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Abstract

In this thesis we have started by developing the theory for the elec-

troweak Standard Model. A prerequisite for this purpose is a knowledge

of gauge theory. For obtaining the Standard Model Lagrangian which de-

scribes the entire electroweak SM and the theory in the form of an equa-

tion, we need to develop ideas on spontaneous symmetry breaking and Higgs

mechanism which will lead to the generation of masses for the gauge bosons

and fermions. This is the �rst part of my thesis. In the second part, we

have moved on to radiative corrections which acts as a technique for the

veri�cation of QED and the Standard Model. We have started by calculat-

ing the amplitude of a scattering process depicted by the Feynman diagram

which led us to the calculation of g-factor for electron-scattering in a static

vector potential. Then, we have calculated the one-loop contribution to

the electron vertex function which has acted as a correction to the g-factor

value calculated previously. While performing these calculations we have

come across ultraviolet and infrared divergence. Although this thesis does

not show the mathematical calculations leading to the removal of the di-

vergence, we have discussed the solution to this problem in a theoretical

manner. We have also discussed the precision tests of QED which have

proved fundamental in the veri�cation of the Standard Model over the last

few years and the role of radiative corrections in such tests.
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�Is the purpose of theoretical physics to be no more than a cataloging of

all the things that can happen when particles interact with each other and

separate? Or is it to be an understanding at a deeper level in which there are

things that are not directly observable (as the underlying quantized �elds are)

but in terms of which we shall have a more fundamental understanding? �

Julian Schwinger,

Quantum Mechanics: Symbolism of Atomic Measurements1

1https://www.goodreads.com/quotes/tag/particle-physics



Part I

The Standard Model

1 Introduction

J.J. Thomson's discovery of the electron set in motion a series of events that changed

the face of modern physics. Other particles that were subsequently discovered were the

protons and neutrons which had a more complex internal structure, unlike electron.

So the questions that arose were: What are the fundamental constituents of matter?

How do they interact? How are they categorized? A lot of experimental and theo-

retical e�orts were put in to �nd the answers to these questions.The Standard Model

of particle physics is the outcome of that e�ort. This describes our universe at the

most fundamental level. 2This model describes all fundamental particles and their in-

teractions via three of the four fundamental forces - strong, electromagnetic and weak.

These forces are mediated by the exchange of the corresponding spin-1 gauge �elds:

eight massless gluons, a massless photon and three massive bosons, respectively. It is

a gauge theory described by the symmetry groups SU(3)C ⊗ SU(2)L⊗ U(1)Y . The

Standard Model is one of the most successful achievements of modern physics because

it is successful in explaining all known experimental facts with high precision. The

model can be depicted graphically as below :

This model was tested many times and each time it came up with a satisfying

theory. The discoveries that followed led to the con�rmation of the theories predicted

by the Standard Model and this increased our con�dence in it.

2The Standard Model of Electroweak Interactions A. Pich IFIC, University of Val`encia � CSIC,
Val`encia, Spain
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However, we will be discussing the Standard model of electroweak interactions which

obeys the SU(2)L ⊗ U(1)Y gauge symmetry. 3In particle physics, the electroweak

interaction is the uni�ed description of two of the four fundamental interactions of

nature: electromagnetism and the weak interaction. Although these two forces appear

very di�erent at everyday low energies, the theory models them as two di�erent aspects

of the same force. Above the uni�cation energy, on the order of 100 GeV, they would

merge into a single electroweak force. Glashow, Salam, and Weinberg were awarded the

Nobel Prize in Physics in 19794 for their contributions to the uni�cation of the weak

and electromagnetic interactions. The existence of the electroweak interactions was

experimentally established in two stages5: �rst being the discovery of neutral currents

in neutrino scattering by the Gargamelle collaboration in 1973, and second in 1983 by

the UA1 and the UA2 collaborations that involved the discovery of the W and Z gauge

bosons in proton�antiproton collisions at the converted Super Proton Synchrotron.

In this model, the leptons and quarks are arranged in generations. The vector

bosons, W±, Z0 and γ, that mediate the interactions are introduced. The heart of the

model is the scalar potential which is added to generate masses in a gauge invariant

way, via the Higgs mechanism. We will now gradually develop and describe the theories

that led to the �nal electroweak Standard Model Lagrangian.

3https://en.wikipedia.org/wiki/Electroweak_interaction
4https://en.wikipedia.org/wiki/Glashow-Salam-Weinberg_model
5https://en.wikipedia.org/wiki/Electroweak_interactions
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2 Handedness of Fermions

Prior to 1956, �mirror symmetry� was taken for granted � the mirror image of any

physical process was assumed to be a perfectly possible physical process. In 1956, Lee

and Yang started looking for experimental proof of the fact. Not �nding su�cient prove

of parity conservation in weak decay, they proposed a test - the beta decay of Cobalt

60 - which was carried out by C.S. Wu and parity violation was observed for the �rst

time in weak decay. The SU(2)L gauge group which is associated with weak decays

was thus concluded to act di�erently on left and right-handed particles.

The helicity projections are

ψL = 1−γ5

2
ψ and ψ̄L = 1+γ5

2
ψ̄

ψR=
1+γ5

2
ψ and ψ̄R = 1−γ5

2
ψ̄

As all fermions have a spin, let us consider the Dirac equation and express it as a

sum of left and right handed parts as below:

ψ= ψL+ψR

The Dirac Lagrangian is L= ψ̄(iγµ∂µ- m)ψ = iψ̄��∂ψ - mψ̄ψ

The mass term gets modi�ed as mψ̄ψ = m(ψ̄LψR+ ψ̄RψL).

The left-handed components form doublets under SU(2)Lwhereas the right-handed

components are singlets. So, this equation breaks gauge invariance. To avoid this, the

fermionic mass must be made zero according to this approach. But experiments show

that fermions have a �nite mass. Then the theory of spontaneous symmetry breaking

was brought into the picture. This indicates that left-handed fermions participate in

charged-current weak interactions i.e. the W-bosons couple to only the left-handed

components.

3



3 Choice of Gauge Theories for constructing the Model

6Glashow in 1961 noticed that in order to accommodate both weak and electromagnetic

interactions we should go beyond the SU(2) isospin structure. He suggested the gauge

group SU(2) ⊗ U(1), where the U(1) was associated to the leptonic hypercharge (Y)

that is related to the weak isospin (T) and the electric charge through the analogous

of the Gell-Mann-Nishijima formula (Q = T3 + Y
2 ). The theory now requires four

gauge bosons: a triplet (W1,W2,W3) associated with the generators of SU(2) and

a neutral �eld (Bµ) related to U(1). The charged weak bosons appear as a linear

combination of W1 and W2, while the photon and a neutral weak boson Z0 are both

given by a mixture of W3 and Bµ. The mass terms for W± and Z0 were put �by

hand�. However, this procedure breaks the gauge invariance of the theory explicitly. In

1967, Weinberg and independently Salam in 1968, employed the idea of spontaneous

symmetry breaking and the Higgs mechanism to give mass to the weak bosons and,

at the same time, to preserve the gauge invariance, making the theory renormalizable.

The Glashow�Weinberg�Salam model is known, at the moment, as the Standard Model

of Electroweak Interactions, re�ecting its impressive success.

The recipe to choose a gauge theory is as follows:

� Choose the gauge group G with NG generators.

� Add NG vector �elds(gauge bosons) according to the gauge group representation.

� Add scalar �elds to give masses to the vector bosons, if required.

� De�ne the covariant derivative and write the most general renormalizable La-

grangian, invariant under G, which couples all these �elds.

� Shift the scalar �elds so that the minimum of the potential is at zero.

� Apply quantum �eld theory to verify the theory and make predictions.

� Check with Nature if the model has anything to do with reality; If not, restart

from the very beginning!

There were several attempts to construct a gauge theory for the electroweak inter-

action.

6Standard Model: An Introduction * S. F. Novaes Instituto de F´�sica Te´orica Universidade
Estadual Paulista Rua Pamplona 145, 01405�900, S�ao Paulo Brazil
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4 Spontaneous Symmetry Breaking

4.1 Introduction

Whenever the ground state is no longer invariant under a symmetry of the Lagrangian,

we call it spontaneous symmetry breaking7.

At higher energy states, the system is symmetric and the ball settles at the center.

