.

Proof. The proof is very simple only we have to use defination of ||.||1 and ||.||2 and defintion

of a convergent sequence in any metric space.

Proposition 4.1.2. With the topology or metric class given above, the group of complex

invertible matrices, GLn(C), is an LC group; i.e., it is a metrizable, σ-compact, locally

compact group.

Proof. We already know that Mn(C) ∼= Cn2
and Cn is locally compact. Being an open

subset of the locally compact space Mn(C) the topogical group GLn(C) is locally compact.

So now it remain to show that it is σ- compact. For this our claim is

Kn = {A ∈ GLn(C) : ||A||1 ≤ n, ||A||−11 ≤ n}
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forms a compact exhaustion.

Lemma 4.1.3. U(n) = {g ∈Mn(C) : g∗g = I} is a compact subgroup of GLn(C).

Proof. First we show that U(n) is a subgroup of GLn(C), then we show that it is close and

bounded in Mn(C) because it is sufficient to tell that it is compact.

For a, b ∈ U(n)

(ab)∗ab = b∗a∗ab

= b∗Ib since a ∈ U(n)

= b∗b

= I since b ∈ U(n).

So ab ∈ U(n).

Since g∗g = I we get g−1 = g∗ and (g∗)∗g∗ = gg∗ = I this implies g∗ ∈ U(n) i.e g−1 ∈ U(n).

Therefore U(n) forms a group.

To show U(n) closed, take g ∈ U(n) i.e ∃ a sequence (gj) in Mn(C) converging to g.

Now since the map g 7→ g∗ is continuous we get g ∈ U(n). Now to prove U(n) is bounded,

for every a ∈ U(n) we have

||a||22 =
n∑

i,j=1

|ai,j|2

=
n∑

i,j=1

ai,jai,j

=
n∑

i,j=1

ai,j(aj,i)
∗

=
n∑
k=1

(aa∗)k,k

= tr(a∗a).

Hence we get ||a||2 =
√
tr(I) =

√
n. So U(n) is bounded.

4.2 The Lie Algebra of a Matrix Lie Group

Definition 4.2.1. A matrix Lie group is any subgroup G of Gln(C) with the following

property: If (An) is any sequence of matrices in G, and (An) converges to some matrix A

then either A ∈ G , or A is not invertible. It is equivalant to say that a matrix Lie group is

a closed subgroup of Gln(C).
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Examples 4.2.2.

• Gln(C) and Gln(R) are matrix Lie group, since all the entries of (An) forms sequence

in C and R and if it converges then limit must be in C and R if not then limit of (An)

is not intvertable.

• SL(n,C), the the group of n×n invertible matrices complex entrie having determinant

one is a matrix Lie group, since determinant is a continuous function.

• The set of all n×n invertible matrices all of whose entries are real and rational is not

a matrix Lie group because Q is dense over R.

Definition 4.2.3. Let G be a matrix Lie group. The Lie algebra of G, denoted g, is the set

of all matrices X such that etX is in G for all real number t.

4.3 The Matrix Exponential

A series of matrices in Mn(C) of the form
∑∞

ν=0Aν converges if the sequence of partial

sums sk =
∑k

ν=0Aν converges.

Lemma 4.3.1. For A, b ∈Mn(C) we have

||AB||1 ≤ ||A||1||B||1.

In particular, for j ∈ N, ||Aj||1 ≤ ||A||j1.

Lemma 4.3.2. If (Aν) be a sequence in Mn(C) and
∑∞

ν=0 ||Aν ||1 < ∞, then the series∑∞
ν=0Aν converges in Mn(C).

Proposition 4.3.3. For every A ∈Mn(C) we have

det(exp(A)) = exp(trace(A)).

Proof. We know that every square matirx is conjugate to an upper triangular matrix i.e

there always exist S ∈ GLn(C) such that A = SUS−1 where U is upper triangular. Then,

det(exp(SUS−1)) = det(S exp(U)S−1) = det(exp(U)).

Hence we get,

det(exp(A)) = det(exp(U)).
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So it suffices to prove the proposition for an upper triangular matrix U .

Let

U =



u1 ∗
u2

.

.

.

un


.

Then for any ν > 0

Uν =



uν1 ∗
uν2

.

.

.

uνn


.

Now

exp(U) =



eu1 ∗
eu2

.

.

.

eun


.

This gives

det(exp(U)) = eu1 . . . eun

= eu1+...un

= etr(U).

The Lie algebra sln(R) of SLn(R) is given by

sln(R) = {X ∈Mn(R) : etX ∈ SLn(R) ∀t ∈ R}

= {X ∈Mn(R) : det(etX) = 1 ∀t ∈ R}

= {X ∈Mn(R) : exp(tr(tX)) = 1 ∀t ∈ R}

= {X ∈Mn(R) : tr(tX) = 0 ∀t ∈ R}

= {X ∈Mn(R) : tr(X) = 0}.
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The Lie algebra U(n) of U(n) is given by

U(n) = {X ∈Mn(C) : etX ∈ U(n) ∀t ∈ R}

= {X ∈Mn(C) : etX(etX)∗ = I ∀t ∈ R}

= {X ∈Mn(C) : (etX)∗ = (etX)−1 ∀t ∈ R}

= {X ∈Mn(C) : etX
∗

= e−tX ∀t ∈ R}

= {X ∈Mn(C) : X∗ = −X}.

The Lie algebra su(n) of SU(n) is given by

su(n) = {X ∈Mn(C) : etX ∈ SU(n) ∀t ∈ R}

= {X ∈Mn(C) : etX ∈ SLn(C), etX ∈ U(n) ∀t ∈ R}

= {X ∈Mn(C) : tr(X) = 0, X∗ = −X}.

The Lie algebra h of 3× 3 Heisenberg group H is given by

h = {X ∈M3(R) : etX ∈ H ∀t ∈ R}.

Now we know that,

X =

[
d

dt
etX
]
t=0

.

This implies h is the space of all 3× 3 real matrices that are strictly upper triangular.

4.4 Properties of Lie Algebra

Proposition 4.4.1. Let G be a matrix Lie group, with Lie algebra g. Let X be an element

of g and A an element of G. Then AXA−1 is in g.

Proof. We know that,

et(AXA
−1) = AetXA−1

and now etX ∈ G ∀t ∈ R implies that

AetXA−1 ∈ G ∀t.

Theorem 4.4.2. Let G be a matrix Lie group, with Lie algebra g. Then g is a real subspace

of the space Mn(C) and is also closed under Lie bracket. More precisely if X and Y are

elements of g then [X, Y ] = XY − Y X also lies in g.
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Proof. Let X ∈ g, then etX ∈ G for all t ∈ R. Which imples for any s ∈ R es(tX) ∈ G i.e

sX ∈ g.

Now we have to show that X+Y ∈ g for X, Y ∈ g. To show this we will use the Lie product

formula, which states that,

et(X+Y ) = lim
m→∞

(e
tX
m e

tY
m )m ∀t ∈ R.

Now since X, Y ∈ g,

e
tX
m , e

tY
m ∈ G and since G is a group this implies (e

tX
m e

tY
m )m ∈ G.

By our hypothesis G is matrix Lie group, so the limit of things in G must be again in G.

Hence

et(X+Y ) ∈ G ∀t ∈ R.

Implies X + Y ∈ g. Therefore the 1st part of this theorem is done.

For last part recall that,
d

dt
etX = XetX .

So [
d

dt
etXY

]
t=0

= XY.

Hence by product rule, [
d

dt
etXY e−tX

]
t=0

= XY − Y X.

Now, by the proposition 4.4.1, etXY e−tX ∈ g. Furthermore we have established that g is

real subspace of Mn(C), this means g is closed subset of Mn(C). Ti follows that,

[X, Y ] = XY − Y X =

[
d

dt
etXY e−tX

]
t=0

= lim
h→0

etXY e−tX − Y
t

∈ g.

4.5 Matrix Lie Group SL2(R)

SL2(R) is the special linear group of degree 2, i.e

SL2(R) = {X ∈M2(R) : det(X) = 1}.

As we calculated before,

sl2(R) = {X ∈M2(R) : tr(X) = 0}.