But as the energy decreases, the symmetric nature of the system gradually vanishes

and eventually we have an asymmetric state resulting in the ball being anywhere at

the bottom.

We know that both SU(2)L and U(1)Y are violated in weak interactions. Further-

more, the weak interactions are short ranged so that we would like the gauge bosons to

be massive. Both these issues can be addressed simultaneously if the local symmetries

are spontaneously broken by the Higgs phenomenon and this is what we discuss next.

4.2 The Higgs Mechanism

This can be best explained by the following example known as Einstein analogy :

There are a number of physicists in a room chatting silently. Einstein suddenly enters

the room which causes a disturbance. The people now start forming clusters around

Einstein forming a massive object in the room.

Let us explain this mathematically using spontaneous symmetry breaking of the

local U(1)Y symmetry.

Consider the scalar �eld Lagrangian L = (∂µφ)∗(∂µφ) - µ2φ∗φ - λ(φ∗φ)2.

To achieve local U(1)Y symmetry, we need to to use the corresponding transforma-

tions as below:

We introduce the covariant derivative Dµ= ∂µ − ieAµ
The gauge �eld transforms as Aµ → Aµ + 1

e
∂µα

The �eld transforms as φ→ e
iα(x)

φ

7See Appendix A for non-abelian gauge theory in spontaneous symmetry breaking.
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Using this we get the gauge invariant Lagrangian to be

L= (∂µ − ieAµ)φ∗(∂µ − ieAµ)φ - µ2φ∗φ - λ(φ∗φ)2

For µ2> 0, this is the QED Lagrangian for a charged scalar particle. So, we move

to a new case where µ2 < 0.

First, we minimize the potential and determine the vacuum expectation value which

is given by φ2
1+ φ2

2= v2 where v2= -µ
2

λ
.

Potential Energy plot

If the scalar transforms as φ(x)=
√

1
2
(v+η(x) + iε(x)).

Using this in the Lagrangian we get

L′= 1
2
(∂µξ)

2 + 1
2
(∂µη)2 − v2λη2 + 1

2
e2v2AµAµ − evAµ∂µξ-1

4
F µνFµν+ interaction

terms

Although we have generated masses for the gauge �elds Aµ and η, we also see in

this Lagrangian a massless ξ particle called the Nambu-Goldstone boson. The interac-

tion term of this particle Aµ∂
µξ represents an unphysical process. Aµ has two degrees

of freedom. The interaction signi�es Aµ changing to ξ which has one degree of free-

dom (being a scalar particle). This is not possible. So, a particular form of gauge

transformation was chosen to eliminate this ξ �eld.

This is given by

φ(x)=
√

1
2
(v+h(x))e

iθ(x)
v

6



Using this form in the Lagrangian we get

L′′= 1
2
(∂µh)2- λv2h2+1

2
e2v2A2

µ- λvh
3- 1

4
λh4+ 1

2
e2A2

µh
2+ ve2A2

µh

- 1
4
F µνFµν .

So, we have successfully eliminated the Goldstone boson from the Lagrangian. This

Lagrangian includes two interacting massive particles, a vector gauge boson Aµ and a

massive scalar particle h. This is the Higgs particle, and it is said that by this Higgs

mechanism via the Higgs particle the gauge boson absorbs the goldstone boson, thus

eliminating it from the theory.

4.2.1 Masses of vector bosons

For this purpose, we �rst introduce a scalar �eld

φ =

(
φα
φβ

)
=
√

1/2

(
φ1 + iφ2

φ3 + iφ4

)
where φ is an SU(2)L doublet of complex scalar �elds.

We next introduce the scalar �eld Lagrangian

L = (∂µφ)†(∂µφ) + µ2φ†φ - λ(φ†φ)2

To achieve local SU(2)L ⊗ U(1)Y symmetry of the Lagrangian we introduce

the covariant derivative Dµ= ∂µ+ ig τa
2
Wa

µ+ ig′Bµ
Y
2

We choose the vacuum expectation value of the Higgs �eld as

φ0=
√

1
2

(
0
v

)
.......................(1.1)

The masses of the gauge bosons are determined by using the vacuum expectation

value of the scalar �eld φ in the Lagrangian.
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The relevant term in the Lagrangian is

| (−ig1
2
τ.Wµ − ig′2Bµ)φ|2 =

g2

8
|

(
gW 3

µ + g′Bµ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −gW 3
µ + g′Bµ

)(
0

v

)
|2

= g2v2

8

[
(W 1

µ)2 +
(
W 2
µ

)2
]
+ v2

8
(g′Bµ − gW 3

µ)(g′Bµ − gW 3µ)

= (vg
2
)2W+

µ W
−µ+ (v

2

8
)(WµBµ)

(
g2 −gg′
−gg′ g′2

)(
W 3µ

Bµ

)
...................(1.2)

where W±= (W1∓ iW2)/
√

2

Comparing this with the boson mass term i.e. 1
2M

2B2
µ we get masses of the gauge

bosons to be M=1
2gv.

The remaining o�-diagonal terms of the matrix are

v2

8

[
g2
(
W 3
µ

)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
= v2

8

[
gW 3

µ − g′Bµ

]2
+

0
[
g′W 3

µ + gBµ

]2
......................(1.3)

where we have introduced the �elds as an orthogonal combination of each other and

the zero introduced is an eigenvalue of the 2×2 matrix in equation (1.1).

To identify this with the mass form of 1
2MZ

2Zµ
2and 1

2MA
2Aµ2we have to normalize

the mass terms in the above equation (1.2) such that

Aµ=
g′W 3

µ+gBµ√
g2+g′2

with MA= 0.

Zµ=
gW 3

µ−g′Bµ√
g2+g′2

with Mz=
v
2

√
g2 + g′2

So, by Higgs mechanism which is a consequence of spontaneous symmetry breaking,

we are able to generate masses for the vector bosons.

4.2.2 Photon Mass

A speci�c choice of the vacuum state breaks the SU(2)L⊗ U(1)Y symmetry.

For the vacuum state discussed above in equation (1.1) we have φ0=
√

1
2

(
0

v

)
.

This breaks the symmetry if T =1
2 , T

3= -1
2 and Y = 1 because simple matrix

calculations show that

8



T3φ0 6= 0

Y φ0 6= 0

According to the Gell-Mann-Nishijima formula, we have

Q = T3 + Y
2

where Q is the electric charge, T3 is the third component of isospin and Y is the

hypercharge.

For the speci�c set of values given above, we get Qφ0 = 0.

The transformation is given by φ0→eiα(x)Qφ0 = φ0.

So, the desired symmetry breaking scheme used here is SU(2)L⊗U(1)Y→U(1)em.

As the vacuum state is invariant under the U(1)Q/U(1)em transformation, we can

say that U(1)em symmetry remains unbroken. Thus, the Higgs mechanism leads to the

result that photon is massless.

4.2.3 Lepton Mass

Here we will show the case mass generation for an electron and it's neutrino. A similar

method can be applied to determine the masses of the other leptons.

The SU(2)Ldoublet is ΨL=

 νL

eL

and the U(1)Y singlet is eR. We do not have

a right-handed neutrino because being a massless particle it can have only one helicity

state. i.e. νL.

To drive the process of spontaneous symmetry breaking, we have to introduce dou-

blets of Higgs boson to make the interactions gauge invariant. These are then called

Yukawa-type interactions.

To generate mass, we need an SU(2)L⊗ U(1)Y symmetry invariant Lagrangian

which is given by

L= - Ge

( ν̄L ēL

) φ+

φ0

 eR + ēR

(
φ− φ̄0

) νL

eL


9



where Ge is a coupling constant.

Using the concept of spontaneous symmetry breaking, we again determine the vac-

uum expectation value i.e. φ=
√

1
2

 0

v + h(x)


Substituting this in the Lagrangian and performing simple calculations we

get

L= - me(ēLeR+ ēReL) -
me
v
(ēLeR+ ēReL)h ................(1.4)

where me=
Gev√

2
is a parametric form of the electron mass.

The second term represents an interaction between the electron and the scalar Higgs

particle. So, again we can say that Higgs mechanism is successfully able to transfer

mass to electrons.

4.2.4 Quark Mass

Quark masses can be generated by a similar method as adopted for generating lepton

masses. However, in quarks, we have an SU(2)L doublet

 u

d


L

and two singlet

particles corresponding to U(1)Y - uR and dR.