The elements,

X0 =
1

2

[
0 1

−1 0

]
X1 =

1

2

[
1 0

0 −1

]
X2 =

[
0 1

0 0

]
form a basis of sl2(R).
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Definition 4.5.1. Let θ, t, ζ be arbitrary real numbers and put

kθ = exp(θX0) at = exp(tX1) nζ = exp(ζX2).

Then the subgroups K,A,N of SL2(R) are defined by

K = {kθ : θ ∈ R} A = {at : t ∈ R} N = {nζ : ζ ∈ R}.

Then we have,

kθ = exp(θX0)

=
∞∑
n=0

1

n!
(θX0)

n

=
∞∑
n=0

1

n!

(
θ

2

)n
(X ′0)

n , X ′0 =

[
0 1

−1 0

]

=
∞∑
n=0

(−1)n

(2n)!

(
θ

2

)2n

.1 +
∞∑
n=0

(−1)n

(2n+ 1)!

(
θ

2

)2n+1

X ′0

=

[
cos θ

2
sin θ

2

−sin θ
2

cos θ
2

]
.

at =
∞∑
n=0

1

n!
(tX1)

n

=

[
e
t
2 0

0 e−
t
2

]
.

nζ =
∞∑
n=0

1

n!
(ζX2)

n

= (ζX2)
0 + (ζX2)

= I + (ζX2)

=

[
1 ζ

0 1

]
.

4.5.1 Iwasawa Decomposition

Let H = {z ∈ C : Im(z) > 0} and the group SL2(R) acts on H by linear functional, i.e

for g =

[
a b

c d

]
∈ SL2(R) and for z ∈ H we define

gz =
az + b

cz + d
.

Then the stabilizer of the point i ∈ H is the rotation group K.
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Theorem 4.5.2. The group SL2(R) can be decomposed as

SL2(R) = ANK.

More precisely, the map φ : A×N ×K → SL2(R) where φ(a, n, k) = ank is a homeomor-

phism. This decomposition is called Iwasawa Decomposition.

Proof. Let g ∈ SL2(R), then gi = x+ iy

implies

g =

√y x√
y

0 1√
y

 .
Now let

a =

[√
y 0

0 1√
y

]
n =

[
1 x

y

0 1

]
.

Then a ∈ A , n ∈ N and an = g. So,

gi = ani =⇒ (g−1an)i = i.

Since K is sebilizer of i, g−1an lies in K, which means there exist a k ∈ K with g = ank.

Now let

φ′ : SL2(R)→ A×N ×K

be a map given by, φ′(g) = (ā(g), n̄(g), k̄(g) for g =

[
a b

c d

]
where,

ā(g) =

[
1√

c2+d2
0

0
√
c2 + d2

]

n̄(g) =

[
1 ac+ bd

0 1

]

k̄(g) =
1√

c2 + d2

[
d −c
c d

]
.

Then a straightforward computation shows that φφ′ = I and φ′φ = I.
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Chapter 5

Representation Theory

5.1 Representations

LetG be a (metrizable) topological group and (V, 〈., .〉) be Hilbert space . A reprsentation

of G on V is a group homomorphism Π : G → GL(v) such that the map F : G × V → V

is continuous, where F (g, v) = Π(g)v. The dimension of V is called the degree of the

representation. One should think of a representation as a linear action of a group on a

vector space.

The representation Π is called unitary if for every x ∈ G the operator Π(x) is unitary

on V i.e

〈Π(x)v,Π(x)w〉 = 〈v, w〉

for all v, w ∈ V .

A closed subspace W of V is called invariant for Π if Π(x)W ⊂ W for all x ∈ G. The

representation is called irreducible if there is no proper invariant subspace.

Example.The identity map ρ : U(n)→ GL(Cn) = GLn(C) is a unitary representation.

Theorem 5.1.1. Let G be a finite group and ρ : G→ GL(V ) is representation on (V, 〈., .〉)
Then there is another inner product (., .) on V in which ρ(g) is unitary for any g ∈ G.

Proof. For v, w ∈ V let

(v, w) =
1

O(G)

∑
g∈G

〈ρ(g)v, ρ(g)w〉.

It is easy to see that (., .) is indeed an inner product. Moreover, the representation ρ is
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unitary with respect to (., .), since for g ∈ G and v, w ∈ V we have

(ρ(g1)v, ρ(g1)w) =
1

O(G)

∑
g∈G

〈ρ(g1)ρ(g)v, ρ(g1)ρ(g)w〉

=
1

O(G)

∑
g∈G

〈ρ(g1g)v, ρ(g1g)w〉

=
1

O(G)

∑
g∈G

〈ρ(g)v, ρ(g)w〉

= (v, w) .

Theorem 5.1.2. Let G be a finite group and ρ : G→ GL(V ) is representation on (V, 〈., .〉)
and W be an invariant for ρ, then W⊥ = {v ∈ V : 〈v, w〉 = 0 ∀w ∈ W} is also ρ invariant.

Proof. Let v ∈ W⊥ then for any w ∈ W and g ∈ G, we have

〈ρ(g)v, w〉 = 〈v, ρ(g)∗w〉

= 〈v, ρ(g−1)w〉

= 〈v, w1〉 for some w1 ∈ W

= 0.

Hence ρ(g)v ∈ W⊥. So W⊥ is ρ invariant.

5.2 Decomposition of Representation

Lemma 5.2.1. Let (V, Vπ) be a finite dimensional unitary representation of the locally

compact group G. Then π splits into a direct sum of irreducible representation.

Proof. Let dim(Vπ) = n. We prove this by induction on dimension on Vπ. If dim(Vπ) = 1,

then clearly π is irreducible. Now suppose the claim is true for all spaces of dimension < n.

Then either, in that case we are done or it has a proper subrepresentation W . then by the

previous theorem says that W⊥ is also a subrepresentation. Now since Vπ is the direct sum

of W and W perp, which are both of smaller dimension than n, and hence decompose into

irreducible representation. Hence Vπ is direct sum of irreducible representations.

5.3 Schur’s Lemma

Let K be compact subgroup of GLn(C). Let τ and γ be two irreducible finite dimensional

representation of K. Let H be the space of all linear maps from Vγ to Vτ . Let HomK(Vγ, Vτ )
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be the space of K-homomorphisms i.e., the space of all linear maps T : Vγ → Vτ such that

Tγ(k) = τ(k)T

for every k ∈ K.

Lemma 5.3.1. The space HomK(Vγ, Vτ ) is at most one-dimensional.

Proof. Let T ∈ HomK(Vγ, Vτ ) and T 6= 0. Then the kernel ker(T ) is an invariant subspace

of Vγ. Since if, v ∈ ker(T ) then

T (γ(k)) = τ(k)T (v) = 0

for all k ∈ K. Therefore, γ(k)v again lies in ker(T ), which is thus invariant. Since γ is

irreducible and T 6= 0 , it follows that ker(T ) = {0}, implies T is injective. Likewise, the

image of T is an invariant subspace, and since τ is irreducible, too, it follows that T is

surjective, and hence is an isomorphism. Now let T, S ∈ HomK(Vγ, Vτ ) and assume that

both are non-zero. Since both are bijective map, both maps are invertible and S−1T ∈
HomK(Vγ, Vγ). Since Vγ is a finite dimensional space there always exist a eigenvalue of

S−1T . Let λ be an eigenvalue of S−1T and Eig(λ) be the corresponding eigen space. Then

Eig(λ) is a invariant space. By irreducibility and S−1T 6= 0 it follows that S−1T = Vγ,

which implies ∀v ∈ Vγ
(S−1T )v = λv.

Hence T = λS, so dimension of HomK(Vγ, Vτ ) is at most one.

Definition 5.3.2. Two unitary representation γ and τ are called unitarily equivalant if

there exist a unitary map T : Vγ → Vτ such that

Tγ(k) = τ(k)T

for every k ∈ K.

Lemma 5.3.3. Two finite-dimensional irreducible representations γ, τ of K are unitarily

equvalant if and only if HomK(Vγ, Vτ ) 6= 0, regardless of the inner products.