So, we need a new Higgs doublet which is given by

φc= - iτ2φ
∗=

(
−φ̄0

φ−

)

whose vacuum expectation state is given by

√
1
2

(
v + h

0

)
φc transforms under SU(2)L in the same way as φ but with an opposite weak

hypercharge Y= -1.

10



The gauge invariant Lagrangian can now be constructed in the same way as before

:

L= - Gd

(
ū d̄

)
L

(
φ+

φ0

)
dR - Gu

(
ū d̄

)
L

(
−φ̄0

φ−

)
uR

- Gdd̄R

(
φ− φ̄0

)( u

d

)
L

- GuūR

(
−φ0 φ+

)( u

d

)
L

Substituting the vacuum expectation states of φ and φc in the Lagrangian and

simply solving it will give

L= - md

(
¯dLdR + ¯dRdL

)
- md

v

(
d̄LdR + d̄RdL

)
h - mu(ūLuR+ūRuL) -

mu
v

(ūLuR + ūRuL)h .................(1.5)

where md =
Gdv√

2
and mu =

Guv√
2
.

So, we have terms representing masses of the up and down quarks. And the second

and fourth terms account for the interaction of these quarks with the Higgs particle h

resulting in these particles acquiring mass.

So, by using the concept of spontaneous symmetry breaking we have gen-

erated masses of the gauge bosons, the fermions, the quarks and rendered

the photon massless which involves all members of the Standard model.

Although the theory does not predict an exact value of the mass, it only

indicates the masses in terms of certain parameters which cannot be exactly

predicted.

11



5 The Standard Model Lagrangian

L= - 1
4Wµν.W

µν - 1
4Bµν.B

µν

+L̄γµ
(
i∂µ − g 1

2τ.Wµ − g′Y2Bµ

)
L+R̄γµ

(
i∂µ − g′Y2Bµ

)
R

+|
(
i∂µ − g 1

2τ.Wµ − g′Y2Bµ

)
φ |2 - V(φ)

- (GL̄φR +G2L̄φcR + Hermitian conjugate) ..................(1.6)

The �rst two terms represent the kinetic energies and self-interactions of the W±,

Z, γ.

The next two terms represent the kinetic energies and interactions of the leptons

and quarks with the W±, Z and γ.

The next two terms represent the W±, Z, γ and Higgs masses and couplings.

The last set of terms represents the lepton and quark masses and their coupling the

Higgs.

Wa
µν represents the SU(2)L gauge �eld tensor, where 'a' runs from 1 to 3, corre-

sponding to the three generators of the group. �g� represents the coupling. We can

write this in terms of the gauge �eld Wa
µ as

Wµν= ∂µWν − ∂νWµ+ig (WµWν−WνWµ)

2

12



Bµν represents the gauge �eld tensor of the U(1)Y group; g′ represents the coupling

and the corresponding gauge �eld is Bµ such that

Bµν = ∂µBν − ∂νBµ

This entire Lagrangian obeys the SU(2)L⊗ U(1)Y symmetry. Also, it can be shown

explicitly that each term of the Lagrangian obeys this symmetry. This is what we will

show in the next few sections.

5.1 Invariance of the Lagrangian

To check if the SM Lagrangian is invariant under the SU(2)L⊗U(1)Y symmetry trans-

formation, we must know how each of the �elds transform under this symmetry. And

they transform as below:

Bµν= ∂µBν − ∂νBµ .............(1.7)

L′= e(iαT+iβY )L ...................(1.8)

R′= eiβYR ...........................(1.9)

L̄′= e−(iαT+iβY )L̄ ...............(1.10)

R̄′= e−iβY R̄ .........................(1.11)

φ′= e(iαT+iβY )φ ..................(1.12)

φ′c= eiαiTiφc ........................(1.13)

B′µ= Bµ-
∂µβ

g′
....................(1.14)

W′µ= G
[
Wµ + i

g
G−1 (∂µG)

]
G−1 .(1.15)

13



5.1.1 Invariance of the gauge boson terms

We do not do a direct proof of this fact. Instead, we �rst see how the covariant

derivative transforms under an SU(2)L transformation and then move on to see if it

transforms in the same way under a transformation of the form SU(2)L⊗ U(1)Y .

We know the wavefunction transforms as

Ψ′= GΨ ................(1.16)

where G is the transformation. So, for the term to be invariant, the covariant

derivative must transform in the same way.

Since we already know how the covariant derivative transforms under SU(2)L trans-

formation, we �rst choose a form of the covariant derivative and see if it leads to the

same result.

We choose the covariant derivative to be Dµ= (∂µ+igWµ) .................(1.17)

So, we have D′µΨ′= (∂′µ+ igW′µ)Ψ
′

Using equations 1.15, 1.16 and 1.17 and solving we �nally get

D′µΨ′= G(DµΨ)

which is the desired result.

Now we move on to see if the covariant derivative for an SU(2)L⊗ U(1)Y transforms

in a similar way.

The covariant derivative we choose is Dµ= (∂µ+ig
2
Wµig

′ Y
2
Bµ)

Also, Ψ′= GeiβY Ψ

Solving as explained above we get to see that even in this case we have

D′µΨ′= GeiβY (DµΨ)

As it transforms in the same way as in SU(2)L, we conclude that the �rst two terms

are invariant under SU(2)L⊗ U(1)Y symmetry of the electroweak theory.
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5.1.2 Invariance of the next two set of terms

L̄γµ
(
i∂µ − g 1

2τ.Wµ − g′Y2 Bµ
)
L+R̄γµ

(
i∂µ − g′Y2 Bµ

)
R

+|
(
i∂µ − g 1

2τ.Wµ − g′Y2 Bµ
)
φ |2 - V(φ)

The �rst term involves the covariant derivative for the SU(2)L⊗ U(1)Y transforma-

tion which as discussed above is inherently invariant under the transformation.

The second term involves the right-handed fermions which are singlets under SU(2)L

transformation. So their covariant derivative used omits the SU(2)L gauge �eld term.

Being the covariant derivative for U(1)Y transformation, this term is also invariant.

The third term can be written and explained in simpler terms as below:

| Dµφ|2→|(Dµφ)†G†G (Dµφ) |= |(Dµφ)† (Dµφ) |= | Dµφ|2

The last term represents the potential energy and all potential energy terms involve

φ†φ which is invariant under SU(2)L⊗ U(1)Y transformation.

Thus, we have proved that each term of the Standard Model Lagrangian of

particle physics is invariant under the symmetry transformation SU(2)L⊗
U(1)Y . So, till now we have discussed the concept of Higgs mechanism which

is responsible for lending mass to the massive particles and eventually we

have formulated the Standard Model Lagrangian which forms the basis of

particle physics.
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6 Problems of the Standard Model

Although the Standard Model for electroweak interactions have been successful in ex-

plaining several experimental �ndings, still it is believed that it is not a full picture of

nature, and physics exists beyond it in the energy range higher than the electroweak

breaking range. Some of its drawbacks are:

� It has been proved

recently that neutrinos

have a �nite mass. How-

ever, in the Standard

Model for electroweak

interactions neutrinos

are assumed to be

massless.

� It also cannot explain the requirement for dark matter.

� The three gauge couplings seem to converge to a uni�ed value at higher energy

scale. The Standard Model cannot account for this fact satisfactorily.

All aspects of the SM have not been tested su�ciently. Inspite of its drawbacks,

this is one of the milestones of modern physics. Without delving deep into this, we

stop here.

Next we will move on to radiative corrections which aims at calculating the scat-

tering processes between the SM particles and also acts as a tool for the veri�cation of

the theory.
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Part II

Electron Vertex Correction

1 Introduction to Radiative Corrections

8The formalism of quantum �eld theory is a generalization of quantum mechanics to an

in�nite dimensional space in which the number of particles is not a conserved quantity.

This enables one to describe processes like scattering, annihilation, creation and decay

of particles using a set of well-de�ned rules. We know that in QM the cross-section of

a process is given by the square of the amplitude of the process calculated using the

Feynman rules. Since exact calculations of the probability amplitude is not possible, we

use perturbation theory to obtain the result in the form of a power series. The leading

terms of this series represent the tree-level Feynman diagrams i.e. those without any

loops. The loop diagrams represent the higher-order terms of the series.

The contribution to the amplitude from all tree-level diagrams is proportional to

the square of the coupling constant e2. In tree-level diagrams, all external particles are

physical and observable.

Tree-level Diagrams9

8arXiv:0901.2208v1 [hep-ph] 15 Jan 2009
9arXiv:0901.2208v1 [hep-ph] 15 Jan 2009
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With higher order diagrams, the coupling constant raises to a higher degree de-

pending on the number of vertices involved in the process. All these diagrams are

proportional to the fourth power of the coupling constant e4.10

Higher order diagrams11

Over the last few years, high energy experiments are being conducted with a very

high precision and complexity. So, now testing a theory by a direct comparison of

observed cross-sections and other calculated quantities is only an idealized picture.This

is mainly due to experimental ine�ciencies. This is the motivation of studying radiative

corrections in the �eld of high-precision high-energy data analysis.

What are radiative corrections? As is evident, the name comprises of two parts

- radiative and corrections. This name was given because in electrodynamics this

resembles the emission and absorption of photons. This name is used in some other

theories which use perturbative corrections.

These corrections yield results of very high precision. Let us consider �g� which is

a proportionality constant connecting the magnetic moment of a particle to its angular

momentum quantum number and a unit of magnetic moment i.e. m = ge~
2mec

S . Ac-

cording to Dirac's theory, the relativistic generalization of QM, we get g ≈ 2. However,

Schwinger showed that QED radiative corrections lead to the more precise result of
g−2

2
= α

2π
.

In the next few sections we will gradually develop this theory starting with the basic

tools required to calculate the amplitude and then move on to the one-loop correction.

10arXiv:0901.2208v1 [hep-ph] 15 Jan 2009
11arXiv:0901.2208v1 [hep-ph] 15 Jan 2009

18



1.1 Feynman Rules

In theoretical physics, Feynman diagrams is a pictorial way of depicting the processes

that goes on at the subatomic level. It derives it's name from it inventor - Richard Feyn-

man. Using this technique one can depict several subatomic processes very elegantly

and in a much simpler manner making the representation more visually appealing. In

theoretical physics, an important work involves calculating the probability amplitudes

of processes which involve very large integrals and the integration also involves a large

number of variables. However, these integrals have de�nite structure which is graph-

ically depicted in the Feynman diagrams. There are a speci�c set of rules which are

used to determine these integration structures. The rules are as follows:

vertex : -ieγµ

photon propagator : iDF,µν= − igµν
k2+iε

fermion propagator : iSF (p) = i

�p−m+iε

initial, �nal electron : u(p), ū(p)

initial, �nal positron : v̄(p), v(p)

initial, �nal photon : ε(k) , ε∗(k)

In addition to this, we have to take care of a few more points while writing down

the integral:

1. Momentum must be conserved at every vertex.

2. Integration over each undetermined loop momentum is
´

d4k
(2π)4

3. For each closed fermion loop, we have to introduce a factor of − 1
symmetry−factor

owing to the Pauli exclusion principle.

4. Only connected diagrams count.

5. Amputate external legs
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A Feynman diagram looks like

The lines do not depict the trajectory but is indicative of the progress of the process.

2 Electron vertex function

2.1 Introduction

Having discussed the basics of radiative corrections, we can now discuss the form of

the vertex function of an electron scattering due to a virtual photon depicted as

Evaluating Feynman diagrams with loops is a tedious process. So, instead of jump-

ing into correction calculations, let us �rst see what form we expect the outcome to

be and interpret the possible terms. This will make our future calculations easier and

more predictable.
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Consider the set of diagrams

The gray circle called the blob represents the sum of lowest-order electron-photon

vertex and all amputated loop corrections. This total vertex contribution is represented

by -ieΓµ(p′, p).

The diagrams on the right represent all possible diagrams for the scattering process,

the �rst one being the tree-level diagram and the rest being the higher-order corrections.

Now, using Feynman rules we can �nd the form of the amplitude for electron scattering

from a heavy target. This is given by

iM = ū(p′) (−ieΓµ(p′, p))u(p)(− igµν
q2 )ū(k′)(−ieγν)u(k)

= ie2(̄u(p′)Γµ(p′, p)u(p))( 1
q2 )(ū(k′)γµu(k))

By momentum conservation at the vertex we have, q = p′- p. Γµ is a Lorentz

vector and can be expressed as a linear combination of several other Lorentz vectors

like γµ, pµ, p′µ, �p, �p
′, p2, p′2, gµν, εµνρσ and the list is exhaustive. But εµνρσ has

odd parity and thus, is not included in the expression for Γµ. Otherwise, it would

lead to parity violation. Among the other variables, we can make any number of

possible combinations we want (ensure the order of index is one every time). Now,

by simple calculations, obeying momentum conservation law and using the relations

�pu(p) = mu(p)12, ū(p′)�p
′ = ū(p′)m13, gµνpµ = pν, gµνp′µ = p′ν, gµνγν = γµ and

{γµ, γν} = 2gµνwe will be able to reduce the terms to a much simpler form that looks

like

Γµ= Aγµ+ pµB′ + p′µC ′.

12See appendix B.1
13See Appendix B.2
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This can be written for our convenience as

Γµ= Aγµ+ (pµ + p′µ)B + (pµ−p′µ)C ....................(2.1)

Now we will use the Ward Identity qµΓµ = 014 to further simplify the expression.

Although we will not discuss much about the Ward identity here, but it is essentially

a statement of current conservation, which is a consequence of the gauge symmetry.

Substituting equation (2.1) in the Ward identity we get,

�qA + qµ (pµ + p′µ)B + qµ (pµ − p′µ)C = 0

Using the momentum conservation relation and the relation ū(p′)�qu(p)=0, we see

that the �rst two terms of the above equation vanish. As the third term does not vanish

automatically, we set C = 0. So, we �nally get,

Γµ= Aγµ+ (pµ + p′µ)B ...................(2.2)

The coe�cients can involve Dirac matrices dotted into vectors i.e. �p or ��p
′. We can

write this in terms of ordinary numbers without loss of generality using �pu(p) = mu(p)

and ū(p′)�p
′ = ū(p′)m. Since, q2= 2m2- 2p.p′, the coe�cients can be assumed to be

functions of only q2.

We can further simplify this relation using the Gordon identity,

ū(p′)γµu(p) = ¯u(p′)
[
p′µ+pµ

2m
+ iΣµνqν

2m

]
u(p) where Σµν = i

2
[γµ, γν ]15

Using this and expressing the coe�cients as functions of q2 and some constant, say

m, we can write the �nal expression as

Γµ(p′, p) = γµF1(q2) + iΣµνqν
2m

F2(q2) ..................(2.3)

where F1(q2)and F2(q2) are called the form factors and their exact form is not

determined.

To the lowest order, F1(q2) = 1 and F2(q2) = 0.

14See Appendix D for details
15For derivation, see Appendix B
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2.2 Amplitude in non-zero electrostatic potential

In case of interaction, we add the perturbed Hamiltonian to the unperturbed one. The

interaction Hamiltonian in QED is

4Hint =
´
d3xeAclµ j

µ

where jµ = ψ̄(x)γµψ(x) is the electromagnetic current and Aclµ is a �xed classical

potential.

The scattering amplitude is then given by

iM(2π)δ(p0′ − p0) = -ieū(p′)γµu(p).Ãclµ (p′ − p)

Because of vertex correction, we have to modify this as

iM(2π)δ(p0′ − p0) = -ieū(p′)Γµu(p).Ãclµ (p′ − p) ...............(2.4)

To compute the amplitude for coulomb scattering of a non-relativistic electron in a

non-zero electrostatic potential, we set Acl
µ (x) = (φ (x) , 0)

Then Ãclµ (q) =
(

2πδ(q0)φ̃ (q) ,0
)
. Using this in equation (2.4), we get

iM = -ieū(p′)Γ0(p′, p)u(p)φ̃(q)

Substituting equation (2.3) in the above equation, we can express it in terms of the

form factors.

If the electrostatic �eld is very slowly varying over a large region, φ̃(q) will be

concentrated about q = 0. So, in the limit q →0, F2(q2) does not contribute.