Proof. If γ, τ ofK are unitarily equvalant then by defination there exist a map inHomK(Vγ, Vτ ),

which says that the space HomK(Vγ, Vτ ) 6= 0.

Conversely let, T 6= 0 lies in HomK(Vγ, Vτ ), then T ∗T ∈ HomK(Vγ, Vγ) and also identity

map I lies in HomK(Vγ, Vγ). By previous Lemma we can say that there exist a c ∈ C such

that

T ∗T = cI.
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Since T ∗T is positive self adjoint operator, there is a λ ∈ C such that c = 1
|λ2| . So we get,

T ∗T =
1

|λ2|
I

=⇒ (λT )∗(λT ) = I.

Hence (λT ) is a unitary operator in HomK(Vγ, Vτ ).

Corollary 5.3.4. If (γ, Vγ) and (τ, Vτ ) be two irreducible finite dimensional representation

of K and there is a linear map T : Vγ → Vτ such that

Tγ(k) = τ(k)T

for every k ∈ K, then either T 6= 0 or γ and τ are unitarily equivalant. This is known as

Schur’s Lemma.

5.4 Unitarizable Representation

Definition 5.4.1. Let G be a metrizable group and V be a Hilbert space and π : G →
GL(V ) be a continuous representation of the group G. If there exist an invertible operator

S : H → H such that the representation π̃(t) = S−1π(t)S is a unitary representation. Then

we will say that π is unitarizable.

Lemma 5.4.2. Let K be a compact group and ρ be a representation on a finite-dimensional

Hilbert space (V, 〈., .〉). Then there is S ∈ GL(V ) such that the representation SρS−1 is

unitary.

Proof. Let us definie a inner product (., .) on V such that for v, w ∈ V

(v, w) =

∫
K

〈ρ(k−1)v, ρ(k−1)w〉dk.

Then for any k0 ∈ K and v, w ∈ V we have,

(ρ(k0)v, ρ(k0)w) =

∫
K

〈ρ(k−1)ρ(k0)v, ρ(k−1)ρ(k0)w〉dk

=

∫
K

〈ρ(k−1k0)v, ρ(k−1k0)w〉dk

=

∫
K

〈ρ(k−10 k)−1v, ρ(k10k)−1w〉dk

=

∫
K

〈ρ(k−1)v, ρ(k−1)w〉dk

= (v, w).
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Which implies that ρ is unitary with respect to (., .).

Now we know that every inner product on V is of the form (v, w) = 〈Sv, Sw〉 for some

S ∈ GL(V ). From this it follows that S−1ρS is unitary.

Problem 5.4.3. Let B(H) be the space of all bounded operators on a complex Hilbert space

H and π : G→ B(H) be a continuous representation of a locally compact group G. Assume

π is uniformly bounded, i.e. assume

sup
t∈G
||π(t)||B(H) <∞.

Then does this representation π is unitarizable?

This problem remained open for a while until, in 1955, Ehrenpreis and Mautner gave a

counterexample for G = SL2(R). Later it was realized that rather simpler counterexamples

can be described on the free groups with at least 2 generators. In the positive direction, the

most general result seems to be Dixmier’s theorem (1955) which says that if G is amenable

then the answer to the above Problem is affirmative.

5.5 Amenable Group

Definition 5.5.1. A locally compact group G is called amenable if there exists a left invari-

ant mean on G, i.e. if there exists a positive linear functional φ : L∞(G) → C satisfying

||φ|| = φ(1) = 1, and

∀f ∈ L∞(G) ∀t ∈ G φ(δt ∗ f) = φ(f).

Here δt ∗ f(s) = f(t−1s).

Examples 5.5.2.

• Finite groups are amenable. The measure is counting measure.

• Compact groups are amenable. The Haar measure is an invariant mean

The free group on two generators say a, b is denoted by F2. It is the typical example of

a nonamenable group. To check this, assume there is an invariant mean φ on F2, then since

this group is infinite, we have necessarily φ(1t) = 0 for all t ∈ F2. Let F (x) is the set of

(reduced) words which have x as their first letter, then

F2 = F (a) ∪ F (a−1) ∪ F (b) ∪ F (b−1) ∪ {e}.