We know the Dirac spinors are given by

u(p) =

(
− σ.p
|E|+mξ

ξ

)
..................(2.5)

Using this in the non-relativistic limit, we get

ū(p′)γ0u(p) = u†(p′)u(p) ≈2mξ†ξ
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So, the amplitude of scattering of an electron from an electric �eld is given by

iM = -ieF1(0)φ̃(q).2mξ†ξ

We can interpret M as the scattering of an electron from a potential well. Using

this Born approximation for scattering from a potential we get

V(x) = eF1(0)φ(x)

So, F1(0) is the electronic charge in units of e.

2.3 Electron scattering from a static vector potential

We can do the same analysis as above for electron scattering from a static vector

potential. Here, we set Acl
µ (x) =

(
0, Aclµ (x)

)
So, the scattering amplitude is given by iM = -ieū(p′)Γi(p′, p)u(p)Ãcli (q)

Using the Gordon identity this is �nally written as

iM = -ie[ū(p′)
{
γiF1 + iΣiνqν

2m
F2

}
u(p) ˜]Acli (q) ...............(2.6)

Using the Dirac spinors from equation (2.5) and the relation

σiσj = δij + iεijkσk to solve the above equation we get,

ū(p′)γiu(p) = 2mξ†
[
− i

2m
εijkqjσk

]
ξ

and ū(p′)
{

i
2m

Σiνqν
}
u(p) = 2mξ†

[
− i

2m
εijkqjσk

]
ξ

So, the complete equation appears to be

ū(p′)
{
γiF1 + iΣiνqν

2m
F2

}
u(p) ≈ 2mξ†

(
− i

2m
εijkqjσk [F1(0) + F2(0)]

)
ξ

Inserting this in equation (2.6), we get the �nal form of the amplitude to be

iM = -i(2m)eξ†
(
− 1

2m
σk [F1(0) + F2(0)]

)
ξB̃k(q) .................(2.7)

where B̃k(q) = −iεikjqiÃclj (q) is the fourier transform of the magnetic �eld pro-

duced by Acl(x).
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Again using the Born approximation for scattering from a potential we get V(x)

= - <µ>.B(x) and comparing this with equation (2.7) we get

<µ> = e
2m

2 [F1 (0) + F2 (0)]ξ† σ
2
ξ

where ξ† σ
2
ξ is the spin operator.

Comparing this with the known relation µ= g
(
e

2m

)
S, we get

g = 2 [F1 (0) + F2 (0)]= 2 + 2F2(0)

In the lowest order, since F2 is zero, we get g ≈ 2.

From this we can conclude that if we include higher-order corrections where F2 will

not be zero; g will be modi�ed, and we will get a small but �nite di�erence of the

electron's magnetic moment from the Dirac value.

So, we now have an understanding of Feynman diagrams and the calculation

of probability amplitude from them. We will see that these corrective calcu-

lations enables us to produce certain results with more precision. Although

the calculations involve some hectic algebra, but they eventually simplify

leading to extraordinary results. This is one of the results of radiative cor-

rections which was discussed previously. Now that we know what form the

answer will take, we will move on to see how to calculate the exact form of

a one-loop correction to the electron vertex function.
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3 The Electron Vertex Function - Evaluation

3.1 Introduction

One-loop diagrams are the �rst step towards the correction of the vertex function.

What comes next are higher order contributions.

Consider the following Feynman diagram with one-loop.

Since, here we will consider �rst-order correction to the vertex function, we can

write the vertex correction as

Γµ= γµ+ δΓµ .

Here we express Γµ to be the sum of corrections of all the vertices. So, this

is written as the sum of single-vertex correction and the �rst order correction.

So, we have ū(p′)δΓµu(p) =

´
d4k

(2π)
4

−igνρ
(k−p)2+iεū(p′)(−ieγν) i(�k′+m)

(�k′2−m2+iε)
γµ

i(�k+m)
(�k2−m2+iε)

(−ieγρ)u(p)

= 2ie2
´

d4k
(2π)

4

ū(p′)[�kγµ�k′+m2γµ−2m(k+k′)
µ]u(p)

{(k−p)2+iε}(k′2−m2+iε)(k2−m2+iε)
.....................(2.8)

To obtain the second line use [γνγµγν = −2γµ] and simplify.

As we see, this integration is not at all easy. It is almost impossible to solve this

with common integration tools. We would require a new set of computational tools

known as the Feynman parameters. Before proceeding, we must have a clear idea about

this method of integration.
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3.2 Feynman parameters

Feynman parametrization is a technique to evaluate loop integrals which arise from

Feynman diagrams containing one or more loops. It expresses the denominator of

a fractional integral as the product of the terms i.e. we get a single polynomial in

the denominator. However, we have to introduce some auxiliary parameters for the

purpose.

For example,

1
AB

=
´ 1

0
dx 1

[xA+(1−x)B]2
=
´ 1

0
dxdyδ (x+ y − 1) 1

[xA+yB]2

However, we have three terms in the required denominator of equation (2.8). So,

we need a better identity. A more general identity can be obtained by induction and

is given by

1
A1A2...An

=
´ 1

0
dx1dx2...dxnδ (Σxi − 1) (n−1)!

[x1A1+...+xnAn]n
...............(2.9)

The variables x and y which help in this simpli�cation are called the Feynman

parameters.

Using this we will �rst simplify the denominator and then simplify the numerator

separately. Let us do this step by step.

3.3 Simpli�cation of the Denominator

Let us apply the above formula of equation (2.9) to the denominator in equation (2.8).

We get

1

{(k−p)2+iε}(k′2−m2+iε)(k2−m2+iε)
=
´ 1

0
dxdydzδ (x+ y + z − 1) 2

D3

where D = z (k − p)2 + y (k′2 −m2) + x(k2 −m2) + (x+ y + z) iε

= x (k2 −m2) + y (k′2 −m2) + z (k − p)2 + iε

To obtain the second line we have used k′ = k + q and x+y+z=1.

Even this form of the denominator has a number of integrable variables which

can eventually prove to be gruesome. So, we further try to simplify the form of the

denominator.

Let l = k + yq − zp.
Using this in D and doing a bit of simple algebra will yield the result

D = l2 −4+ iε where 4 = −xyq2 + (1− z)2m2

Since q2 < 0 for scattering process, 4 is positive and we can consider it to be the

e�ective mass term.
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Since D depends only on the magnitude of l, we have

´
d4l

(2π)
4
l4

D3 = 0 ...........(2.10)

´
d4l

(2π)
4
lµlν

D3 =
´

d4l
(2π)

4

1
4g

µν l2

D3 .............(2.11)

The �rst relation follows from symmetry.

The second relation vanishes if µ 6= ν. So, for Lorentz invariance, the integral must

be made proportional to gµν . The relation can be cross-checked by multiplying both

sides by gµν .

Next, we try to express the numerator in terms of l using the above relations.

3.4 Simpli�cation of the Numerator

As shown in equation (2.8), the numerator is

N = ū (p′) [��kγµ��k′ +m2γµ − 2m (k + k′)µ]u (p)

Substituting the values of �k and �k′ in the above equation of the numerator we get,

N =

ū (p′) [(��l − y�q + z�p) γ
µ (��l + �q − y�q + z�p) +m2γµ − 2mqµ − 4m (l − yq + zp)µ]u(p)

All linear terms in l become zero on integration by virtue of equations (2.10) and

(2.11) and hence, vanish eventually. So, we have

N = ū(p′)[��lγµ ��l + (−y�q + z�p) γ
µ ((1− y) �q + z�p) +m2γµ]u(p) ............(2.12)

Now we will solve each term separately.

The �rst term can be simpli�ed using cli�ord algebra {γµ, γν} = 2gµνand lµlν =
1
4
gµνl2. We get,

��lγµ ��l = −1
2
l2γµ ...........(2.13)

28



Moving on to the second term, this requires quite a bit of algebra. To simplify this

term, we would require the following relations :

x+ y + z = 1

�pγ
µ = 2pµ − γµ�p16

�q = �p
′−�p

�pu(p) = mu(p)

ū(p′)�p
′ = ū(p′)m

Using this and gradually simplifying, we get

[(−y�q + z�p) γ
µ ((1− y) �q + z�p)] =

(1− x)(1− y)γµq2 + 2mz(x− 1)(mγµ − pµ) +mz(1− y)(2qµ − �qγ
µ) +m2z2γµ

..............(2.14)

Now we can express the numerator as obtained in equation (2.12) using the equa-

tions (2.13) and (2.14). What we will get is a set of three terms depending on γµ, pµ

and qµ. We will get a more convenient form after some simple algebraic simpli�cations

of each of the terms and �nally using the equality pµ = 1
2
{(pµ + p′µ) + (pµ − p′µ)} =

1
2
{(pµ + p′µ)− qµ}.

We �nally get ,

N = ū(p′)[γµ
{
−1

2
l2 + (1− x)(1− y)q2 +m2(1− 2z − z2)

}
+

mz(z − 1)(pµ + p′µ) +m(z − 2)(x− y)qµ]u(p) .............(2.15)

So, we see that we have reached the desired form of

Γµ= Aγµ+ (pµ + p′µ)B + qµC.

The coe�cient of qµ must vanish according o the Ward identity which was discussed

before. Moreover, the denominator is symmetric under x↔y. The coe�cient of qµ is

odd under x↔y and so it vanishes on integrating over x and y. Next, we use the

Gordon identity to eliminate the form of pµ + p′µ. We �nally get the numerator to be,

N =

ū(p′)
[
γµ
{
−1

2
l2 + (1− x)(1− y)q2 + (1− 2z − z2)m2

}
+ iΣµνqν

2m
2m2z(1− z)

]
u(p)

16See appendix A.2
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3.5 Final calculations

Our complete expression for the �rst order contribution to the electron vertex is

ū(p′)δΓµu(p) =

2ie2
´

d4l
(2π)

4

´ 1

0 dxdydzδ (x+ y + z − 1) 2
D3×

[
γµ
{
−1

2l
2 + (1− x)(1− y)q2 + (1− 2z − z2)m2

}
+ iΣµνqν

2m 2m2z(1− z)
]

..............(2.16)

Now our aim is to evaluate this integral. There are two integrals which are to be

evaluated and they can be generalized to express in the form as below:

´
d4l

(2π)4
1

(l2−4)m

and
´

d4l
(2π)4

l2

(l2−4)m

It is not di�cult to evaluate these integrals using contour integral for the l0 integra-

tion and then do the integration of the spatial part in spherical coordinates. We will

use a trick called the Wick rotation. This technique enables us to �nd the solution of

this problem in the Euclidean space by substituting an imaginary number variable for

a real number variable. The integration of the spatial part also becomes much simpler

in the Euclidean space.

The denominator can be expressed as D = l20 − (| l |2 +4) + iε
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In the Euclidean space, the four-vector is expressed as lE ≡ (il0, li). The change in

variable is so chosen as to take into account the minus sign that comes in the Minkowski

space. The location of the poles and the fact that the integrand falls o� rapidly at large

| l0 |, allow us to rotate the contour counter-clockwise by 90o. We can now evaluate

the integral in four-dimensional spherical coordinates.

Let us �rst evaluate

´
d4l

(2π)4
1

(l2−4)m
= i(−1)m

(2π)4

´
d4lE

(l2E+4)
m

= i(−1)m

(2π)4

´
dΩE

´∞
0
dlE

l3E

(l2E+4)
m

Substituting α = l2E + ∆ and then solving by integration by parts we �nally get

´
d4l

(2π)4
1

(l2−4)m
= i(−1)m

(4π)2
1

(m−1)(m−2)
1

4m−2 ...............(2.17)

Next, we evaluate the second integral in the same way as above. The di�erence will

be that in this integral we will have a factor of l5E instead of l3E because of the extra

l2term in this case. So, we �nally have

´
d4l

(2π)4
l2

(l2−4)m
= i(−1)m−1

(4π)2
2

(m−1)(m−2)(m−3)
1

4m−3 ..............(2.18)

This second integral is valid only for m > 3. For m = 3, the Wick rotation cannot be

justi�ed and the term becomes divergent in any event. But m = 3 is the only condition

we need to evaluate the vertex function. To render this integral �nite, we will use a

method known as Pauli-Villars regularization17.

As an example, consider the modi�cation of the original Feynman propagator as

1
(k−p)2+iε

→ 1
(k−p)2+iε

− 1
(k−p)2−Λ2+iε

Here Λ is a very large mass. The second term in the modi�cation can be thought

of as the propagator of a �ctitious heavy photon whose contribution is subtracted from

that of the ordinary photon. So, now terms involving the heavy photon will be modi�ed.

The numerator will remain the same but the denominator will get modi�ed as

4→ 4Λ = −xyq2 + (1− z)2m2 + zΛ2

17See appendix E
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Now we can modify the integral (2.18) by replacing with a convergent integral,

which can be Wick rotated and evalated:

´
d4l

(2π)4

[
l2

(l2−4)3 − l2

(l2−4Λ)3

]
= i

(4π)2

´∞
0
dl2E

[
l4E

(l2E+4)
3 − lE

(l2E+4Λ)
3

]
= i

(4π)2 log
(
4Λ

4

)
+ (Λ−2) ..............(2.19)

The convergent terms present previously are modi�ed by terms of order Λ−2 which

we ignore.

Now we have all the tools to evaluate the correction integral. We use the equations

(2.17) and (2.19) to evaluate the parts of the integration involving
´

d4l
(2π)4 and l terms.

After solving we get the vertex correction to be like

= α
2π

´ 1

0
dxdydzδ (x+ y + z − 1)×

ū(p′)[γµ
{
log
(
zΛ2

4

)
+ 1
4 ((1− x) (1− y) q2 + (1 + z2 − 4z)m2)

}
+ iΣµνqν

2m

{
1
42m2z(1− z)

}
]u(p) ...............(2.20)

Comparing this with equation (2.3), we can determine F1(q2) and F2(q2).

As discussed in the previous section, we have seen that for the determination g-

factor we need F2(q2 = 0). So, we evaluate the integration (2.20) for q2= 0.

Evaluating :

F1 (q2 = 0) = α
2π

´ 1

0
dxdydzδ (x+ y + z − 1) ū (p′) [log

(
zΛ2

4

)
+

1
4 ((1− x) (1− y) q2 + (1 + z2 − 4z)m2)]

= α
2π

´ 1

0
dz
´ 1−z

0
dy
´ 1−y−z

0
dxδ (x+ y + z − 1) ū (p′) [log

(
zΛ2

4

)
+

1
4 ((1− x) (1− y) q2 + (1 + z2 − 4z)m2)]

Solving this integration we will see that the �rst and last terms become divergent

while the second term becomes zero. Therefore, F1

(
q2 = 0

)
becomes divergent. This

is the case of infrared divergence as the energy of the object contributing to this term

is approaching zero.
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Now evaluating again :

F2(q2 = 0) = α
2π

´ 1

0
dxdydzδ (x+ y + z − 1) ū (p′) iΣµνqν

2m

{
1
42m2z(1− z)

}
u(p)

= α
2π

´ 1

0
dz
´ 1−z

0
dy
´ 1−y−z

0
dxδ (x+ y + z − 1)×

ū (p′) iΣµνqν
2m

{
1
42m2z(1− z)

}
u(p)

= α
2π

´ 1

0
dz
´ 1−z

0
dy
´ 1−y−z

0
dxδ (x+ y + z − 1)×

ū (p′) iΣµνqν
2m

{
2m2z(1−z)
m2(1−z)2

}
u(p)

Finally we get

F2 (q2 = 0) = α
2π

= g−2
2

ae = g−2
2
≈ 0.0011614

This result was �rst obtained by Schwinger in 1948. Experiments give ae =

0.0011597. Apparently, the theoretical value of ae we calculated is also unambiguously

correct upto higher orders of α.

So, we have successfully calculated the one-loop correction to the electron

vertex function. This has also led us to a more precise value of the g-factor.

Calculations can be performed for higher order corrections to the vertex

function and a sum of all possible corrections gives the true vertex func-

tion. Successive generations of physicists have developed more advanced

techniques of determining this coe�cient ae with higher accuracy theoret-

ically and experimentally. Now the coe�cients of QED formula for ae are

known through order α4. Calculation of higher order coe�cients requires a

systematic study of ultraviolet divergence.
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3 A solution to the divergence problem

Throughout we have considered the scattering process of an electron from a very heavy

particle. Assuming that the heavy particle accelerates less and thus, radiates less

during the scattering process enables us to neglect the contribution of this vertex to

the correction.