Now if we apply φ both side in the above equation we will get

1 = φ(1F2) = φ(1F (a)) + φ(1F (a−1)) + φ(1F (b)) + φ(1F (b−1)).
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On the other hand we have,

F (a) = a[F2 − F (a−1)]

F (a−1) = a−1[F2 − F (a)]

F (b) = b[F2 − F (b−1)]

F (b−1) = b−1[F2 − F (b)].

Hence,

φ(1F (a)) = 1− φ(1F (a−1))

φ(1F (a−1)) = 1− φ(1F (a))

φ(1F (b)) = 1− φ(1F (b−1))

φ(1F (b−1)) = 1− φ(1F (b)).

If we add the last four identities we obtain 1 = 4− 1 which is the desired contradiction.

Theorem 5.5.3. (Day, Dixmier 1950)

Let G be a locally compact group. If G is amenable, then every uniformly bounded (u.b.

in short) representation π : G→ B(H) is unitarizable. More precisely, if we define,

|π| = sup
t∈G
||π(t)||B(H).

then, if |π| < ∞, there exists S : H → H invertible with ||S||||S−1|| ≤ |π2| such that

S−1π(.)S is a unitary representation.

Proof. Let |π| = c <∞ and for any x, y in H, we denote,

∀t ∈ G fxy(t) = 〈π(t−1)x, π(t−1)y〉

then fxy ∈ L∞(G).

Let φ be an invariant mean on G. We define |||x||| = (φ(fxx))
1
2

i.e |||x|||2 = (φ(fxx)). Then |||.||| will be a norm on H, called Hilbertien norm. Now,

fxx(t) = 〈π(t−1)x, π(t−1)x〉

= ||π(t−1)x||2

≤ c2||x||2

=⇒ φ(fxx) ≤ c2||x||2φ(1)

= c2||x||2.

Hence we get,

|||x||| ≤ c||x||
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On the other hand,

||x||2 = ||π(tt−1)x||2

= ||π(t)π(t−1)x||2

≤ ||π(t)||2||π(t−1)x||2

≤ c2fxx(t)

=⇒ φ(||x||2) ≤ c2φ(fxx(t))

=⇒ ||x||2 ≤ c2φ(fxx).

We get,

||x|| ≤ c|||x||| .

Which says that (H, |||.|||) is isomorphic to H, it is actually isometric to (H, ||.||). We have

clearly for all s ∈ G and for x ∈ H we have,

|||π(s)x|||2 = π(fπ(s)xπ(s)x)

= π(δs ∗ fxx)

= π(fxx)

= |||x|||2.

Which shows that π(s) is a unitary map with respect to |||.|||.

In his 1950 paper, Dixmier [5] asked two questions which can be rephrased as follows

Q1: Is every G unitarizable?

Q2: If not, is it true that conversely unitarizable implies amenable?

5.6 Representation of a Discrete Group

In thins section we consider G as a disctere group. Let λ : G→ B(l2(G)) defined by,

∀h ∈ l2(G) λ(t)h = δt ∗ h.

Where δt ∗ h(s) = h(t−1s) for s ∈ G. Let ρ : G→ B(l2(G)) defined by,

∀h ∈ l2(G) ρ(t)h = h ∗ δt−1 .

Where h ∗ δt−1(s) = h(st). We can show that both λ and ρ are representation of G. Let

t1, t2 ∈ G,

λ(t1)λ(t2)h = δt1 ∗ (λ(t2)h).
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Now,

δt1 ∗ (λ(t2)h(s) = (λ(t2)h)(t−11 s)

= (δt2 ∗ h)(t−11 s)

= h(t−12 t−11 s)

= h((t1t2)
−1s)

= δt1t2 ∗ h(s).

Hence,

λ(t1)λ(t2)h = δt1 ∗ (λ(t2)h) = δt1t2 ∗ h = λ(t1t2)h.

Therefore λ is Representation of G. Similarly we can prove for ρ. This λ is called left regular

representaton and ρ is called right regular representation. Observe that λ and ρ commute,

i.e.