Previously we have come across infrared divergence. Ultraviolet divergence is also

observed in the amplitude cross-section calculations when the loop integral diverges for

k → ∞. Throughout we have considered only one loop-diagram and performed the

necessary calculations. However, there are many such loop diagrams which contribute

to the correction of the vertex function.

So, after the tree-level diagram, the �rst order correction terms come from the

following four loop diagrams:

As discussed before, the �rst diagram, the vertex correction diagram, is the most

intricate and gives the largest variety of new e�ects. For example, the anomalous

magnetic moment of the electron which was evaluated in the previous sections.

The next two diagrams are the external leg corrections.

The �nal diagram is called vacuum polarization. This requires more advanced and

complicated machinery for its evaluation and hence is not discussed in this thesis.

The �rst three diagrams gives ultraviolet divergence but the divergent parts of

these integrals cancel out on being summed together for measurable quantities like

cross-section. These diagrams also contain infrared divergences - divergence coming

from the k → 0 end of the loop-momentum integrals - which are canceled out on

including the bremsstrahlung diagrams shown below :

These diagrams are divergent in the region where the momentum of the photon

tends to zero. In this regime, the photon cannot be detected by any physical detec-

tor. So, the cross-sections from these diagrams must be added to the cross-section for

scattering without radiation.
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Adding the contributions of all these diagrams we get a completely �nite, non-

diverging value for a measurable quantity like cross-section.

4 Precision Tests of QED

Di�erent atoms play di�erent roles in the modern world. For example, a unit of time,

the second, is de�ned via the hyper�ne interval in the cesium atom, while the atomic

mass unit and the Avogadro number are de�ned via the mass of a carbon atom. So,

when studying a new system or new mechanics or new model, one tries to apply and val-

idate the theory for the simplest systems available. So, modern physics started with the

study of free particles and then simple atoms. QED proves successful for a broad range

of problems from atomic spectra to scattering, from low energy, related to microwave

radiation, to high energy phenomena with hard annihilation and bremsstrahlung, from

nano- to giga- electronvolt. A remarkable outcome for QED of the hydrogen atom is

that the anomalous magnetic moment of an electron was �rst discovered by Rabi and

his colleagues as an anomaly in the hyper�ne structure of hydrogen. Immediately that

was interpreted as a possible anomaly related to a free electron and only afterwards

was that con�rmed by a direct experiment. We have proved this theoretically in the

earlier sections and derived a more precise value of this proportionality constant. Often

accuracy of theory and experiment are not compatible. However, there is a broad range

of e�ects, for which theory and experiment approach the same high level of accuracy.

The study of such e�ects forms a �eld called precision tests of QED18.

The coe�cients of QED formula for ae are now known through order α4. The

calculation of order α2 and higher orders require a systematic treatment of ultraviolet

divergences. The most recent calculation of ae was evaluated by Dehmelt and his

collaborators by trapping a single electron in a system of electric and magnetic �elds

and exciting to a spin resonance. Today, the best theoretical and experimental values

of ae match to eight signi�cant �gures.

The Standard Model of electroweak theory is a renormalizable gauge theory. At the

tree level, the SM has its properties and these properties have been extensively tested

like the discovery of the neutral current. However, the genuine features of this theory

as a renormalizable theory is proved by studying the small but �nite quantum e�ects

on physical observables, i.e. radiative corrections with the data obtained from precision

experiments like LEP, CDF, etc. The precision tests of such �nite radiative corrections

to the electroweak parameters like gauge couplings and gauge boson masses are used to

18Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants Savely
G. Karshenboim D. I. Mendeleev Institute for Metrology, 190005 St. Petersburg, Russia Max-Planck-
Institut f¨ur Quantenoptik, 85748 Garching, Germany
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validate the SM. Higher order QED calculations have been carried out for several other

quantities like transition energies in hydrogen and hydrogen-like atoms, anomalous

magnetic moment of a muon, decay rates of singlet and triplet states positronium,

etc19. The precision comparison between QED theory and experiments requires an

extremely precise value of the �ne-structure constantα which can be obtained from

another QED precision experiment. So, each comparison of theory and experiment is

assumed to be an independent determination of α. Each α is assigned an error because

of the uncertainties between theory and experiments. The desired results are generally

obtained by the �tting of experimental data with a theoretical expression containing

α. Consider the table below displaying values of α−1 obtained from QED precision

experiments of di�erent processes:

Each value of α in the table is obtained by �tting an experimental measurement to

a theoretical expression that contains α as a parameter. The numbers in parenthesis

are the standard errors in the last displayed digits. Experimentally the value of ae

is determined which is then plugged in the corresponding theoretical expression and

solved for α (the expression is di�erent for di�erent processes and also depends on the

order of α being dealt with). We have performed the calculations for an electron vertex

upto order 1. Higher order terms provide more precise results and are solved by the

method of �tting.

19The Physics of the Standard Model and Beyond By T. Morii, C. S. Lim, S. N. Mukherjee
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Higher-loop calculations are much more complicated because the number of dia-

grams increases very rapidly with the number of loops; at 4-loop order there are thou-

sands of diagrams; a computer is needed just to count them! Also, at higher orders one

has to include e�ects like strong and weak interactions because photons interact not

just with electrons and other charged leptons, but also with hadrons and W± particles,

which in turn interact with other hadrons, Z0, Higgs, etc. Nevertheless, people have

calculated the electron's and muon's g factors up to order α4 back in the 1970s and

more recent calculations are good up to α5 order.

Considerable evidence for the general validity of QED is provided by the

enormous variety of ordinary phenomena seen to be consistent with it. The

super�uidity of helium and the superconductivity of metals having recently

been explained, there are to my knowledge no phenomena occuring under

known conditions, where quantum electrodynamics should provide an expla-

nation, and where at least a qualitative explanation in these terms has not

been found. The search for discrepancies has turned from looking for gross

deviations in complex situations to looking either for large discrepancies at

very high energies, or by looking for tiny deviations from the theory in very

simple, but very accurately measured situations20.

- Richard P. Feynman ( Solvay Conference in 1961)

20The Solvay Conferences on Physics: Aspects of the Development of Physics since 1911 by Jagdish

Mehra
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Part III

Conclusion

This thesis started with the discussion of the electroweak Standard Model which forms

the heart of particle physics. While studying the theories and tools necessary to obtain

the corresponding Lagrangian we could see that writing down the Lagrangian obeying

a speci�c symmetry is easy once we know the rules underlying the theory. Writing the

Lagrangian requires a lot of prerequisites as shown in the �rst chapter. The discovery

of parity violation set o� a series of discoveries that led to the evolution of modern

particle physics to a form as it is now. If no symmetry breaking was involved, we

would not have been able to generate masses for the gauge bosons and fermions as was

the case with photons. The Lagrangian obtained contains kinetic energy terms of the

SM particles and also shows their interaction with each other. Since the formulation

of the Standard model, several attempts have been made to verify the theory. An

outcome of such attempts was Radiative Corrections. As in many realms of physics, a

deeper understanding and an extensive �box of tricks� can render a seemingly unsolvable

problem doable. In this thesis we demonstrated how we can manipulate the theory and

use such tricks to extract information in clever ways21.

In particle physics, quantum electrodynamics (QED) is the relativistic quantum

�eld theory of electrodynamics. In technical terms, QED can be described as a per-

turbation theory of the electromagnetic quantum vacuum. Richard Feynman called

it "the jewel of physics" for its extremely accurate predictions of quantities like the

anomalous magnetic moment of the electron and the Lamb shift of the energy levels of

hydrogen22. In quantum electrodynamics, the vertex function describes the coupling

between a photon and an electron beyond the leading order of perturbation theory.

Radiative corrections in electrodynamic processes was �rst calculated by Schwinger

for electron scattering in an external �eld and by Brown and Feynman for Compton

e�ect. It was shown that the Standard Model is a renormalizable �eld theory. This

means that when we go beyond the tree level (Born approximation) we are still able

to make de�nite predictions for observables. The general procedure to evaluate these

quantities at the quantum level is to collect and evaluate all the loop diagrams up to

a certain level. This is what we have done in the next part of the thesis. We have

evaluated the Feynman diagrams for an electron scattering process which has gener-

ated the form of the g-factor and a higher order calculation (one-loop correction) has

provided us with a more precise value, more consistent with experimental results. We

21Calculating Massive One-Loop Amplitudes in QCD Ori Yudilevich, Institute of Theoretical
Physics, Utrecht University Theory Group, Nikhef Supervised by: prof. dr. E.L.M.P. Laenen

22http://en.wikipedia.org/wiki/Quantum_electrodynamics
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have actually explicitly calculated the anomalous magnetic moment of the electron and

then moved on to calculate the one-loop vertex correction of an electron vertex emit-

ting a virtual photon. The calculations gave us the value of 'g' correct upto one order

of α. Using the above framework, later calculations leading higher order corrections

were performed for electron vertex and several other processes as discussed previously.

In the last 30 years, we have witnessed the striking success of a gauge theory for the

electroweak interactions.

Great works are being carried out around the world which are proving the impor-

tance of radiative corrections. Although this thesis is very fundamental in this regard

but it lays the foundation of more advanced theoretical calculations that are being

performed in this �eld (more higher order calculations). Nowadays, computers and

programming software's are being used for generating all possible Feynman diagrams,

evaluation of scattering amplitudes, �tting of experimental and theoretical results, etc.

The LHC detectors at CERN are measuring fundamental scattering reactions with

unprecedented experimental precision and the interpretation of these high-quality de-

mands an equally high precision in theoretical predictions. In order to connect the

observed phenomena with the underlying theoretical models, one needs a precise un-

derstanding of the involved processes at the quantum level.

As a �nal personal remark, this thesis work was my �rst plunge into this fascinating

world of particle physics, in a period which could be either the beginning of a new era

in physics or a strong con�rmation that we are on the right path, all depending on

the results of the experiments going around worldwide. If you have reached this point

(without skipping), I hope this thesis proved helpful to you in one way or another.
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Appendix

A Field Transformation in a Non-abelian gauge theory

A gauge theory is a type of �eld theory in which the Lagrangian is invariant under

a continuous group of local transformations. Historically, while trying to explain the

quantum e�ects of electrodynamics, it was found QED could be explained by a U(1)

abelian gauge theory. Yang and Mills showed that the gauge principle could be gen-

eralized from phase (U(1)) to isospin (SU(2)) transformations. The main di�culty

associated with this extension is that the isospin transformations do not commute with

one another, thus their theory is termed non-abelian gauge theory, in contrast with

the abelian electromagnetism. These theories at �rst seemed unsuitable for describing

fundamental interactions since they involved massless gauge bosons which had not been

observed. It turns out this problem can be avoided in two ways: the bosons can become

massive due to spontaneous symmetry breaking or the bosons can not be observed in

the particle spectrum due to con�nement.23

To ensure local gauge invariance of a theory we need a gauge covariant derivative

degined as

Dµ = I∂µ + igBµ where I =

(
1 0

0 1

)

This serves as a reminder that operators are 2×2 matrices in the isospin space and

g is the strong interaction coupling constant. Bµ is a 2×2 matrix de�ned by

Bµ = 1
2
τ.bµ = 1

2

(
b3 b1 − ib2

b1 + ib2 −b3

)
where bµ is an isovector with three components.

23Spontaneous Symmetry Breaking in Non Abelian Gauge Theories Michael LeBlanc
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If G(x) = e
i
2
τ.α(x) is the local gauge transformation, the �eld transforms as ψ′ =

Gψ.

So,

∂µψ
′ = G (∂µψ) + (∂µG)ψ

and

Dµψ
′ =
(
∂µ + igB′µ

)
Gψ = G(x)Dµψ

Using the condition igB′µ (Gψ) = igG (Bµψ)− (∂µG)ψ we get

B′µψ
′(x) = G (Bµψ (x)) + i

g
(∂µG)ψ

Multiplying both sides by G−1 and writing as an operator equation we get,

B′µ = G
[
Bµ + i

g
G−1 (∂µG)

]
G−1

For local gauge transformation in electromagnetism, GEM = eiqα(x)

Using this in the above trasformation equation we get,

A′µ = Aµ − ∂µα
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B Feynman Slash Notation

B.1 Dirac equation in slash notation

Since the Dirac �eld obeys the K-G equation, it can be written as a linear combination

of plane waves as ψ(x) = u(p)e−ipx

Plugging this into the Dirac equation(iγµ∂µ −m)ψ(x) = 0 and expanding as the

time and space components we get,

(iγ0∂0 + iγi∂i −m)u(p)e−ip(p0x0−pixi) = 0

Doing the di�erentiation we get γµpµu(p) = mu(p)

By de�nition��A = γµAµ.

So we �nally get the Dirac equation in slash notation as

�pu(p) = mu(p)

Taking the conjugate of this equation and solving by simple algebra we will get

ū(p)�p = ū(p)m

B.2 Formula

�pγ
µ = pνγ

νγµ

Using [γµ, γν ] = 2gµν

= pν [2gµν − γµγν ]

=2pµ − γµγνpν

So, we �nally have

�pγ
µ =2pµ − γµ�p
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C Gordon Identity Proof

Consider the term

ū(p′) iΣ
µνqν
2m

u(p)

= i
2m

i
2
ū(p′) [γµ, γν ] qνu(p) using Σµν = i

2 [γµ, γν ]

= - 1
4m
ū(p′) [(γµγν − γνγµ) p′ν − (γµγν − γνγµ) pν ]u(p)

Using Cli�ord Algebra we get,

= - 1
4m
ū(p′) [(2gµν − 2γνγµ) p′ν − (2γµγν − 2gµν) pν ]u(p)

Using Dirac equation we get,

= - 1
4m
ū(p′)× 2× [(p′µ −mγµ)− (mγν − pµ)]u(p)

= - 1
2m
ū(p′) [(p′µ + pµ)− 2mγµ]u(p)

Rearranging the terms we �nally have

ū(p′)γµu(p) = ¯u(p′)
[
p′µ+pµ

2m
+ iΣµνqν

2m

]
u(p)
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D Ward Identity

From the classical equations of motions, we know current density jµ is conserved :

∂µj
µ = 0. Provided that this still holds in quantum theory, we can write

kµM
µ = 0

where Mµ(k) =
´
d4xeikx < f | jµ(x) | i >

It is essentially a statement of current conservation which is a consequence of gauge

symmetry. It describes physically possible scattering processes and thus have all their

external particles on-shell. If M(k) = εµ (k)Mµ (k) is the amplitude of some QED

process involving an external photon with momentum k, then this amplitude vanishes.

To explain this, consider an arbitrary QED process involving an external photon with

momentum k. Since the amplitude always contains εµ (k) , we have extracted this

factor and de�ned Mµ(k) to be the rest of the amplitude M(k).
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E Pauli-Villars regularization

There are several equivalent methods to regularize a divergent integral which means an

introduction of a cuto� which makes the integral �nite. This is a technique that is used

to separate divergent terms from the �nite parts of a loop calculation in �eld theory

and is named after it's inventors, Pauli and Villars, who invented the technique in 1949.

This is based on the introduction of a set of additional heavy �elds with a wrong sign of

the kinetic term. These �elds are not physical and are introduced essentially with the

purpose of regularization of divergent integrals. The main trick is in the replacement24

1
p2−m2 → 1

p2−m2 − 1
p2−M2 =

´M2

m2 − 1
(p2−z)2dz

where M → ∞ is the mass of the Pauli-Villars �elds. This allows us to simply

square the propagator and add another Feynman-like parameter z. So the propagator

for large momenta decreases faster, which ensures the convergence of the integrals.25

Since PV works by introducing massive particles to regulate UV divergence. Even

though PV works for photon at 1-loop, it fails in more complicated scenarios like non-

abelian gauge theories. PV is also impractical to implement in multi-loop diagrams

where many PV �elds have to be introduced26.

24JOINT INSTITUTE FOR NUCLEAR RESEARCH Bogoliubov Laboratory of Theoretical Physics
Radiative corrections divergences Regularization Renormalization Renormalization group and all that
in examples in quantum �eld theory D.I.KAZAKOV

25http://isites.harvard.edu/fs/docs/icb.topic792163.�les/15-regschemes.pdf
26https://www.quora.com/What-are-the-pros-and-cons-of-Pauli-Villars-regularization-and-that-of-

dimensional-regularization
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