∀s, t ∈ G λ(t)ρ(s) = ρ(s)λ(t).

Let B(G) is the space of all functions f : G → C for which there is a Hilbert space H, a

unitary representation π : G→ B(H) and elements x, y in H such that,

f(t) = 〈π(t)x, y〉.

Now in this space if we difine a norm by,

||f ||B(G) = inf{||x||.||y||}

Then (B(G), ||.||B(G)) will be a Banach space.

Let G be a group and let S ⊂ G be a semi-group included in G, i.e.

∀s, t ∈ S st ∈ S.

Now let Tp(S) be a space of all the functions f : S → C which admit the following decom-

position: there are functions f1 : S × S → C and f2 : S × S → C such that,

f(st) = f1(s, t) + f2(s, t).

Where,

sup
s∈S

∑
t∈S

|f1(s, t)|p <∞, sup
t∈S

∑
s∈S

|f2(s, t)|p <∞.

We equip this space with the norm,

||f ||Tp = inf{sup
s

(
∑
t

|f1(s, t)|p)
1
p + sup

t
(
∑
s

|f2(s, t)|p)
1
p}.

34



Where the infimum runs over all such decompositions. Then (Tp(G), ||.||Tp(G)) will form a

Banach space.

Note that,

lp(G) ⊂ B(G) ⊂ l∞(G)

lp(S) ⊂ Tp(S) ⊂ l∞(S).

Theorem 5.6.1. If every uniformly bounded representation on a discrete group G is uni-

tarizable, then

T1(G) ⊂ B(G).

Proof. Let f ∈ T1(G), then we can find a decomposition of the form

f(s−1t) = a1(s, t) + a2(s, t)

and for some constant C we have,

sup
s

∑
t

|a1(s, t)| ≤ C sup
t

∑
s

|a2(s, t)| ≤ C.

Let us denote A1 and A2 as the representative matrices of a1 and a2 respictively. Let f̃ be

the function defined by f̃(x) = f(x−1). Observe that f(s−1t) is nothing but the matrix of

the operator ρ(f) defined by

ρ(f)g = g ∗ f̃

, Hence we have

ρ(f) = A1 + A2

and

||A1||B(l∞(G)) ≤ C, ||A2||B(l1(G)) ≤ C

By an obvious calculation we have,

ρ(f)λ(t) = λ(t)ρ(f) ∀t ∈ G.

Hence we have,

0 = [ρ(f), λ(t)] = [A1 + A2, λ(t)] = [A1, λ(t)] + [A2, λ(t)].

Therefore,

[A1, λ(t)] = −[A2, λ(t)].

For any linear operatopr a,let D := [A2, a] := A2a − aA2. As it is well known that D is a

derivation, we have

D(ab) = D(a)b+ aD(b).
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Now let H = l2(G)⊕ l2(G) and π(t) : H → H defined by,

π(t) =

[
λ(t) D(λ(t))

0 λ(t)

]
.

Then for t, s ∈ G we have,

π(t)π(s) =

[
λ(t) D(λ(t))

0 λ(t)

][
λ(s) D(λ(s))

0 λ(s)

]

=

[
λ(t)λ(s) D(λ(t)λ(s))

0 λ(t)λ(s)

]

=

[
λ(ts) D(λ(ts))

0 λ(ts)

]

= π(ts).

Hence π is a representation of G on the Hilbert space H. Our next aim is to show that this

representation is uniformly bounded.

[A2, λ(t)] : l1(G)→ l1(G) is a bounded operator. Since [A2, λ(t)] = −[A1, λ(t)], the operator

[A2, λ(t)] bounded on l∞(G) also. By the Riesz-Thorin classical interpolation theorem it

follows that,

||[A2, λ(t)]||B(l2(G)) ≤ 2C

and since [A2, λ(t)] = D(λ(t)) we have,

||π(t)|| ≤ 1 + 2C.

Now if π is unitarizable, then we have 〈π(t)x, y〉 = 〈π̃(t)Sx, S−1∗y〉 for some π̃ unitary and

some similarity S. Finally, let x = (0, δe) y = (δe, 0) then,

〈π(t)x, y〉 = 〈

[
λ(t) D(λ(t))

0 λ(t)

][
0

δe

]
,

[
δe

0

]
〉

= 〈

[
D(λ(t)).δe

λ(t).δe

]
,

[
δe

0

]
〉

= 〈D(λ(t)).δe, δe〉+ 〈λ(t)).δe, 0〉

= 〈D(λ(t)).δe, δe〉

= 〈[A2, λ(t)].δe, δe〉

= 〈A2λ(t)δe, δe〉 − 〈λ(t)A2δe, δe〉

= a2(e, t)− a2(t−1, e).
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Now if we defini a function F : G→ C where F (t) = a2(e, t)− a2(t−1, e) then,

F (t) = 〈π(t)x, y〉 = 〈π̃(t)Sx, S−1∗y〉.

Which implies that F ∈ B(G). Now,

f(t) = a1(e, t) + a2(t
−1, e) + [a2(e, t)− a2(t−1, e)].

Since the map t 7→ a1(e, t) + a2(t
−1, e) ∈ l1(G) ⊂ B(G).

So we conclude that f ∈ B(G).

Lemma 5.6.2. Let f be the indicator function of the set of words of length 1 in F∞. Then

f ∈ T1(F∞) but f /∈ B(F∞).

Theorem 5.6.3. Any discete group G containing F2 as subgroup is not uniterizable.

Proof. Since F2 conatains F∞, so G contains F∞, then we have T1(G) 6⊂ B(G) and, by

previous theorem we can say that G is not uniterizable.

So F2 is a non-amenable group which is not uniterizable. Which says that every group

is not uniterizable.

Now if every non-amenable discrete group contain a copy of F2, then it follows that ev-

ery non-amenable discrete groups are not uniterizable. Then the answer of Dixmier’s 2nd

question will be affermative for discrete case. But in 1980 A. Yu. Olshanski [8] established

such discrete group which does not contain any free subgroup, by using the solution by

AdianNovikov [1] of the famous Burnside problem, and also Grigorchuks cogrowth criterion

[6]. Later, Adian [2] showed that the Burnside group B(m,n) are all non-amenable when

m ≥ 2 and odd n ≥ 665.

37



Acknowledgments: Thanks to my parents for their support. I am very grateful to

Dr. Venku Naidu for his guidance. Through his encouragement and guidance, I feel that

I’m ready for tomorrow’s challenges. I also thank Partha da for his support throughout my

project. And lastly I’m extremely thankful to Dr. Narasimha Kumar for giving me such a

great opportunity.

38



Bibliography

[1] Adian, S. I. The Burnside problem and identities in groups. Ergebnisse der Mathe-

matik 95. Springer-Verlag, Berlin-New York, 1979.

[2] Adian, S. I. Random walks on free periodic groups. Izv. Akad. Nauk SSSR Ser. Mat.

46 (1982), 11391149.

[3] Deitmar, Anton A First Course in Harmonic Analysis. Second edition. 2005, 2002

Springer-Verlag New York, Inc.

[4] Deitmar, Anton; Echterhoff, Siegfried Principles of Harmonic Analysis. Springer 2009.

[5] Dixmier, Jacques Les moyennes invariantes dans les semi-groupes et leurs applications

Acta Sci. Math. Szeged 12 (1950) 213-227.

[6] Grigorchuk, R. I. Symmetrical random walks on discrete groups. Multicomponent

random systems, pp. 285325, Adv. Probab. Related Topics, 6, Dekker, New York,

1980.

[7] Hall, Brian Lie Grous, Lie Algebra, and Representations: An elementary Indroduction.

2003 Springer-Verlag New York, Inc.

[8] Olshanskii, A. Yu. On the problem of the existence of an invariant mean on a group.

Russian Math. Surveys 35 (1980) 180-181.

[9] Pisier, Gilles Similarity Problems and Completely Bounded Maps, Lecture Notes in

Math., vol. 1618, Springer-Verlag, Berlin, 2001.

[10] Pisier, Gilles Are unitarizable groups amenable? Infinite groups: geometric, combina-

torial and dynamical aspects, 323362, Birkhuser, Basel, 2005.

39


